Skip to content

Latest commit

 

History

History
65 lines (65 loc) · 44.8 KB

20200306.md

File metadata and controls

65 lines (65 loc) · 44.8 KB

ArXiv cs.CV --Fri, 6 Mar 2020

1.Action Segmentation with Joint Self-Supervised Temporal Domain Adaptation ⬇️

Despite the recent progress of fully-supervised action segmentation techniques, the performance is still not fully satisfactory. One main challenge is the problem of spatiotemporal variations (e.g. different people may perform the same activity in various ways). Therefore, we exploit unlabeled videos to address this problem by reformulating the action segmentation task as a cross-domain problem with domain discrepancy caused by spatio-temporal variations. To reduce the discrepancy, we propose Self-Supervised Temporal Domain Adaptation (SSTDA), which contains two self-supervised auxiliary tasks (binary and sequential domain prediction) to jointly align cross-domain feature spaces embedded with local and global temporal dynamics, achieving better performance than other Domain Adaptation (DA) approaches. On three challenging benchmark datasets (GTEA, 50Salads, and Breakfast), SSTDA outperforms the current state-of-the-art method by large margins (e.g. for the F1@25 score, from 59.6% to 69.1% on Breakfast, from 73.4% to 81.5% on 50Salads, and from 83.6% to 89.1% on GTEA), and requires only 65% of the labeled training data for comparable performance, demonstrating the usefulness of adapting to unlabeled target videos across variations. The source code is available at this https URL.

2.Feature Extraction for Hyperspectral Imagery: The Evolution from Shallow to Deep ⬇️

Hyperspectral images provide detailed spectral information through hundreds of (narrow) spectral channels (also known as dimensionality or bands) with continuous spectral information that can accurately classify diverse materials of interest. The increased dimensionality of such data makes it possible to significantly improve data information content but provides a challenge to the conventional techniques (the so-called curse of dimensionality) for accurate analysis of hyperspectral images. Feature extraction, as a vibrant field of research in the hyperspectral community, evolved through decades of research to address this issue and extract informative features suitable for data representation and classification. The advances in feature extraction have been inspired by two fields of research, including the popularization of image and signal processing as well as machine (deep) learning, leading to two types of feature extraction approaches named shallow and deep techniques. This article outlines the advances in feature extraction approaches for hyperspectral imagery by providing a technical overview of the state-of-the-art techniques, providing useful entry points for researchers at different levels, including students, researchers, and senior researchers, willing to explore novel investigations on this challenging topic. % by supplying a rich amount of detail and references. In more detail, this paper provides a bird's eye view over shallow (both supervised and unsupervised) and deep feature extraction approaches specifically dedicated to the topic of hyperspectral feature extraction and its application on hyperspectral image classification. Additionally, this paper compares 15 advanced techniques with an emphasis on their methodological foundations in terms of classification accuracies.

3.Multi-object Tracking via End-to-end Tracklet Searching and Ranking ⬇️

Recent works in multiple object tracking use sequence model to calculate the similarity score between the detections and the previous tracklets. However, the forced exposure to ground-truth in the training stage leads to the training-inference discrepancy problem, i.e., exposure bias, where association error could accumulate in the inference and make the trajectories drift. In this paper, we propose a novel method for optimizing tracklet consistency, which directly takes the prediction errors into account by introducing an online, end-to-end tracklet search training process. Notably, our methods directly optimize the whole tracklet score instead of pairwise affinity. With sequence model as appearance encoders of tracklet, our tracker achieves remarkable performance gain from conventional tracklet association baseline. Our methods have also achieved state-of-the-art in MOT15~17 challenge benchmarks using public detection and online settings.

4.Combating noisy labels by agreement: A joint training method with co-regularization ⬇️

Deep Learning with noisy labels is a practically challenging problem in weakly-supervised learning. The state-of-the-art approaches "Decoupling" and "Co-teaching+" claim that the "disagreement" strategy is crucial for alleviating the problem of learning with noisy labels. In this paper, we start from a different perspective and propose a robust learning paradigm called JoCoR, which aims to reduce the diversity of two networks during training. Specifically, we first use two networks to make predictions on the same mini-batch data and calculate a joint loss with Co-Regularization for each training example. Then we select small-loss examples to update the parameters of both two networks simultaneously. Trained by the joint loss, these two networks would be more and more similar due to the effect of Co-Regularization. Extensive experimental results on corrupted data from benchmark datasets including MNIST, CIFAR-10, CIFAR-100 and Clothing1M demonstrate that JoCoR is superior to many state-of-the-art approaches for learning with noisy labels.

5.Search Space of Adversarial Perturbations against Image Filters ⬇️

The superiority of deep learning performance is threatened by safety issues for itself. Recent findings have shown that deep learning systems are very weak to adversarial examples, an attack form that was altered by the attacker's intent to deceive the deep learning system. There are many proposed defensive methods to protect deep learning systems against adversarial examples. However, there is still a lack of principal strategies to deceive those defensive methods. Any time a particular countermeasure is proposed, a new powerful adversarial attack will be invented to deceive that countermeasure. In this study, we focus on investigating the ability to create adversarial patterns in search space against defensive methods that use image filters. Experimental results conducted on the ImageNet dataset with image classification tasks showed the correlation between the search space of adversarial perturbation and filters. These findings open a new direction for building stronger offensive methods towards deep learning systems.

6.Self-Supervised Spatio-Temporal Representation Learning Using Variable Playback Speed Prediction ⬇️

We propose a self-supervised learning method by predicting the variable playback speeds of a video. Without semantic labels, we learn the spatio-temporal representation of the video by leveraging the variations in the visual appearance according to different playback speeds under the assumption of temporal coherence. To learn the spatio-temporal variations in the entire video, we have not only predicted a single playback speed but also generated clips of various playback speeds with randomized starting points. We then train a 3D convolutional network by solving the formulation that sorts the shuffled clips by their playback speed. In this case, the playback speed includes both forward and reverse directions; hence the visual representation can be successfully learned from the directional dynamics of the video. We also propose a novel layer-dependable temporal group normalization method that can be applied to 3D convolutional networks to improve the representation learning performance where we divide the temporal features into several groups and normalize each one using the different corresponding parameters. We validate the effectiveness of the proposed method by fine-tuning it to the action recognition task. The experimental results show that the proposed method outperforms state-of-the-art self-supervised learning methods in action recognition.

7.Image Generation from Freehand Scene Sketches ⬇️

We introduce the first method for automatic image generation from scene-level freehand sketches. Our model allows for controllable image generation by specifying the synthesis goal via freehand sketches. The key contribution is an attribute vector bridged generative adversarial network called edgeGAN which supports high visual-quality image content generation without using freehand sketches as training data. We build a large-scale composite dataset called SketchyCOCO to comprehensively evaluate our solution. We validate our approach on the task of both objectlevel and scene-level image generation on SketchyCOCO. We demonstrate the method's capacity to generate realistic complex scene-level images from a variety of freehand sketches by quantitative, qualitative results, and ablation studies.

8.AI outperformed every dermatologist: Improved dermoscopic melanoma diagnosis through customizing batch logic and loss function in an optimized Deep CNN architecture ⬇️

Melanoma, one of most dangerous types of skin cancer, re-sults in a very high mortality rate. Early detection and resection are two key points for a successful cure. Recent research has used artificial intelligence to classify melanoma and nevus and to compare the assessment of these algorithms to that of dermatologists. However, an imbalance of sensitivity and specificity measures affected the performance of existing models. This study proposes a method using deep convolutional neural networks aiming to detect melanoma as a binary classification problem. It involves 3 key features, namely customized batch logic, customized loss function and reformed fully connected layers. The training dataset is kept up to date including 17,302 images of melanoma and nevus; this is the largest dataset by far. The model performance is compared to that of 157 dermatologists from 12 university hospitals in Germany based on MClass-D dataset. The model outperformed all 157 dermatologists and achieved state-of-the-art performance with AUC at 94.4% with sensitivity of 85.0% and specificity of 95.0% using a prediction threshold of 0.5 on the MClass-D dataset of 100 dermoscopic images. Moreover, a threshold of 0.40858 showed the most balanced measure compared to other researches, and is promisingly application to medical diagnosis, with sensitivity of 90.0% and specificity of 93.8%.

9.MarginDistillation: distillation for margin-based softmax ⬇️

The usage of convolutional neural networks (CNNs) in conjunction with a margin-based softmax approach demonstrates a state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a novel distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and the face embeddings, predicted by the teacher network.

10.GANwriting: Content-Conditioned Generation of Styled Handwritten Word Images ⬇️

Although current image generation methods have reached impressive quality levels, they are still unable to produce plausible yet diverse images of handwritten words. On the contrary, when writing by hand, a great variability is observed across different writers, and even when analyzing words scribbled by the same individual, involuntary variations are conspicuous. In this work, we take a step closer to producing realistic and varied artificially rendered handwritten words. We propose a novel method that is able to produce credible handwritten word images by conditioning the generative process with both calligraphic style features and textual content. Our generator is guided by three complementary learning objectives: to produce realistic images, to imitate a certain handwriting style and to convey a specific textual content. Our model is unconstrained to any predefined vocabulary, being able to render whatever input word. Given a sample writer, it is also able to mimic its calligraphic features in a few-shot setup. We significantly advance over prior art and demonstrate with qualitative, quantitative and human-based evaluations the realistic aspect of our synthetically produced images.

11.Embedding Expansion: Augmentation in Embedding Space for Deep Metric Learning ⬇️

Learning the distance metric between pairs of samples has been studied for image retrieval and clustering. With the remarkable success of pair-based metric learning losses, recent works have proposed the use of generated synthetic points on metric learning losses for augmentation and generalization. However, these methods require additional generative networks along with the main network, which can lead to a larger model size, slower training speed, and harder optimization. Meanwhile, post-processing techniques, such as query expansion and database augmentation, have proposed the combination of feature points to obtain additional semantic information. In this paper, inspired by query expansion and database augmentation, we propose an augmentation method in an embedding space for pair-based metric learning losses, called embedding expansion. The proposed method generates synthetic points containing augmented information by a combination of feature points and performs hard negative pair mining to learn with the most informative feature representations. Because of its simplicity and flexibility, it can be used for existing metric learning losses without affecting model size, training speed, or optimization difficulty. Finally, the combination of embedding expansion and representative metric learning losses outperforms the state-of-the-art losses and previous sample generation methods in both image retrieval and clustering tasks. The implementation will be publicly available.

12.A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation ⬇️

This work addresses the unsupervised domain adaptation problem, especially for the partial scenario where the class labels in the target domain are only a subset of those in the source domain. Such a partial transfer setting sounds realistic but challenging while existing methods always suffer from two key problems, i.e., negative transfer and uncertainty propagation. In this paper, we build on domain adversarial learning and propose a novel domain adaptation method BA$^3$US with two new techniques termed Balanced Adversarial Alignment (BAA) and Adaptive Uncertainty Suppression (AUS), respectively. On one hand, negative transfer results in that target samples are misclassified to the classes only present in the source domain. To address this issue, BAA aims to pursue the balance between label distributions across domains in a quite simple manner. Specifically, it randomly leverages a few source samples to augment the smaller target domain during domain alignment so that classes in different domains are symmetric. On the other hand, a source sample is denoted as uncertain if there is an incorrect class that has a relatively high prediction score. Such uncertainty is easily propagated to the unlabeled target data around it during alignment, which severely deteriorates the adaptation performance. Thus, AUS emphasizes uncertain samples and exploits an adaptive weighted complement entropy objective to expect that incorrect classes have the uniform and low prediction scores. Experimental results on multiple benchmarks demonstrate that BA$^3$US surpasses state-of-the-arts for partial domain adaptation tasks.

13.Detecting Attended Visual Targets in Video ⬇️

We address the problem of detecting attention targets in video. Specifically, our goal is to identify where each person in each frame of a video is looking, and correctly handle the out-of-frame case. Our novel architecture effectively models the dynamic interaction between the scene and head features in order to infer time-varying attention targets. We introduce a new dataset, VideoAttentionTarget, consisting of fully-annotated video clips containing complex and dynamic patterns of real-world gaze behavior. Experiments on this dataset show that our model can effectively infer attention in videos. To further demonstrate the utility of our approach, we apply our predicted attention maps to two social gaze behavior recognition tasks, and show that the resulting classifiers significantly outperform existing methods. We achieve state-of-the-art performance on three datasets: GazeFollow (static images), VideoAttentionTarget (videos), and VideoCoAtt (videos), and obtain the first results for automatically classifying clinically-relevant gaze behavior without wearable cameras or eye trackers.

14.Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization ⬇️

Adversarial examples cause neural networks to produce incorrect outputs with high confidence. Although adversarial training is one of the most effective forms of defense against adversarial examples, unfortunately, a large gap exists between test accuracy and training accuracy in adversarial training. In this paper, we identify Adversarial Feature Overfitting (AFO), which may cause poor adversarially robust generalization, and we show that adversarial training can overshoot the optimal point in terms of robust generalization, leading to AFO in our simple Gaussian model. Considering these theoretical results, we present soft labeling as a solution to the AFO problem. Furthermore, we propose Adversarial Vertex mixup (AVmixup), a soft-labeled data augmentation approach for improving adversarially robust generalization. We complement our theoretical analysis with experiments on CIFAR10, CIFAR100, SVHN, and Tiny ImageNet, and show that AVmixup significantly improves the robust generalization performance and that it reduces the trade-off between standard accuracy and adversarial robustness.

15.Fake Generated Painting Detection via Frequency Analysis ⬇️

With the development of deep neural networks, digital fake paintings can be generated by various style transfer this http URL detect the fake generated paintings, we analyze the fake generated and real paintings in Fourier frequency domain and observe statistical differences and artifacts. Based on our observations, we propose Fake Generated Painting Detection via Frequency Analysis (FGPD-FA) by extracting three types of features in frequency domain. Besides, we also propose a digital fake painting detection database for assessing the proposed method. Experimental results demonstrate the excellence of the proposed method in different testing conditions.

16.Cluster Pruning: An Efficient Filter Pruning Method for Edge AI Vision Applications ⬇️

Even though the Convolutional Neural Networks (CNN) has shown superior results in the field of computer vision, it is still a challenging task to implement computer vision algorithms in real-time at the edge, especially using a low-cost IoT device due to high memory consumption and computation complexities in a CNN. Network compression methodologies such as weight pruning, filter pruning, and quantization are used to overcome the above mentioned problem. Even though filter pruning methodology has shown better performances compared to other techniques, irregularity of the number of filters pruned across different layers of a CNN might not comply with majority of the neural computing hardware architectures. In this paper, a novel greedy approach called cluster pruning has been proposed, which provides a structured way of removing filters in a CNN by considering the importance of filters and the underlying hardware architecture. The proposed methodology is compared with the conventional filter pruning algorithm on Pascal-VOC open dataset, and Head-Counting dataset, which is our own dataset developed to detect and count people entering a room. We benchmark our proposed method on three hardware architectures, namely CPU, GPU, and Intel Movidius Neural Computer Stick (NCS) using the popular SSD-MobileNet and SSD-SqueezeNet neural network architectures used for edge-AI vision applications. Results demonstrate that our method outperforms the conventional filter pruning methodology, using both datasets on above mentioned hardware architectures. Furthermore, a low cost IoT hardware setup consisting of an Intel Movidius-NCS is proposed to deploy an edge-AI application using our proposed pruning methodology.

17.End-to-End Trainable One-Stage Parking Slot Detection Integrating Global and Local Information ⬇️

This paper proposes an end-to-end trainable one-stage parking slot detection method for around view monitor (AVM) images. The proposed method simultaneously acquires global information (entrance, type, and occupancy of parking slot) and local information (location and orientation of junction) by using a convolutional neural network (CNN), and integrates them to detect parking slots with their properties. This method divides an AVM image into a grid and performs a CNN-based feature extraction. For each cell of the grid, the global and local information of the parking slot is obtained by applying convolution filters to the extracted feature map. Final detection results are produced by integrating the global and local information of the parking slot through non-maximum suppression (NMS). Since the proposed method obtains most of the information of the parking slot using a fully convolutional network without a region proposal stage, it is an end-to-end trainable one-stage detector. In experiments, this method was quantitatively evaluated using the public dataset and outperforms previous methods by showing both recall and precision of 99.77%, type classification accuracy of 100%, and occupancy classification accuracy of 99.31% while processing 60 frames per second.

18.Drone Based RGBT Vehicle Detection and Counting: A Challenge ⬇️

Camera-equipped drones can capture targets on the ground from a wider field of view than static cameras or moving sensors over the ground. In this paper we present a large-scale vehicle detection and counting benchmark, named DroneVehicle, aiming at advancing visual analysis tasks on the drone platform. The images in the benchmark were captured over various urban areas, which include different types of urban roads, residential areas, parking lots, highways, etc., from day to night. Specifically, DroneVehicle consists of 15,532 pairs of images, i.e., RGB images and infrared images with rich annotations, including oriented object bounding boxes, object categories, etc. With intensive amount of effort, our benchmark has 441,642 annotated instances in 31,064 images. As a large-scale dataset with both RGB and thermal infrared (RGBT) images, the benchmark enables extensive evaluation and investigation of visual analysis algorithms on the drone platform. In particular, we design two popular tasks with the benchmark, including object detection and object counting. All these tasks are extremely challenging in the proposed dataset due to factors such as illumination, occlusion, and scale variations. We hope the benchmark largely boost the research and development in visual analysis on drone platforms. The DroneVehicle dataset can be download from this https URL.

19.Who Make Drivers Stop? Towards Driver-centric Risk Assessment: Risk Object Identification via Causal Inference ⬇️

We propose a framework based on causal inference for risk object identification, an essential task towards driver-centric risk assessment. In this work, risk objects are defined as objects influencing driver's goal-oriented behavior. There are two limitations of the existing approaches. First, they require strong supervisions such as risk object location or human gaze location. Second, there is no explicit reasoning stage for identifying risk object. To address these issues, the task of identifying causes of driver behavioral change is formalized in the language of functional causal models and interventions. Specifically, we iteratively simulate causal effect by removing an object using the proposed driving model. The risk object is determined as the one causing the most substantial causal effect. We evaluate the proposed framework on the Honda Research Institute Driving Dataset (HDD). The dataset provides the annotation for risk object localization to enable systematic benchmarking with existing approaches. Our framework demonstrates a substantial average performance boost over a strong baseline by 7.5%.

20.A Benchmark for LiDAR-based Panoptic Segmentation based on KITTI ⬇️

Panoptic segmentation is the recently introduced task that tackles semantic segmentation and instance segmentation jointly. In this paper, we present an extension of SemanticKITTI, which is a large-scale dataset providing dense point-wise semantic labels for all sequences of the KITTI Odometry Benchmark, for training and evaluation of laser-based panoptic segmentation. We provide the data and discuss the processing steps needed to enrich a given semantic annotation with temporally consistent instance information, i.e., instance information that supplements the semantic labels and identifies the same instance over sequences of LiDAR point clouds. Additionally, we present two strong baselines that combine state-of-the-art LiDAR-based semantic segmentation approaches with a state-of-the-art detector enriching the segmentation with instance information and that allow other researchers to compare their approaches against. We hope that our extension of SemanticKITTI with strong baselines enables the creation of novel algorithms for LiDAR-based panoptic segmentation as much as it has for the original semantic segmentation and semantic scene completion tasks. Data, code, and an online evaluation using a hidden test set will be published on this http URL.

21.Towards Fair Cross-Domain Adaptation via Generative Learning ⬇️

Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions. Existing DA normally assumes the well-labeled source domain is class-wise balanced, which means the size per source class is relatively similar. However, in real-world applications, labeled samples for some categories in the source domain could be extremely few due to the difficulty of data collection and annotation, which leads to decreasing performance over target domain on those few-shot categories. To perform fair cross-domain adaptation and boost the performance on these minority categories, we develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification. Specifically, generative feature augmentation is explored to synthesize effective training data for few-shot source classes, while effective cross-domain alignment aims to adapt knowledge from source to facilitate the target learning. Experimental results on two large cross-domain visual datasets demonstrate the effectiveness of our proposed method on improving both few-shot and overall classification accuracy comparing with the state-of-the-art DA approaches.

22.Creating High Resolution Images with a Latent Adversarial Generator ⬇️

Generating realistic images is difficult, and many formulations for this task have been proposed recently. If we restrict the task to that of generating a particular class of images, however, the task becomes more tractable. That is to say, instead of generating an arbitrary image as a sample from the manifold of natural images, we propose to sample images from a particular "subspace" of natural images, directed by a low-resolution image from the same subspace. The problem we address, while close to the formulation of the single-image super-resolution problem, is in fact rather different. Single image super-resolution is the task of predicting the image closest to the ground truth from a relatively low resolution image. We propose to produce samples of high resolution images given extremely small inputs with a new method called Latent Adversarial Generator (LAG). In our generative sampling framework, we only use the input (possibly of very low-resolution) to direct what class of samples the network should produce. As such, the output of our algorithm is not a unique image that relates to the input, but rather a possible se} of related images sampled from the manifold of natural images. Our method learns exclusively in the latent space of the adversary using perceptual loss -- it does not have a pixel loss.

23.Learning View and Target Invariant Visual Servoing for Navigation ⬇️

The advances in deep reinforcement learning recently revived interest in data-driven learning based approaches to navigation. In this paper we propose to learn viewpoint invariant and target invariant visual servoing for local mobile robot navigation; given an initial view and the goal view or an image of a target, we train deep convolutional network controller to reach the desired goal. We present a new architecture for this task which rests on the ability of establishing correspondences between the initial and goal view and novel reward structure motivated by the traditional feedback control error. The advantage of the proposed model is that it does not require calibration and depth information and achieves robust visual servoing in a variety of environments and targets without any parameter fine tuning. We present comprehensive evaluation of the approach and comparison with other deep learning architectures as well as classical visual servoing methods in visually realistic simulation environment. The presented model overcomes the brittleness of classical visual servoing based methods and achieves significantly higher generalization capability compared to the previous learning approaches.

24.The Impact of Hole Geometry on Relative Robustness of In-Painting Networks: An Empirical Study ⬇️

In-painting networks use existing pixels to generate appropriate pixels to fill "holes" placed on parts of an image. A 2-D in-painting network's input usually consists of (1) a three-channel 2-D image, and (2) an additional channel for the "holes" to be in-painted in that image. In this paper, we study the robustness of a given in-painting neural network against variations in hole geometry distributions. We observe that the robustness of an in-painting network is dependent on the probability distribution function (PDF) of the hole geometry presented to it during its training even if the underlying image dataset used (in training and testing) does not alter. We develop an experimental methodology for testing and evaluating relative robustness of in-painting networks against four different kinds of hole geometry PDFs. We examine a number of hypothesis regarding (1) the natural bias of in-painting networks to the hole distribution used for their training, (2) the underlying dataset's ability to differentiate relative robustness as hole distributions vary in a train-test (cross-comparison) grid, and (3) the impact of the directional distribution of edges in the holes and in the image dataset. We present results for L1, PSNR and SSIM quality metrics and develop a specific measure of relative in-painting robustness to be used in cross-comparison grids based on these quality metrics. (One can incorporate other quality metrics in this relative measure.) The empirical work reported here is an initial step in a broader and deeper investigation of "filling the blank" neural networks' sensitivity, robustness and regularization with respect to hole "geometry" PDFs, and it suggests further research in this domain.

25.Exploring Partial Intrinsic and Extrinsic Symmetry in 3D Medical Imaging ⬇️

We present a novel methodology to detect imperfect bilateral symmetry in CT of human anatomy. In this paper, the structurally symmetric nature of the pelvic bone is explored and is used to provide interventional image augmentation for treatment of unilateral fractures in patients with traumatic injuries. The mathematical basis of our solution is on the incorporation of attributes and characteristics that satisfy the properties of intrinsic and extrinsic symmetry and are robust to outliers. In the first step, feature points that satisfy intrinsic symmetry are automatically detected in the Möbius space defined on the CT data. These features are then pruned via a two-stage RANSAC to attain correspondences that satisfy also the extrinsic symmetry. Then, a disparity function based on Tukey's biweight robust estimator is introduced and minimized to identify a symmetry plane parametrization that yields maximum contralateral similarity. Finally, a novel regularization term is introduced to enhance similarity between bone density histograms across the partial symmetry plane, relying on the important biological observation that, even if injured, the dislocated bone segments remain within the body. Our extensive evaluations on various cases of common fracture types demonstrate the validity of the novel concepts and the robustness and accuracy of the proposed method.

26.Event-Based Angular Velocity Regression with Spiking Networks ⬇️

Spiking Neural Networks (SNNs) are bio-inspired networks that process information conveyed as temporal spikes rather than numeric values. A spiking neuron of an SNN only produces a spike whenever a significant number of spikes occur within a short period of time. Due to their spike-based computational model, SNNs can process output from event-based, asynchronous sensors without any pre-processing at extremely lower power unlike standard artificial neural networks. This is possible due to specialized neuromorphic hardware that implements the highly-parallelizable concept of SNNs in silicon. Yet, SNNs have not enjoyed the same rise of popularity as artificial neural networks. This not only stems from the fact that their input format is rather unconventional but also due to the challenges in training spiking networks. Despite their temporal nature and recent algorithmic advances, they have been mostly evaluated on classification problems. We propose, for the first time, a temporal regression problem of numerical values given events from an event camera. We specifically investigate the prediction of the 3-DOF angular velocity of a rotating event camera with an SNN. The difficulty of this problem arises from the prediction of angular velocities continuously in time directly from irregular, asynchronous event-based input. Directly utilising the output of event cameras without any pre-processing ensures that we inherit all the benefits that they provide over conventional cameras. That is high-temporal resolution, high-dynamic range and no motion blur. To assess the performance of SNNs on this task, we introduce a synthetic event camera dataset generated from real-world panoramic images and show that we can successfully train an SNN to perform angular velocity regression.

27.Dimensionality Reduction and Motion Clustering during Activities of Daily Living: 3, 4, and 7 Degree-of-Freedom Arm Movements ⬇️

The wide variety of motions performed by the human arm during daily tasks makes it desirable to find representative subsets to reduce the dimensionality of these movements for a variety of applications, including the design and control of robotic and prosthetic devices. This paper presents a novel method and the results of an extensive human subjects study to obtain representative arm joint angle trajectories that span naturalistic motions during Activities of Daily Living (ADLs). In particular, we seek to identify sets of useful motion trajectories of the upper limb that are functions of a single variable, allowing, for instance, an entire prosthetic or robotic arm to be controlled with a single input from a user, along with a means to select between motions for different tasks. Data driven approaches are used to obtain clusters as well as representative motion averages for the full-arm 7 degree of freedom (DOF), elbow-wrist 4 DOF, and wrist-only 3 DOF motions. The proposed method makes use of well-known techniques such as dynamic time warping (DTW) to obtain a divergence measure between motion segments, DTW barycenter averaging (DBA) to obtain averages, Ward's distance criterion to build hierarchical trees, batch-DTW to simultaneously align multiple motion data, and functional principal component analysis (fPCA) to evaluate cluster variability. The clusters that emerge associate various recorded motions into primarily hand start and end location for the full-arm system, motion direction for the wrist-only system, and an intermediate between the two qualities for the elbow-wrist system. The proposed clustering methodology is justified by comparing results against alternative approaches.

28.Learning the sense of touch in simulation: a sim-to-real strategy for vision-based tactile sensing ⬇️

Data-driven approaches to tactile sensing aim to overcome the complexity of accurately modeling contact with soft materials. However, their widespread adoption is impaired by concerns about data efficiency and the capability to generalize when applied to various tasks. This paper focuses on both these aspects with regard to a vision-based tactile sensor, which aims to reconstruct the distribution of the three-dimensional contact forces applied on its soft surface. Accurate models for the soft materials and the camera projection, derived via state-of-the-art techniques in the respective domains, are employed to generate a dataset in simulation. A strategy is proposed to train a tailored deep neural network entirely from the simulation data. The resulting learning architecture is directly transferable across multiple tactile sensors without further training and yields accurate predictions on real data, while showing promising generalization capabilities to unseen contact conditions.

29.Demographic Bias in Biometrics: A Survey on an Emerging Challenge ⬇️

Systems incorporating biometric technologies have become ubiquitous in personal, commercial, and governmental identity management applications. Both cooperative (e.g. access control) and non-cooperative (e.g. surveillance and forensics) systems have benefited from biometrics. Such systems rely on the uniqueness of certain biological or behavioural characteristics of human beings, which enable for individuals to be reliably recognised using automated algorithms.
Recently, however, there has been a wave of public and academic concerns regarding the existence of systemic bias in automated decision systems (including biometrics). Most prominently, face recognition algorithms have often been labelled as "racist" or "biased" by the media, non-governmental organisations, and researchers alike.
The main contributions of this article are: (1) an overview of the topic of algorithmic bias in the context of biometrics, (2) a comprehensive survey of the existing literature on biometric bias estimation and mitigation, (3) a discussion of the pertinent technical and social matters, and (4) an outline of the remaining challenges and future work items, both from technological and social points of view.

30.Cumulant-free closed-form formulas for some common (dis)similarities between densities of an exponential family ⬇️

It is well-known that the Bhattacharyya, Hellinger, Kullback-Leibler, $\alpha$-divergences, and Jeffreys' divergences between densities belonging to a same exponential family have generic closed-form formulas relying on the strictly convex and real-analytic cumulant function characterizing the exponential family. In this work, we report (dis)similarity formulas which bypass the explicit use of the cumulant function and highlight the role of quasi-arithmetic means and their multivariate mean operator extensions. In practice, these cumulant-free formulas are handy when implementing these (dis)similarities using legacy Application Programming Interfaces (APIs) since our method requires only to partially factorize the densities canonically of the considered exponential family.

31.Harnessing Multi-View Perspective of Light Fields for Low-Light Imaging ⬇️

Light Field (LF) offers unique advantages such as post-capture refocusing and depth estimation, but low-light conditions limit these capabilities. To restore low-light LFs we should harness the geometric cues present in different LF views, which is not possible using single-frame low-light enhancement techniques. We, therefore, propose a deep neural network for Low-Light Light Field (L3F) restoration, which we refer to as L3Fnet. The proposed L3Fnet not only performs the necessary visual enhancement of each LF view but also preserves the epipolar geometry across views. We achieve this by adopting a two-stage architecture for L3Fnet. Stage-I looks at all the LF views to encode the LF geometry. This encoded information is then used in Stage-II to reconstruct each LF view. To facilitate learning-based techniques for low-light LF imaging, we collected a comprehensive LF dataset of various scenes. For each scene, we captured four LFs, one with near-optimal exposure and ISO settings and the others at different levels of low-light conditions varying from low to extreme low-light settings. The effectiveness of the proposed L3Fnet is supported by both visual and numerical comparisons on this dataset. To further analyze the performance of low-light reconstruction methods, we also propose an L3F-wild dataset that contains LF captured late at night with almost zero lux values. No ground truth is available in this dataset. To perform well on the L3F-wild dataset, any method must adapt to the light level of the captured scene. To do this we propose a novel pre-processing block that makes L3Fnet robust to various degrees of low-light conditions. Lastly, we show that L3Fnet can also be used for low-light enhancement of single-frame images, despite it being engineered for LF data. We do so by converting the single-frame DSLR image into a form suitable to L3Fnet, which we call as pseudo-LF.

32.Team O2AS at the World Robot Summit 2018: An Approach to Robotic Kitting and Assembly Tasks using General Purpose Grippers and Tools ⬇️

We propose a versatile robotic system for kitting and assembly tasks which uses no jigs or commercial tool changers. Instead of specialized end effectors, it uses its two-finger grippers to grasp and hold tools to perform subtasks such as screwing and suctioning. A third gripper is used as a precision picking and centering tool, and uses in-built passive compliance to compensate for small position errors and uncertainty. A novel grasp point detection for bin picking is described for the kitting task, using a single depth map. Using the proposed system we competed in the Assembly Challenge of the Industrial Robotics Category of the World Robot Challenge at the World Robot Summit 2018, obtaining 4th place and the SICE award for lean design and versatile tool use. We show the effectiveness of our approach through experiments performed during the competition.