Skip to content

Latest commit

 

History

History
49 lines (49 loc) · 33.5 KB

20181026.md

File metadata and controls

49 lines (49 loc) · 33.5 KB

ArXiv cs.CV --Fri, 26 Oct 2018

1.Decoding Brain Representations by Multimodal Learning of Neural Activity and Visual Features pdf

This paper tackles the problem of learning brain-visual representations for understanding and neural processes behind human visual perception, with a view towards replicating these processes into machines. The core idea is to learn plausible representations through the combined use of human neural activity evoked by natural images as a supervision mechanism for deep learning models. To accomplish this, we propose a multimodal approach that uses two different deep encoders, one for images and one for EEGs, trained in a siamese configuration for learning a joint manifold that maximizes a compatibility measure between visual features and brain representation. The learned manifold is then used to perform image classification and saliency detection as well as to shed light on the possible representations generated by the human brain when perceiving the visual world. Performance analysis shows that neural signals can be used to effectively supervise the training of deep learning models, as demonstrated by the achieved performance in both image classification and saliency detection. Furthermore, the learned brain-visual manifold is consistent with cognitive neuroscience literature about visual perception and, most importantly, highlights new associations between brain areas, image patches and computational kernels. In particular, we are able to approximate brain responses to visual stimuli by training an artificial model with image features correlated to neural activity.

2.Alzheimer's Disease Diagnosis Based on Cognitive Methods in Virtual Environments and Emotions Analysis pdf

Dementia is a syndrome characterised by the decline of different cognitive abilities. Alzheimer's Disease (AD) is the most common dementia affecting cognitive domains such as memory and learning, perceptual-motion or executive function. High rate of deaths and high cost for detection, treatments and patient's care count amongst its consequences. Early detection of AD is considered of high importance for improving the quality of life of patients and their families. The aim of this thesis is to introduce novel non-invasive early diagnosis methods in order to speed the diagnosis, reduce the associated costs and make them widely accessible. Novel AD's screening tests based on virtual environments using new immersive technologies combined with advanced Human Computer Interaction (HCI) systems are introduced. Four tests demonstrate the wide range of screening mechanisms based on cognitive domain impairments that can be designed using virtual environments. The use of emotion recognition to analyse AD symptoms has been also proposed. A novel multimodal dataset was specifically created to remark the autobiographical memory deficits of AD patients. Data from this dataset is used to introduce novel descriptors for Electroencephalogram (EEG) and facial images data. EEG features are based on quaternions in order to keep the correlation information between sensors, whereas, for facial expression recognition, a preprocessing method for motion magnification and descriptors based on origami crease pattern algorithm are proposed to enhance facial micro-expressions. These features have been proved on classifiers such as SVM and Adaboost for the classification of reactions to autobiographical stimuli such as long and short term memories.

3.Adversarial Semantic Scene Completion from a Single Depth Image pdf

We propose a method to reconstruct, complete and semantically label a 3D scene from a single input depth image. We improve the accuracy of the regressed semantic 3D maps by a novel architecture based on adversarial learning. In particular, we suggest using multiple adversarial loss terms that not only enforce realistic outputs with respect to the ground truth, but also an effective embedding of the internal features. This is done by correlating the latent features of the encoder working on partial 2.5D data with the latent features extracted from a variational 3D auto-encoder trained to reconstruct the complete semantic scene. In addition, differently from other approaches that operate entirely through 3D convolutions, at test time we retain the original 2.5D structure of the input during downsampling to improve the effectiveness of the internal representation of our model. We test our approach on the main benchmark datasets for semantic scene completion to qualitatively and quantitatively assess the effectiveness of our proposal.

4.Investigating the Automatic Classification of Algae Using Fusion of Spectral and Morphological Characteristics of Algae via Deep Residual Learning pdf

Under the impact of global climate changes and human activities, harmful algae blooms in surface waters have become a growing concern due to negative impacts on water related industries. Therefore, reliable and cost effective methods of quantifying the type and concentration of threshold levels of algae cells has become critical for ensuring successful water management. In this work, we present SAMSON, an innovative system to automatically classify multiple types of algae from different phyla groups by combining standard morphological features with their multi-wavelength signals. Two phyla with focused investigation in this study are the Cyanophyta phylum (blue-green algae), and the Chlorophyta phylum (green algae). We use a custom-designed microscopy imaging system which is configured to image water samples at two fluorescent wavelengths and seven absorption wavelengths using discrete-wavelength high-powered light emitting diodes (LEDs). Powered by computer vision and machine learning, we investigate the possibility and effectiveness of automatic classification using a deep residual convolutional neural network. More specifically, a classification accuracy of 96% was achieved in an experiment conducted with six different algae types. This high level of accuracy was achieved using a deep residual convolutional neural network that learns the optimal combination of spectral and morphological features. These findings elude to the possibility of leveraging a unique fingerprint of algae cell (i.e. spectral wavelengths and morphological features) to automatically distinguish different algae types. Our work herein demonstrates that, when coupled with multi-band fluorescence microscopy, machine learning algorithms can potentially be used as a robust and cost-effective tool for identifying and enumerating algae cells.

5.GAN Augmentation: Augmenting Training Data using Generative Adversarial Networks pdf

One of the biggest issues facing the use of machine learning in medical imaging is the lack of availability of large, labelled datasets. The annotation of medical images is not only expensive and time consuming but also highly dependent on the availability of expert observers. The limited amount of training data can inhibit the performance of supervised machine learning algorithms which often need very large quantities of data on which to train to avoid overfitting. So far, much effort has been directed at extracting as much information as possible from what data is available. Generative Adversarial Networks (GANs) offer a novel way to unlock additional information from a dataset by generating synthetic samples with the appearance of real images. This paper demonstrates the feasibility of introducing GAN derived synthetic data to the training datasets in two brain segmentation tasks, leading to improvements in Dice Similarity Coefficient (DSC) of between 1 and 5 percentage points under different conditions, with the strongest effects seen fewer than ten training image stacks are available.

6.Training of a Skull-Stripping Neural Network with efficient data augmentation pdf

Skull-stripping methods aim to remove the non-brain tissue from acquisition of brain scans in magnetic resonance (MR) imaging. Although several methods sharing this common purpose have been presented in literature, they all suffer from the great variability of the MR images. In this work we propose a novel approach based on Convolutional Neural Networks to automatically perform the brain extraction obtaining cutting-edge performance in the NFBS public database. Additionally, we focus on the efficient training of the neural network designing an effective data augmentation pipeline. Obtained results are evaluated through Dice metric, obtaining a value of 96.5%, and processing time, with 4.5s per volume.

7.An Adversarial Learning Approach to Medical Image Synthesis for Lesion Removal pdf

The analysis of lesion within medical image data is desirable for efficient disease diagnosis, treatment and prognosis. The common lesion analysis tasks like segmentation and classification are mainly based on supervised learning with well-paired image-level or voxel-level labels. However, labeling the lesion in medical images is laborious requiring highly specialized knowledge. Inspired by the fact that radiologists make diagnoses based on expert knowledge on "healthiness" and "unhealthiness" developed from extensive experience, we propose an medical image synthesis model named abnormal-to-normal translation generative adversarial network (ANT-GAN) to predict a normal-looking medical image based on its abnormal-looking counterpart without the need of paired data for training. Unlike typical GANs, whose aim is to generate realistic samples with variations, our more restrictive model aims at producing the underlying normal-looking image corresponding to an image containing lesions, and thus requires a specialized design. With an ability to segment normal from abnormal tissue, our model is able to generate a highly realistic lesion-free medical image based on its true lesion-containing counterpart. Being able to provide a "normal" version of a medical image (possibly the same image if there is no illness) is not only an intriguing topic, but also can serve as a pre-processing and provide useful side information for medical imaging tasks like lesion segmentation or classification validated by our experiments.

8.Compressed Sensing Plus Motion (CS+M): A New Perspective for Improving Undersampled MR Image Reconstruction pdf

Purpose: To obtain high-quality reconstructions from highly undersampled dynamic MRI data with the goal of reducing the acquisition time and towards improving physicians' outcome in clinical practice in a range of clinical applications.
Theory and Methods: In dynamic MRI scans, the interaction between the target structure and the physical motion affects the acquired measurements. We exploit the strong repercussion of motion in MRI by proposing a variational framework - called Compressed Sensing Plus Motion (CS+M) - that links in a single model, simultaneously and explicitly, the computation of the algorithmic MRI reconstruction and the physical motion. Most precisely, we recast the image reconstruction and motion estimation problems as a single optimisation problem that is solved, iteratively, by breaking it up into two more computationally tractable problems. The potentials and generalisation capabilities of our approach are demonstrated in different clinical applications including cardiac cine, cardiac perfusion and brain perfusion imaging.
Results: The proposed scheme reduces blurring artefacts and preserves the target shape and fine details whilst observing the lowest reconstruction error under highly undersampling up to 12x. This results in lower residual aliasing artefacts than the compared reconstructions algorithms. Overall, the results coming from our scheme exhibit more stable behaviour and generate a reconstruction closer to the gold-standard.
Conclusion: We show that incorporating physical motion to the CS computation yields a significant improvement of the MR image reconstruction, that in fact, is closer to the gold-standard. This translates to higher reconstruction quality whilst requiring less measurements.

9.HANDS18: Methods, Techniques and Applications for Hand Observation pdf

This report outlines the proceedings of the Fourth International Workshop on Observing and Understanding Hands in Action (HANDS 2018). The fourth instantiation of this workshop attracted significant interest from both academia and the industry. The program of the workshop included regular papers that are published as the workshop's proceedings, extended abstracts, invited posters, and invited talks. Topics of the submitted works and invited talks and posters included novel methods for hand pose estimation from RGB, depth, or skeletal data, datasets for special cases and real-world applications, and techniques for hand motion re-targeting and hand gesture recognition. The invited speakers are leaders in their respective areas of specialization, coming from both industry and academia. The main conclusions that can be drawn are the turn of the community towards RGB data and the maturation of some methods and techniques, which in turn has led to increasing interest for real-world applications.

10.Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells pdf

Automated design of architectures tailored for a specific task at hand is an extremely promising, albeit inherently difficult, venue to explore. While most results in this domain have been achieved on image classification and language modelling problems, here we concentrate on dense per-pixel tasks, in particular, semantic image segmentation using fully convolutional networks. In contrast to the aforementioned areas, the design choice of a fully convolutional network requires several changes, ranging from the sort of operations that need to be used - e.g., dilated convolutions - to solving of a more difficult optimisation problem. In this work, we are particularly interested in searching for high-performance compact segmentation architectures, able to run in real-time using limited resources. To achieve that, we intentionally over-parameterise the architecture during the training time via a set of auxiliary cells that provide an intermediate supervisory signal and can be omitted during the evaluation phase. The design of the auxiliary cell is emitted by a controller, a neural architecture with the fixed structure trained using reinforcement learning. More crucially, we demonstrate how to efficiently search for these architectures within limited time and computational budgets. In particular, we rely on a progressive strategy that terminates non-promising architectures from being further trained, and on Polyak averaging coupled with knowledge distillation to speed-up the convergence. Quantitatively, in 8 GPU-days our approach discovers a set of architectures performing on-par with state-of-the-art among compact models.

11.Perceptual Visual Interactive Learning pdf

Supervised learning methods are widely used in machine learning. However, the lack of labels in existing data limits the application of these technologies. Visual interactive learning (VIL) compared with computers can avoid semantic gap, and solve the labeling problem of small label quantity (SLQ) samples in a groundbreaking way. In order to fully understand the importance of VIL to the interaction process, we re-summarize the interactive learning related algorithms (e.g. clustering, classification, retrieval etc.) from the perspective of VIL. Note that, perception and cognition are two main visual processes of VIL. On this basis, we propose a perceptual visual interactive learning (PVIL) framework, which adopts gestalt principle to design interaction strategy and multi-dimensionality reduction (MDR) to optimize the process of visualization. The advantage of PVIL framework is that it combines computer's sensitivity of detailed features and human's overall understanding of global tasks. Experimental results validate that the framework is superior to traditional computer labeling methods (such as label propagation) in both accuracy and efficiency, which achieves significant classification results on dense distribution and sparse classes dataset.

12.Supervised Classification Methods for Flash X-ray single particle diffraction Imaging pdf

Current Flash X-ray single-particle diffraction Imaging (FXI) experiments, which operate on modern X-ray Free Electron Lasers (XFELs), can record millions of interpretable diffraction patterns from individual biomolecules per day. Due to the stochastic nature of the XFELs, those patterns will to a varying degree include scatterings from contaminated samples. Also, the heterogeneity of the sample biomolecules is unavoidable and complicates data processing. Reducing the data volumes and selecting high-quality single-molecule patterns are therefore critical steps in the experimental set-up.
In this paper, we present two supervised template-based learning methods for classifying FXI patterns. Our Eigen-Image and Log-Likelihood classifier can find the best-matched template for a single-molecule pattern within a few milliseconds. It is also straightforward to parallelize them so as to fully match the XFEL repetition rate, thereby enabling processing at site.

13.Sports Camera Calibration via Synthetic Data pdf

Calibrating sports cameras is important for autonomous broadcasting and sports analysis. Here we propose a highly automatic method for calibrating sports cameras from a single image using synthetic data. First, we develop a novel camera pose engine. The camera pose engine has only three significant free parameters so that it can effectively generate a lot of camera poses and corresponding edge (i.e, field marking) images. Then, we learn compact deep features via a siamese network from paired edge image and camera pose and build a feature-pose database. After that, we use a novel two-GAN (generative adversarial network) model to detect field markings in real images. Finally, we query an initial camera pose from the feature-pose database and refine camera poses using truncated distance images. We evaluate our method on both synthetic and real data. Our method not only demonstrates the robustness on the synthetic data but also achieves the state-of-the-art accuracy on a standard soccer dataset and very high performance on a volleyball dataset.

14.Understand, Compose and Respond - Answering Visual Questions by a Composition of Abstract Procedures pdf

An image related question defines a specific visual task that is required in order to produce an appropriate answer. The answer may depend on a minor detail in the image and require complex reasoning and use of prior knowledge. When humans perform this task, they are able to do it in a flexible and robust manner, integrating modularly any novel visual capability with diverse options for various elaborations of the task. In contrast, current approaches to solve this problem by a machine are based on casting the problem as an end-to-end learning problem, which lacks such abilities.
We present a different approach, inspired by the aforementioned human capabilities. The approach is based on the compositional structure of the question. The underlying idea is that a question has an abstract representation based on its structure, which is compositional in nature. The question can consequently be answered by a composition of procedures corresponding to its substructures. The basic elements of the representation are logical patterns, which are put together to represent the question. These patterns include a parametric representation for object classes, properties and relations. Each basic pattern is mapped into a basic procedure that includes meaningful visual tasks, and the patterns are composed to produce the overall answering procedure.
The UnCoRd (Understand Compose and Respond) system, based on this approach, integrates existing detection and classification schemes for a set of object classes, properties and relations. These schemes are incorporated in a modular manner, providing elaborated answers and corrections for negative answers. In addition, an external knowledge base is queried for required common-knowledge. We performed a qualitative analysis of the system, which demonstrates its representation capabilities and provide suggestions for future developments.

15.The speaker-independent lipreading play-off; a survey of lipreading machines pdf

Lipreading is a difficult gesture classification task. One problem in computer lipreading is speaker-independence. Speaker-independence means to achieve the same accuracy on test speakers not included in the training set as speakers within the training set. Current literature is limited on speaker-independent lipreading, the few independent test speaker accuracy scores are usually aggregated within dependent test speaker accuracies for an averaged performance. This leads to unclear independent results. Here we undertake a systematic survey of experiments with the TCD-TIMIT dataset using both conventional approaches and deep learning methods to provide a series of wholly speaker-independent benchmarks and show that the best speaker-independent machine scores 69.58% accuracy with CNN features and an SVM classifier. This is less than state of the art speaker-dependent lipreading machines, but greater than previously reported in independence experiments.

16.Multimodal Polynomial Fusion for Detecting Driver Distraction pdf

Distracted driving is deadly, claiming 3,477 lives in the U.S. in 2015 alone. Although there has been a considerable amount of research on modeling the distracted behavior of drivers under various conditions, accurate automatic detection using multiple modalities and especially the contribution of using the speech modality to improve accuracy has received little attention. This paper introduces a new multimodal dataset for distracted driving behavior and discusses automatic distraction detection using features from three modalities: facial expression, speech and car signals. Detailed multimodal feature analysis shows that adding more modalities monotonically increases the predictive accuracy of the model. Finally, a simple and effective multimodal fusion technique using a polynomial fusion layer shows superior distraction detection results compared to the baseline SVM and neural network models.

17.Fast and accurate object detection in high resolution 4K and 8K video using GPUs pdf

Machine learning has celebrated a lot of achievements on computer vision tasks such as object detection, but the traditionally used models work with relatively low resolution images. The resolution of recording devices is gradually increasing and there is a rising need for new methods of processing high resolution data. We propose an attention pipeline method which uses two staged evaluation of each image or video frame under rough and refined resolution to limit the total number of necessary evaluations. For both stages, we make use of the fast object detection model YOLO v2. We have implemented our model in code, which distributes the work across GPUs. We maintain high accuracy while reaching the average performance of 3-6 fps on 4K video and 2 fps on 8K video.

18.Classifying and Visualizing Emotions with Emotional DAN pdf

Classification of human emotions remains an important and challenging task for many computer vision algorithms, especially in the era of humanoid robots which coexist with humans in their everyday life. Currently proposed methods for emotion recognition solve this task using multi-layered convolutional networks that do not explicitly infer any facial features in the classification phase. In this work, we postulate a fundamentally different approach to solve emotion recognition task that relies on incorporating facial landmarks as a part of the classification loss function. To that end, we extend a recently proposed Deep Alignment Network (DAN) with a term related to facial features. Thanks to this simple modification, our model called EmotionalDAN is able to outperform state-of-the-art emotion classification methods on two challenging benchmark dataset by up to 5%. Furthermore, we visualize image regions analyzed by the network when making a decision and the results indicate that our EmotionalDAN model is able to correctly identify facial landmarks responsible for expressing the emotions.

19.Training Generative Adversarial Networks Via Turing Test pdf

In this article, we introduce a new mode for training Generative Adversarial Networks (GANs). Rather than minimizing the distance of evidence distribution $\tilde{p}(x)$ and the generative distribution $q(x)$, we minimize the distance of $\tilde{p}(x_r)q(x_f)$ and $\tilde{p}(x_f)q(x_r)$. This adversarial pattern can be interpreted as a Turing test in GANs. It allows us to use information of real samples during training generator and accelerates the whole training procedure. We even find that just proportionally increasing the size of discriminator and generator, it succeeds on 256x256 resolution without adjusting hyperparameters carefully.

20.Practical Shape Analysis and Segmentation Methods for Point Cloud Models pdf

Current point cloud processing algorithms do not have the capability to automatically extract semantic information from the observed scenes, except in very specialized cases. Furthermore, existing mesh analysis paradigms cannot be directly employed to automatically perform typical shape analysis tasks directly on point cloud models.
We present a potent framework for shape analysis, similarity, and segmentation of noisy point cloud models for real objects of engineering interest, models that may be incomplete. The proposed framework relies on spectral methods and the heat diffusion kernel to construct compact shape signatures, and we show that the framework supports a variety of clustering techniques that have traditionally been applied only on mesh models. We developed and implemented one practical and convergent estimate of the Laplace-Beltrami operator for point clouds as well as a number of clustering techniques adapted to work directly on point clouds to produce geometric features of engineering interest. The key advantage of this framework is that it supports practical shape analysis capabilities that operate directly on point cloud models of objects without requiring surface reconstruction or global meshing. We show that the proposed technique is robust against typical noise present in possibly incomplete point clouds, and segment point clouds scanned by depth cameras (e.g. Kinect) into semantically-meaningful sub-shapes.

21.Convolutional Deblurring for Natural Imaging pdf

In this paper, we propose a novel design of image deblurring in the form of one-shot convolution filtering that can directly convolve with naturally blurred images for restoration. The problem of optical blurring is a common disadvantage to many imaging applications that suffer from optical imperfections. Despite numerous deconvolution methods that blindly estimate blurring in either inclusive or exclusive forms, they are practically challenging due to high computational cost and limited image quality reconstruction. Both conditions of high accuracy and high speed are prerequisite for high-throughput imaging platforms in digital archiving. It becomes equally important as reconstruction accuracy that how quickly the implemented algorithms are capable of recovering the latent images? In such platforms, deblurring is required after image acquisition to feed into the communication pipeline to be either stored, previewed, or processed for high-level interpretation. Therefore, on-the-fly correction of such images are highly preferred to avoid possible time delays, mitigate computational expenses, and increase the image perception quality. We bridge this gap by synthesizing a deconvolution kernel as a linear combination of Finite Impulse Response (FIR) even derivative filters that can be directly convolved with input blurry images to boost the frequency falloff of the Point Spread Function (PSF) associated with the optical blur. We employ a Gaussian lowpass filter to decouple the image denoising problem for image edge deblurring. Furthermore, we propose a blind approach to estimate the PSF statistics for two Gaussian and Laplacian models that are common in many imaging pipelines. Thorough experiments are designed to test and validate the efficiency of the proposed method using 2054 naturally blurred images across six imaging applications and seven state-of-the-art deconvolution methods.

22.K For The Price Of 1: Parameter Efficient Multi-task And Transfer Learning pdf

We introduce a novel method that enables parameter-efficient transfer and multitask learning. The basic approach is to allow a model patch - a small set of parameters - to specialize to each task, instead of fine-tuning the last layer or the entire network. For instance, we show that learning a set of scales and biases allows a network to learn a completely different embedding that could be used for different tasks (such as converting an SSD detection model into a 1000-class classification model while reusing 98% of parameters of the feature extractor). Similarly, we show that re-learning the existing low-parameter layers (such as depth-wise convolutions) also improves accuracy significantly. Our approach allows both simultaneous (multi-task) learning as well as sequential transfer learning wherein we adapt pretrained networks to solve new problems. For multi-task learning, despite using much fewer parameters than traditional logits-only fine-tuning, we match single-task-based performance.

23.Visual Rendering of Shapes on 2D Display Devices Guided by Hand Gestures pdf

Designing of touchless user interface is gaining popularity in various contexts. Using such interfaces, users can interact with electronic devices even when the hands are dirty or non-conductive. Also, user with partial physical disability can interact with electronic devices using such systems. Research in this direction has got major boost because of the emergence of low-cost sensors such as Leap Motion, Kinect or RealSense devices. In this paper, we propose a Leap Motion controller-based methodology to facilitate rendering of 2D and 3D shapes on display devices. The proposed method tracks finger movements while users perform natural gestures within the field of view of the sensor. In the next phase, trajectories are analyzed to extract extended Npen++ features in 3D. These features represent finger movements during the gestures and they are fed to unidirectional left-to-right Hidden Markov Model (HMM) for training. A one-to-one mapping between gestures and shapes is proposed. Finally, shapes corresponding to these gestures are rendered over the display using MuPad interface. We have created a dataset of 5400 samples recorded by 10 volunteers. Our dataset contains 18 geometric and 18 non-geometric shapes such as "circle", "rectangle", "flower", "cone", "sphere" etc. The proposed methodology achieves an accuracy of 92.87% when evaluated using 5-fold cross validation method. Our experiments revel that the extended 3D features perform better than existing 3D features in the context of shape representation and classification. The method can be used for developing useful HCI applications for smart display devices.

24.q-Space Novelty Detection with Variational Autoencoders pdf

In machine learning, novelty detection is the task of identifying novel unseen data. During training, only samples from the normal class are available. Test samples are classified as normal or abnormal by assignment of a novelty score. Here we propose novelty detection methods based on training variational autoencoders (VAEs) on normal data. Since abnormal samples are not used during training, we define novelty metrics based on the (partially complementary) assumptions that the VAE is less capable of reconstructing abnormal samples well; that abnormal samples more strongly violate the VAE regularizer; and that abnormal samples differ from normal samples not only in input-feature space, but also in the VAE latent space and VAE output. These approaches, combined with various possibilities of using (e.g. sampling) the probabilistic VAE to obtain scalar novelty scores, yield a large family of methods. We apply these methods to magnetic resonance imaging, namely to the detection of diffusion-space (q-space) abnormalities in diffusion MRI scans of multiple sclerosis patients, i.e. to detect multiple sclerosis lesions without using any lesion labels for training. Many of our methods outperform previously proposed q-space novelty detection methods. We also evaluate the proposed methods on the MNIST handwritten digits dataset and show that many of them are able to outperform the state of the art.