Skip to content

Latest commit

 

History

History
43 lines (43 loc) · 25.2 KB

Mon, 24 Sep 2018.md

File metadata and controls

43 lines (43 loc) · 25.2 KB

ArXiv Paper Abstract--Mon, 24 Sep 2018

1.Image Denoising and Super-Resolution using Residual Learning of Deep Convolutional Network pdf

Image super-resolution and denoising are two important tasks in image processing that can lead to improvement in image quality. Image super-resolution is the task of mapping a low resolution image to a high resolution image whereas denoising is the task of learning a clean image from a noisy input. We propose and train a single deep learning network that we term as SuRDCNN (super-resolution and denoising convolutional neural network), to perform these two tasks simultaneously . Our model nearly replicates the architecture of existing state-of-the-art deep learning models for super-resolution and denoising. We use the proven strategy of residual learning, as supported by state-of-the-art networks in this domain. Our trained SuRDCNN is capable of super-resolving image in the presence of Gaussian noise, Poisson noise or any random combination of both of these noises.

2.Exclusive Independent Probability Estimation using Deep 3D Fully Convolutional DenseNets for IsoIntense Infant Brain MRI Segmentation pdf

The most recent fast and accurate image segmentation methods are built upon fully convolutional deep neural networks. Infant brain MRI tissue segmentation is a complex deep learning task, where the white matter and gray matter of the developing brain at about 6 months of age show similar T1 and T2 relaxation times, having similar intensity values on both T1 and T2-weighted MRIs. In this paper, we propose deep learning strategies to overcome the challenges of isointense infant brain MRI tissue segmentation. We introduce an exclusive multi-label training method to independently segment the mutually exclusive brain tissues with similarity loss function parameters that are balanced based on class prevalence. Using our training technique based on similarity loss functions and patch prediction fusion we decrease the number of parameters in the network, reduce the complexity of the training process focusing the attention on less number of tasks, while mitigating the effects of data imbalance between labels and inaccuracies near patch borders. By taking advantage of these strategies we were able to perform fast image segmentation, using a network with less parameters than many state-of-the-art networks, being image size independent overcoming issues such as 3D vs 2D training and large vs small patch size selection, while achieving the top performance in segmenting brain tissue among all methods in the 2017 iSeg challenge. We present a 3D FC-DenseNet architecture, an exclusive multilabel patchwise training technique with balanced similarity loss functions and a patch prediction fusion strategy that can be used on new classification and segmentation applications with two or more very similar classes. This strategy improves the training process by reducing its complexity while providing a trained model that works for any size input and is fast and more accurate than many state-of-the-art methods.

3.Dynamic Environment Mapping for Augmented Reality Applications on Mobile Devices pdf

Augmented Reality is a topic of foremost interest nowadays. Its main goal is to seamlessly blend virtual content in real-world scenes. Due to the lack of computational power in mobile devices, rendering a virtual object with high-quality, coherent appearance and in real-time, remains an area of active research. In this work, we present a novel pipeline that allows for coupled environment acquisition and virtual object rendering on a mobile device equipped with a depth sensor. While keeping human interaction to a minimum, our system can scan a real scene and project it onto a two-dimensional environment map containing RGB+Depth data. Furthermore, we define a set of criteria that allows for an adaptive update of the environment map to account for dynamic changes in the scene. Then, under the assumption of diffuse surfaces and distant illumination, our method exploits an analytic expression for the irradiance in terms of spherical harmonic coefficients, which leads to a very efficient rendering algorithm. We show that all the processes in our pipeline can be executed while maintaining an average frame rate of 31Hz on a mobile device.

4.Analysing object detectors from the perspective of co-occurring object categories pdf

The accuracy of state-of-the-art Faster R-CNN and YOLO object detectors are evaluated and compared on a special masked MS COCO dataset to measure how much their predictions rely on contextual information encoded at object category level. Category level representation of context is motivated by the fact that it could be an adequate way to transfer knowledge between visual and non-visual domains. According to our measurements, current detectors usually do not build strong dependency on contextual information at category level, however, when they does, they does it in a similar way, suggesting that contextual dependence of object categories is an independent property that is relevant to be transferred.

5.From 2D to 3D Geodesic-based Garment Matching pdf

A new approach for 2D to 3D garment retexturing is proposed based on Gaussian mixture models and thin plate splines (TPS). An automatically segmented garment of an individual is matched to a new source garment and rendered, resulting in augmented images in which the target garment has been retextured by using the texture of the source garment. We divide the problem into garment boundary matching based on Gaussian mixture models and then interpolate inner points using surface topology extracted through geodesic paths, which leads to a more realistic result than standard approaches. We evaluated and compared our system quantitatively by mean square error (MSE) and qualitatively using the mean opinion score (MOS), showing the benefits of the proposed methodology on our gathered dataset.

6.On-field player workload exposure and knee injury risk monitoring via deep learning pdf

In sports analytics, an understanding of accurate on-field 3D knee joint moments (KJM) could provide an early warning system for athlete workload exposure and knee injury risk. Traditionally, this analysis has relied on captive laboratory force plates and associated downstream biomechanical modeling, and many researchers have approached the problem of portability by extrapolating models built on linear statistics. An alternative approach would be to capitalize on recent advances in deep learning. In this study, using the pre-trained CaffeNet convolutional neural network (CNN) model, multivariate regression of marker-based motion capture to 3D KJM for three sports-related movement types were compared. The strongest overall mean correlation to source modeling of 0.8895 was achieved over the initial 33 % of stance phase for sidestepping. The accuracy of these mean predictions of the three critical KJM associated with anterior cruciate ligament (ACL) injury demonstrate the feasibility of on-field knee injury assessment using deep learning in lieu of laboratory embedded force plates. This multidisciplinary research approach significantly advances machine representation of real-world physical models with practical application for both community and professional level athletes.

7.Perfect match: Improved cross-modal embeddings for audio-visual synchronisation pdf

This paper proposes a new strategy for learning powerful cross-modal embeddings for audio-to-video synchronization. Here, we set up the problem as one of cross-modal retrieval, where the objective is to find the most relevant audio segment given a short video clip. The method builds on the recent advances in learning representations from cross-modal self-supervision.
The main contributions of this paper are as follows: (1) we propose a new learning strategy where the embeddings are learnt via a multi-way matching problem, as opposed to a binary classification (matching or non-matching) problem as proposed by recent papers; (2) we demonstrate that performance of this method far exceeds the existing baselines on the synchronization task; (3) we use the learnt embeddings for visual speech recognition in self-supervision, and show that the performance matches the representations learnt end-to-end in a fully-supervised manner.

8.Multimodal Dual Attention Memory for Video Story Question Answering pdf

We propose a video story question-answering (QA) architecture, Multimodal Dual Attention Memory (MDAM). The key idea is to use a dual attention mechanism with late fusion. MDAM uses self-attention to learn the latent concepts in scene frames and captions. Given a question, MDAM uses the second attention over these latent concepts. Multimodal fusion is performed after the dual attention processes (late fusion). Using this processing pipeline, MDAM learns to infer a high-level vision-language joint representation from an abstraction of the full video content. We evaluate MDAM on PororoQA and MovieQA datasets which have large-scale QA annotations on cartoon videos and movies, respectively. For both datasets, MDAM achieves new state-of-the-art results with significant margins compared to the runner-up models. We confirm the best performance of the dual attention mechanism combined with late fusion by ablation studies. We also perform qualitative analysis by visualizing the inference mechanisms of MDAM.

9.SG-FCN: A Motion and Memory-Based Deep Learning Model for Video Saliency Detection pdf

Data-driven saliency detection has attracted strong interest as a result of applying convolutional neural networks to the detection of eye fixations. Although a number of imagebased salient object and fixation detection models have been proposed, video fixation detection still requires more exploration. Different from image analysis, motion and temporal information is a crucial factor affecting human attention when viewing video sequences. Although existing models based on local contrast and low-level features have been extensively researched, they failed to simultaneously consider interframe motion and temporal information across neighboring video frames, leading to unsatisfactory performance when handling complex scenes. To this end, we propose a novel and efficient video eye fixation detection model to improve the saliency detection performance. By simulating the memory mechanism and visual attention mechanism of human beings when watching a video, we propose a step-gained fully convolutional network by combining the memory information on the time axis with the motion information on the space axis while storing the saliency information of the current frame. The model is obtained through hierarchical training, which ensures the accuracy of the detection. Extensive experiments in comparison with 11 state-of-the-art methods are carried out, and the results show that our proposed model outperforms all 11 methods across a number of publicly available datasets.

10.Minimal Paths for Tubular Structure Segmentation with Coherence Penalty and Adaptive Anisotropy pdf

The minimal path method has proven to be particularly useful and efficient in tubular structure segmentation applications. In this paper, we propose a new minimal path model associated with a dynamic Riemannian metric embedded with an appearance feature coherence penalty and an adaptive anisotropy enhancement term. The features that characterize the appearance and anisotropy properties of a tubular structure are extracted through the associated orientation score. The proposed dynamic Riemannian metric is updated in the course of the geodesic distance computation carried out by the efficient single-pass fast marching method. Compared to state-of-the-art minimal path models, the proposed minimal path model is able to extract the desired tubular structures from a complicated vessel tree structure. In addition, we propose an efficient prior path-based method to search for the radius or the thickness at each centerline position of the target. Finally, we perform the numerical experiments on both synthetic and real images. The quantitive validation is carried out on retinal vessel images. The results indicate that the proposed model indeed achieves a promising performance.

11.On Variational Methods for Motion Compensated Inpainting pdf

We develop in this paper a generic Bayesian framework for the joint estimation of motion and recovery of missing data in a damaged video sequence. Using standard maximum a posteriori to variational formulation rationale, we derive generic minimum energy formulations for the estimation of a reconstructed sequence as well as motion recovery. We instantiate these energy formulations and from their Euler-Lagrange Equations, we propose a full multiresolution algorithms in order to compute good local minimizers for our energies and discuss their numerical implementations, focusing on the missing data recovery part, i.e. inpainting. Experimental results for synthetic as well as real sequences are presented. Image sequences and extra material is available at this http URL

12.Real-Time Stereo Vision on FPGAs with SceneScan pdf

We present a flexible FPGA stereo vision implementation that is capable of processing up to 100 frames per second or image resolutions up to 3.4 megapixels, while consuming only 8 W of power. The implementation uses a variation of the Semi-Global Matching (SGM) algorithm, which provides superior results compared to many simpler approaches. The stereo matching results are improved significantly through a post-processing chain that operates on the computed cost cube and the disparity map. With this implementation we have created two stand-alone hardware systems for stereo vision, called SceneScan and SceneScan Pro. Both systems have been developed to market maturity and are available from Nerian Vision GmbH.

13.LIDAR-Camera Fusion for Road Detection Using Fully Convolutional Neural Networks pdf

In this work, a deep learning approach has been developed to carry out road detection by fusing LIDAR point clouds and camera images. An unstructured and sparse point cloud is first projected onto the camera image plane and then upsampled to obtain a set of dense 2D images encoding spatial information. Several fully convolutional neural networks (FCNs) are then trained to carry out road detection, either by using data from a single sensor, or by using three fusion strategies: early, late, and the newly proposed cross fusion. Whereas in the former two fusion approaches, the integration of multimodal information is carried out at a predefined depth level, the cross fusion FCN is designed to directly learn from data where to integrate information; this is accomplished by using trainable cross connections between the LIDAR and the camera processing branches.
To further highlight the benefits of using a multimodal system for road detection, a data set consisting of visually challenging scenes was extracted from driving sequences of the KITTI raw data set. It was then demonstrated that, as expected, a purely camera-based FCN severely underperforms on this data set. A multimodal system, on the other hand, is still able to provide high accuracy. Finally, the proposed cross fusion FCN was evaluated on the KITTI road benchmark where it achieved excellent performance, with a MaxF score of 96.03%, ranking it among the top-performing approaches.

14.Adversarial 3D Human Pose Estimation via Multimodal Depth Supervision pdf

In this paper, a novel deep-learning based framework is proposed to infer 3D human poses from a single image. Specifically, a two-phase approach is developed. We firstly utilize a generator with two branches for the extraction of explicit and implicit depth information respectively. During the training process, an adversarial scheme is also employed to further improve the performance. The implicit and explicit depth information with the estimated 2D joints generated by a widely used estimator, in the second step, are together fed into a deep 3D pose regressor for the final pose generation. Our method achieves MPJPE of 58.68mm on the ECCV2018 3D Human Pose Estimation Challenge.

15.Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes pdf

We present an Adaptive Octree-based Convolutional Neural Network (Adaptive O-CNN) for efficient 3D shape encoding and decoding. Different from volumetric-based or octree-based CNN methods that represent a 3D shape with voxels in the same resolution, our method represents a 3D shape adaptively with octants at different levels and models the 3D shape within each octant with a planar patch. Based on this adaptive patch-based representation, we propose an Adaptive O-CNN encoder and decoder for encoding and decoding 3D shapes. The Adaptive O-CNN encoder takes the planar patch normal and displacement as input and performs 3D convolutions only at the octants at each level, while the Adaptive O-CNN decoder infers the shape occupancy and subdivision status of octants at each level and estimates the best plane normal and displacement for each leaf octant. As a general framework for 3D shape analysis and generation, the Adaptive O-CNN not only reduces the memory and computational cost, but also offers better shape generation capability than the existing 3D-CNN approaches. We validate Adaptive O-CNN in terms of efficiency and effectiveness on different shape analysis and generation tasks, including shape classification, 3D autoencoding, shape prediction from a single image, and shape completion for noisy and incomplete point clouds.

16.Large-Scale Video Classification with Feature Space Augmentation coupled with Learned Label Relations and Ensembling pdf

This paper presents the Axon AI's solution to the 2nd YouTube-8M Video Understanding Challenge, achieving the final global average precision (GAP) of 88.733% on the private test set (ranked 3rd among 394 teams, not considering the model size constraint), and 87.287% using a model that meets size requirement. Two sets of 7 individual models belonging to 3 different families were trained separately. Then, the inference results on a training data were aggregated from these multiple models and fed to train a compact model that meets the model size requirement. In order to further improve performance we explored and employed data over/sub-sampling in feature space, an additional regularization term during training exploiting label relationship, and learned weights for ensembling different individual models.

17.LaSOT: A High-quality Benchmark for Large-scale Single Object Tracking pdf

In this paper, we present LaSOT, a high-quality benchmark for Large-scale Single Object Tracking. LaSOT consists of 1,400 sequences with more than 3.5M frames in total. Each frame in these sequences is carefully and manually annotated with a bounding box, making LaSOT the largest, to the best of our knowledge, densely annotated tracking benchmark. The average sequence length of LaSOT is more than 2,500 frames, and each sequence comprises various challenges deriving from the wild where target objects may disappear and re-appear again in the view. By releasing LaSOT, we expect to provide the community a large-scale dedicated benchmark with high-quality for both the training of deep trackers and the veritable evaluation of tracking algorithms. Moreover, considering the close connections of visual appearance and natural language, we enrich LaSOT by providing additional language specification, aiming at encouraging the exploration of natural linguistic feature for tracking. A thorough experimental evaluation of 35 tracking algorithms on LaSOT is presented with detailed analysis, and the results demonstrate that there is still a big room to improvements. The benchmark and evaluation results are made publicly available at this https URL

18.Brain Tumor Segmentation Using Deep Learning by Type Specific Sorting of Images pdf

Recently deep learning has been playing a major role in the field of computer vision. One of its applications is the reduction of human judgment in the diagnosis of diseases. Especially, brain tumor diagnosis requires high accuracy, where minute errors in judgment may lead to disaster. For this reason, brain tumor segmentation is an important challenge for medical purposes. Currently several methods exist for tumor segmentation but they all lack high accuracy. Here we present a solution for brain tumor segmenting by using deep learning. In this work, we studied different angles of brain MR images and applied different networks for segmentation. The effect of using separate networks for segmentation of MR images is evaluated by comparing the results with a single network. Experimental evaluations of the networks show that Dice score of 0.73 is achieved for a single network and 0.79 in obtained for multiple networks.

19.Global and Local Consistent Wavelet-domain Age Synthesis pdf

Age synthesis is a challenging task due to the complicated and non-linear transformation in human aging process. Aging information is usually reflected in local facial parts, such as wrinkles at the eye corners. However, these local facial parts contribute less in previous GAN based methods for age synthesis. To address this issue, we propose a Wavelet-domain Global and Local Consistent Age Generative Adversarial Network (WaveletGLCA-GAN), in which one global specific network and three local specific networks are integrated together to capture both global topology information and local texture details of human faces. Different from the most existing methods that modeling age synthesis in image-domain, we adopt wavelet transform to depict the textual information in frequency-domain. %Moreover, to achieve accurate age generation under the premise of preserving the identity information, age estimation network and face verification network are employed. Moreover, five types of losses are adopted: 1) adversarial loss aims to generate realistic wavelets; 2) identity preserving loss aims to better preserve identity information; 3) age preserving loss aims to enhance the accuracy of age synthesis; 4) pixel-wise loss aims to preserve the background information of the input face; 5) the total variation regularization aims to remove ghosting artifacts. Our method is evaluated on three face aging datasets, including CACD2000, Morph and FG-NET. Qualitative and quantitative experiments show the superiority of the proposed method over other state-of-the-arts.

20.Non-Line-of-Sight Reconstruction using Efficient Transient Rendering pdf

Being able to see beyond the direct line of sight is an intriguing prospective and could benefit a wide variety of important applications. Recent work has demonstrated that time-resolved measurements of indirect diffuse light contain valuable information for reconstructing shape and reflectance properties of objects located around a corner. In this paper, we introduce a novel reconstruction scheme that, by design, produces solutions that are consistent with state-of-the-art physically-based rendering. Our method combines an efficient forward model (a custom renderer for time-resolved three-bounce indirect light transport) with an optimization framework to reconstruct object geometry in an analysis-by-synthesis sense. We evaluate our algorithm on a variety of synthetic and experimental input data, and show that it gracefully handles uncooperative scenes with high levels of noise or non-diffuse material reflectance.

21.Playing the Game of Universal Adversarial Perturbations pdf

We study the problem of learning classifiers robust to universal adversarial perturbations. While prior work approaches this problem via robust optimization, adversarial training, or input transformation, we instead phrase it as a two-player zero-sum game. In this new formulation, both players simultaneously play the same game, where one player chooses a classifier that minimizes a classification loss whilst the other player creates an adversarial perturbation that increases the same loss when applied to every sample in the training set. By observing that performing a classification (respectively creating adversarial samples) is the best response to the other player, we propose a novel extension of a game-theoretic algorithm, namely fictitious play, to the domain of training robust classifiers. Finally, we empirically show the robustness and versatility of our approach in two defence scenarios where universal attacks are performed on several image classification datasets -- CIFAR10, CIFAR100 and ImageNet.