diff --git a/modules/csg/SCsub b/modules/csg/SCsub index 1cf9974fc138..f9a664c06db1 100644 --- a/modules/csg/SCsub +++ b/modules/csg/SCsub @@ -5,7 +5,49 @@ Import("env_modules") env_csg = env_modules.Clone() -# Godot source files +# Thirdparty source files + +thirdparty_obj = [] + +thirdparty_dir = "#thirdparty/manifold/" +thirdparty_sources = [ + "src/polygon/src/polygon.cpp", + "src/cross_section/src/cross_section.cpp", + "src/manifold/src/constructors.cpp", + "src/manifold/src/edge_op.cpp", + "src/manifold/src/face_op.cpp", + "src/manifold/src/impl.cpp", + "src/manifold/src/boolean_result.cpp", + "src/manifold/src/boolean3.cpp", + "src/manifold/src/manifold.cpp", + "src/manifold/src/properties.cpp", + "src/manifold/src/smoothing.cpp", + "src/manifold/src/sort.cpp", + "src/manifold/src/csg_tree.cpp", + "src/manifold/src/subdivision.cpp", + "src/manifold/src/quickhull.cpp", +] + +thirdparty_sources = [thirdparty_dir + file for file in thirdparty_sources] +env_csg.Prepend( + CPPPATH=[ + "#thirdparty/glm", + "#thirdparty/quickhull", + thirdparty_dir + "src/polygon/include", + thirdparty_dir + "src/manifold/include", + thirdparty_dir + "src/manifold/include/manifold", + thirdparty_dir + "src/utilities/include", + thirdparty_dir + "src/collider/include", + thirdparty_dir + "src/cross_section/include", + ] +) +env_thirdparty = env_csg.Clone() +env_thirdparty.disable_warnings() +env_thirdparty.add_source_files(thirdparty_obj, thirdparty_sources) +env_thirdparty.add_source_files(thirdparty_obj, "#thirdparty/quickhull/QuickHull.cpp") +env.modules_sources += thirdparty_obj + +# Godot's own source files env_csg.add_source_files(env.modules_sources, "*.cpp") if env.editor_build: env_csg.add_source_files(env.modules_sources, "editor/*.cpp") diff --git a/modules/csg/csg.cpp b/modules/csg/csg.cpp index a4a3c768e94f..8f6cabd71d60 100644 --- a/modules/csg/csg.cpp +++ b/modules/csg/csg.cpp @@ -33,6 +33,10 @@ #include "core/math/geometry_2d.h" #include "core/math/math_funcs.h" #include "core/templates/sort_array.h" +#include "scene/resources/mesh_data_tool.h" +#include "scene/resources/surface_tool.h" + +#include "manifold.h" // Static helper functions. @@ -185,15 +189,6 @@ inline static bool are_segments_parallel(const Vector2 p_segment1_points[2], con // CSGBrush -void CSGBrush::_regen_face_aabbs() { - for (int i = 0; i < faces.size(); i++) { - faces.write[i].aabb = AABB(); - faces.write[i].aabb.position = faces[i].vertices[0]; - faces.write[i].aabb.expand_to(faces[i].vertices[1]); - faces.write[i].aabb.expand_to(faces[i].vertices[2]); - } -} - void CSGBrush::build_from_faces(const Vector &p_vertices, const Vector &p_uvs, const Vector &p_smooth, const Vector> &p_materials, const Vector &p_flip_faces) { faces.clear(); @@ -278,188 +273,200 @@ void CSGBrush::copy_from(const CSGBrush &p_brush, const Transform3D &p_xform) { _regen_face_aabbs(); } -// CSGBrushOperation - -void CSGBrushOperation::merge_brushes(Operation p_operation, const CSGBrush &p_brush_a, const CSGBrush &p_brush_b, CSGBrush &r_merged_brush, float p_vertex_snap) { - // Check for face collisions and add necessary faces. - Build2DFaceCollection build2DFaceCollection; - for (int i = 0; i < p_brush_a.faces.size(); i++) { - for (int j = 0; j < p_brush_b.faces.size(); j++) { - if (p_brush_a.faces[i].aabb.intersects_inclusive(p_brush_b.faces[j].aabb)) { - update_faces(p_brush_a, i, p_brush_b, j, build2DFaceCollection, p_vertex_snap); - } - } +enum { + MANIFOLD_PROPERTY_POSITION_X = 0, + MANIFOLD_PROPERTY_POSITION_Y, + MANIFOLD_PROPERTY_POSITION_Z, + MANIFOLD_PROPERTY_NORMAL_X, + MANIFOLD_PROPERTY_NORMAL_Y, + MANIFOLD_PROPERTY_NORMAL_Z, + MANIFOLD_PROPERTY_INVERT, + MANIFOLD_PROPERTY_SMOOTH_GROUP, + MANIFOLD_PROPERTY_UV_X_0, + MANIFOLD_PROPERTY_UV_X_1, + MANIFOLD_PROPERTY_UV_X_2, + MANIFOLD_PROPERTY_UV_Y_0, + MANIFOLD_PROPERTY_UV_Y_1, + MANIFOLD_PROPERTY_UV_Y_2, + MANIFOLD_PROPERTY_PLACEHOLDER_MATERIAL, + MANIFOLD_MAX +}; + +static void pack_manifold( + const CSGBrush *const p_mesh_merge, + manifold::Manifold &r_manifold, + HashMap> &mesh_materials, + const float p_snap) { + if (!p_mesh_merge) { + ERR_PRINT("p_mesh_merge is null"); + return; } - // Add faces to MeshMerge. - MeshMerge mesh_merge; - mesh_merge.vertex_snap = p_vertex_snap; + HashMap> faces_by_material; + for (int face_i = 0; face_i < p_mesh_merge->faces.size(); face_i++) { + const CSGBrush::Face &face = p_mesh_merge->faces[face_i]; + faces_by_material[face.material].push_back(face); + } - for (int i = 0; i < p_brush_a.faces.size(); i++) { + manifold::MeshGL64 mesh; + mesh.numProp = MANIFOLD_MAX; + mesh.runOriginalID.reserve(faces_by_material.size()); + mesh.runIndex.reserve(faces_by_material.size() + 1); + mesh.vertProperties.reserve(p_mesh_merge->faces.size() * 3 * MANIFOLD_MAX); + + // Make a run of triangles for each material. + for (const KeyValue> &E : faces_by_material) { + const uint32_t material_id = E.key; + const Vector &faces = E.value; + mesh.runIndex.push_back(mesh.triVerts.size()); + + // Associate the material with an ID. + uint32_t reserved_id = r_manifold.ReserveIDs(1); + mesh.runOriginalID.push_back(reserved_id); Ref material; - if (p_brush_a.faces[i].material != -1) { - material = p_brush_a.materials[p_brush_a.faces[i].material]; + if (material_id >= 0 && material_id < p_mesh_merge->materials.size()) { + material = p_mesh_merge->materials[material_id]; } - - if (build2DFaceCollection.build2DFacesA.has(i)) { - build2DFaceCollection.build2DFacesA[i].addFacesToMesh(mesh_merge, p_brush_a.faces[i].smooth, p_brush_a.faces[i].invert, material, false); - } else { - Vector3 points[3]; - Vector2 uvs[3]; - for (int j = 0; j < 3; j++) { - points[j] = p_brush_a.faces[i].vertices[j]; - uvs[j] = p_brush_a.faces[i].uvs[j]; + mesh_materials.insert(reserved_id, material); + + for (const CSGBrush::Face &face : faces) { + for (int32_t tri_order_i = 0; tri_order_i < 3; tri_order_i++) { + constexpr int32_t order[3] = { 0, 2, 1 }; + int i = order[tri_order_i]; + + mesh.triVerts.push_back(mesh.vertProperties.size() / MANIFOLD_MAX); + + size_t begin = mesh.vertProperties.size(); + mesh.vertProperties.resize(mesh.vertProperties.size() + MANIFOLD_MAX); + // Add the vertex properties. + // Use CSGBrush constants rather than push_back for clarity. + double *vert = &mesh.vertProperties[begin]; + vert[MANIFOLD_PROPERTY_POSITION_X] = face.vertices[i].x; + vert[MANIFOLD_PROPERTY_POSITION_Y] = face.vertices[i].y; + vert[MANIFOLD_PROPERTY_POSITION_Z] = face.vertices[i].z; + vert[MANIFOLD_PROPERTY_UV_X_0] = face.uvs[i].x; + vert[MANIFOLD_PROPERTY_UV_Y_0] = face.uvs[i].y; + vert[MANIFOLD_PROPERTY_SMOOTH_GROUP] = face.smooth ? 1.0f : 0.0f; + vert[MANIFOLD_PROPERTY_INVERT] = face.invert ? 1.0f : 0.0f; } - mesh_merge.add_face(points, uvs, p_brush_a.faces[i].smooth, p_brush_a.faces[i].invert, material, false); } } - - for (int i = 0; i < p_brush_b.faces.size(); i++) { - Ref material; - if (p_brush_b.faces[i].material != -1) { - material = p_brush_b.materials[p_brush_b.faces[i].material]; + // runIndex needs an explicit end value. + mesh.runIndex.push_back(mesh.triVerts.size()); + + ERR_FAIL_COND_MSG(mesh.vertProperties.size() % mesh.numProp != 0, "Invalid vertex properties size"); + + mesh.precision = p_snap; + + /** + * MeshGL64::merge(): updates the mergeFromVert and mergeToVert vectors in order to create a + * manifold solid. If the MeshGL64 is already manifold, no change will occur, and + * the function will return false. + */ + if (mesh.Merge()) { + std::vector index_map(mesh.vertProperties.size() / MANIFOLD_MAX, -1); + const size_t vertices_count = mesh.mergeFromVert.size(); + for (size_t i = 0; i < vertices_count; ++i) { + index_map[mesh.mergeFromVert[i]] = mesh.mergeToVert[i]; } - - if (build2DFaceCollection.build2DFacesB.has(i)) { - build2DFaceCollection.build2DFacesB[i].addFacesToMesh(mesh_merge, p_brush_b.faces[i].smooth, p_brush_b.faces[i].invert, material, true); - } else { - Vector3 points[3]; - Vector2 uvs[3]; - for (int j = 0; j < 3; j++) { - points[j] = p_brush_b.faces[i].vertices[j]; - uvs[j] = p_brush_b.faces[i].uvs[j]; + const size_t indices_count = mesh.triVerts.size(); + for (size_t i = 0; i < indices_count; ++i) { + if (index_map[i] > -1) { + mesh.triVerts[i] = index_map[i]; } - mesh_merge.add_face(points, uvs, p_brush_b.faces[i].smooth, p_brush_b.faces[i].invert, material, true); } } - // Mark faces that ended up inside the intersection. - mesh_merge.mark_inside_faces(); - - // Create new brush and fill with new faces. - r_merged_brush.faces.clear(); - - switch (p_operation) { - case OPERATION_UNION: { - int outside_count = 0; - - for (int i = 0; i < mesh_merge.faces.size(); i++) { - if (mesh_merge.faces[i].inside) { - continue; - } - outside_count++; - } - - r_merged_brush.faces.resize(outside_count); - - outside_count = 0; - - for (int i = 0; i < mesh_merge.faces.size(); i++) { - if (mesh_merge.faces[i].inside) { - continue; - } - - for (int j = 0; j < 3; j++) { - r_merged_brush.faces.write[outside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]]; - r_merged_brush.faces.write[outside_count].uvs[j] = mesh_merge.faces[i].uvs[j]; - } - - r_merged_brush.faces.write[outside_count].smooth = mesh_merge.faces[i].smooth; - r_merged_brush.faces.write[outside_count].invert = mesh_merge.faces[i].invert; - r_merged_brush.faces.write[outside_count].material = mesh_merge.faces[i].material_idx; - outside_count++; - } - - r_merged_brush._regen_face_aabbs(); - - } break; + r_manifold = manifold::Manifold(mesh); + manifold::Manifold::Error err = r_manifold.Status(); + if (err != manifold::Manifold::Error::NoError) { + print_error(String("Manifold creation from mesh failed:" + itos((int)err))); + } +} - case OPERATION_INTERSECTION: { - int inside_count = 0; +static void unpack_manifold( + const manifold::Manifold &p_manifold, + const HashMap> &mesh_materials, + CSGBrush *r_mesh_merge) { + Ref default_material; + default_material.instantiate(); - for (int i = 0; i < mesh_merge.faces.size(); i++) { - if (!mesh_merge.faces[i].inside) { - continue; - } - inside_count++; - } + manifold::MeshGL64 mesh = p_manifold.GetMeshGL64(); - r_merged_brush.faces.resize(inside_count); + constexpr int32_t order[3] = { 0, 2, 1 }; - inside_count = 0; + for (size_t run_i = 0; run_i < mesh.runIndex.size() - 1; run_i++) { + uint32_t original_id = -1; + if (run_i < mesh.runOriginalID.size()) { + original_id = mesh.runOriginalID[run_i]; + } - for (int i = 0; i < mesh_merge.faces.size(); i++) { - if (!mesh_merge.faces[i].inside) { - continue; - } + Ref material = default_material; + if (mesh_materials.has(original_id)) { + material = mesh_materials[original_id]; + } + // Find or reserve a material ID in the brush. + int run_material = 0; + int32_t material_id = r_mesh_merge->materials.find(material); + if (material_id != -1) { + run_material = material_id; + } else { + run_material = r_mesh_merge->materials.size(); + r_mesh_merge->materials.push_back(material); + } - for (int j = 0; j < 3; j++) { - r_merged_brush.faces.write[inside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]]; - r_merged_brush.faces.write[inside_count].uvs[j] = mesh_merge.faces[i].uvs[j]; - } + size_t begin = mesh.runIndex[run_i]; + size_t end = mesh.runIndex[run_i + 1]; + for (size_t vert_i = begin; vert_i < end; vert_i += 3) { + CSGBrush::Face face; + face.material = run_material; - r_merged_brush.faces.write[inside_count].smooth = mesh_merge.faces[i].smooth; - r_merged_brush.faces.write[inside_count].invert = mesh_merge.faces[i].invert; - r_merged_brush.faces.write[inside_count].material = mesh_merge.faces[i].material_idx; - inside_count++; - } + for (int32_t tri_order_i = 0; tri_order_i < 3; tri_order_i++) { + int32_t property_i = mesh.triVerts[vert_i + order[tri_order_i]]; - r_merged_brush._regen_face_aabbs(); + ERR_FAIL_COND_MSG(property_i * mesh.numProp >= mesh.vertProperties.size(), "Invalid index into vertex properties"); - } break; + face.vertices[tri_order_i] = Vector3( + mesh.vertProperties[property_i * mesh.numProp + MANIFOLD_PROPERTY_POSITION_X], + mesh.vertProperties[property_i * mesh.numProp + MANIFOLD_PROPERTY_POSITION_Y], + mesh.vertProperties[property_i * mesh.numProp + MANIFOLD_PROPERTY_POSITION_Z]); - case OPERATION_SUBTRACTION: { - int face_count = 0; + face.uvs[tri_order_i] = Vector2( + mesh.vertProperties[property_i * mesh.numProp + MANIFOLD_PROPERTY_UV_X_0], + mesh.vertProperties[property_i * mesh.numProp + MANIFOLD_PROPERTY_UV_Y_0]); - for (int i = 0; i < mesh_merge.faces.size(); i++) { - if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside) { - continue; - } - if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside) { - continue; - } - face_count++; + face.smooth = mesh.vertProperties[property_i * mesh.numProp + MANIFOLD_PROPERTY_SMOOTH_GROUP] > 0.5f; + face.invert = mesh.vertProperties[property_i * mesh.numProp + MANIFOLD_PROPERTY_INVERT] > 0.5f; } - r_merged_brush.faces.resize(face_count); - - face_count = 0; - - for (int i = 0; i < mesh_merge.faces.size(); i++) { - if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside) { - continue; - } - if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside) { - continue; - } - - for (int j = 0; j < 3; j++) { - r_merged_brush.faces.write[face_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]]; - r_merged_brush.faces.write[face_count].uvs[j] = mesh_merge.faces[i].uvs[j]; - } - - if (mesh_merge.faces[i].from_b) { - //invert facing of insides of B - SWAP(r_merged_brush.faces.write[face_count].vertices[1], r_merged_brush.faces.write[face_count].vertices[2]); - SWAP(r_merged_brush.faces.write[face_count].uvs[1], r_merged_brush.faces.write[face_count].uvs[2]); - } - - r_merged_brush.faces.write[face_count].smooth = mesh_merge.faces[i].smooth; - r_merged_brush.faces.write[face_count].invert = mesh_merge.faces[i].invert; - r_merged_brush.faces.write[face_count].material = mesh_merge.faces[i].material_idx; - face_count++; - } + r_mesh_merge->faces.push_back(face); + } + } - r_merged_brush._regen_face_aabbs(); + r_mesh_merge->_regen_face_aabbs(); +} - } break; - } +// CSGBrushOperation - // Update the list of materials. - r_merged_brush.materials.resize(mesh_merge.materials.size()); - for (const KeyValue, int> &E : mesh_merge.materials) { - r_merged_brush.materials.write[E.value] = E.key; +void CSGBrushOperation::merge_brushes(Operation p_operation, const CSGBrush &p_brush_a, const CSGBrush &p_brush_b, CSGBrush &r_merged_brush, float p_vertex_snap) { + HashMap> mesh_materials; + manifold::Manifold brush_a; + pack_manifold(&p_brush_a, brush_a, mesh_materials, p_vertex_snap); + manifold::Manifold brush_b; + pack_manifold(&p_brush_b, brush_b, mesh_materials, p_vertex_snap); + manifold::Manifold merged_brush; + switch (p_operation) { + case OPERATION_UNION: + merged_brush = brush_a + brush_b; + break; + case OPERATION_INTERSECTION: + merged_brush = brush_a ^ brush_b; + break; + case OPERATION_SUBTRACTION: + merged_brush = brush_a - brush_b; + break; } + unpack_manifold(merged_brush, mesh_materials, &r_merged_brush); } // CSGBrushOperation::MeshMerge diff --git a/modules/csg/csg.h b/modules/csg/csg.h index 2a0831e1ce18..43ea5e6bdc9a 100644 --- a/modules/csg/csg.h +++ b/modules/csg/csg.h @@ -55,7 +55,14 @@ struct CSGBrush { Vector faces; Vector> materials; - inline void _regen_face_aabbs(); + inline void _regen_face_aabbs() { + for (int i = 0; i < faces.size(); i++) { + faces.write[i].aabb = AABB(); + faces.write[i].aabb.position = faces[i].vertices[0]; + faces.write[i].aabb.expand_to(faces[i].vertices[1]); + faces.write[i].aabb.expand_to(faces[i].vertices[2]); + } + } // Create a brush from faces. void build_from_faces(const Vector &p_vertices, const Vector &p_uvs, const Vector &p_smooth, const Vector> &p_materials, const Vector &p_invert_faces); @@ -68,7 +75,6 @@ struct CSGBrushOperation { OPERATION_INTERSECTION, OPERATION_SUBTRACTION, }; - void merge_brushes(Operation p_operation, const CSGBrush &p_brush_a, const CSGBrush &p_brush_b, CSGBrush &r_merged_brush, float p_vertex_snap); struct MeshMerge { diff --git a/servers/rendering/renderer_rd/storage_rd/texture_storage.cpp b/servers/rendering/renderer_rd/storage_rd/texture_storage.cpp index 6e5e8f63e0e6..1f01e03b104a 100644 --- a/servers/rendering/renderer_rd/storage_rd/texture_storage.cpp +++ b/servers/rendering/renderer_rd/storage_rd/texture_storage.cpp @@ -891,7 +891,7 @@ void TextureStorage::texture_2d_layered_initialize(RID p_texture, const VectorGLSL 4.20.8 specification, section 8.3 Common Functions +/// +/// @defgroup core_func_common Common functions +/// @ingroup core +/// +/// Provides GLSL common functions +/// +/// These all operate component-wise. The description is per component. +/// +/// Include to use these core features. + +#pragma once + +#include "detail/qualifier.hpp" +#include "detail/_fixes.hpp" + +namespace glm +{ + /// @addtogroup core_func_common + /// @{ + + /// Returns x if x >= 0; otherwise, it returns -x. + /// + /// @tparam genType floating-point or signed integer; scalar or vector types. + /// + /// @see GLSL abs man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR genType abs(genType x); + + /// Returns x if x >= 0; otherwise, it returns -x. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or signed integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL abs man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR vec abs(vec const& x); + + /// Returns 1.0 if x > 0, 0.0 if x == 0, or -1.0 if x < 0. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL sign man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR vec sign(vec const& x); + + /// Returns a value equal to the nearest integer that is less then or equal to x. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL floor man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL vec floor(vec const& x); + + /// Returns a value equal to the nearest integer to x + /// whose absolute value is not larger than the absolute value of x. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL trunc man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL vec trunc(vec const& x); + + /// Returns a value equal to the nearest integer to x. + /// The fraction 0.5 will round in a direction chosen by the + /// implementation, presumably the direction that is fastest. + /// This includes the possibility that round(x) returns the + /// same value as roundEven(x) for all values of x. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL round man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL vec round(vec const& x); + + /// Returns a value equal to the nearest integer to x. + /// A fractional part of 0.5 will round toward the nearest even + /// integer. (Both 3.5 and 4.5 for x will return 4.0.) + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL roundEven man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + /// @see New round to even technique + template + GLM_FUNC_DECL vec roundEven(vec const& x); + + /// Returns a value equal to the nearest integer + /// that is greater than or equal to x. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL ceil man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL vec ceil(vec const& x); + + /// Return x - floor(x). + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see GLSL fract man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL genType fract(genType x); + + /// Return x - floor(x). + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL fract man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL vec fract(vec const& x); + + template + GLM_FUNC_DECL genType mod(genType x, genType y); + + template + GLM_FUNC_DECL vec mod(vec const& x, T y); + + /// Modulus. Returns x - y * floor(x / y) + /// for each component in x using the floating point value y. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types, include glm/gtc/integer for integer scalar types support + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL mod man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL vec mod(vec const& x, vec const& y); + + /// Returns the fractional part of x and sets i to the integer + /// part (as a whole number floating point value). Both the + /// return value and the output parameter will have the same + /// sign as x. + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see GLSL modf man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL genType modf(genType x, genType& i); + + /// Returns y if y < x; otherwise, it returns x. + /// + /// @tparam genType Floating-point or integer; scalar or vector types. + /// + /// @see GLSL min man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR genType min(genType x, genType y); + + /// Returns y if y < x; otherwise, it returns x. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL min man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR vec min(vec const& x, T y); + + /// Returns y if y < x; otherwise, it returns x. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL min man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR vec min(vec const& x, vec const& y); + + /// Returns y if x < y; otherwise, it returns x. + /// + /// @tparam genType Floating-point or integer; scalar or vector types. + /// + /// @see GLSL max man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR genType max(genType x, genType y); + + /// Returns y if x < y; otherwise, it returns x. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL max man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR vec max(vec const& x, T y); + + /// Returns y if x < y; otherwise, it returns x. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL max man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR vec max(vec const& x, vec const& y); + + /// Returns min(max(x, minVal), maxVal) for each component in x + /// using the floating-point values minVal and maxVal. + /// + /// @tparam genType Floating-point or integer; scalar or vector types. + /// + /// @see GLSL clamp man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR genType clamp(genType x, genType minVal, genType maxVal); + + /// Returns min(max(x, minVal), maxVal) for each component in x + /// using the floating-point values minVal and maxVal. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL clamp man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR vec clamp(vec const& x, T minVal, T maxVal); + + /// Returns min(max(x, minVal), maxVal) for each component in x + /// using the floating-point values minVal and maxVal. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL clamp man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR vec clamp(vec const& x, vec const& minVal, vec const& maxVal); + + /// If genTypeU is a floating scalar or vector: + /// Returns x * (1.0 - a) + y * a, i.e., the linear blend of + /// x and y using the floating-point value a. + /// The value for a is not restricted to the range [0, 1]. + /// + /// If genTypeU is a boolean scalar or vector: + /// Selects which vector each returned component comes + /// from. For a component of 'a' that is false, the + /// corresponding component of 'x' is returned. For a + /// component of 'a' that is true, the corresponding + /// component of 'y' is returned. Components of 'x' and 'y' that + /// are not selected are allowed to be invalid floating point + /// values and will have no effect on the results. Thus, this + /// provides different functionality than + /// genType mix(genType x, genType y, genType(a)) + /// where a is a Boolean vector. + /// + /// @see GLSL mix man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + /// + /// @param[in] x Value to interpolate. + /// @param[in] y Value to interpolate. + /// @param[in] a Interpolant. + /// + /// @tparam genTypeT Floating point scalar or vector. + /// @tparam genTypeU Floating point or boolean scalar or vector. It can't be a vector if it is the length of genTypeT. + /// + /// @code + /// #include + /// ... + /// float a; + /// bool b; + /// glm::dvec3 e; + /// glm::dvec3 f; + /// glm::vec4 g; + /// glm::vec4 h; + /// ... + /// glm::vec4 r = glm::mix(g, h, a); // Interpolate with a floating-point scalar two vectors. + /// glm::vec4 s = glm::mix(g, h, b); // Returns g or h; + /// glm::dvec3 t = glm::mix(e, f, a); // Types of the third parameter is not required to match with the first and the second. + /// glm::vec4 u = glm::mix(g, h, r); // Interpolations can be perform per component with a vector for the last parameter. + /// @endcode + template + GLM_FUNC_DECL GLM_CONSTEXPR genTypeT mix(genTypeT x, genTypeT y, genTypeU a); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec mix(vec const& x, vec const& y, vec const& a); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec mix(vec const& x, vec const& y, U a); + + /// Returns 0.0 if x < edge, otherwise it returns 1.0 for each component of a genType. + /// + /// @see GLSL step man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL genType step(genType edge, genType x); + + /// Returns 0.0 if x < edge, otherwise it returns 1.0. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL step man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL vec step(T edge, vec const& x); + + /// Returns 0.0 if x < edge, otherwise it returns 1.0. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL step man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL vec step(vec const& edge, vec const& x); + + /// Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and + /// performs smooth Hermite interpolation between 0 and 1 + /// when edge0 < x < edge1. This is useful in cases where + /// you would want a threshold function with a smooth + /// transition. This is equivalent to: + /// genType t; + /// t = clamp ((x - edge0) / (edge1 - edge0), 0, 1); + /// return t * t * (3 - 2 * t); + /// Results are undefined if edge0 >= edge1. + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see GLSL smoothstep man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL genType smoothstep(genType edge0, genType edge1, genType x); + + template + GLM_FUNC_DECL vec smoothstep(T edge0, T edge1, vec const& x); + + template + GLM_FUNC_DECL vec smoothstep(vec const& edge0, vec const& edge1, vec const& x); + + /// Returns true if x holds a NaN (not a number) + /// representation in the underlying implementation's set of + /// floating point representations. Returns false otherwise, + /// including for implementations with no NaN + /// representations. + /// + /// /!\ When using compiler fast math, this function may fail. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL isnan man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL vec isnan(vec const& x); + + /// Returns true if x holds a positive infinity or negative + /// infinity representation in the underlying implementation's + /// set of floating point representations. Returns false + /// otherwise, including for implementations with no infinity + /// representations. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL isinf man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL vec isinf(vec const& x); + + /// Returns a signed integer value representing + /// the encoding of a floating-point value. The floating-point + /// value's bit-level representation is preserved. + /// + /// @see GLSL floatBitsToInt man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + GLM_FUNC_DECL int floatBitsToInt(float v); + + /// Returns a signed integer value representing + /// the encoding of a floating-point value. The floatingpoint + /// value's bit-level representation is preserved. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL floatBitsToInt man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL vec floatBitsToInt(vec const& v); + + /// Returns a unsigned integer value representing + /// the encoding of a floating-point value. The floatingpoint + /// value's bit-level representation is preserved. + /// + /// @see GLSL floatBitsToUint man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + GLM_FUNC_DECL uint floatBitsToUint(float v); + + /// Returns a unsigned integer value representing + /// the encoding of a floating-point value. The floatingpoint + /// value's bit-level representation is preserved. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL floatBitsToUint man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL vec floatBitsToUint(vec const& v); + + /// Returns a floating-point value corresponding to a signed + /// integer encoding of a floating-point value. + /// If an inf or NaN is passed in, it will not signal, and the + /// resulting floating point value is unspecified. Otherwise, + /// the bit-level representation is preserved. + /// + /// @see GLSL intBitsToFloat man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + GLM_FUNC_DECL float intBitsToFloat(int v); + + /// Returns a floating-point value corresponding to a signed + /// integer encoding of a floating-point value. + /// If an inf or NaN is passed in, it will not signal, and the + /// resulting floating point value is unspecified. Otherwise, + /// the bit-level representation is preserved. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL intBitsToFloat man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL vec intBitsToFloat(vec const& v); + + /// Returns a floating-point value corresponding to a + /// unsigned integer encoding of a floating-point value. + /// If an inf or NaN is passed in, it will not signal, and the + /// resulting floating point value is unspecified. Otherwise, + /// the bit-level representation is preserved. + /// + /// @see GLSL uintBitsToFloat man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + GLM_FUNC_DECL float uintBitsToFloat(uint v); + + /// Returns a floating-point value corresponding to a + /// unsigned integer encoding of a floating-point value. + /// If an inf or NaN is passed in, it will not signal, and the + /// resulting floating point value is unspecified. Otherwise, + /// the bit-level representation is preserved. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL uintBitsToFloat man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL vec uintBitsToFloat(vec const& v); + + /// Computes and returns a * b + c. + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see GLSL fma man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL genType fma(genType const& a, genType const& b, genType const& c); + + /// Splits x into a floating-point significand in the range + /// [0.5, 1.0) and an integral exponent of two, such that: + /// x = significand * exp(2, exponent) + /// + /// The significand is returned by the function and the + /// exponent is returned in the parameter exp. For a + /// floating-point value of zero, the significant and exponent + /// are both zero. For a floating-point value that is an + /// infinity or is not a number, the results are undefined. + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see GLSL frexp man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL genType frexp(genType x, int& exp); + + template + GLM_FUNC_DECL vec frexp(vec const& v, vec& exp); + + /// Builds a floating-point number from x and the + /// corresponding integral exponent of two in exp, returning: + /// significand * exp(2, exponent) + /// + /// If this product is too large to be represented in the + /// floating-point type, the result is undefined. + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see GLSL ldexp man page; + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL genType ldexp(genType const& x, int const& exp); + + template + GLM_FUNC_DECL vec ldexp(vec const& v, vec const& exp); + + /// @} +}//namespace glm + +#include "detail/func_common.inl" + diff --git a/thirdparty/glm/glm/copying.txt b/thirdparty/glm/glm/copying.txt new file mode 100644 index 000000000000..b35b06c2d578 --- /dev/null +++ b/thirdparty/glm/glm/copying.txt @@ -0,0 +1,54 @@ +================================================================================ +OpenGL Mathematics (GLM) +-------------------------------------------------------------------------------- +GLM is licensed under The Happy Bunny License or MIT License + +================================================================================ +The Happy Bunny License (Modified MIT License) +-------------------------------------------------------------------------------- +Copyright (c) 2005 - G-Truc Creation + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +Restrictions: + By making use of the Software for military purposes, you choose to make a + Bunny unhappy. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +================================================================================ +The MIT License +-------------------------------------------------------------------------------- +Copyright (c) 2005 - G-Truc Creation + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. \ No newline at end of file diff --git a/thirdparty/glm/glm/detail/_features.hpp b/thirdparty/glm/glm/detail/_features.hpp new file mode 100644 index 000000000000..b0cbe9ff02cf --- /dev/null +++ b/thirdparty/glm/glm/detail/_features.hpp @@ -0,0 +1,394 @@ +#pragma once + +// #define GLM_CXX98_EXCEPTIONS +// #define GLM_CXX98_RTTI + +// #define GLM_CXX11_RVALUE_REFERENCES +// Rvalue references - GCC 4.3 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2118.html + +// GLM_CXX11_TRAILING_RETURN +// Rvalue references for *this - GCC not supported +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2439.htm + +// GLM_CXX11_NONSTATIC_MEMBER_INIT +// Initialization of class objects by rvalues - GCC any +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1610.html + +// GLM_CXX11_NONSTATIC_MEMBER_INIT +// Non-static data member initializers - GCC 4.7 +// http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2756.htm + +// #define GLM_CXX11_VARIADIC_TEMPLATE +// Variadic templates - GCC 4.3 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2242.pdf + +// +// Extending variadic template template parameters - GCC 4.4 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2555.pdf + +// #define GLM_CXX11_GENERALIZED_INITIALIZERS +// Initializer lists - GCC 4.4 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2672.htm + +// #define GLM_CXX11_STATIC_ASSERT +// Static assertions - GCC 4.3 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1720.html + +// #define GLM_CXX11_AUTO_TYPE +// auto-typed variables - GCC 4.4 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1984.pdf + +// #define GLM_CXX11_AUTO_TYPE +// Multi-declarator auto - GCC 4.4 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1737.pdf + +// #define GLM_CXX11_AUTO_TYPE +// Removal of auto as a storage-class specifier - GCC 4.4 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2546.htm + +// #define GLM_CXX11_AUTO_TYPE +// New function declarator syntax - GCC 4.4 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2541.htm + +// #define GLM_CXX11_LAMBDAS +// New wording for C++0x lambdas - GCC 4.5 +// http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2927.pdf + +// #define GLM_CXX11_DECLTYPE +// Declared type of an expression - GCC 4.3 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2343.pdf + +// +// Right angle brackets - GCC 4.3 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1757.html + +// +// Default template arguments for function templates DR226 GCC 4.3 +// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#226 + +// +// Solving the SFINAE problem for expressions DR339 GCC 4.4 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2634.html + +// #define GLM_CXX11_ALIAS_TEMPLATE +// Template aliases N2258 GCC 4.7 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2258.pdf + +// +// Extern templates N1987 Yes +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1987.htm + +// #define GLM_CXX11_NULLPTR +// Null pointer constant N2431 GCC 4.6 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2431.pdf + +// #define GLM_CXX11_STRONG_ENUMS +// Strongly-typed enums N2347 GCC 4.4 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2347.pdf + +// +// Forward declarations for enums N2764 GCC 4.6 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2764.pdf + +// +// Generalized attributes N2761 GCC 4.8 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf + +// +// Generalized constant expressions N2235 GCC 4.6 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2235.pdf + +// +// Alignment support N2341 GCC 4.8 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2341.pdf + +// #define GLM_CXX11_DELEGATING_CONSTRUCTORS +// Delegating constructors N1986 GCC 4.7 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1986.pdf + +// +// Inheriting constructors N2540 GCC 4.8 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2540.htm + +// #define GLM_CXX11_EXPLICIT_CONVERSIONS +// Explicit conversion operators N2437 GCC 4.5 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2437.pdf + +// +// New character types N2249 GCC 4.4 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2249.html + +// +// Unicode string literals N2442 GCC 4.5 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2442.htm + +// +// Raw string literals N2442 GCC 4.5 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2442.htm + +// +// Universal character name literals N2170 GCC 4.5 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2170.html + +// #define GLM_CXX11_USER_LITERALS +// User-defined literals N2765 GCC 4.7 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2765.pdf + +// +// Standard Layout Types N2342 GCC 4.5 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2342.htm + +// #define GLM_CXX11_DEFAULTED_FUNCTIONS +// #define GLM_CXX11_DELETED_FUNCTIONS +// Defaulted and deleted functions N2346 GCC 4.4 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm + +// +// Extended friend declarations N1791 GCC 4.7 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1791.pdf + +// +// Extending sizeof N2253 GCC 4.4 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2253.html + +// #define GLM_CXX11_INLINE_NAMESPACES +// Inline namespaces N2535 GCC 4.4 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2535.htm + +// #define GLM_CXX11_UNRESTRICTED_UNIONS +// Unrestricted unions N2544 GCC 4.6 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2544.pdf + +// #define GLM_CXX11_LOCAL_TYPE_TEMPLATE_ARGS +// Local and unnamed types as template arguments N2657 GCC 4.5 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm + +// #define GLM_CXX11_RANGE_FOR +// Range-based for N2930 GCC 4.6 +// http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2930.html + +// #define GLM_CXX11_OVERRIDE_CONTROL +// Explicit virtual overrides N2928 N3206 N3272 GCC 4.7 +// http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2928.htm +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3206.htm +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3272.htm + +// +// Minimal support for garbage collection and reachability-based leak detection N2670 No +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2670.htm + +// #define GLM_CXX11_NOEXCEPT +// Allowing move constructors to throw [noexcept] N3050 GCC 4.6 (core language only) +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3050.html + +// +// Defining move special member functions N3053 GCC 4.6 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3053.html + +// +// Sequence points N2239 Yes +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2239.html + +// +// Atomic operations N2427 GCC 4.4 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2239.html + +// +// Strong Compare and Exchange N2748 GCC 4.5 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2427.html + +// +// Bidirectional Fences N2752 GCC 4.8 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2752.htm + +// +// Memory model N2429 GCC 4.8 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2429.htm + +// +// Data-dependency ordering: atomics and memory model N2664 GCC 4.4 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2664.htm + +// +// Propagating exceptions N2179 GCC 4.4 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2179.html + +// +// Abandoning a process and at_quick_exit N2440 GCC 4.8 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2440.htm + +// +// Allow atomics use in signal handlers N2547 Yes +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2547.htm + +// +// Thread-local storage N2659 GCC 4.8 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2659.htm + +// +// Dynamic initialization and destruction with concurrency N2660 GCC 4.3 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2660.htm + +// +// __func__ predefined identifier N2340 GCC 4.3 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2340.htm + +// +// C99 preprocessor N1653 GCC 4.3 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1653.htm + +// +// long long N1811 GCC 4.3 +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1811.pdf + +// +// Extended integral types N1988 Yes +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1988.pdf + +#if(GLM_COMPILER & GLM_COMPILER_GCC) + +# define GLM_CXX11_STATIC_ASSERT + +#elif(GLM_COMPILER & GLM_COMPILER_CLANG) +# if(__has_feature(cxx_exceptions)) +# define GLM_CXX98_EXCEPTIONS +# endif + +# if(__has_feature(cxx_rtti)) +# define GLM_CXX98_RTTI +# endif + +# if(__has_feature(cxx_access_control_sfinae)) +# define GLM_CXX11_ACCESS_CONTROL_SFINAE +# endif + +# if(__has_feature(cxx_alias_templates)) +# define GLM_CXX11_ALIAS_TEMPLATE +# endif + +# if(__has_feature(cxx_alignas)) +# define GLM_CXX11_ALIGNAS +# endif + +# if(__has_feature(cxx_attributes)) +# define GLM_CXX11_ATTRIBUTES +# endif + +# if(__has_feature(cxx_constexpr)) +# define GLM_CXX11_CONSTEXPR +# endif + +# if(__has_feature(cxx_decltype)) +# define GLM_CXX11_DECLTYPE +# endif + +# if(__has_feature(cxx_default_function_template_args)) +# define GLM_CXX11_DEFAULT_FUNCTION_TEMPLATE_ARGS +# endif + +# if(__has_feature(cxx_defaulted_functions)) +# define GLM_CXX11_DEFAULTED_FUNCTIONS +# endif + +# if(__has_feature(cxx_delegating_constructors)) +# define GLM_CXX11_DELEGATING_CONSTRUCTORS +# endif + +# if(__has_feature(cxx_deleted_functions)) +# define GLM_CXX11_DELETED_FUNCTIONS +# endif + +# if(__has_feature(cxx_explicit_conversions)) +# define GLM_CXX11_EXPLICIT_CONVERSIONS +# endif + +# if(__has_feature(cxx_generalized_initializers)) +# define GLM_CXX11_GENERALIZED_INITIALIZERS +# endif + +# if(__has_feature(cxx_implicit_moves)) +# define GLM_CXX11_IMPLICIT_MOVES +# endif + +# if(__has_feature(cxx_inheriting_constructors)) +# define GLM_CXX11_INHERITING_CONSTRUCTORS +# endif + +# if(__has_feature(cxx_inline_namespaces)) +# define GLM_CXX11_INLINE_NAMESPACES +# endif + +# if(__has_feature(cxx_lambdas)) +# define GLM_CXX11_LAMBDAS +# endif + +# if(__has_feature(cxx_local_type_template_args)) +# define GLM_CXX11_LOCAL_TYPE_TEMPLATE_ARGS +# endif + +# if(__has_feature(cxx_noexcept)) +# define GLM_CXX11_NOEXCEPT +# endif + +# if(__has_feature(cxx_nonstatic_member_init)) +# define GLM_CXX11_NONSTATIC_MEMBER_INIT +# endif + +# if(__has_feature(cxx_nullptr)) +# define GLM_CXX11_NULLPTR +# endif + +# if(__has_feature(cxx_override_control)) +# define GLM_CXX11_OVERRIDE_CONTROL +# endif + +# if(__has_feature(cxx_reference_qualified_functions)) +# define GLM_CXX11_REFERENCE_QUALIFIED_FUNCTIONS +# endif + +# if(__has_feature(cxx_range_for)) +# define GLM_CXX11_RANGE_FOR +# endif + +# if(__has_feature(cxx_raw_string_literals)) +# define GLM_CXX11_RAW_STRING_LITERALS +# endif + +# if(__has_feature(cxx_rvalue_references)) +# define GLM_CXX11_RVALUE_REFERENCES +# endif + +# if(__has_feature(cxx_static_assert)) +# define GLM_CXX11_STATIC_ASSERT +# endif + +# if(__has_feature(cxx_auto_type)) +# define GLM_CXX11_AUTO_TYPE +# endif + +# if(__has_feature(cxx_strong_enums)) +# define GLM_CXX11_STRONG_ENUMS +# endif + +# if(__has_feature(cxx_trailing_return)) +# define GLM_CXX11_TRAILING_RETURN +# endif + +# if(__has_feature(cxx_unicode_literals)) +# define GLM_CXX11_UNICODE_LITERALS +# endif + +# if(__has_feature(cxx_unrestricted_unions)) +# define GLM_CXX11_UNRESTRICTED_UNIONS +# endif + +# if(__has_feature(cxx_user_literals)) +# define GLM_CXX11_USER_LITERALS +# endif + +# if(__has_feature(cxx_variadic_templates)) +# define GLM_CXX11_VARIADIC_TEMPLATES +# endif + +#endif//(GLM_COMPILER & GLM_COMPILER_CLANG) diff --git a/thirdparty/glm/glm/detail/_fixes.hpp b/thirdparty/glm/glm/detail/_fixes.hpp new file mode 100644 index 000000000000..a503c7c0d041 --- /dev/null +++ b/thirdparty/glm/glm/detail/_fixes.hpp @@ -0,0 +1,27 @@ +#include + +//! Workaround for compatibility with other libraries +#ifdef max +#undef max +#endif + +//! Workaround for compatibility with other libraries +#ifdef min +#undef min +#endif + +//! Workaround for Android +#ifdef isnan +#undef isnan +#endif + +//! Workaround for Android +#ifdef isinf +#undef isinf +#endif + +//! Workaround for Chrone Native Client +#ifdef log2 +#undef log2 +#endif + diff --git a/thirdparty/glm/glm/detail/_noise.hpp b/thirdparty/glm/glm/detail/_noise.hpp new file mode 100644 index 000000000000..5a874a02221f --- /dev/null +++ b/thirdparty/glm/glm/detail/_noise.hpp @@ -0,0 +1,81 @@ +#pragma once + +#include "../common.hpp" + +namespace glm{ +namespace detail +{ + template + GLM_FUNC_QUALIFIER T mod289(T const& x) + { + return x - floor(x * (static_cast(1.0) / static_cast(289.0))) * static_cast(289.0); + } + + template + GLM_FUNC_QUALIFIER T permute(T const& x) + { + return mod289(((x * static_cast(34)) + static_cast(1)) * x); + } + + template + GLM_FUNC_QUALIFIER vec<2, T, Q> permute(vec<2, T, Q> const& x) + { + return mod289(((x * static_cast(34)) + static_cast(1)) * x); + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> permute(vec<3, T, Q> const& x) + { + return mod289(((x * static_cast(34)) + static_cast(1)) * x); + } + + template + GLM_FUNC_QUALIFIER vec<4, T, Q> permute(vec<4, T, Q> const& x) + { + return mod289(((x * static_cast(34)) + static_cast(1)) * x); + } + + template + GLM_FUNC_QUALIFIER T taylorInvSqrt(T const& r) + { + return static_cast(1.79284291400159) - static_cast(0.85373472095314) * r; + } + + template + GLM_FUNC_QUALIFIER vec<2, T, Q> taylorInvSqrt(vec<2, T, Q> const& r) + { + return static_cast(1.79284291400159) - static_cast(0.85373472095314) * r; + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> taylorInvSqrt(vec<3, T, Q> const& r) + { + return static_cast(1.79284291400159) - static_cast(0.85373472095314) * r; + } + + template + GLM_FUNC_QUALIFIER vec<4, T, Q> taylorInvSqrt(vec<4, T, Q> const& r) + { + return static_cast(1.79284291400159) - static_cast(0.85373472095314) * r; + } + + template + GLM_FUNC_QUALIFIER vec<2, T, Q> fade(vec<2, T, Q> const& t) + { + return (t * t * t) * (t * (t * static_cast(6) - static_cast(15)) + static_cast(10)); + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> fade(vec<3, T, Q> const& t) + { + return (t * t * t) * (t * (t * static_cast(6) - static_cast(15)) + static_cast(10)); + } + + template + GLM_FUNC_QUALIFIER vec<4, T, Q> fade(vec<4, T, Q> const& t) + { + return (t * t * t) * (t * (t * static_cast(6) - static_cast(15)) + static_cast(10)); + } +}//namespace detail +}//namespace glm + diff --git a/thirdparty/glm/glm/detail/_swizzle.hpp b/thirdparty/glm/glm/detail/_swizzle.hpp new file mode 100644 index 000000000000..87896ef4f6f2 --- /dev/null +++ b/thirdparty/glm/glm/detail/_swizzle.hpp @@ -0,0 +1,804 @@ +#pragma once + +namespace glm{ +namespace detail +{ + // Internal class for implementing swizzle operators + template + struct _swizzle_base0 + { + protected: + GLM_FUNC_QUALIFIER T& elem(size_t i){ return (reinterpret_cast(_buffer))[i]; } + GLM_FUNC_QUALIFIER T const& elem(size_t i) const{ return (reinterpret_cast(_buffer))[i]; } + + // Use an opaque buffer to *ensure* the compiler doesn't call a constructor. + // The size 1 buffer is assumed to aligned to the actual members so that the + // elem() + char _buffer[1]; + }; + + template + struct _swizzle_base1 : public _swizzle_base0 + { + }; + + template + struct _swizzle_base1<2, T, Q, E0,E1,-1,-2, Aligned> : public _swizzle_base0 + { + GLM_FUNC_QUALIFIER vec<2, T, Q> operator ()() const { return vec<2, T, Q>(this->elem(E0), this->elem(E1)); } + }; + + template + struct _swizzle_base1<3, T, Q, E0,E1,E2,-1, Aligned> : public _swizzle_base0 + { + GLM_FUNC_QUALIFIER vec<3, T, Q> operator ()() const { return vec<3, T, Q>(this->elem(E0), this->elem(E1), this->elem(E2)); } + }; + + template + struct _swizzle_base1<4, T, Q, E0,E1,E2,E3, Aligned> : public _swizzle_base0 + { + GLM_FUNC_QUALIFIER vec<4, T, Q> operator ()() const { return vec<4, T, Q>(this->elem(E0), this->elem(E1), this->elem(E2), this->elem(E3)); } + }; + + // Internal class for implementing swizzle operators + /* + Template parameters: + + T = type of scalar values (e.g. float, double) + N = number of components in the vector (e.g. 3) + E0...3 = what index the n-th element of this swizzle refers to in the unswizzled vec + + DUPLICATE_ELEMENTS = 1 if there is a repeated element, 0 otherwise (used to specialize swizzles + containing duplicate elements so that they cannot be used as r-values). + */ + template + struct _swizzle_base2 : public _swizzle_base1::value> + { + struct op_equal + { + GLM_FUNC_QUALIFIER void operator() (T& e, T& t) const{ e = t; } + }; + + struct op_minus + { + GLM_FUNC_QUALIFIER void operator() (T& e, T& t) const{ e -= t; } + }; + + struct op_plus + { + GLM_FUNC_QUALIFIER void operator() (T& e, T& t) const{ e += t; } + }; + + struct op_mul + { + GLM_FUNC_QUALIFIER void operator() (T& e, T& t) const{ e *= t; } + }; + + struct op_div + { + GLM_FUNC_QUALIFIER void operator() (T& e, T& t) const{ e /= t; } + }; + + public: + GLM_FUNC_QUALIFIER _swizzle_base2& operator= (const T& t) + { + for (int i = 0; i < N; ++i) + (*this)[i] = t; + return *this; + } + + GLM_FUNC_QUALIFIER _swizzle_base2& operator= (vec const& that) + { + _apply_op(that, op_equal()); + return *this; + } + + GLM_FUNC_QUALIFIER void operator -= (vec const& that) + { + _apply_op(that, op_minus()); + } + + GLM_FUNC_QUALIFIER void operator += (vec const& that) + { + _apply_op(that, op_plus()); + } + + GLM_FUNC_QUALIFIER void operator *= (vec const& that) + { + _apply_op(that, op_mul()); + } + + GLM_FUNC_QUALIFIER void operator /= (vec const& that) + { + _apply_op(that, op_div()); + } + + GLM_FUNC_QUALIFIER T& operator[](size_t i) + { + const int offset_dst[4] = { E0, E1, E2, E3 }; + return this->elem(offset_dst[i]); + } + GLM_FUNC_QUALIFIER T operator[](size_t i) const + { + const int offset_dst[4] = { E0, E1, E2, E3 }; + return this->elem(offset_dst[i]); + } + + protected: + template + GLM_FUNC_QUALIFIER void _apply_op(vec const& that, const U& op) + { + // Make a copy of the data in this == &that. + // The copier should optimize out the copy in cases where the function is + // properly inlined and the copy is not necessary. + T t[N]; + for (int i = 0; i < N; ++i) + t[i] = that[i]; + for (int i = 0; i < N; ++i) + op( (*this)[i], t[i] ); + } + }; + + // Specialization for swizzles containing duplicate elements. These cannot be modified. + template + struct _swizzle_base2 : public _swizzle_base1::value> + { + struct Stub {}; + + GLM_FUNC_QUALIFIER _swizzle_base2& operator= (Stub const&) { return *this; } + + GLM_FUNC_QUALIFIER T operator[] (size_t i) const + { + const int offset_dst[4] = { E0, E1, E2, E3 }; + return this->elem(offset_dst[i]); + } + }; + + template + struct _swizzle : public _swizzle_base2 + { + typedef _swizzle_base2 base_type; + + using base_type::operator=; + + GLM_FUNC_QUALIFIER operator vec () const { return (*this)(); } + }; + +// +// To prevent the C++ syntax from getting entirely overwhelming, define some alias macros +// +#define GLM_SWIZZLE_TEMPLATE1 template +#define GLM_SWIZZLE_TEMPLATE2 template +#define GLM_SWIZZLE_TYPE1 _swizzle +#define GLM_SWIZZLE_TYPE2 _swizzle + +// +// Wrapper for a binary operator (e.g. u.yy + v.zy) +// +#define GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(OPERAND) \ + GLM_SWIZZLE_TEMPLATE2 \ + GLM_FUNC_QUALIFIER vec operator OPERAND ( const GLM_SWIZZLE_TYPE1& a, const GLM_SWIZZLE_TYPE2& b) \ + { \ + return a() OPERAND b(); \ + } \ + GLM_SWIZZLE_TEMPLATE1 \ + GLM_FUNC_QUALIFIER vec operator OPERAND ( const GLM_SWIZZLE_TYPE1& a, const vec& b) \ + { \ + return a() OPERAND b; \ + } \ + GLM_SWIZZLE_TEMPLATE1 \ + GLM_FUNC_QUALIFIER vec operator OPERAND ( const vec& a, const GLM_SWIZZLE_TYPE1& b) \ + { \ + return a OPERAND b(); \ + } + +// +// Wrapper for a operand between a swizzle and a binary (e.g. 1.0f - u.xyz) +// +#define GLM_SWIZZLE_SCALAR_BINARY_OPERATOR_IMPLEMENTATION(OPERAND) \ + GLM_SWIZZLE_TEMPLATE1 \ + GLM_FUNC_QUALIFIER vec operator OPERAND ( const GLM_SWIZZLE_TYPE1& a, const T& b) \ + { \ + return a() OPERAND b; \ + } \ + GLM_SWIZZLE_TEMPLATE1 \ + GLM_FUNC_QUALIFIER vec operator OPERAND ( const T& a, const GLM_SWIZZLE_TYPE1& b) \ + { \ + return a OPERAND b(); \ + } + +// +// Macro for wrapping a function taking one argument (e.g. abs()) +// +#define GLM_SWIZZLE_FUNCTION_1_ARGS(RETURN_TYPE,FUNCTION) \ + GLM_SWIZZLE_TEMPLATE1 \ + GLM_FUNC_QUALIFIER typename GLM_SWIZZLE_TYPE1::RETURN_TYPE FUNCTION(const GLM_SWIZZLE_TYPE1& a) \ + { \ + return FUNCTION(a()); \ + } + +// +// Macro for wrapping a function taking two vector arguments (e.g. dot()). +// +#define GLM_SWIZZLE_FUNCTION_2_ARGS(RETURN_TYPE,FUNCTION) \ + GLM_SWIZZLE_TEMPLATE2 \ + GLM_FUNC_QUALIFIER typename GLM_SWIZZLE_TYPE1::RETURN_TYPE FUNCTION(const GLM_SWIZZLE_TYPE1& a, const GLM_SWIZZLE_TYPE2& b) \ + { \ + return FUNCTION(a(), b()); \ + } \ + GLM_SWIZZLE_TEMPLATE1 \ + GLM_FUNC_QUALIFIER typename GLM_SWIZZLE_TYPE1::RETURN_TYPE FUNCTION(const GLM_SWIZZLE_TYPE1& a, const GLM_SWIZZLE_TYPE1& b) \ + { \ + return FUNCTION(a(), b()); \ + } \ + GLM_SWIZZLE_TEMPLATE1 \ + GLM_FUNC_QUALIFIER typename GLM_SWIZZLE_TYPE1::RETURN_TYPE FUNCTION(const GLM_SWIZZLE_TYPE1& a, const typename V& b) \ + { \ + return FUNCTION(a(), b); \ + } \ + GLM_SWIZZLE_TEMPLATE1 \ + GLM_FUNC_QUALIFIER typename GLM_SWIZZLE_TYPE1::RETURN_TYPE FUNCTION(const V& a, const GLM_SWIZZLE_TYPE1& b) \ + { \ + return FUNCTION(a, b()); \ + } + +// +// Macro for wrapping a function take 2 vec arguments followed by a scalar (e.g. mix()). +// +#define GLM_SWIZZLE_FUNCTION_2_ARGS_SCALAR(RETURN_TYPE,FUNCTION) \ + GLM_SWIZZLE_TEMPLATE2 \ + GLM_FUNC_QUALIFIER typename GLM_SWIZZLE_TYPE1::RETURN_TYPE FUNCTION(const GLM_SWIZZLE_TYPE1& a, const GLM_SWIZZLE_TYPE2& b, const T& c) \ + { \ + return FUNCTION(a(), b(), c); \ + } \ + GLM_SWIZZLE_TEMPLATE1 \ + GLM_FUNC_QUALIFIER typename GLM_SWIZZLE_TYPE1::RETURN_TYPE FUNCTION(const GLM_SWIZZLE_TYPE1& a, const GLM_SWIZZLE_TYPE1& b, const T& c) \ + { \ + return FUNCTION(a(), b(), c); \ + } \ + GLM_SWIZZLE_TEMPLATE1 \ + GLM_FUNC_QUALIFIER typename GLM_SWIZZLE_TYPE1::RETURN_TYPE FUNCTION(const GLM_SWIZZLE_TYPE1& a, const typename S0::vec_type& b, const T& c)\ + { \ + return FUNCTION(a(), b, c); \ + } \ + GLM_SWIZZLE_TEMPLATE1 \ + GLM_FUNC_QUALIFIER typename GLM_SWIZZLE_TYPE1::RETURN_TYPE FUNCTION(const typename V& a, const GLM_SWIZZLE_TYPE1& b, const T& c) \ + { \ + return FUNCTION(a, b(), c); \ + } + +}//namespace detail +}//namespace glm + +namespace glm +{ + namespace detail + { + GLM_SWIZZLE_SCALAR_BINARY_OPERATOR_IMPLEMENTATION(-) + GLM_SWIZZLE_SCALAR_BINARY_OPERATOR_IMPLEMENTATION(*) + GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(+) + GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(-) + GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(*) + GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(/) + } + + // + // Swizzles are distinct types from the unswizzled type. The below macros will + // provide template specializations for the swizzle types for the given functions + // so that the compiler does not have any ambiguity to choosing how to handle + // the function. + // + // The alternative is to use the operator()() when calling the function in order + // to explicitly convert the swizzled type to the unswizzled type. + // + + //GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, abs); + //GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, acos); + //GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, acosh); + //GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, all); + //GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, any); + + //GLM_SWIZZLE_FUNCTION_2_ARGS(value_type, dot); + //GLM_SWIZZLE_FUNCTION_2_ARGS(vec_type, cross); + //GLM_SWIZZLE_FUNCTION_2_ARGS(vec_type, step); + //GLM_SWIZZLE_FUNCTION_2_ARGS_SCALAR(vec_type, mix); +} + +#define GLM_SWIZZLE2_2_MEMBERS(T, Q, E0,E1) \ + struct { detail::_swizzle<2, T, Q, 0,0,-1,-2> E0 ## E0; }; \ + struct { detail::_swizzle<2, T, Q, 0,1,-1,-2> E0 ## E1; }; \ + struct { detail::_swizzle<2, T, Q, 1,0,-1,-2> E1 ## E0; }; \ + struct { detail::_swizzle<2, T, Q, 1,1,-1,-2> E1 ## E1; }; + +#define GLM_SWIZZLE2_3_MEMBERS(T, Q, E0,E1) \ + struct { detail::_swizzle<3,T, Q, 0,0,0,-1> E0 ## E0 ## E0; }; \ + struct { detail::_swizzle<3,T, Q, 0,0,1,-1> E0 ## E0 ## E1; }; \ + struct { detail::_swizzle<3,T, Q, 0,1,0,-1> E0 ## E1 ## E0; }; \ + struct { detail::_swizzle<3,T, Q, 0,1,1,-1> E0 ## E1 ## E1; }; \ + struct { detail::_swizzle<3,T, Q, 1,0,0,-1> E1 ## E0 ## E0; }; \ + struct { detail::_swizzle<3,T, Q, 1,0,1,-1> E1 ## E0 ## E1; }; \ + struct { detail::_swizzle<3,T, Q, 1,1,0,-1> E1 ## E1 ## E0; }; \ + struct { detail::_swizzle<3,T, Q, 1,1,1,-1> E1 ## E1 ## E1; }; + +#define GLM_SWIZZLE2_4_MEMBERS(T, Q, E0,E1) \ + struct { detail::_swizzle<4,T, Q, 0,0,0,0> E0 ## E0 ## E0 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 0,0,0,1> E0 ## E0 ## E0 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 0,0,1,0> E0 ## E0 ## E1 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 0,0,1,1> E0 ## E0 ## E1 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 0,1,0,0> E0 ## E1 ## E0 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 0,1,0,1> E0 ## E1 ## E0 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 0,1,1,0> E0 ## E1 ## E1 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 0,1,1,1> E0 ## E1 ## E1 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 1,0,0,0> E1 ## E0 ## E0 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 1,0,0,1> E1 ## E0 ## E0 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 1,0,1,0> E1 ## E0 ## E1 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 1,0,1,1> E1 ## E0 ## E1 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 1,1,0,0> E1 ## E1 ## E0 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 1,1,0,1> E1 ## E1 ## E0 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 1,1,1,0> E1 ## E1 ## E1 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 1,1,1,1> E1 ## E1 ## E1 ## E1; }; + +#define GLM_SWIZZLE3_2_MEMBERS(T, Q, E0,E1,E2) \ + struct { detail::_swizzle<2,T, Q, 0,0,-1,-2> E0 ## E0; }; \ + struct { detail::_swizzle<2,T, Q, 0,1,-1,-2> E0 ## E1; }; \ + struct { detail::_swizzle<2,T, Q, 0,2,-1,-2> E0 ## E2; }; \ + struct { detail::_swizzle<2,T, Q, 1,0,-1,-2> E1 ## E0; }; \ + struct { detail::_swizzle<2,T, Q, 1,1,-1,-2> E1 ## E1; }; \ + struct { detail::_swizzle<2,T, Q, 1,2,-1,-2> E1 ## E2; }; \ + struct { detail::_swizzle<2,T, Q, 2,0,-1,-2> E2 ## E0; }; \ + struct { detail::_swizzle<2,T, Q, 2,1,-1,-2> E2 ## E1; }; \ + struct { detail::_swizzle<2,T, Q, 2,2,-1,-2> E2 ## E2; }; + +#define GLM_SWIZZLE3_3_MEMBERS(T, Q ,E0,E1,E2) \ + struct { detail::_swizzle<3, T, Q, 0,0,0,-1> E0 ## E0 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 0,0,1,-1> E0 ## E0 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 0,0,2,-1> E0 ## E0 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 0,1,0,-1> E0 ## E1 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 0,1,1,-1> E0 ## E1 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 0,1,2,-1> E0 ## E1 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 0,2,0,-1> E0 ## E2 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 0,2,1,-1> E0 ## E2 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 0,2,2,-1> E0 ## E2 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 1,0,0,-1> E1 ## E0 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 1,0,1,-1> E1 ## E0 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 1,0,2,-1> E1 ## E0 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 1,1,0,-1> E1 ## E1 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 1,1,1,-1> E1 ## E1 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 1,1,2,-1> E1 ## E1 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 1,2,0,-1> E1 ## E2 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 1,2,1,-1> E1 ## E2 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 1,2,2,-1> E1 ## E2 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 2,0,0,-1> E2 ## E0 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 2,0,1,-1> E2 ## E0 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 2,0,2,-1> E2 ## E0 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 2,1,0,-1> E2 ## E1 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 2,1,1,-1> E2 ## E1 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 2,1,2,-1> E2 ## E1 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 2,2,0,-1> E2 ## E2 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 2,2,1,-1> E2 ## E2 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 2,2,2,-1> E2 ## E2 ## E2; }; + +#define GLM_SWIZZLE3_4_MEMBERS(T, Q, E0,E1,E2) \ + struct { detail::_swizzle<4,T, Q, 0,0,0,0> E0 ## E0 ## E0 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 0,0,0,1> E0 ## E0 ## E0 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 0,0,0,2> E0 ## E0 ## E0 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 0,0,1,0> E0 ## E0 ## E1 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 0,0,1,1> E0 ## E0 ## E1 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 0,0,1,2> E0 ## E0 ## E1 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 0,0,2,0> E0 ## E0 ## E2 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 0,0,2,1> E0 ## E0 ## E2 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 0,0,2,2> E0 ## E0 ## E2 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 0,1,0,0> E0 ## E1 ## E0 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 0,1,0,1> E0 ## E1 ## E0 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 0,1,0,2> E0 ## E1 ## E0 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 0,1,1,0> E0 ## E1 ## E1 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 0,1,1,1> E0 ## E1 ## E1 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 0,1,1,2> E0 ## E1 ## E1 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 0,1,2,0> E0 ## E1 ## E2 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 0,1,2,1> E0 ## E1 ## E2 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 0,1,2,2> E0 ## E1 ## E2 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 0,2,0,0> E0 ## E2 ## E0 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 0,2,0,1> E0 ## E2 ## E0 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 0,2,0,2> E0 ## E2 ## E0 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 0,2,1,0> E0 ## E2 ## E1 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 0,2,1,1> E0 ## E2 ## E1 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 0,2,1,2> E0 ## E2 ## E1 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 0,2,2,0> E0 ## E2 ## E2 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 0,2,2,1> E0 ## E2 ## E2 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 0,2,2,2> E0 ## E2 ## E2 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 1,0,0,0> E1 ## E0 ## E0 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 1,0,0,1> E1 ## E0 ## E0 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 1,0,0,2> E1 ## E0 ## E0 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 1,0,1,0> E1 ## E0 ## E1 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 1,0,1,1> E1 ## E0 ## E1 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 1,0,1,2> E1 ## E0 ## E1 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 1,0,2,0> E1 ## E0 ## E2 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 1,0,2,1> E1 ## E0 ## E2 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 1,0,2,2> E1 ## E0 ## E2 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 1,1,0,0> E1 ## E1 ## E0 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 1,1,0,1> E1 ## E1 ## E0 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 1,1,0,2> E1 ## E1 ## E0 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 1,1,1,0> E1 ## E1 ## E1 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 1,1,1,1> E1 ## E1 ## E1 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 1,1,1,2> E1 ## E1 ## E1 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 1,1,2,0> E1 ## E1 ## E2 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 1,1,2,1> E1 ## E1 ## E2 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 1,1,2,2> E1 ## E1 ## E2 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 1,2,0,0> E1 ## E2 ## E0 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 1,2,0,1> E1 ## E2 ## E0 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 1,2,0,2> E1 ## E2 ## E0 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 1,2,1,0> E1 ## E2 ## E1 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 1,2,1,1> E1 ## E2 ## E1 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 1,2,1,2> E1 ## E2 ## E1 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 1,2,2,0> E1 ## E2 ## E2 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 1,2,2,1> E1 ## E2 ## E2 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 1,2,2,2> E1 ## E2 ## E2 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 2,0,0,0> E2 ## E0 ## E0 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 2,0,0,1> E2 ## E0 ## E0 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 2,0,0,2> E2 ## E0 ## E0 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 2,0,1,0> E2 ## E0 ## E1 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 2,0,1,1> E2 ## E0 ## E1 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 2,0,1,2> E2 ## E0 ## E1 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 2,0,2,0> E2 ## E0 ## E2 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 2,0,2,1> E2 ## E0 ## E2 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 2,0,2,2> E2 ## E0 ## E2 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 2,1,0,0> E2 ## E1 ## E0 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 2,1,0,1> E2 ## E1 ## E0 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 2,1,0,2> E2 ## E1 ## E0 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 2,1,1,0> E2 ## E1 ## E1 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 2,1,1,1> E2 ## E1 ## E1 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 2,1,1,2> E2 ## E1 ## E1 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 2,1,2,0> E2 ## E1 ## E2 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 2,1,2,1> E2 ## E1 ## E2 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 2,1,2,2> E2 ## E1 ## E2 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 2,2,0,0> E2 ## E2 ## E0 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 2,2,0,1> E2 ## E2 ## E0 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 2,2,0,2> E2 ## E2 ## E0 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 2,2,1,0> E2 ## E2 ## E1 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 2,2,1,1> E2 ## E2 ## E1 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 2,2,1,2> E2 ## E2 ## E1 ## E2; }; \ + struct { detail::_swizzle<4,T, Q, 2,2,2,0> E2 ## E2 ## E2 ## E0; }; \ + struct { detail::_swizzle<4,T, Q, 2,2,2,1> E2 ## E2 ## E2 ## E1; }; \ + struct { detail::_swizzle<4,T, Q, 2,2,2,2> E2 ## E2 ## E2 ## E2; }; + +#define GLM_SWIZZLE4_2_MEMBERS(T, Q, E0,E1,E2,E3) \ + struct { detail::_swizzle<2,T, Q, 0,0,-1,-2> E0 ## E0; }; \ + struct { detail::_swizzle<2,T, Q, 0,1,-1,-2> E0 ## E1; }; \ + struct { detail::_swizzle<2,T, Q, 0,2,-1,-2> E0 ## E2; }; \ + struct { detail::_swizzle<2,T, Q, 0,3,-1,-2> E0 ## E3; }; \ + struct { detail::_swizzle<2,T, Q, 1,0,-1,-2> E1 ## E0; }; \ + struct { detail::_swizzle<2,T, Q, 1,1,-1,-2> E1 ## E1; }; \ + struct { detail::_swizzle<2,T, Q, 1,2,-1,-2> E1 ## E2; }; \ + struct { detail::_swizzle<2,T, Q, 1,3,-1,-2> E1 ## E3; }; \ + struct { detail::_swizzle<2,T, Q, 2,0,-1,-2> E2 ## E0; }; \ + struct { detail::_swizzle<2,T, Q, 2,1,-1,-2> E2 ## E1; }; \ + struct { detail::_swizzle<2,T, Q, 2,2,-1,-2> E2 ## E2; }; \ + struct { detail::_swizzle<2,T, Q, 2,3,-1,-2> E2 ## E3; }; \ + struct { detail::_swizzle<2,T, Q, 3,0,-1,-2> E3 ## E0; }; \ + struct { detail::_swizzle<2,T, Q, 3,1,-1,-2> E3 ## E1; }; \ + struct { detail::_swizzle<2,T, Q, 3,2,-1,-2> E3 ## E2; }; \ + struct { detail::_swizzle<2,T, Q, 3,3,-1,-2> E3 ## E3; }; + +#define GLM_SWIZZLE4_3_MEMBERS(T, Q, E0,E1,E2,E3) \ + struct { detail::_swizzle<3, T, Q, 0,0,0,-1> E0 ## E0 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 0,0,1,-1> E0 ## E0 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 0,0,2,-1> E0 ## E0 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 0,0,3,-1> E0 ## E0 ## E3; }; \ + struct { detail::_swizzle<3, T, Q, 0,1,0,-1> E0 ## E1 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 0,1,1,-1> E0 ## E1 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 0,1,2,-1> E0 ## E1 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 0,1,3,-1> E0 ## E1 ## E3; }; \ + struct { detail::_swizzle<3, T, Q, 0,2,0,-1> E0 ## E2 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 0,2,1,-1> E0 ## E2 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 0,2,2,-1> E0 ## E2 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 0,2,3,-1> E0 ## E2 ## E3; }; \ + struct { detail::_swizzle<3, T, Q, 0,3,0,-1> E0 ## E3 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 0,3,1,-1> E0 ## E3 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 0,3,2,-1> E0 ## E3 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 0,3,3,-1> E0 ## E3 ## E3; }; \ + struct { detail::_swizzle<3, T, Q, 1,0,0,-1> E1 ## E0 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 1,0,1,-1> E1 ## E0 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 1,0,2,-1> E1 ## E0 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 1,0,3,-1> E1 ## E0 ## E3; }; \ + struct { detail::_swizzle<3, T, Q, 1,1,0,-1> E1 ## E1 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 1,1,1,-1> E1 ## E1 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 1,1,2,-1> E1 ## E1 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 1,1,3,-1> E1 ## E1 ## E3; }; \ + struct { detail::_swizzle<3, T, Q, 1,2,0,-1> E1 ## E2 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 1,2,1,-1> E1 ## E2 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 1,2,2,-1> E1 ## E2 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 1,2,3,-1> E1 ## E2 ## E3; }; \ + struct { detail::_swizzle<3, T, Q, 1,3,0,-1> E1 ## E3 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 1,3,1,-1> E1 ## E3 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 1,3,2,-1> E1 ## E3 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 1,3,3,-1> E1 ## E3 ## E3; }; \ + struct { detail::_swizzle<3, T, Q, 2,0,0,-1> E2 ## E0 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 2,0,1,-1> E2 ## E0 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 2,0,2,-1> E2 ## E0 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 2,0,3,-1> E2 ## E0 ## E3; }; \ + struct { detail::_swizzle<3, T, Q, 2,1,0,-1> E2 ## E1 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 2,1,1,-1> E2 ## E1 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 2,1,2,-1> E2 ## E1 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 2,1,3,-1> E2 ## E1 ## E3; }; \ + struct { detail::_swizzle<3, T, Q, 2,2,0,-1> E2 ## E2 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 2,2,1,-1> E2 ## E2 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 2,2,2,-1> E2 ## E2 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 2,2,3,-1> E2 ## E2 ## E3; }; \ + struct { detail::_swizzle<3, T, Q, 2,3,0,-1> E2 ## E3 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 2,3,1,-1> E2 ## E3 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 2,3,2,-1> E2 ## E3 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 2,3,3,-1> E2 ## E3 ## E3; }; \ + struct { detail::_swizzle<3, T, Q, 3,0,0,-1> E3 ## E0 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 3,0,1,-1> E3 ## E0 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 3,0,2,-1> E3 ## E0 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 3,0,3,-1> E3 ## E0 ## E3; }; \ + struct { detail::_swizzle<3, T, Q, 3,1,0,-1> E3 ## E1 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 3,1,1,-1> E3 ## E1 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 3,1,2,-1> E3 ## E1 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 3,1,3,-1> E3 ## E1 ## E3; }; \ + struct { detail::_swizzle<3, T, Q, 3,2,0,-1> E3 ## E2 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 3,2,1,-1> E3 ## E2 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 3,2,2,-1> E3 ## E2 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 3,2,3,-1> E3 ## E2 ## E3; }; \ + struct { detail::_swizzle<3, T, Q, 3,3,0,-1> E3 ## E3 ## E0; }; \ + struct { detail::_swizzle<3, T, Q, 3,3,1,-1> E3 ## E3 ## E1; }; \ + struct { detail::_swizzle<3, T, Q, 3,3,2,-1> E3 ## E3 ## E2; }; \ + struct { detail::_swizzle<3, T, Q, 3,3,3,-1> E3 ## E3 ## E3; }; + +#define GLM_SWIZZLE4_4_MEMBERS(T, Q, E0,E1,E2,E3) \ + struct { detail::_swizzle<4, T, Q, 0,0,0,0> E0 ## E0 ## E0 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 0,0,0,1> E0 ## E0 ## E0 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 0,0,0,2> E0 ## E0 ## E0 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 0,0,0,3> E0 ## E0 ## E0 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 0,0,1,0> E0 ## E0 ## E1 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 0,0,1,1> E0 ## E0 ## E1 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 0,0,1,2> E0 ## E0 ## E1 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 0,0,1,3> E0 ## E0 ## E1 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 0,0,2,0> E0 ## E0 ## E2 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 0,0,2,1> E0 ## E0 ## E2 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 0,0,2,2> E0 ## E0 ## E2 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 0,0,2,3> E0 ## E0 ## E2 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 0,0,3,0> E0 ## E0 ## E3 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 0,0,3,1> E0 ## E0 ## E3 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 0,0,3,2> E0 ## E0 ## E3 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 0,0,3,3> E0 ## E0 ## E3 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 0,1,0,0> E0 ## E1 ## E0 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 0,1,0,1> E0 ## E1 ## E0 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 0,1,0,2> E0 ## E1 ## E0 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 0,1,0,3> E0 ## E1 ## E0 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 0,1,1,0> E0 ## E1 ## E1 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 0,1,1,1> E0 ## E1 ## E1 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 0,1,1,2> E0 ## E1 ## E1 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 0,1,1,3> E0 ## E1 ## E1 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 0,1,2,0> E0 ## E1 ## E2 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 0,1,2,1> E0 ## E1 ## E2 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 0,1,2,2> E0 ## E1 ## E2 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 0,1,2,3> E0 ## E1 ## E2 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 0,1,3,0> E0 ## E1 ## E3 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 0,1,3,1> E0 ## E1 ## E3 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 0,1,3,2> E0 ## E1 ## E3 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 0,1,3,3> E0 ## E1 ## E3 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 0,2,0,0> E0 ## E2 ## E0 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 0,2,0,1> E0 ## E2 ## E0 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 0,2,0,2> E0 ## E2 ## E0 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 0,2,0,3> E0 ## E2 ## E0 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 0,2,1,0> E0 ## E2 ## E1 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 0,2,1,1> E0 ## E2 ## E1 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 0,2,1,2> E0 ## E2 ## E1 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 0,2,1,3> E0 ## E2 ## E1 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 0,2,2,0> E0 ## E2 ## E2 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 0,2,2,1> E0 ## E2 ## E2 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 0,2,2,2> E0 ## E2 ## E2 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 0,2,2,3> E0 ## E2 ## E2 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 0,2,3,0> E0 ## E2 ## E3 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 0,2,3,1> E0 ## E2 ## E3 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 0,2,3,2> E0 ## E2 ## E3 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 0,2,3,3> E0 ## E2 ## E3 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 0,3,0,0> E0 ## E3 ## E0 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 0,3,0,1> E0 ## E3 ## E0 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 0,3,0,2> E0 ## E3 ## E0 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 0,3,0,3> E0 ## E3 ## E0 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 0,3,1,0> E0 ## E3 ## E1 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 0,3,1,1> E0 ## E3 ## E1 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 0,3,1,2> E0 ## E3 ## E1 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 0,3,1,3> E0 ## E3 ## E1 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 0,3,2,0> E0 ## E3 ## E2 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 0,3,2,1> E0 ## E3 ## E2 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 0,3,2,2> E0 ## E3 ## E2 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 0,3,2,3> E0 ## E3 ## E2 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 0,3,3,0> E0 ## E3 ## E3 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 0,3,3,1> E0 ## E3 ## E3 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 0,3,3,2> E0 ## E3 ## E3 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 0,3,3,3> E0 ## E3 ## E3 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 1,0,0,0> E1 ## E0 ## E0 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 1,0,0,1> E1 ## E0 ## E0 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 1,0,0,2> E1 ## E0 ## E0 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 1,0,0,3> E1 ## E0 ## E0 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 1,0,1,0> E1 ## E0 ## E1 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 1,0,1,1> E1 ## E0 ## E1 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 1,0,1,2> E1 ## E0 ## E1 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 1,0,1,3> E1 ## E0 ## E1 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 1,0,2,0> E1 ## E0 ## E2 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 1,0,2,1> E1 ## E0 ## E2 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 1,0,2,2> E1 ## E0 ## E2 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 1,0,2,3> E1 ## E0 ## E2 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 1,0,3,0> E1 ## E0 ## E3 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 1,0,3,1> E1 ## E0 ## E3 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 1,0,3,2> E1 ## E0 ## E3 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 1,0,3,3> E1 ## E0 ## E3 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 1,1,0,0> E1 ## E1 ## E0 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 1,1,0,1> E1 ## E1 ## E0 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 1,1,0,2> E1 ## E1 ## E0 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 1,1,0,3> E1 ## E1 ## E0 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 1,1,1,0> E1 ## E1 ## E1 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 1,1,1,1> E1 ## E1 ## E1 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 1,1,1,2> E1 ## E1 ## E1 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 1,1,1,3> E1 ## E1 ## E1 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 1,1,2,0> E1 ## E1 ## E2 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 1,1,2,1> E1 ## E1 ## E2 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 1,1,2,2> E1 ## E1 ## E2 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 1,1,2,3> E1 ## E1 ## E2 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 1,1,3,0> E1 ## E1 ## E3 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 1,1,3,1> E1 ## E1 ## E3 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 1,1,3,2> E1 ## E1 ## E3 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 1,1,3,3> E1 ## E1 ## E3 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 1,2,0,0> E1 ## E2 ## E0 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 1,2,0,1> E1 ## E2 ## E0 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 1,2,0,2> E1 ## E2 ## E0 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 1,2,0,3> E1 ## E2 ## E0 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 1,2,1,0> E1 ## E2 ## E1 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 1,2,1,1> E1 ## E2 ## E1 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 1,2,1,2> E1 ## E2 ## E1 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 1,2,1,3> E1 ## E2 ## E1 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 1,2,2,0> E1 ## E2 ## E2 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 1,2,2,1> E1 ## E2 ## E2 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 1,2,2,2> E1 ## E2 ## E2 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 1,2,2,3> E1 ## E2 ## E2 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 1,2,3,0> E1 ## E2 ## E3 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 1,2,3,1> E1 ## E2 ## E3 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 1,2,3,2> E1 ## E2 ## E3 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 1,2,3,3> E1 ## E2 ## E3 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 1,3,0,0> E1 ## E3 ## E0 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 1,3,0,1> E1 ## E3 ## E0 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 1,3,0,2> E1 ## E3 ## E0 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 1,3,0,3> E1 ## E3 ## E0 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 1,3,1,0> E1 ## E3 ## E1 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 1,3,1,1> E1 ## E3 ## E1 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 1,3,1,2> E1 ## E3 ## E1 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 1,3,1,3> E1 ## E3 ## E1 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 1,3,2,0> E1 ## E3 ## E2 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 1,3,2,1> E1 ## E3 ## E2 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 1,3,2,2> E1 ## E3 ## E2 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 1,3,2,3> E1 ## E3 ## E2 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 1,3,3,0> E1 ## E3 ## E3 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 1,3,3,1> E1 ## E3 ## E3 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 1,3,3,2> E1 ## E3 ## E3 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 1,3,3,3> E1 ## E3 ## E3 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 2,0,0,0> E2 ## E0 ## E0 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 2,0,0,1> E2 ## E0 ## E0 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 2,0,0,2> E2 ## E0 ## E0 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 2,0,0,3> E2 ## E0 ## E0 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 2,0,1,0> E2 ## E0 ## E1 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 2,0,1,1> E2 ## E0 ## E1 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 2,0,1,2> E2 ## E0 ## E1 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 2,0,1,3> E2 ## E0 ## E1 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 2,0,2,0> E2 ## E0 ## E2 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 2,0,2,1> E2 ## E0 ## E2 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 2,0,2,2> E2 ## E0 ## E2 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 2,0,2,3> E2 ## E0 ## E2 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 2,0,3,0> E2 ## E0 ## E3 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 2,0,3,1> E2 ## E0 ## E3 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 2,0,3,2> E2 ## E0 ## E3 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 2,0,3,3> E2 ## E0 ## E3 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 2,1,0,0> E2 ## E1 ## E0 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 2,1,0,1> E2 ## E1 ## E0 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 2,1,0,2> E2 ## E1 ## E0 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 2,1,0,3> E2 ## E1 ## E0 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 2,1,1,0> E2 ## E1 ## E1 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 2,1,1,1> E2 ## E1 ## E1 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 2,1,1,2> E2 ## E1 ## E1 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 2,1,1,3> E2 ## E1 ## E1 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 2,1,2,0> E2 ## E1 ## E2 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 2,1,2,1> E2 ## E1 ## E2 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 2,1,2,2> E2 ## E1 ## E2 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 2,1,2,3> E2 ## E1 ## E2 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 2,1,3,0> E2 ## E1 ## E3 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 2,1,3,1> E2 ## E1 ## E3 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 2,1,3,2> E2 ## E1 ## E3 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 2,1,3,3> E2 ## E1 ## E3 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 2,2,0,0> E2 ## E2 ## E0 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 2,2,0,1> E2 ## E2 ## E0 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 2,2,0,2> E2 ## E2 ## E0 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 2,2,0,3> E2 ## E2 ## E0 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 2,2,1,0> E2 ## E2 ## E1 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 2,2,1,1> E2 ## E2 ## E1 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 2,2,1,2> E2 ## E2 ## E1 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 2,2,1,3> E2 ## E2 ## E1 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 2,2,2,0> E2 ## E2 ## E2 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 2,2,2,1> E2 ## E2 ## E2 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 2,2,2,2> E2 ## E2 ## E2 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 2,2,2,3> E2 ## E2 ## E2 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 2,2,3,0> E2 ## E2 ## E3 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 2,2,3,1> E2 ## E2 ## E3 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 2,2,3,2> E2 ## E2 ## E3 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 2,2,3,3> E2 ## E2 ## E3 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 2,3,0,0> E2 ## E3 ## E0 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 2,3,0,1> E2 ## E3 ## E0 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 2,3,0,2> E2 ## E3 ## E0 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 2,3,0,3> E2 ## E3 ## E0 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 2,3,1,0> E2 ## E3 ## E1 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 2,3,1,1> E2 ## E3 ## E1 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 2,3,1,2> E2 ## E3 ## E1 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 2,3,1,3> E2 ## E3 ## E1 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 2,3,2,0> E2 ## E3 ## E2 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 2,3,2,1> E2 ## E3 ## E2 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 2,3,2,2> E2 ## E3 ## E2 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 2,3,2,3> E2 ## E3 ## E2 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 2,3,3,0> E2 ## E3 ## E3 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 2,3,3,1> E2 ## E3 ## E3 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 2,3,3,2> E2 ## E3 ## E3 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 2,3,3,3> E2 ## E3 ## E3 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 3,0,0,0> E3 ## E0 ## E0 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 3,0,0,1> E3 ## E0 ## E0 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 3,0,0,2> E3 ## E0 ## E0 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 3,0,0,3> E3 ## E0 ## E0 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 3,0,1,0> E3 ## E0 ## E1 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 3,0,1,1> E3 ## E0 ## E1 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 3,0,1,2> E3 ## E0 ## E1 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 3,0,1,3> E3 ## E0 ## E1 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 3,0,2,0> E3 ## E0 ## E2 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 3,0,2,1> E3 ## E0 ## E2 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 3,0,2,2> E3 ## E0 ## E2 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 3,0,2,3> E3 ## E0 ## E2 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 3,0,3,0> E3 ## E0 ## E3 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 3,0,3,1> E3 ## E0 ## E3 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 3,0,3,2> E3 ## E0 ## E3 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 3,0,3,3> E3 ## E0 ## E3 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 3,1,0,0> E3 ## E1 ## E0 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 3,1,0,1> E3 ## E1 ## E0 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 3,1,0,2> E3 ## E1 ## E0 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 3,1,0,3> E3 ## E1 ## E0 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 3,1,1,0> E3 ## E1 ## E1 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 3,1,1,1> E3 ## E1 ## E1 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 3,1,1,2> E3 ## E1 ## E1 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 3,1,1,3> E3 ## E1 ## E1 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 3,1,2,0> E3 ## E1 ## E2 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 3,1,2,1> E3 ## E1 ## E2 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 3,1,2,2> E3 ## E1 ## E2 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 3,1,2,3> E3 ## E1 ## E2 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 3,1,3,0> E3 ## E1 ## E3 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 3,1,3,1> E3 ## E1 ## E3 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 3,1,3,2> E3 ## E1 ## E3 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 3,1,3,3> E3 ## E1 ## E3 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 3,2,0,0> E3 ## E2 ## E0 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 3,2,0,1> E3 ## E2 ## E0 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 3,2,0,2> E3 ## E2 ## E0 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 3,2,0,3> E3 ## E2 ## E0 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 3,2,1,0> E3 ## E2 ## E1 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 3,2,1,1> E3 ## E2 ## E1 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 3,2,1,2> E3 ## E2 ## E1 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 3,2,1,3> E3 ## E2 ## E1 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 3,2,2,0> E3 ## E2 ## E2 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 3,2,2,1> E3 ## E2 ## E2 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 3,2,2,2> E3 ## E2 ## E2 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 3,2,2,3> E3 ## E2 ## E2 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 3,2,3,0> E3 ## E2 ## E3 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 3,2,3,1> E3 ## E2 ## E3 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 3,2,3,2> E3 ## E2 ## E3 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 3,2,3,3> E3 ## E2 ## E3 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 3,3,0,0> E3 ## E3 ## E0 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 3,3,0,1> E3 ## E3 ## E0 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 3,3,0,2> E3 ## E3 ## E0 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 3,3,0,3> E3 ## E3 ## E0 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 3,3,1,0> E3 ## E3 ## E1 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 3,3,1,1> E3 ## E3 ## E1 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 3,3,1,2> E3 ## E3 ## E1 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 3,3,1,3> E3 ## E3 ## E1 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 3,3,2,0> E3 ## E3 ## E2 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 3,3,2,1> E3 ## E3 ## E2 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 3,3,2,2> E3 ## E3 ## E2 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 3,3,2,3> E3 ## E3 ## E2 ## E3; }; \ + struct { detail::_swizzle<4, T, Q, 3,3,3,0> E3 ## E3 ## E3 ## E0; }; \ + struct { detail::_swizzle<4, T, Q, 3,3,3,1> E3 ## E3 ## E3 ## E1; }; \ + struct { detail::_swizzle<4, T, Q, 3,3,3,2> E3 ## E3 ## E3 ## E2; }; \ + struct { detail::_swizzle<4, T, Q, 3,3,3,3> E3 ## E3 ## E3 ## E3; }; diff --git a/thirdparty/glm/glm/detail/_swizzle_func.hpp b/thirdparty/glm/glm/detail/_swizzle_func.hpp new file mode 100644 index 000000000000..a264ae9eff3a --- /dev/null +++ b/thirdparty/glm/glm/detail/_swizzle_func.hpp @@ -0,0 +1,682 @@ +#pragma once + +#define GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, CONST, A, B) \ + GLM_FUNC_QUALIFIER vec<2, T, Q> A ## B() CONST \ + { \ + return vec<2, T, Q>(this->A, this->B); \ + } + +#define GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, CONST, A, B, C) \ + GLM_FUNC_QUALIFIER vec<3, T, Q> A ## B ## C() CONST \ + { \ + return vec<3, T, Q>(this->A, this->B, this->C); \ + } + +#define GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, CONST, A, B, C, D) \ + GLM_FUNC_QUALIFIER vec<4, T, Q> A ## B ## C ## D() CONST \ + { \ + return vec<4, T, Q>(this->A, this->B, this->C, this->D); \ + } + +#define GLM_SWIZZLE_GEN_VEC2_ENTRY_DEF(T, P, L, CONST, A, B) \ + template \ + GLM_FUNC_QUALIFIER vec vec::A ## B() CONST \ + { \ + return vec<2, T, Q>(this->A, this->B); \ + } + +#define GLM_SWIZZLE_GEN_VEC3_ENTRY_DEF(T, P, L, CONST, A, B, C) \ + template \ + GLM_FUNC_QUALIFIER vec<3, T, Q> vec::A ## B ## C() CONST \ + { \ + return vec<3, T, Q>(this->A, this->B, this->C); \ + } + +#define GLM_SWIZZLE_GEN_VEC4_ENTRY_DEF(T, P, L, CONST, A, B, C, D) \ + template \ + GLM_FUNC_QUALIFIER vec<4, T, Q> vec::A ## B ## C ## D() CONST \ + { \ + return vec<4, T, Q>(this->A, this->B, this->C, this->D); \ + } + +#define GLM_MUTABLE + +#define GLM_SWIZZLE_GEN_REF2_FROM_VEC2_SWIZZLE(T, P, A, B) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, 2, GLM_MUTABLE, A, B) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, 2, GLM_MUTABLE, B, A) + +#define GLM_SWIZZLE_GEN_REF_FROM_VEC2(T, P) \ + GLM_SWIZZLE_GEN_REF2_FROM_VEC2_SWIZZLE(T, P, x, y) \ + GLM_SWIZZLE_GEN_REF2_FROM_VEC2_SWIZZLE(T, P, r, g) \ + GLM_SWIZZLE_GEN_REF2_FROM_VEC2_SWIZZLE(T, P, s, t) + +#define GLM_SWIZZLE_GEN_REF2_FROM_VEC3_SWIZZLE(T, P, A, B, C) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, GLM_MUTABLE, A, B) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, GLM_MUTABLE, A, C) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, GLM_MUTABLE, B, A) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, GLM_MUTABLE, B, C) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, GLM_MUTABLE, C, A) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, GLM_MUTABLE, C, B) + +#define GLM_SWIZZLE_GEN_REF3_FROM_VEC3_SWIZZLE(T, P, A, B, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, GLM_MUTABLE, A, B, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, GLM_MUTABLE, A, C, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, GLM_MUTABLE, B, A, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, GLM_MUTABLE, B, C, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, GLM_MUTABLE, C, A, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, GLM_MUTABLE, C, B, A) + +#define GLM_SWIZZLE_GEN_REF_FROM_VEC3_COMP(T, P, A, B, C) \ + GLM_SWIZZLE_GEN_REF3_FROM_VEC3_SWIZZLE(T, P, A, B, C) \ + GLM_SWIZZLE_GEN_REF2_FROM_VEC3_SWIZZLE(T, P, A, B, C) + +#define GLM_SWIZZLE_GEN_REF_FROM_VEC3(T, P) \ + GLM_SWIZZLE_GEN_REF_FROM_VEC3_COMP(T, P, x, y, z) \ + GLM_SWIZZLE_GEN_REF_FROM_VEC3_COMP(T, P, r, g, b) \ + GLM_SWIZZLE_GEN_REF_FROM_VEC3_COMP(T, P, s, t, p) + +#define GLM_SWIZZLE_GEN_REF2_FROM_VEC4_SWIZZLE(T, P, A, B, C, D) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, GLM_MUTABLE, A, B) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, GLM_MUTABLE, A, C) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, GLM_MUTABLE, A, D) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, GLM_MUTABLE, B, A) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, GLM_MUTABLE, B, C) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, GLM_MUTABLE, B, D) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, GLM_MUTABLE, C, A) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, GLM_MUTABLE, C, B) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, GLM_MUTABLE, C, D) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, GLM_MUTABLE, D, A) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, GLM_MUTABLE, D, B) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, GLM_MUTABLE, D, C) + +#define GLM_SWIZZLE_GEN_REF3_FROM_VEC4_SWIZZLE(T, P, A, B, C, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , A, B, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , A, B, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , A, C, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , A, C, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , A, D, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , A, D, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , B, A, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , B, A, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , B, C, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , B, C, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , B, D, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , B, D, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , C, A, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , C, A, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , C, B, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , C, B, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , C, D, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , C, D, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , D, A, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , D, A, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , D, B, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , D, B, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , D, C, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, , D, C, B) + +#define GLM_SWIZZLE_GEN_REF4_FROM_VEC4_SWIZZLE(T, P, A, B, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , A, C, B, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , A, C, D, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , A, D, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , A, D, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , A, B, D, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , A, B, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , B, C, A, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , B, C, D, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , B, D, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , B, D, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , B, A, D, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , B, A, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , C, B, A, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , C, B, D, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , C, D, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , C, D, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , C, A, D, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , C, A, B, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , D, C, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , D, C, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , D, A, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , D, A, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , D, B, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, , D, B, C, A) + +#define GLM_SWIZZLE_GEN_REF_FROM_VEC4_COMP(T, P, A, B, C, D) \ + GLM_SWIZZLE_GEN_REF2_FROM_VEC4_SWIZZLE(T, P, A, B, C, D) \ + GLM_SWIZZLE_GEN_REF3_FROM_VEC4_SWIZZLE(T, P, A, B, C, D) \ + GLM_SWIZZLE_GEN_REF4_FROM_VEC4_SWIZZLE(T, P, A, B, C, D) + +#define GLM_SWIZZLE_GEN_REF_FROM_VEC4(T, P) \ + GLM_SWIZZLE_GEN_REF_FROM_VEC4_COMP(T, P, x, y, z, w) \ + GLM_SWIZZLE_GEN_REF_FROM_VEC4_COMP(T, P, r, g, b, a) \ + GLM_SWIZZLE_GEN_REF_FROM_VEC4_COMP(T, P, s, t, p, q) + +#define GLM_SWIZZLE_GEN_VEC2_FROM_VEC2_SWIZZLE(T, P, A, B) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, A, A) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, A, B) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, B, A) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, B, B) + +#define GLM_SWIZZLE_GEN_VEC3_FROM_VEC2_SWIZZLE(T, P, A, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, A, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, A, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, B, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, B, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, A, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, A, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, B, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, B, B) + +#define GLM_SWIZZLE_GEN_VEC4_FROM_VEC2_SWIZZLE(T, P, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, B, B) + +#define GLM_SWIZZLE_GEN_VEC_FROM_VEC2_COMP(T, P, A, B) \ + GLM_SWIZZLE_GEN_VEC2_FROM_VEC2_SWIZZLE(T, P, A, B) \ + GLM_SWIZZLE_GEN_VEC3_FROM_VEC2_SWIZZLE(T, P, A, B) \ + GLM_SWIZZLE_GEN_VEC4_FROM_VEC2_SWIZZLE(T, P, A, B) + +#define GLM_SWIZZLE_GEN_VEC_FROM_VEC2(T, P) \ + GLM_SWIZZLE_GEN_VEC_FROM_VEC2_COMP(T, P, x, y) \ + GLM_SWIZZLE_GEN_VEC_FROM_VEC2_COMP(T, P, r, g) \ + GLM_SWIZZLE_GEN_VEC_FROM_VEC2_COMP(T, P, s, t) + +#define GLM_SWIZZLE_GEN_VEC2_FROM_VEC3_SWIZZLE(T, P, A, B, C) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, A, A) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, A, B) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, A, C) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, B, A) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, B, B) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, B, C) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, C, A) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, C, B) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, C, C) + +#define GLM_SWIZZLE_GEN_VEC3_FROM_VEC3_SWIZZLE(T, P, A, B, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, A, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, A, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, A, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, B, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, B, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, B, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, C, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, C, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, C, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, A, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, A, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, A, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, B, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, B, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, B, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, C, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, C, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, C, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, A, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, A, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, A, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, B, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, B, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, B, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, C, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, C, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, C, C) + +#define GLM_SWIZZLE_GEN_VEC4_FROM_VEC3_SWIZZLE(T, P, A, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, C, C) + +#define GLM_SWIZZLE_GEN_VEC_FROM_VEC3_COMP(T, P, A, B, C) \ + GLM_SWIZZLE_GEN_VEC2_FROM_VEC3_SWIZZLE(T, P, A, B, C) \ + GLM_SWIZZLE_GEN_VEC3_FROM_VEC3_SWIZZLE(T, P, A, B, C) \ + GLM_SWIZZLE_GEN_VEC4_FROM_VEC3_SWIZZLE(T, P, A, B, C) + +#define GLM_SWIZZLE_GEN_VEC_FROM_VEC3(T, P) \ + GLM_SWIZZLE_GEN_VEC_FROM_VEC3_COMP(T, P, x, y, z) \ + GLM_SWIZZLE_GEN_VEC_FROM_VEC3_COMP(T, P, r, g, b) \ + GLM_SWIZZLE_GEN_VEC_FROM_VEC3_COMP(T, P, s, t, p) + +#define GLM_SWIZZLE_GEN_VEC2_FROM_VEC4_SWIZZLE(T, P, A, B, C, D) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, A, A) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, A, B) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, A, C) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, A, D) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, B, A) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, B, B) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, B, C) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, B, D) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, C, A) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, C, B) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, C, C) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, C, D) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, D, A) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, D, B) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, D, C) \ + GLM_SWIZZLE_GEN_VEC2_ENTRY(T, P, const, D, D) + +#define GLM_SWIZZLE_GEN_VEC3_FROM_VEC4_SWIZZLE(T, P, A, B, C, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, A, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, A, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, A, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, A, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, B, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, B, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, B, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, B, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, C, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, C, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, C, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, C, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, D, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, D, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, D, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, A, D, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, A, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, A, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, A, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, A, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, B, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, B, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, B, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, B, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, C, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, C, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, C, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, C, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, D, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, D, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, D, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, B, D, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, A, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, A, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, A, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, A, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, B, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, B, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, B, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, B, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, C, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, C, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, C, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, C, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, D, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, D, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, D, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, C, D, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, D, A, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, D, A, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, D, A, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, D, A, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, D, B, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, D, B, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, D, B, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, D, B, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, D, C, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, D, C, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, D, C, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, D, C, D) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, D, D, A) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, D, D, B) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, D, D, C) \ + GLM_SWIZZLE_GEN_VEC3_ENTRY(T, P, const, D, D, D) + +#define GLM_SWIZZLE_GEN_VEC4_FROM_VEC4_SWIZZLE(T, P, A, B, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, A, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, B, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, D, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, D, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, D, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, A, D, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, A, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, B, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, D, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, D, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, D, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, B, D, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, A, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, B, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, D, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, D, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, D, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, C, D, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, D, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, D, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, D, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, D, A, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, D, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, D, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, D, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, D, B, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, D, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, D, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, D, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, D, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, D, D, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, D, D, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, D, D, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, A, D, D, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, A, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, B, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, D, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, D, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, D, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, A, D, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, A, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, B, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, D, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, D, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, D, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, B, D, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, A, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, B, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, D, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, D, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, D, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, C, D, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, D, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, D, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, D, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, D, A, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, D, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, D, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, D, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, D, B, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, D, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, D, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, D, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, D, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, D, D, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, D, D, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, D, D, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, B, D, D, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, A, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, B, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, D, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, D, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, D, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, A, D, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, A, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, B, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, D, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, D, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, D, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, B, D, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, A, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, B, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, D, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, D, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, D, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, C, D, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, D, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, D, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, D, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, D, A, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, D, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, D, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, D, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, D, B, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, D, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, D, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, D, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, D, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, D, D, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, D, D, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, D, D, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, C, D, D, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, A, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, A, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, A, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, A, A, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, A, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, A, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, A, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, A, B, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, A, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, A, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, A, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, A, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, A, D, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, A, D, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, A, D, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, A, D, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, B, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, B, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, B, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, B, A, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, B, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, B, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, B, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, B, B, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, B, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, B, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, B, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, B, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, B, D, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, B, D, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, B, D, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, B, D, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, C, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, C, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, C, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, C, A, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, C, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, C, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, C, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, C, B, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, C, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, C, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, C, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, C, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, C, D, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, C, D, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, C, D, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, C, D, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, D, A, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, D, A, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, D, A, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, D, A, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, D, B, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, D, B, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, D, B, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, D, B, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, D, C, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, D, C, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, D, C, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, D, C, D) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, D, D, A) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, D, D, B) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, D, D, C) \ + GLM_SWIZZLE_GEN_VEC4_ENTRY(T, P, const, D, D, D, D) + +#define GLM_SWIZZLE_GEN_VEC_FROM_VEC4_COMP(T, P, A, B, C, D) \ + GLM_SWIZZLE_GEN_VEC2_FROM_VEC4_SWIZZLE(T, P, A, B, C, D) \ + GLM_SWIZZLE_GEN_VEC3_FROM_VEC4_SWIZZLE(T, P, A, B, C, D) \ + GLM_SWIZZLE_GEN_VEC4_FROM_VEC4_SWIZZLE(T, P, A, B, C, D) + +#define GLM_SWIZZLE_GEN_VEC_FROM_VEC4(T, P) \ + GLM_SWIZZLE_GEN_VEC_FROM_VEC4_COMP(T, P, x, y, z, w) \ + GLM_SWIZZLE_GEN_VEC_FROM_VEC4_COMP(T, P, r, g, b, a) \ + GLM_SWIZZLE_GEN_VEC_FROM_VEC4_COMP(T, P, s, t, p, q) + diff --git a/thirdparty/glm/glm/detail/_vectorize.hpp b/thirdparty/glm/glm/detail/_vectorize.hpp new file mode 100644 index 000000000000..1fcaec315284 --- /dev/null +++ b/thirdparty/glm/glm/detail/_vectorize.hpp @@ -0,0 +1,162 @@ +#pragma once + +namespace glm{ +namespace detail +{ + template class vec, length_t L, typename R, typename T, qualifier Q> + struct functor1{}; + + template class vec, typename R, typename T, qualifier Q> + struct functor1 + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec<1, R, Q> call(R (*Func) (T x), vec<1, T, Q> const& v) + { + return vec<1, R, Q>(Func(v.x)); + } + }; + + template class vec, typename R, typename T, qualifier Q> + struct functor1 + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec<2, R, Q> call(R (*Func) (T x), vec<2, T, Q> const& v) + { + return vec<2, R, Q>(Func(v.x), Func(v.y)); + } + }; + + template class vec, typename R, typename T, qualifier Q> + struct functor1 + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec<3, R, Q> call(R (*Func) (T x), vec<3, T, Q> const& v) + { + return vec<3, R, Q>(Func(v.x), Func(v.y), Func(v.z)); + } + }; + + template class vec, typename R, typename T, qualifier Q> + struct functor1 + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec<4, R, Q> call(R (*Func) (T x), vec<4, T, Q> const& v) + { + return vec<4, R, Q>(Func(v.x), Func(v.y), Func(v.z), Func(v.w)); + } + }; + + template class vec, length_t L, typename T, qualifier Q> + struct functor2{}; + + template class vec, typename T, qualifier Q> + struct functor2 + { + GLM_FUNC_QUALIFIER static vec<1, T, Q> call(T (*Func) (T x, T y), vec<1, T, Q> const& a, vec<1, T, Q> const& b) + { + return vec<1, T, Q>(Func(a.x, b.x)); + } + }; + + template class vec, typename T, qualifier Q> + struct functor2 + { + GLM_FUNC_QUALIFIER static vec<2, T, Q> call(T (*Func) (T x, T y), vec<2, T, Q> const& a, vec<2, T, Q> const& b) + { + return vec<2, T, Q>(Func(a.x, b.x), Func(a.y, b.y)); + } + }; + + template class vec, typename T, qualifier Q> + struct functor2 + { + GLM_FUNC_QUALIFIER static vec<3, T, Q> call(T (*Func) (T x, T y), vec<3, T, Q> const& a, vec<3, T, Q> const& b) + { + return vec<3, T, Q>(Func(a.x, b.x), Func(a.y, b.y), Func(a.z, b.z)); + } + }; + + template class vec, typename T, qualifier Q> + struct functor2 + { + GLM_FUNC_QUALIFIER static vec<4, T, Q> call(T (*Func) (T x, T y), vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + return vec<4, T, Q>(Func(a.x, b.x), Func(a.y, b.y), Func(a.z, b.z), Func(a.w, b.w)); + } + }; + + template class vec, length_t L, typename T, qualifier Q> + struct functor2_vec_sca{}; + + template class vec, typename T, qualifier Q> + struct functor2_vec_sca + { + GLM_FUNC_QUALIFIER static vec<1, T, Q> call(T (*Func) (T x, T y), vec<1, T, Q> const& a, T b) + { + return vec<1, T, Q>(Func(a.x, b)); + } + }; + + template class vec, typename T, qualifier Q> + struct functor2_vec_sca + { + GLM_FUNC_QUALIFIER static vec<2, T, Q> call(T (*Func) (T x, T y), vec<2, T, Q> const& a, T b) + { + return vec<2, T, Q>(Func(a.x, b), Func(a.y, b)); + } + }; + + template class vec, typename T, qualifier Q> + struct functor2_vec_sca + { + GLM_FUNC_QUALIFIER static vec<3, T, Q> call(T (*Func) (T x, T y), vec<3, T, Q> const& a, T b) + { + return vec<3, T, Q>(Func(a.x, b), Func(a.y, b), Func(a.z, b)); + } + }; + + template class vec, typename T, qualifier Q> + struct functor2_vec_sca + { + GLM_FUNC_QUALIFIER static vec<4, T, Q> call(T (*Func) (T x, T y), vec<4, T, Q> const& a, T b) + { + return vec<4, T, Q>(Func(a.x, b), Func(a.y, b), Func(a.z, b), Func(a.w, b)); + } + }; + + template + struct functor2_vec_int {}; + + template + struct functor2_vec_int<1, T, Q> + { + GLM_FUNC_QUALIFIER static vec<1, int, Q> call(int (*Func) (T x, int y), vec<1, T, Q> const& a, vec<1, int, Q> const& b) + { + return vec<1, int, Q>(Func(a.x, b.x)); + } + }; + + template + struct functor2_vec_int<2, T, Q> + { + GLM_FUNC_QUALIFIER static vec<2, int, Q> call(int (*Func) (T x, int y), vec<2, T, Q> const& a, vec<2, int, Q> const& b) + { + return vec<2, int, Q>(Func(a.x, b.x), Func(a.y, b.y)); + } + }; + + template + struct functor2_vec_int<3, T, Q> + { + GLM_FUNC_QUALIFIER static vec<3, int, Q> call(int (*Func) (T x, int y), vec<3, T, Q> const& a, vec<3, int, Q> const& b) + { + return vec<3, int, Q>(Func(a.x, b.x), Func(a.y, b.y), Func(a.z, b.z)); + } + }; + + template + struct functor2_vec_int<4, T, Q> + { + GLM_FUNC_QUALIFIER static vec<4, int, Q> call(int (*Func) (T x, int y), vec<4, T, Q> const& a, vec<4, int, Q> const& b) + { + return vec<4, int, Q>(Func(a.x, b.x), Func(a.y, b.y), Func(a.z, b.z), Func(a.w, b.w)); + } + }; +}//namespace detail +}//namespace glm diff --git a/thirdparty/glm/glm/detail/compute_common.hpp b/thirdparty/glm/glm/detail/compute_common.hpp new file mode 100644 index 000000000000..83362bc7b388 --- /dev/null +++ b/thirdparty/glm/glm/detail/compute_common.hpp @@ -0,0 +1,50 @@ +#pragma once + +#include "setup.hpp" +#include + +namespace glm{ +namespace detail +{ + template + struct compute_abs + {}; + + template + struct compute_abs + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static genFIType call(genFIType x) + { + GLM_STATIC_ASSERT( + std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT || std::numeric_limits::is_signed, + "'abs' only accept floating-point and integer scalar or vector inputs"); + + return x >= genFIType(0) ? x : -x; + // TODO, perf comp with: *(((int *) &x) + 1) &= 0x7fffffff; + } + }; + +#if (GLM_COMPILER & GLM_COMPILER_CUDA) || (GLM_COMPILER & GLM_COMPILER_HIP) + template<> + struct compute_abs + { + GLM_FUNC_QUALIFIER static float call(float x) + { + return fabsf(x); + } + }; +#endif + + template + struct compute_abs + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static genFIType call(genFIType x) + { + GLM_STATIC_ASSERT( + (!std::numeric_limits::is_signed && std::numeric_limits::is_integer), + "'abs' only accept floating-point and integer scalar or vector inputs"); + return x; + } + }; +}//namespace detail +}//namespace glm diff --git a/thirdparty/glm/glm/detail/compute_vector_relational.hpp b/thirdparty/glm/glm/detail/compute_vector_relational.hpp new file mode 100644 index 000000000000..167b6345dd39 --- /dev/null +++ b/thirdparty/glm/glm/detail/compute_vector_relational.hpp @@ -0,0 +1,30 @@ +#pragma once + +//#include "compute_common.hpp" +#include "setup.hpp" +#include + +namespace glm{ +namespace detail +{ + template + struct compute_equal + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static bool call(T a, T b) + { + return a == b; + } + }; +/* + template + struct compute_equal + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static bool call(T a, T b) + { + return detail::compute_abs::is_signed>::call(b - a) <= static_cast(0); + //return std::memcmp(&a, &b, sizeof(T)) == 0; + } + }; +*/ +}//namespace detail +}//namespace glm diff --git a/thirdparty/glm/glm/detail/func_common.inl b/thirdparty/glm/glm/detail/func_common.inl new file mode 100644 index 000000000000..c90ba227ae65 --- /dev/null +++ b/thirdparty/glm/glm/detail/func_common.inl @@ -0,0 +1,792 @@ +/// @ref core +/// @file glm/detail/func_common.inl + +#include "../vector_relational.hpp" +#include "compute_common.hpp" +#include "type_vec1.hpp" +#include "type_vec2.hpp" +#include "type_vec3.hpp" +#include "type_vec4.hpp" +#include "_vectorize.hpp" +#include + +namespace glm +{ + // min + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType min(genType x, genType y) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT || std::numeric_limits::is_integer, "'min' only accept floating-point or integer inputs"); + return (y < x) ? y : x; + } + + // max + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType max(genType x, genType y) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT || std::numeric_limits::is_integer, "'max' only accept floating-point or integer inputs"); + + return (x < y) ? y : x; + } + + // abs + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR int abs(int x) + { + int const y = x >> (sizeof(int) * 8 - 1); + return (x ^ y) - y; + } + + // round +# if GLM_HAS_CXX11_STL + using ::std::round; +# else + template + GLM_FUNC_QUALIFIER genType round(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'round' only accept floating-point inputs"); + + return x < static_cast(0) ? static_cast(int(x - static_cast(0.5))) : static_cast(int(x + static_cast(0.5))); + } +# endif + + // trunc +# if GLM_HAS_CXX11_STL + using ::std::trunc; +# else + template + GLM_FUNC_QUALIFIER genType trunc(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'trunc' only accept floating-point inputs"); + + return x < static_cast(0) ? -std::floor(-x) : std::floor(x); + } +# endif + +}//namespace glm + +namespace glm{ +namespace detail +{ + template + struct compute_abs_vector + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec call(vec const& x) + { + return detail::functor1::call(abs, x); + } + }; + + template + struct compute_mix_vector + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec call(vec const& x, vec const& y, vec const& a) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT || GLM_CONFIG_UNRESTRICTED_GENTYPE, "'mix' only accept floating-point inputs for the interpolator a"); + + return vec(vec(x) * (static_cast(1) - a) + vec(y) * a); + } + }; + + template + struct compute_mix_vector + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec call(vec const& x, vec const& y, vec const& a) + { + vec Result; + for(length_t i = 0; i < x.length(); ++i) + Result[i] = a[i] ? y[i] : x[i]; + return Result; + } + }; + + template + struct compute_mix_scalar + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec call(vec const& x, vec const& y, U const& a) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT || GLM_CONFIG_UNRESTRICTED_GENTYPE, "'mix' only accept floating-point inputs for the interpolator a"); + + return vec(vec(x) * (static_cast(1) - a) + vec(y) * a); + } + }; + + template + struct compute_mix_scalar + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec call(vec const& x, vec const& y, bool const& a) + { + return a ? y : x; + } + }; + + template + struct compute_mix + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static T call(T const& x, T const& y, U const& a) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT || GLM_CONFIG_UNRESTRICTED_GENTYPE, "'mix' only accept floating-point inputs for the interpolator a"); + + return static_cast(static_cast(x) * (static_cast(1) - a) + static_cast(y) * a); + } + }; + + template + struct compute_mix + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static T call(T const& x, T const& y, bool const& a) + { + return a ? y : x; + } + }; + + template + struct compute_sign + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec call(vec const& x) + { + return vec(glm::lessThan(vec(0), x)) - vec(glm::lessThan(x, vec(0))); + } + }; + +# if GLM_ARCH == GLM_ARCH_X86 + template + struct compute_sign + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec call(vec const& x) + { + T const Shift(static_cast(sizeof(T) * 8 - 1)); + vec const y(vec::type, Q>(-x) >> typename detail::make_unsigned::type(Shift)); + + return (x >> Shift) | y; + } + }; +# endif + + template + struct compute_floor + { + GLM_FUNC_QUALIFIER static vec call(vec const& x) + { + return detail::functor1::call(std::floor, x); + } + }; + + template + struct compute_ceil + { + GLM_FUNC_QUALIFIER static vec call(vec const& x) + { + return detail::functor1::call(std::ceil, x); + } + }; + + template + struct compute_fract + { + GLM_FUNC_QUALIFIER static vec call(vec const& x) + { + return x - floor(x); + } + }; + + template + struct compute_trunc + { + GLM_FUNC_QUALIFIER static vec call(vec const& x) + { + return detail::functor1::call(trunc, x); + } + }; + + template + struct compute_round + { + GLM_FUNC_QUALIFIER static vec call(vec const& x) + { + return detail::functor1::call(round, x); + } + }; + + template + struct compute_mod + { + GLM_FUNC_QUALIFIER static vec call(vec const& a, vec const& b) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'mod' only accept floating-point inputs. Include for integer inputs."); + return a - b * floor(a / b); + } + }; + + template + struct compute_min_vector + { + GLM_FUNC_QUALIFIER static vec call(vec const& x, vec const& y) + { + return detail::functor2::call(min, x, y); + } + }; + + template + struct compute_max_vector + { + GLM_FUNC_QUALIFIER static vec call(vec const& x, vec const& y) + { + return detail::functor2::call(max, x, y); + } + }; + + template + struct compute_clamp_vector + { + GLM_FUNC_QUALIFIER static vec call(vec const& x, vec const& minVal, vec const& maxVal) + { + return min(max(x, minVal), maxVal); + } + }; + + template + struct compute_step_vector + { + GLM_FUNC_QUALIFIER static vec call(vec const& edge, vec const& x) + { + return mix(vec(1), vec(0), glm::lessThan(x, edge)); + } + }; + + template + struct compute_smoothstep_vector + { + GLM_FUNC_QUALIFIER static vec call(vec const& edge0, vec const& edge1, vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT || GLM_CONFIG_UNRESTRICTED_GENTYPE, "'smoothstep' only accept floating-point inputs"); + vec const tmp(clamp((x - edge0) / (edge1 - edge0), static_cast(0), static_cast(1))); + return tmp * tmp * (static_cast(3) - static_cast(2) * tmp); + } + }; +}//namespace detail + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genFIType abs(genFIType x) + { + return detail::compute_abs::is_signed>::call(x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec abs(vec const& x) + { + return detail::compute_abs_vector::value>::call(x); + } + + // sign + // fast and works for any type + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genFIType sign(genFIType x) + { + GLM_STATIC_ASSERT( + std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT || (std::numeric_limits::is_signed && std::numeric_limits::is_integer), + "'sign' only accept signed inputs"); + + return detail::compute_sign<1, genFIType, defaultp, + std::numeric_limits::is_iec559, detail::is_aligned::value>::call(vec<1, genFIType>(x)).x; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec sign(vec const& x) + { + GLM_STATIC_ASSERT( + std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT || (std::numeric_limits::is_signed && std::numeric_limits::is_integer), + "'sign' only accept signed inputs"); + + return detail::compute_sign::is_iec559, detail::is_aligned::value>::call(x); + } + + // floor + using ::std::floor; + template + GLM_FUNC_QUALIFIER vec floor(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'floor' only accept floating-point inputs."); + return detail::compute_floor::value>::call(x); + } + + template + GLM_FUNC_QUALIFIER vec trunc(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'trunc' only accept floating-point inputs"); + return detail::compute_trunc::value>::call(x); + } + + template + GLM_FUNC_QUALIFIER vec round(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'round' only accept floating-point inputs"); + return detail::compute_round::value>::call(x); + } + +/* + // roundEven + template + GLM_FUNC_QUALIFIER genType roundEven(genType const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'roundEven' only accept floating-point inputs"); + + return genType(int(x + genType(int(x) % 2))); + } +*/ + + // roundEven + template + GLM_FUNC_QUALIFIER genType roundEven(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'roundEven' only accept floating-point inputs"); + + int Integer = static_cast(x); + genType IntegerPart = static_cast(Integer); + genType FractionalPart = fract(x); + + if(FractionalPart > static_cast(0.5) || FractionalPart < static_cast(0.5)) + { + return round(x); + } + else if((Integer % 2) == 0) + { + return IntegerPart; + } + else if(x <= static_cast(0)) // Work around... + { + return IntegerPart - static_cast(1); + } + else + { + return IntegerPart + static_cast(1); + } + //else // Bug on MinGW 4.5.2 + //{ + // return mix(IntegerPart + genType(-1), IntegerPart + genType(1), x <= genType(0)); + //} + } + + template + GLM_FUNC_QUALIFIER vec roundEven(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'roundEven' only accept floating-point inputs"); + return detail::functor1::call(roundEven, x); + } + + // ceil + using ::std::ceil; + template + GLM_FUNC_QUALIFIER vec ceil(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'ceil' only accept floating-point inputs"); + return detail::compute_ceil::value>::call(x); + } + + // fract + template + GLM_FUNC_QUALIFIER genType fract(genType x) + { + return fract(vec<1, genType>(x)).x; + } + + template + GLM_FUNC_QUALIFIER vec fract(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'fract' only accept floating-point inputs"); + return detail::compute_fract::value>::call(x); + } + + // mod + template + GLM_FUNC_QUALIFIER genType mod(genType x, genType y) + { +# if (GLM_COMPILER & GLM_COMPILER_CUDA) || (GLM_COMPILER & GLM_COMPILER_HIP) + // Another Cuda compiler bug https://github.com/g-truc/glm/issues/530 + vec<1, genType, defaultp> Result(mod(vec<1, genType, defaultp>(x), y)); + return Result.x; +# else + return mod(vec<1, genType, defaultp>(x), y).x; +# endif + } + + template + GLM_FUNC_QUALIFIER vec mod(vec const& x, T y) + { + return detail::compute_mod::value>::call(x, vec(y)); + } + + template + GLM_FUNC_QUALIFIER vec mod(vec const& x, vec const& y) + { + return detail::compute_mod::value>::call(x, y); + } + + // modf + template + GLM_FUNC_QUALIFIER genType modf(genType x, genType & i) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'modf' only accept floating-point inputs"); + return std::modf(x, &i); + } + + template + GLM_FUNC_QUALIFIER vec<1, T, Q> modf(vec<1, T, Q> const& x, vec<1, T, Q> & i) + { + return vec<1, T, Q>( + modf(x.x, i.x)); + } + + template + GLM_FUNC_QUALIFIER vec<2, T, Q> modf(vec<2, T, Q> const& x, vec<2, T, Q> & i) + { + return vec<2, T, Q>( + modf(x.x, i.x), + modf(x.y, i.y)); + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> modf(vec<3, T, Q> const& x, vec<3, T, Q> & i) + { + return vec<3, T, Q>( + modf(x.x, i.x), + modf(x.y, i.y), + modf(x.z, i.z)); + } + + template + GLM_FUNC_QUALIFIER vec<4, T, Q> modf(vec<4, T, Q> const& x, vec<4, T, Q> & i) + { + return vec<4, T, Q>( + modf(x.x, i.x), + modf(x.y, i.y), + modf(x.z, i.z), + modf(x.w, i.w)); + } + + //// Only valid if (INT_MIN <= x-y <= INT_MAX) + //// min(x,y) + //r = y + ((x - y) & ((x - y) >> (sizeof(int) * + //CHAR_BIT - 1))); + //// max(x,y) + //r = x - ((x - y) & ((x - y) >> (sizeof(int) * + //CHAR_BIT - 1))); + + // min + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec min(vec const& a, T b) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT || std::numeric_limits::is_integer, "'min' only accept floating-point or integer inputs"); + return detail::compute_min_vector::value>::call(a, vec(b)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec min(vec const& a, vec const& b) + { + return detail::compute_min_vector::value>::call(a, b); + } + + // max + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec max(vec const& a, T b) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT || std::numeric_limits::is_integer, "'max' only accept floating-point or integer inputs"); + return detail::compute_max_vector::value>::call(a, vec(b)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec max(vec const& a, vec const& b) + { + return detail::compute_max_vector::value>::call(a, b); + } + + // clamp + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType clamp(genType x, genType minVal, genType maxVal) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT || std::numeric_limits::is_integer, "'clamp' only accept floating-point or integer inputs"); + return min(max(x, minVal), maxVal); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec clamp(vec const& x, T minVal, T maxVal) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT || std::numeric_limits::is_integer, "'clamp' only accept floating-point or integer inputs"); + return detail::compute_clamp_vector::value>::call(x, vec(minVal), vec(maxVal)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec clamp(vec const& x, vec const& minVal, vec const& maxVal) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT || std::numeric_limits::is_integer, "'clamp' only accept floating-point or integer inputs"); + return detail::compute_clamp_vector::value>::call(x, minVal, maxVal); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genTypeT mix(genTypeT x, genTypeT y, genTypeU a) + { + return detail::compute_mix::call(x, y, a); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec mix(vec const& x, vec const& y, U a) + { + return detail::compute_mix_scalar::value>::call(x, y, a); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec mix(vec const& x, vec const& y, vec const& a) + { + return detail::compute_mix_vector::value>::call(x, y, a); + } + + // step + template + GLM_FUNC_QUALIFIER genType step(genType edge, genType x) + { + return mix(static_cast(1), static_cast(0), x < edge); + } + + template + GLM_FUNC_QUALIFIER vec step(T edge, vec const& x) + { + return detail::compute_step_vector::value>::call(vec(edge), x); + } + + template + GLM_FUNC_QUALIFIER vec step(vec const& edge, vec const& x) + { + return detail::compute_step_vector::value>::call(edge, x); + } + + // smoothstep + template + GLM_FUNC_QUALIFIER genType smoothstep(genType edge0, genType edge1, genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT || GLM_CONFIG_UNRESTRICTED_GENTYPE, "'smoothstep' only accept floating-point inputs"); + + genType const tmp(clamp((x - edge0) / (edge1 - edge0), genType(0), genType(1))); + return tmp * tmp * (genType(3) - genType(2) * tmp); + } + + template + GLM_FUNC_QUALIFIER vec smoothstep(T edge0, T edge1, vec const& x) + { + return detail::compute_smoothstep_vector::value>::call(vec(edge0), vec(edge1), x); + } + + template + GLM_FUNC_QUALIFIER vec smoothstep(vec const& edge0, vec const& edge1, vec const& x) + { + return detail::compute_smoothstep_vector::value>::call(edge0, edge1, x); + } + +# if GLM_HAS_CXX11_STL + using std::isnan; +# else + template + GLM_FUNC_QUALIFIER bool isnan(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'isnan' only accept floating-point inputs"); + +# if GLM_HAS_CXX11_STL + return std::isnan(x); +# elif GLM_COMPILER & GLM_COMPILER_VC + return _isnan(x) != 0; +# elif GLM_COMPILER & GLM_COMPILER_INTEL +# if GLM_PLATFORM & GLM_PLATFORM_WINDOWS + return _isnan(x) != 0; +# else + return ::isnan(x) != 0; +# endif +# elif (GLM_COMPILER & (GLM_COMPILER_GCC | GLM_COMPILER_CLANG)) && (GLM_PLATFORM & GLM_PLATFORM_ANDROID) && __cplusplus < 201103L + return _isnan(x) != 0; +# elif (GLM_COMPILER & GLM_COMPILER_CUDA) || (GLM_COMPILER & GLM_COMPILER_HIP) + return ::isnan(x) != 0; +# else + return std::isnan(x); +# endif + } +# endif + + template + GLM_FUNC_QUALIFIER vec isnan(vec const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'isnan' only accept floating-point inputs"); + + vec Result; + for (length_t l = 0; l < v.length(); ++l) + Result[l] = glm::isnan(v[l]); + return Result; + } + +# if GLM_HAS_CXX11_STL + using std::isinf; +# else + template + GLM_FUNC_QUALIFIER bool isinf(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'isinf' only accept floating-point inputs"); + +# if GLM_HAS_CXX11_STL + return std::isinf(x); +# elif GLM_COMPILER & (GLM_COMPILER_INTEL | GLM_COMPILER_VC) +# if(GLM_PLATFORM & GLM_PLATFORM_WINDOWS) + return _fpclass(x) == _FPCLASS_NINF || _fpclass(x) == _FPCLASS_PINF; +# else + return ::isinf(x); +# endif +# elif GLM_COMPILER & (GLM_COMPILER_GCC | GLM_COMPILER_CLANG) +# if(GLM_PLATFORM & GLM_PLATFORM_ANDROID && __cplusplus < 201103L) + return _isinf(x) != 0; +# else + return std::isinf(x); +# endif +# elif (GLM_COMPILER & GLM_COMPILER_CUDA) || (GLM_COMPILER & GLM_COMPILER_HIP) + // http://developer.download.nvidia.com/compute/cuda/4_2/rel/toolkit/docs/online/group__CUDA__MATH__DOUBLE_g13431dd2b40b51f9139cbb7f50c18fab.html#g13431dd2b40b51f9139cbb7f50c18fab + return ::isinf(double(x)) != 0; +# else + return std::isinf(x); +# endif + } +# endif + + template + GLM_FUNC_QUALIFIER vec isinf(vec const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'isinf' only accept floating-point inputs"); + + vec Result; + for (length_t l = 0; l < v.length(); ++l) + Result[l] = glm::isinf(v[l]); + return Result; + } + + GLM_FUNC_QUALIFIER int floatBitsToInt(float v) + { + union + { + float in; + int out; + } u; + + u.in = v; + + return u.out; + } + + template + GLM_FUNC_QUALIFIER vec floatBitsToInt(vec const& v) + { + return detail::functor1::call(floatBitsToInt, v); + } + + GLM_FUNC_QUALIFIER uint floatBitsToUint(float v) + { + union + { + float in; + uint out; + } u; + + u.in = v; + + return u.out; + } + + template + GLM_FUNC_QUALIFIER vec floatBitsToUint(vec const& v) + { + return detail::functor1::call(floatBitsToUint, v); + } + + GLM_FUNC_QUALIFIER float intBitsToFloat(int v) + { + union + { + int in; + float out; + } u; + + u.in = v; + + return u.out; + } + + template + GLM_FUNC_QUALIFIER vec intBitsToFloat(vec const& v) + { + return detail::functor1::call(intBitsToFloat, v); + } + + GLM_FUNC_QUALIFIER float uintBitsToFloat(uint v) + { + union + { + uint in; + float out; + } u; + + u.in = v; + + return u.out; + } + + template + GLM_FUNC_QUALIFIER vec uintBitsToFloat(vec const& v) + { + return reinterpret_cast&>(const_cast&>(v)); + } + +# if GLM_HAS_CXX11_STL + using std::fma; +# else + template + GLM_FUNC_QUALIFIER genType fma(genType const& a, genType const& b, genType const& c) + { + return a * b + c; + } +# endif + + template + GLM_FUNC_QUALIFIER genType frexp(genType x, int& exp) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'frexp' only accept floating-point inputs"); + + return std::frexp(x, &exp); + } + + template + GLM_FUNC_QUALIFIER vec frexp(vec const& v, vec& exp) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'frexp' only accept floating-point inputs"); + + vec Result; + for (length_t l = 0; l < v.length(); ++l) + Result[l] = std::frexp(v[l], &exp[l]); + return Result; + } + + template + GLM_FUNC_QUALIFIER genType ldexp(genType const& x, int const& exp) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'ldexp' only accept floating-point inputs"); + + return std::ldexp(x, exp); + } + + template + GLM_FUNC_QUALIFIER vec ldexp(vec const& v, vec const& exp) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'ldexp' only accept floating-point inputs"); + + vec Result; + for (length_t l = 0; l < v.length(); ++l) + Result[l] = std::ldexp(v[l], exp[l]); + return Result; + } +}//namespace glm + +#if GLM_CONFIG_SIMD == GLM_ENABLE +# include "func_common_simd.inl" +#endif diff --git a/thirdparty/glm/glm/detail/func_common_simd.inl b/thirdparty/glm/glm/detail/func_common_simd.inl new file mode 100644 index 000000000000..ce0032d33fef --- /dev/null +++ b/thirdparty/glm/glm/detail/func_common_simd.inl @@ -0,0 +1,231 @@ +/// @ref core +/// @file glm/detail/func_common_simd.inl + +#if GLM_ARCH & GLM_ARCH_SSE2_BIT + +#include "../simd/common.h" + +#include + +namespace glm{ +namespace detail +{ + template + struct compute_abs_vector<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& v) + { + vec<4, float, Q> result; + result.data = glm_vec4_abs(v.data); + return result; + } + }; + + template + struct compute_abs_vector<4, int, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, int, Q> call(vec<4, int, Q> const& v) + { + vec<4, int, Q> result; + result.data = glm_ivec4_abs(v.data); + return result; + } + }; + + template + struct compute_floor<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& v) + { + vec<4, float, Q> result; + result.data = glm_vec4_floor(v.data); + return result; + } + }; + + template + struct compute_ceil<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& v) + { + vec<4, float, Q> result; + result.data = glm_vec4_ceil(v.data); + return result; + } + }; + + template + struct compute_fract<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& v) + { + vec<4, float, Q> result; + result.data = glm_vec4_fract(v.data); + return result; + } + }; + + template + struct compute_round<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& v) + { + vec<4, float, Q> result; + result.data = glm_vec4_round(v.data); + return result; + } + }; + + template + struct compute_mod<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& x, vec<4, float, Q> const& y) + { + vec<4, float, Q> result; + result.data = glm_vec4_mod(x.data, y.data); + return result; + } + }; + + template + struct compute_min_vector<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& v1, vec<4, float, Q> const& v2) + { + vec<4, float, Q> result; + result.data = _mm_min_ps(v1.data, v2.data); + return result; + } + }; + + template + struct compute_min_vector<4, int, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, int, Q> call(vec<4, int, Q> const& v1, vec<4, int, Q> const& v2) + { + vec<4, int, Q> result; + result.data = _mm_min_epi32(v1.data, v2.data); + return result; + } + }; + + template + struct compute_min_vector<4, uint, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, uint, Q> call(vec<4, uint, Q> const& v1, vec<4, uint, Q> const& v2) + { + vec<4, uint, Q> result; + result.data = _mm_min_epu32(v1.data, v2.data); + return result; + } + }; + + template + struct compute_max_vector<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& v1, vec<4, float, Q> const& v2) + { + vec<4, float, Q> result; + result.data = _mm_max_ps(v1.data, v2.data); + return result; + } + }; + + template + struct compute_max_vector<4, int, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, int, Q> call(vec<4, int, Q> const& v1, vec<4, int, Q> const& v2) + { + vec<4, int, Q> result; + result.data = _mm_max_epi32(v1.data, v2.data); + return result; + } + }; + + template + struct compute_max_vector<4, uint, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, uint, Q> call(vec<4, uint, Q> const& v1, vec<4, uint, Q> const& v2) + { + vec<4, uint, Q> result; + result.data = _mm_max_epu32(v1.data, v2.data); + return result; + } + }; + + template + struct compute_clamp_vector<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& x, vec<4, float, Q> const& minVal, vec<4, float, Q> const& maxVal) + { + vec<4, float, Q> result; + result.data = _mm_min_ps(_mm_max_ps(x.data, minVal.data), maxVal.data); + return result; + } + }; + + template + struct compute_clamp_vector<4, int, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, int, Q> call(vec<4, int, Q> const& x, vec<4, int, Q> const& minVal, vec<4, int, Q> const& maxVal) + { + vec<4, int, Q> result; + result.data = _mm_min_epi32(_mm_max_epi32(x.data, minVal.data), maxVal.data); + return result; + } + }; + + template + struct compute_clamp_vector<4, uint, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, uint, Q> call(vec<4, uint, Q> const& x, vec<4, uint, Q> const& minVal, vec<4, uint, Q> const& maxVal) + { + vec<4, uint, Q> result; + result.data = _mm_min_epu32(_mm_max_epu32(x.data, minVal.data), maxVal.data); + return result; + } + }; + + template + struct compute_mix_vector<4, float, bool, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& x, vec<4, float, Q> const& y, vec<4, bool, Q> const& a) + { + __m128i const Load = _mm_set_epi32(-static_cast(a.w), -static_cast(a.z), -static_cast(a.y), -static_cast(a.x)); + __m128 const Mask = _mm_castsi128_ps(Load); + + vec<4, float, Q> Result; +# if 0 && GLM_ARCH & GLM_ARCH_AVX + Result.data = _mm_blendv_ps(x.data, y.data, Mask); +# else + Result.data = _mm_or_ps(_mm_and_ps(Mask, y.data), _mm_andnot_ps(Mask, x.data)); +# endif + return Result; + } + }; +/* FIXME + template + struct compute_step_vector + { + GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& edge, vec<4, float, Q> const& x) + { + vec<4, float, Q> Result; + result.data = glm_vec4_step(edge.data, x.data); + return result; + } + }; +*/ + template + struct compute_smoothstep_vector<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& edge0, vec<4, float, Q> const& edge1, vec<4, float, Q> const& x) + { + vec<4, float, Q> Result; + Result.data = glm_vec4_smoothstep(edge0.data, edge1.data, x.data); + return Result; + } + }; +}//namespace detail +}//namespace glm + +#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT diff --git a/thirdparty/glm/glm/detail/func_exponential.inl b/thirdparty/glm/glm/detail/func_exponential.inl new file mode 100644 index 000000000000..2efcdc60adc6 --- /dev/null +++ b/thirdparty/glm/glm/detail/func_exponential.inl @@ -0,0 +1,152 @@ +/// @ref core +/// @file glm/detail/func_exponential.inl + +#include "../vector_relational.hpp" +#include "_vectorize.hpp" +#include +#include +#include + +namespace glm{ +namespace detail +{ +# if GLM_HAS_CXX11_STL + using std::log2; +# else + template + genType log2(genType Value) + { + return std::log(Value) * static_cast(1.4426950408889634073599246810019); + } +# endif + + template + struct compute_log2 + { + GLM_FUNC_QUALIFIER static vec call(vec const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'log2' only accept floating-point inputs. Include for integer inputs."); + + return detail::functor1::call(log2, v); + } + }; + + template + struct compute_sqrt + { + GLM_FUNC_QUALIFIER static vec call(vec const& x) + { + return detail::functor1::call(std::sqrt, x); + } + }; + + template + struct compute_inversesqrt + { + GLM_FUNC_QUALIFIER static vec call(vec const& x) + { + return static_cast(1) / sqrt(x); + } + }; + + template + struct compute_inversesqrt + { + GLM_FUNC_QUALIFIER static vec call(vec const& x) + { + vec tmp(x); + vec xhalf(tmp * 0.5f); + vec* p = reinterpret_cast*>(const_cast*>(&x)); + vec i = vec(0x5f375a86) - (*p >> vec(1)); + vec* ptmp = reinterpret_cast*>(&i); + tmp = *ptmp; + tmp = tmp * (1.5f - xhalf * tmp * tmp); + return tmp; + } + }; +}//namespace detail + + // pow + using std::pow; + template + GLM_FUNC_QUALIFIER vec pow(vec const& base, vec const& exponent) + { + return detail::functor2::call(pow, base, exponent); + } + + // exp + using std::exp; + template + GLM_FUNC_QUALIFIER vec exp(vec const& x) + { + return detail::functor1::call(exp, x); + } + + // log + using std::log; + template + GLM_FUNC_QUALIFIER vec log(vec const& x) + { + return detail::functor1::call(log, x); + } + +# if GLM_HAS_CXX11_STL + using std::exp2; +# else + //exp2, ln2 = 0.69314718055994530941723212145818f + template + GLM_FUNC_QUALIFIER genType exp2(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'exp2' only accept floating-point inputs"); + + return std::exp(static_cast(0.69314718055994530941723212145818) * x); + } +# endif + + template + GLM_FUNC_QUALIFIER vec exp2(vec const& x) + { + return detail::functor1::call(exp2, x); + } + + // log2, ln2 = 0.69314718055994530941723212145818f + template + GLM_FUNC_QUALIFIER genType log2(genType x) + { + return log2(vec<1, genType>(x)).x; + } + + template + GLM_FUNC_QUALIFIER vec log2(vec const& x) + { + return detail::compute_log2::is_iec559, detail::is_aligned::value>::call(x); + } + + // sqrt + using std::sqrt; + template + GLM_FUNC_QUALIFIER vec sqrt(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'sqrt' only accept floating-point inputs"); + return detail::compute_sqrt::value>::call(x); + } + + // inversesqrt + template + GLM_FUNC_QUALIFIER genType inversesqrt(genType x) + { + return static_cast(1) / sqrt(x); + } + + template + GLM_FUNC_QUALIFIER vec inversesqrt(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'inversesqrt' only accept floating-point inputs"); + return detail::compute_inversesqrt::value>::call(x); + } +}//namespace glm + +#if GLM_CONFIG_SIMD == GLM_ENABLE +# include "func_exponential_simd.inl" +#endif + diff --git a/thirdparty/glm/glm/detail/func_exponential_simd.inl b/thirdparty/glm/glm/detail/func_exponential_simd.inl new file mode 100644 index 000000000000..fb78951727f1 --- /dev/null +++ b/thirdparty/glm/glm/detail/func_exponential_simd.inl @@ -0,0 +1,37 @@ +/// @ref core +/// @file glm/detail/func_exponential_simd.inl + +#include "../simd/exponential.h" + +#if GLM_ARCH & GLM_ARCH_SSE2_BIT + +namespace glm{ +namespace detail +{ + template + struct compute_sqrt<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& v) + { + vec<4, float, Q> Result; + Result.data = _mm_sqrt_ps(v.data); + return Result; + } + }; + +# if GLM_CONFIG_ALIGNED_GENTYPES == GLM_ENABLE + template<> + struct compute_sqrt<4, float, aligned_lowp, true> + { + GLM_FUNC_QUALIFIER static vec<4, float, aligned_lowp> call(vec<4, float, aligned_lowp> const& v) + { + vec<4, float, aligned_lowp> Result; + Result.data = glm_vec4_sqrt_lowp(v.data); + return Result; + } + }; +# endif +}//namespace detail +}//namespace glm + +#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT diff --git a/thirdparty/glm/glm/detail/func_geometric.inl b/thirdparty/glm/glm/detail/func_geometric.inl new file mode 100644 index 000000000000..404c99056ab4 --- /dev/null +++ b/thirdparty/glm/glm/detail/func_geometric.inl @@ -0,0 +1,243 @@ +#include "../exponential.hpp" +#include "../common.hpp" + +namespace glm{ +namespace detail +{ + template + struct compute_length + { + GLM_FUNC_QUALIFIER static T call(vec const& v) + { + return sqrt(dot(v, v)); + } + }; + + template + struct compute_distance + { + GLM_FUNC_QUALIFIER static T call(vec const& p0, vec const& p1) + { + return length(p1 - p0); + } + }; + + template + struct compute_dot{}; + + template + struct compute_dot, T, Aligned> + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static T call(vec<1, T, Q> const& a, vec<1, T, Q> const& b) + { + return a.x * b.x; + } + }; + + template + struct compute_dot, T, Aligned> + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static T call(vec<2, T, Q> const& a, vec<2, T, Q> const& b) + { + vec<2, T, Q> tmp(a * b); + return tmp.x + tmp.y; + } + }; + + template + struct compute_dot, T, Aligned> + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static T call(vec<3, T, Q> const& a, vec<3, T, Q> const& b) + { + vec<3, T, Q> tmp(a * b); + return tmp.x + tmp.y + tmp.z; + } + }; + + template + struct compute_dot, T, Aligned> + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static T call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + vec<4, T, Q> tmp(a * b); + return (tmp.x + tmp.y) + (tmp.z + tmp.w); + } + }; + + template + struct compute_cross + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec<3, T, Q> call(vec<3, T, Q> const& x, vec<3, T, Q> const& y) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'cross' accepts only floating-point inputs"); + + return vec<3, T, Q>( + x.y * y.z - y.y * x.z, + x.z * y.x - y.z * x.x, + x.x * y.y - y.x * x.y); + } + }; + + template + struct compute_normalize + { + GLM_FUNC_QUALIFIER static vec call(vec const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'normalize' accepts only floating-point inputs"); + + return v * inversesqrt(dot(v, v)); + } + }; + + template + struct compute_faceforward + { + GLM_FUNC_QUALIFIER static vec call(vec const& N, vec const& I, vec const& Nref) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'normalize' accepts only floating-point inputs"); + + return dot(Nref, I) < static_cast(0) ? N : -N; + } + }; + + template + struct compute_reflect + { + GLM_FUNC_QUALIFIER static vec call(vec const& I, vec const& N) + { + return I - N * dot(N, I) * static_cast(2); + } + }; + + template + struct compute_refract + { + GLM_FUNC_QUALIFIER static vec call(vec const& I, vec const& N, T eta) + { + T const dotValue(dot(N, I)); + T const k(static_cast(1) - eta * eta * (static_cast(1) - dotValue * dotValue)); + vec const Result = + (k >= static_cast(0)) ? (eta * I - (eta * dotValue + std::sqrt(k)) * N) : vec(0); + return Result; + } + }; +}//namespace detail + + // length + template + GLM_FUNC_QUALIFIER genType length(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'length' accepts only floating-point inputs"); + + return abs(x); + } + + template + GLM_FUNC_QUALIFIER T length(vec const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'length' accepts only floating-point inputs"); + + return detail::compute_length::value>::call(v); + } + + // distance + template + GLM_FUNC_QUALIFIER genType distance(genType const& p0, genType const& p1) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'distance' accepts only floating-point inputs"); + + return length(p1 - p0); + } + + template + GLM_FUNC_QUALIFIER T distance(vec const& p0, vec const& p1) + { + return detail::compute_distance::value>::call(p0, p1); + } + + // dot + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR T dot(T x, T y) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'dot' accepts only floating-point inputs"); + return x * y; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR T dot(vec const& x, vec const& y) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'dot' accepts only floating-point inputs"); + return detail::compute_dot, T, detail::is_aligned::value>::call(x, y); + } + + // cross + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> cross(vec<3, T, Q> const& x, vec<3, T, Q> const& y) + { + return detail::compute_cross::value>::call(x, y); + } +/* + // normalize + template + GLM_FUNC_QUALIFIER genType normalize(genType const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'normalize' accepts only floating-point inputs"); + + return x < genType(0) ? genType(-1) : genType(1); + } +*/ + template + GLM_FUNC_QUALIFIER vec normalize(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'normalize' accepts only floating-point inputs"); + + return detail::compute_normalize::value>::call(x); + } + + // faceforward + template + GLM_FUNC_QUALIFIER genType faceforward(genType const& N, genType const& I, genType const& Nref) + { + return dot(Nref, I) < static_cast(0) ? N : -N; + } + + template + GLM_FUNC_QUALIFIER vec faceforward(vec const& N, vec const& I, vec const& Nref) + { + return detail::compute_faceforward::value>::call(N, I, Nref); + } + + // reflect + template + GLM_FUNC_QUALIFIER genType reflect(genType const& I, genType const& N) + { + return I - N * dot(N, I) * genType(2); + } + + template + GLM_FUNC_QUALIFIER vec reflect(vec const& I, vec const& N) + { + return detail::compute_reflect::value>::call(I, N); + } + + // refract + template + GLM_FUNC_QUALIFIER genType refract(genType const& I, genType const& N, genType eta) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'refract' accepts only floating-point inputs"); + genType const dotValue(dot(N, I)); + genType const k(static_cast(1) - eta * eta * (static_cast(1) - dotValue * dotValue)); + return (eta * I - (eta * dotValue + sqrt(k)) * N) * static_cast(k >= static_cast(0)); + } + + template + GLM_FUNC_QUALIFIER vec refract(vec const& I, vec const& N, T eta) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'refract' accepts only floating-point inputs"); + return detail::compute_refract::value>::call(I, N, eta); + } +}//namespace glm + +#if GLM_CONFIG_SIMD == GLM_ENABLE +# include "func_geometric_simd.inl" +#endif diff --git a/thirdparty/glm/glm/detail/func_geometric_simd.inl b/thirdparty/glm/glm/detail/func_geometric_simd.inl new file mode 100644 index 000000000000..2076dae055c3 --- /dev/null +++ b/thirdparty/glm/glm/detail/func_geometric_simd.inl @@ -0,0 +1,163 @@ +/// @ref core +/// @file glm/detail/func_geometric_simd.inl + +#include "../simd/geometric.h" + +#if GLM_ARCH & GLM_ARCH_SSE2_BIT + +namespace glm{ +namespace detail +{ + template + struct compute_length<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static float call(vec<4, float, Q> const& v) + { + return _mm_cvtss_f32(glm_vec4_length(v.data)); + } + }; + + template + struct compute_distance<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static float call(vec<4, float, Q> const& p0, vec<4, float, Q> const& p1) + { + return _mm_cvtss_f32(glm_vec4_distance(p0.data, p1.data)); + } + }; + + template + struct compute_dot, float, true> + { + GLM_FUNC_QUALIFIER static float call(vec<4, float, Q> const& x, vec<4, float, Q> const& y) + { + return _mm_cvtss_f32(glm_vec1_dot(x.data, y.data)); + } + }; + + template + struct compute_cross + { + GLM_FUNC_QUALIFIER static vec<3, float, Q> call(vec<3, float, Q> const& a, vec<3, float, Q> const& b) + { + __m128 const set0 = _mm_set_ps(0.0f, a.z, a.y, a.x); + __m128 const set1 = _mm_set_ps(0.0f, b.z, b.y, b.x); + __m128 const xpd0 = glm_vec4_cross(set0, set1); + + vec<4, float, Q> Result; + Result.data = xpd0; + return vec<3, float, Q>(Result); + } + }; + + template + struct compute_normalize<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& v) + { + vec<4, float, Q> Result; + Result.data = glm_vec4_normalize(v.data); + return Result; + } + }; + + template + struct compute_faceforward<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& N, vec<4, float, Q> const& I, vec<4, float, Q> const& Nref) + { + vec<4, float, Q> Result; + Result.data = glm_vec4_faceforward(N.data, I.data, Nref.data); + return Result; + } + }; + + template + struct compute_reflect<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& I, vec<4, float, Q> const& N) + { + vec<4, float, Q> Result; + Result.data = glm_vec4_reflect(I.data, N.data); + return Result; + } + }; + + template + struct compute_refract<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& I, vec<4, float, Q> const& N, float eta) + { + vec<4, float, Q> Result; + Result.data = glm_vec4_refract(I.data, N.data, _mm_set1_ps(eta)); + return Result; + } + }; +}//namespace detail +}//namespace glm + +#elif GLM_ARCH & GLM_ARCH_NEON_BIT +namespace glm{ +namespace detail +{ + template + struct compute_length<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static float call(vec<4, float, Q> const& v) + { + return sqrt(compute_dot, float, true>::call(v, v)); + } + }; + + template + struct compute_distance<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static float call(vec<4, float, Q> const& p0, vec<4, float, Q> const& p1) + { + return compute_length<4, float, Q, true>::call(p1 - p0); + } + }; + + + template + struct compute_dot, float, true> + { + GLM_FUNC_QUALIFIER static float call(vec<4, float, Q> const& x, vec<4, float, Q> const& y) + { +#if GLM_ARCH & GLM_ARCH_ARMV8_BIT + float32x4_t v = vmulq_f32(x.data, y.data); + return vaddvq_f32(v); +#else // Armv7a with Neon + float32x4_t p = vmulq_f32(x.data, y.data); + float32x2_t v = vpadd_f32(vget_low_f32(p), vget_high_f32(p)); + v = vpadd_f32(v, v); + return vget_lane_f32(v, 0); +#endif + } + }; + + template + struct compute_normalize<4, float, Q, true> + { + GLM_FUNC_QUALIFIER static vec<4, float, Q> call(vec<4, float, Q> const& v) + { + float32x4_t p = vmulq_f32(v.data, v.data); +#if GLM_ARCH & GLM_ARCH_ARMV8_BIT + p = vpaddq_f32(p, p); + p = vpaddq_f32(p, p); +#else + float32x2_t t = vpadd_f32(vget_low_f32(p), vget_high_f32(p)); + t = vpadd_f32(t, t); + p = vcombine_f32(t, t); +#endif + + float32x4_t vd = vrsqrteq_f32(p); + vec<4, float, Q> Result; + Result.data = vmulq_f32(v.data, vd); + return Result; + } + }; +}//namespace detail +}//namespace glm + +#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT diff --git a/thirdparty/glm/glm/detail/func_integer.inl b/thirdparty/glm/glm/detail/func_integer.inl new file mode 100644 index 000000000000..aa82d06d236e --- /dev/null +++ b/thirdparty/glm/glm/detail/func_integer.inl @@ -0,0 +1,369 @@ +/// @ref core + +#include "_vectorize.hpp" +#if(GLM_ARCH & GLM_ARCH_X86 && GLM_COMPILER & GLM_COMPILER_VC) +# include +# pragma intrinsic(_BitScanReverse) +#endif//(GLM_ARCH & GLM_ARCH_X86 && GLM_COMPILER & GLM_COMPILER_VC) +#include + +#if !GLM_HAS_EXTENDED_INTEGER_TYPE +# if GLM_COMPILER & GLM_COMPILER_GCC +# pragma GCC diagnostic ignored "-Wlong-long" +# endif +# if (GLM_COMPILER & GLM_COMPILER_CLANG) +# pragma clang diagnostic ignored "-Wc++11-long-long" +# endif +#endif + +namespace glm{ +namespace detail +{ + template + GLM_FUNC_QUALIFIER T mask(T Bits) + { + return Bits >= static_cast(sizeof(T) * 8) ? ~static_cast(0) : (static_cast(1) << Bits) - static_cast(1); + } + + template + struct compute_bitfieldReverseStep + { + GLM_FUNC_QUALIFIER static vec call(vec const& v, T, T) + { + return v; + } + }; + + template + struct compute_bitfieldReverseStep + { + GLM_FUNC_QUALIFIER static vec call(vec const& v, T Mask, T Shift) + { + return (v & Mask) << Shift | (v & (~Mask)) >> Shift; + } + }; + + template + struct compute_bitfieldBitCountStep + { + GLM_FUNC_QUALIFIER static vec call(vec const& v, T, T) + { + return v; + } + }; + + template + struct compute_bitfieldBitCountStep + { + GLM_FUNC_QUALIFIER static vec call(vec const& v, T Mask, T Shift) + { + return (v & Mask) + ((v >> Shift) & Mask); + } + }; + + template + struct compute_findLSB + { + GLM_FUNC_QUALIFIER static int call(genIUType Value) + { + if(Value == 0) + return -1; + + return glm::bitCount(~Value & (Value - static_cast(1))); + } + }; + +# if GLM_HAS_BITSCAN_WINDOWS + template + struct compute_findLSB + { + GLM_FUNC_QUALIFIER static int call(genIUType Value) + { + unsigned long Result(0); + unsigned char IsNotNull = _BitScanForward(&Result, *reinterpret_cast(&Value)); + return IsNotNull ? int(Result) : -1; + } + }; + +# if !((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_MODEL == GLM_MODEL_32)) + template + struct compute_findLSB + { + GLM_FUNC_QUALIFIER static int call(genIUType Value) + { + unsigned long Result(0); + unsigned char IsNotNull = _BitScanForward64(&Result, *reinterpret_cast(&Value)); + return IsNotNull ? int(Result) : -1; + } + }; +# endif +# endif//GLM_HAS_BITSCAN_WINDOWS + + template + struct compute_findMSB_step_vec + { + GLM_FUNC_QUALIFIER static vec call(vec const& x, T Shift) + { + return x | (x >> Shift); + } + }; + + template + struct compute_findMSB_step_vec + { + GLM_FUNC_QUALIFIER static vec call(vec const& x, T) + { + return x; + } + }; + + template + struct compute_findMSB_vec + { + GLM_FUNC_QUALIFIER static vec call(vec const& v) + { + vec x(v); + x = compute_findMSB_step_vec= 8>::call(x, static_cast( 1)); + x = compute_findMSB_step_vec= 8>::call(x, static_cast( 2)); + x = compute_findMSB_step_vec= 8>::call(x, static_cast( 4)); + x = compute_findMSB_step_vec= 16>::call(x, static_cast( 8)); + x = compute_findMSB_step_vec= 32>::call(x, static_cast(16)); + x = compute_findMSB_step_vec= 64>::call(x, static_cast(32)); + return vec(sizeof(T) * 8 - 1) - glm::bitCount(~x); + } + }; + +# if GLM_HAS_BITSCAN_WINDOWS + template + GLM_FUNC_QUALIFIER int compute_findMSB_32(genIUType Value) + { + unsigned long Result(0); + unsigned char IsNotNull = _BitScanReverse(&Result, *reinterpret_cast(&Value)); + return IsNotNull ? int(Result) : -1; + } + + template + struct compute_findMSB_vec + { + GLM_FUNC_QUALIFIER static vec call(vec const& x) + { + return detail::functor1::call(compute_findMSB_32, x); + } + }; + +# if !((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_MODEL == GLM_MODEL_32)) + template + GLM_FUNC_QUALIFIER int compute_findMSB_64(genIUType Value) + { + unsigned long Result(0); + unsigned char IsNotNull = _BitScanReverse64(&Result, *reinterpret_cast(&Value)); + return IsNotNull ? int(Result) : -1; + } + + template + struct compute_findMSB_vec + { + GLM_FUNC_QUALIFIER static vec call(vec const& x) + { + return detail::functor1::call(compute_findMSB_64, x); + } + }; +# endif +# endif//GLM_HAS_BITSCAN_WINDOWS +}//namespace detail + + // uaddCarry + GLM_FUNC_QUALIFIER uint uaddCarry(uint const& x, uint const& y, uint & Carry) + { + detail::uint64 const Value64(static_cast(x) + static_cast(y)); + detail::uint64 const Max32((static_cast(1) << static_cast(32)) - static_cast(1)); + Carry = Value64 > Max32 ? 1u : 0u; + return static_cast(Value64 % (Max32 + static_cast(1))); + } + + template + GLM_FUNC_QUALIFIER vec uaddCarry(vec const& x, vec const& y, vec& Carry) + { + vec Value64(vec(x) + vec(y)); + vec Max32((static_cast(1) << static_cast(32)) - static_cast(1)); + Carry = mix(vec(0), vec(1), greaterThan(Value64, Max32)); + return vec(Value64 % (Max32 + static_cast(1))); + } + + // usubBorrow + GLM_FUNC_QUALIFIER uint usubBorrow(uint const& x, uint const& y, uint & Borrow) + { + Borrow = x >= y ? static_cast(0) : static_cast(1); + return static_cast((static_cast(1) << static_cast(32)) + (static_cast(x) - static_cast(y))); + } + + template + GLM_FUNC_QUALIFIER vec usubBorrow(vec const& x, vec const& y, vec& Borrow) + { + Borrow = mix(vec(1), vec(0), greaterThanEqual(x, y)); + vec const YgeX(y - x); + vec const XgeY(vec((static_cast(1) << static_cast(32)) + (vec(y) - vec(x)))); + return mix(XgeY, YgeX, greaterThanEqual(y, x)); + } + + // umulExtended + GLM_FUNC_QUALIFIER void umulExtended(uint const& x, uint const& y, uint & msb, uint & lsb) + { + detail::uint64 Value64 = static_cast(x) * static_cast(y); + msb = static_cast(Value64 >> static_cast(32)); + lsb = static_cast(Value64); + } + + template + GLM_FUNC_QUALIFIER void umulExtended(vec const& x, vec const& y, vec& msb, vec& lsb) + { + vec Value64(vec(x) * vec(y)); + msb = vec(Value64 >> static_cast(32)); + lsb = vec(Value64); + } + + // imulExtended + GLM_FUNC_QUALIFIER void imulExtended(int x, int y, int& msb, int& lsb) + { + detail::int64 Value64 = static_cast(x) * static_cast(y); + msb = static_cast(Value64 >> static_cast(32)); + lsb = static_cast(Value64); + } + + template + GLM_FUNC_QUALIFIER void imulExtended(vec const& x, vec const& y, vec& msb, vec& lsb) + { + vec Value64(vec(x) * vec(y)); + lsb = vec(Value64 & static_cast(0xFFFFFFFF)); + msb = vec((Value64 >> static_cast(32)) & static_cast(0xFFFFFFFF)); + } + + // bitfieldExtract + template + GLM_FUNC_QUALIFIER genIUType bitfieldExtract(genIUType Value, int Offset, int Bits) + { + return bitfieldExtract(vec<1, genIUType>(Value), Offset, Bits).x; + } + + template + GLM_FUNC_QUALIFIER vec bitfieldExtract(vec const& Value, int Offset, int Bits) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitfieldExtract' only accept integer inputs"); + + return (Value >> static_cast(Offset)) & static_cast(detail::mask(Bits)); + } + + // bitfieldInsert + template + GLM_FUNC_QUALIFIER genIUType bitfieldInsert(genIUType const& Base, genIUType const& Insert, int Offset, int Bits) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitfieldInsert' only accept integer values"); + + return bitfieldInsert(vec<1, genIUType>(Base), vec<1, genIUType>(Insert), Offset, Bits).x; + } + + template + GLM_FUNC_QUALIFIER vec bitfieldInsert(vec const& Base, vec const& Insert, int Offset, int Bits) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitfieldInsert' only accept integer values"); + + T const Mask = detail::mask(static_cast(Bits)) << Offset; + return (Base & ~Mask) | ((Insert << static_cast(Offset)) & Mask); + } + + // bitfieldReverse + template + GLM_FUNC_QUALIFIER genIUType bitfieldReverse(genIUType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitfieldReverse' only accept integer values"); + + return bitfieldReverse(glm::vec<1, genIUType, glm::defaultp>(x)).x; + } + + template + GLM_FUNC_QUALIFIER vec bitfieldReverse(vec const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitfieldReverse' only accept integer values"); + + vec x(v); + x = detail::compute_bitfieldReverseStep::value, sizeof(T) * 8>= 2>::call(x, static_cast(0x5555555555555555ull), static_cast( 1)); + x = detail::compute_bitfieldReverseStep::value, sizeof(T) * 8>= 4>::call(x, static_cast(0x3333333333333333ull), static_cast( 2)); + x = detail::compute_bitfieldReverseStep::value, sizeof(T) * 8>= 8>::call(x, static_cast(0x0F0F0F0F0F0F0F0Full), static_cast( 4)); + x = detail::compute_bitfieldReverseStep::value, sizeof(T) * 8>= 16>::call(x, static_cast(0x00FF00FF00FF00FFull), static_cast( 8)); + x = detail::compute_bitfieldReverseStep::value, sizeof(T) * 8>= 32>::call(x, static_cast(0x0000FFFF0000FFFFull), static_cast(16)); + x = detail::compute_bitfieldReverseStep::value, sizeof(T) * 8>= 64>::call(x, static_cast(0x00000000FFFFFFFFull), static_cast(32)); + return x; + } + + // bitCount + template + GLM_FUNC_QUALIFIER int bitCount(genIUType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitCount' only accept integer values"); + + return bitCount(glm::vec<1, genIUType, glm::defaultp>(x)).x; + } + + template + GLM_FUNC_QUALIFIER vec bitCount(vec const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitCount' only accept integer values"); + +# if GLM_COMPILER & GLM_COMPILER_VC +# pragma warning(push) +# pragma warning(disable : 4310) //cast truncates constant value +# endif + + vec::type, Q> x(v); + x = detail::compute_bitfieldBitCountStep::type, Q, detail::is_aligned::value, sizeof(T) * 8>= 2>::call(x, typename detail::make_unsigned::type(0x5555555555555555ull), typename detail::make_unsigned::type( 1)); + x = detail::compute_bitfieldBitCountStep::type, Q, detail::is_aligned::value, sizeof(T) * 8>= 4>::call(x, typename detail::make_unsigned::type(0x3333333333333333ull), typename detail::make_unsigned::type( 2)); + x = detail::compute_bitfieldBitCountStep::type, Q, detail::is_aligned::value, sizeof(T) * 8>= 8>::call(x, typename detail::make_unsigned::type(0x0F0F0F0F0F0F0F0Full), typename detail::make_unsigned::type( 4)); + x = detail::compute_bitfieldBitCountStep::type, Q, detail::is_aligned::value, sizeof(T) * 8>= 16>::call(x, typename detail::make_unsigned::type(0x00FF00FF00FF00FFull), typename detail::make_unsigned::type( 8)); + x = detail::compute_bitfieldBitCountStep::type, Q, detail::is_aligned::value, sizeof(T) * 8>= 32>::call(x, typename detail::make_unsigned::type(0x0000FFFF0000FFFFull), typename detail::make_unsigned::type(16)); + x = detail::compute_bitfieldBitCountStep::type, Q, detail::is_aligned::value, sizeof(T) * 8>= 64>::call(x, typename detail::make_unsigned::type(0x00000000FFFFFFFFull), typename detail::make_unsigned::type(32)); + return vec(x); + +# if GLM_COMPILER & GLM_COMPILER_VC +# pragma warning(pop) +# endif + } + + // findLSB + template + GLM_FUNC_QUALIFIER int findLSB(genIUType Value) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'findLSB' only accept integer values"); + + return detail::compute_findLSB::call(Value); + } + + template + GLM_FUNC_QUALIFIER vec findLSB(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'findLSB' only accept integer values"); + + return detail::functor1::call(findLSB, x); + } + + // findMSB + template + GLM_FUNC_QUALIFIER int findMSB(genIUType v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'findMSB' only accept integer values"); + + return findMSB(vec<1, genIUType>(v)).x; + } + + template + GLM_FUNC_QUALIFIER vec findMSB(vec const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'findMSB' only accept integer values"); + + return detail::compute_findMSB_vec(sizeof(T) * 8)>::call(v); + } +}//namespace glm + +#if GLM_CONFIG_SIMD == GLM_ENABLE +# include "func_integer_simd.inl" +#endif + diff --git a/thirdparty/glm/glm/detail/func_integer_simd.inl b/thirdparty/glm/glm/detail/func_integer_simd.inl new file mode 100644 index 000000000000..8be6c9ce4dc1 --- /dev/null +++ b/thirdparty/glm/glm/detail/func_integer_simd.inl @@ -0,0 +1,65 @@ +#include "../simd/integer.h" + +#if GLM_ARCH & GLM_ARCH_SSE2_BIT + +namespace glm{ +namespace detail +{ + template + struct compute_bitfieldReverseStep<4, uint, Q, true, true> + { + GLM_FUNC_QUALIFIER static vec<4, uint, Q> call(vec<4, uint, Q> const& v, uint Mask, uint Shift) + { + __m128i const set0 = v.data; + + __m128i const set1 = _mm_set1_epi32(static_cast(Mask)); + __m128i const and1 = _mm_and_si128(set0, set1); + __m128i const sft1 = _mm_slli_epi32(and1, Shift); + + __m128i const set2 = _mm_andnot_si128(set0, _mm_set1_epi32(-1)); + __m128i const and2 = _mm_and_si128(set0, set2); + __m128i const sft2 = _mm_srai_epi32(and2, Shift); + + __m128i const or0 = _mm_or_si128(sft1, sft2); + + return or0; + } + }; + + template + struct compute_bitfieldBitCountStep<4, uint, Q, true, true> + { + GLM_FUNC_QUALIFIER static vec<4, uint, Q> call(vec<4, uint, Q> const& v, uint Mask, uint Shift) + { + __m128i const set0 = v.data; + + __m128i const set1 = _mm_set1_epi32(static_cast(Mask)); + __m128i const and0 = _mm_and_si128(set0, set1); + __m128i const sft0 = _mm_slli_epi32(set0, Shift); + __m128i const and1 = _mm_and_si128(sft0, set1); + __m128i const add0 = _mm_add_epi32(and0, and1); + + return add0; + } + }; +}//namespace detail + +# if GLM_ARCH & GLM_ARCH_AVX_BIT + template<> + GLM_FUNC_QUALIFIER int bitCount(uint x) + { + return _mm_popcnt_u32(x); + } + +# if(GLM_MODEL == GLM_MODEL_64) + template<> + GLM_FUNC_QUALIFIER int bitCount(detail::uint64 x) + { + return static_cast(_mm_popcnt_u64(x)); + } +# endif//GLM_MODEL +# endif//GLM_ARCH + +}//namespace glm + +#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT diff --git a/thirdparty/glm/glm/detail/func_matrix.inl b/thirdparty/glm/glm/detail/func_matrix.inl new file mode 100644 index 000000000000..c2d568ff471d --- /dev/null +++ b/thirdparty/glm/glm/detail/func_matrix.inl @@ -0,0 +1,443 @@ +#include "../geometric.hpp" +#include + +namespace glm{ +namespace detail +{ + template + struct compute_matrixCompMult + { + GLM_FUNC_QUALIFIER static mat call(mat const& x, mat const& y) + { + mat Result; + for(length_t i = 0; i < Result.length(); ++i) + Result[i] = x[i] * y[i]; + return Result; + } + }; + + template + struct compute_matrixCompMult_type { + GLM_FUNC_QUALIFIER static mat call(mat const& x, mat const& y) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_GENTYPE, + "'matrixCompMult' only accept floating-point inputs, include to discard this restriction."); + return detail::compute_matrixCompMult::value>::call(x, y); + } + }; + + template + struct compute_outerProduct { + GLM_FUNC_QUALIFIER static typename detail::outerProduct_trait::type call(vec const& c, vec const& r) + { + typename detail::outerProduct_trait::type m; + for(length_t i = 0; i < m.length(); ++i) + m[i] = c * r[i]; + return m; + } + }; + + template + struct compute_outerProduct_type { + GLM_FUNC_QUALIFIER static typename detail::outerProduct_trait::type call(vec const& c, vec const& r) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_GENTYPE, + "'outerProduct' only accept floating-point inputs, include to discard this restriction."); + + return detail::compute_outerProduct::call(c, r); + } + }; + + template + struct compute_transpose{}; + + template + struct compute_transpose<2, 2, T, Q, Aligned> + { + GLM_FUNC_QUALIFIER static mat<2, 2, T, Q> call(mat<2, 2, T, Q> const& m) + { + mat<2, 2, T, Q> Result; + Result[0][0] = m[0][0]; + Result[0][1] = m[1][0]; + Result[1][0] = m[0][1]; + Result[1][1] = m[1][1]; + return Result; + } + }; + + template + struct compute_transpose<2, 3, T, Q, Aligned> + { + GLM_FUNC_QUALIFIER static mat<3, 2, T, Q> call(mat<2, 3, T, Q> const& m) + { + mat<3,2, T, Q> Result; + Result[0][0] = m[0][0]; + Result[0][1] = m[1][0]; + Result[1][0] = m[0][1]; + Result[1][1] = m[1][1]; + Result[2][0] = m[0][2]; + Result[2][1] = m[1][2]; + return Result; + } + }; + + template + struct compute_transpose<2, 4, T, Q, Aligned> + { + GLM_FUNC_QUALIFIER static mat<4, 2, T, Q> call(mat<2, 4, T, Q> const& m) + { + mat<4, 2, T, Q> Result; + Result[0][0] = m[0][0]; + Result[0][1] = m[1][0]; + Result[1][0] = m[0][1]; + Result[1][1] = m[1][1]; + Result[2][0] = m[0][2]; + Result[2][1] = m[1][2]; + Result[3][0] = m[0][3]; + Result[3][1] = m[1][3]; + return Result; + } + }; + + template + struct compute_transpose<3, 2, T, Q, Aligned> + { + GLM_FUNC_QUALIFIER static mat<2, 3, T, Q> call(mat<3, 2, T, Q> const& m) + { + mat<2, 3, T, Q> Result; + Result[0][0] = m[0][0]; + Result[0][1] = m[1][0]; + Result[0][2] = m[2][0]; + Result[1][0] = m[0][1]; + Result[1][1] = m[1][1]; + Result[1][2] = m[2][1]; + return Result; + } + }; + + template + struct compute_transpose<3, 3, T, Q, Aligned> + { + GLM_FUNC_QUALIFIER static mat<3, 3, T, Q> call(mat<3, 3, T, Q> const& m) + { + mat<3, 3, T, Q> Result; + Result[0][0] = m[0][0]; + Result[0][1] = m[1][0]; + Result[0][2] = m[2][0]; + + Result[1][0] = m[0][1]; + Result[1][1] = m[1][1]; + Result[1][2] = m[2][1]; + + Result[2][0] = m[0][2]; + Result[2][1] = m[1][2]; + Result[2][2] = m[2][2]; + return Result; + } + }; + + template + struct compute_transpose<3, 4, T, Q, Aligned> + { + GLM_FUNC_QUALIFIER static mat<4, 3, T, Q> call(mat<3, 4, T, Q> const& m) + { + mat<4, 3, T, Q> Result; + Result[0][0] = m[0][0]; + Result[0][1] = m[1][0]; + Result[0][2] = m[2][0]; + Result[1][0] = m[0][1]; + Result[1][1] = m[1][1]; + Result[1][2] = m[2][1]; + Result[2][0] = m[0][2]; + Result[2][1] = m[1][2]; + Result[2][2] = m[2][2]; + Result[3][0] = m[0][3]; + Result[3][1] = m[1][3]; + Result[3][2] = m[2][3]; + return Result; + } + }; + + template + struct compute_transpose<4, 2, T, Q, Aligned> + { + GLM_FUNC_QUALIFIER static mat<2, 4, T, Q> call(mat<4, 2, T, Q> const& m) + { + mat<2, 4, T, Q> Result; + Result[0][0] = m[0][0]; + Result[0][1] = m[1][0]; + Result[0][2] = m[2][0]; + Result[0][3] = m[3][0]; + Result[1][0] = m[0][1]; + Result[1][1] = m[1][1]; + Result[1][2] = m[2][1]; + Result[1][3] = m[3][1]; + return Result; + } + }; + + template + struct compute_transpose<4, 3, T, Q, Aligned> + { + GLM_FUNC_QUALIFIER static mat<3, 4, T, Q> call(mat<4, 3, T, Q> const& m) + { + mat<3, 4, T, Q> Result; + Result[0][0] = m[0][0]; + Result[0][1] = m[1][0]; + Result[0][2] = m[2][0]; + Result[0][3] = m[3][0]; + Result[1][0] = m[0][1]; + Result[1][1] = m[1][1]; + Result[1][2] = m[2][1]; + Result[1][3] = m[3][1]; + Result[2][0] = m[0][2]; + Result[2][1] = m[1][2]; + Result[2][2] = m[2][2]; + Result[2][3] = m[3][2]; + return Result; + } + }; + + template + struct compute_transpose<4, 4, T, Q, Aligned> + { + GLM_FUNC_QUALIFIER static mat<4, 4, T, Q> call(mat<4, 4, T, Q> const& m) + { + mat<4, 4, T, Q> Result; + Result[0][0] = m[0][0]; + Result[0][1] = m[1][0]; + Result[0][2] = m[2][0]; + Result[0][3] = m[3][0]; + + Result[1][0] = m[0][1]; + Result[1][1] = m[1][1]; + Result[1][2] = m[2][1]; + Result[1][3] = m[3][1]; + + Result[2][0] = m[0][2]; + Result[2][1] = m[1][2]; + Result[2][2] = m[2][2]; + Result[2][3] = m[3][2]; + + Result[3][0] = m[0][3]; + Result[3][1] = m[1][3]; + Result[3][2] = m[2][3]; + Result[3][3] = m[3][3]; + return Result; + } + }; + + template + struct compute_transpose_type { + GLM_FUNC_QUALIFIER static mat call(mat const& m) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_GENTYPE, + "'transpose' only accept floating-point inputs, include to discard this restriction."); + return detail::compute_transpose::value>::call(m); + } + }; + + template + struct compute_determinant{}; + + template + struct compute_determinant<2, 2, T, Q, Aligned> + { + GLM_FUNC_QUALIFIER static T call(mat<2, 2, T, Q> const& m) + { + return m[0][0] * m[1][1] - m[1][0] * m[0][1]; + } + }; + + template + struct compute_determinant<3, 3, T, Q, Aligned> + { + GLM_FUNC_QUALIFIER static T call(mat<3, 3, T, Q> const& m) + { + return + + m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]) + - m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2]) + + m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]); + } + }; + + template + struct compute_determinant<4, 4, T, Q, Aligned> + { + GLM_FUNC_QUALIFIER static T call(mat<4, 4, T, Q> const& m) + { + T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; + T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; + T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; + T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; + T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; + T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; + + vec<4, T, Q> DetCof( + + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02), + - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04), + + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05), + - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05)); + + return + m[0][0] * DetCof[0] + m[0][1] * DetCof[1] + + m[0][2] * DetCof[2] + m[0][3] * DetCof[3]; + } + }; + + template + struct compute_determinant_type{ + + GLM_FUNC_QUALIFIER static T call(mat const& m) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_GENTYPE, + "'determinant' only accept floating-point inputs, include to discard this restriction."); + return detail::compute_determinant::value>::call(m); + } + }; + + template + struct compute_inverse{}; + + template + struct compute_inverse<2, 2, T, Q, Aligned> + { + GLM_FUNC_QUALIFIER static mat<2, 2, T, Q> call(mat<2, 2, T, Q> const& m) + { + T OneOverDeterminant = static_cast(1) / ( + + m[0][0] * m[1][1] + - m[1][0] * m[0][1]); + + mat<2, 2, T, Q> Inverse( + + m[1][1] * OneOverDeterminant, + - m[0][1] * OneOverDeterminant, + - m[1][0] * OneOverDeterminant, + + m[0][0] * OneOverDeterminant); + + return Inverse; + } + }; + + template + struct compute_inverse<3, 3, T, Q, Aligned> + { + GLM_FUNC_QUALIFIER static mat<3, 3, T, Q> call(mat<3, 3, T, Q> const& m) + { + T OneOverDeterminant = static_cast(1) / ( + + m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]) + - m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2]) + + m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2])); + + mat<3, 3, T, Q> Inverse; + Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]) * OneOverDeterminant; + Inverse[1][0] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]) * OneOverDeterminant; + Inverse[2][0] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]) * OneOverDeterminant; + Inverse[0][1] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]) * OneOverDeterminant; + Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]) * OneOverDeterminant; + Inverse[2][1] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]) * OneOverDeterminant; + Inverse[0][2] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]) * OneOverDeterminant; + Inverse[1][2] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]) * OneOverDeterminant; + Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]) * OneOverDeterminant; + + return Inverse; + } + }; + + template + struct compute_inverse<4, 4, T, Q, Aligned> + { + GLM_FUNC_QUALIFIER static mat<4, 4, T, Q> call(mat<4, 4, T, Q> const& m) + { + T Coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; + T Coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3]; + T Coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3]; + + T Coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; + T Coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3]; + T Coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3]; + + T Coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; + T Coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2]; + T Coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2]; + + T Coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; + T Coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3]; + T Coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3]; + + T Coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; + T Coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2]; + T Coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2]; + + T Coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; + T Coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1]; + T Coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1]; + + vec<4, T, Q> Fac0(Coef00, Coef00, Coef02, Coef03); + vec<4, T, Q> Fac1(Coef04, Coef04, Coef06, Coef07); + vec<4, T, Q> Fac2(Coef08, Coef08, Coef10, Coef11); + vec<4, T, Q> Fac3(Coef12, Coef12, Coef14, Coef15); + vec<4, T, Q> Fac4(Coef16, Coef16, Coef18, Coef19); + vec<4, T, Q> Fac5(Coef20, Coef20, Coef22, Coef23); + + vec<4, T, Q> Vec0(m[1][0], m[0][0], m[0][0], m[0][0]); + vec<4, T, Q> Vec1(m[1][1], m[0][1], m[0][1], m[0][1]); + vec<4, T, Q> Vec2(m[1][2], m[0][2], m[0][2], m[0][2]); + vec<4, T, Q> Vec3(m[1][3], m[0][3], m[0][3], m[0][3]); + + vec<4, T, Q> Inv0(Vec1 * Fac0 - Vec2 * Fac1 + Vec3 * Fac2); + vec<4, T, Q> Inv1(Vec0 * Fac0 - Vec2 * Fac3 + Vec3 * Fac4); + vec<4, T, Q> Inv2(Vec0 * Fac1 - Vec1 * Fac3 + Vec3 * Fac5); + vec<4, T, Q> Inv3(Vec0 * Fac2 - Vec1 * Fac4 + Vec2 * Fac5); + + vec<4, T, Q> SignA(+1, -1, +1, -1); + vec<4, T, Q> SignB(-1, +1, -1, +1); + mat<4, 4, T, Q> Inverse(Inv0 * SignA, Inv1 * SignB, Inv2 * SignA, Inv3 * SignB); + + vec<4, T, Q> Row0(Inverse[0][0], Inverse[1][0], Inverse[2][0], Inverse[3][0]); + + vec<4, T, Q> Dot0(m[0] * Row0); + T Dot1 = (Dot0.x + Dot0.y) + (Dot0.z + Dot0.w); + + T OneOverDeterminant = static_cast(1) / Dot1; + + return Inverse * OneOverDeterminant; + } + }; +}//namespace detail + + template + GLM_FUNC_QUALIFIER mat matrixCompMult(mat const& x, mat const& y) + { + return detail::compute_matrixCompMult_type::is_iec559, detail::is_aligned::value>::call(x, y); + } + + template + GLM_FUNC_QUALIFIER typename detail::outerProduct_trait::type outerProduct(vec const& c, vec const& r) + { + return detail::compute_outerProduct_type::is_iec559>::call(c, r); + } + + template + GLM_FUNC_QUALIFIER typename mat::transpose_type transpose(mat const& m) + { + return detail::compute_transpose_type::is_iec559, detail::is_aligned::value>::call(m); + } + + template + GLM_FUNC_QUALIFIER T determinant(mat const& m) + { + return detail::compute_determinant_type::is_iec559, detail::is_aligned::value>::call(m); + } + + template + GLM_FUNC_QUALIFIER mat inverse(mat const& m) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_GENTYPE, "'inverse' only accept floating-point inputs"); + return detail::compute_inverse::value>::call(m); + } +}//namespace glm + +#if GLM_CONFIG_SIMD == GLM_ENABLE +# include "func_matrix_simd.inl" +#endif + diff --git a/thirdparty/glm/glm/detail/func_matrix_simd.inl b/thirdparty/glm/glm/detail/func_matrix_simd.inl new file mode 100644 index 000000000000..b9bb4615de67 --- /dev/null +++ b/thirdparty/glm/glm/detail/func_matrix_simd.inl @@ -0,0 +1,252 @@ +#if GLM_ARCH & GLM_ARCH_SSE2_BIT + +#include "type_mat4x4.hpp" +#include "../geometric.hpp" +#include "../simd/matrix.h" +#include + +namespace glm{ +namespace detail +{ +# if GLM_CONFIG_ALIGNED_GENTYPES == GLM_ENABLE + template + struct compute_matrixCompMult<4, 4, float, Q, true> + { + GLM_STATIC_ASSERT(detail::is_aligned::value, "Specialization requires aligned"); + + GLM_FUNC_QUALIFIER static mat<4, 4, float, Q> call(mat<4, 4, float, Q> const& x, mat<4, 4, float, Q> const& y) + { + mat<4, 4, float, Q> Result; + glm_mat4_matrixCompMult( + &x[0].data, + &y[0].data, + &Result[0].data); + return Result; + } + }; +# endif + + template + struct compute_transpose<4, 4, float, Q, true> + { + GLM_FUNC_QUALIFIER static mat<4, 4, float, Q> call(mat<4, 4, float, Q> const& m) + { + mat<4, 4, float, Q> Result; + glm_mat4_transpose(&m[0].data, &Result[0].data); + return Result; + } + }; + + template + struct compute_determinant<4, 4, float, Q, true> + { + GLM_FUNC_QUALIFIER static float call(mat<4, 4, float, Q> const& m) + { + return _mm_cvtss_f32(glm_mat4_determinant(&m[0].data)); + } + }; + + template + struct compute_inverse<4, 4, float, Q, true> + { + GLM_FUNC_QUALIFIER static mat<4, 4, float, Q> call(mat<4, 4, float, Q> const& m) + { + mat<4, 4, float, Q> Result; + glm_mat4_inverse(&m[0].data, &Result[0].data); + return Result; + } + }; +}//namespace detail + +# if GLM_CONFIG_ALIGNED_GENTYPES == GLM_ENABLE + template<> + GLM_FUNC_QUALIFIER mat<4, 4, float, aligned_lowp> outerProduct<4, 4, float, aligned_lowp>(vec<4, float, aligned_lowp> const& c, vec<4, float, aligned_lowp> const& r) + { + __m128 NativeResult[4]; + glm_mat4_outerProduct(c.data, r.data, NativeResult); + mat<4, 4, float, aligned_lowp> Result; + std::memcpy(&Result[0], &NativeResult[0], sizeof(Result)); + return Result; + } + + template<> + GLM_FUNC_QUALIFIER mat<4, 4, float, aligned_mediump> outerProduct<4, 4, float, aligned_mediump>(vec<4, float, aligned_mediump> const& c, vec<4, float, aligned_mediump> const& r) + { + __m128 NativeResult[4]; + glm_mat4_outerProduct(c.data, r.data, NativeResult); + mat<4, 4, float, aligned_mediump> Result; + std::memcpy(&Result[0], &NativeResult[0], sizeof(Result)); + return Result; + } + + template<> + GLM_FUNC_QUALIFIER mat<4, 4, float, aligned_highp> outerProduct<4, 4, float, aligned_highp>(vec<4, float, aligned_highp> const& c, vec<4, float, aligned_highp> const& r) + { + __m128 NativeResult[4]; + glm_mat4_outerProduct(c.data, r.data, NativeResult); + mat<4, 4, float, aligned_highp> Result; + std::memcpy(&Result[0], &NativeResult[0], sizeof(Result)); + return Result; + } +# endif +}//namespace glm + +#elif GLM_ARCH & GLM_ARCH_NEON_BIT + +namespace glm { +#if GLM_LANG & GLM_LANG_CXX11_FLAG + template + GLM_FUNC_QUALIFIER + typename std::enable_if::value, mat<4, 4, float, Q>>::type + operator*(mat<4, 4, float, Q> const & m1, mat<4, 4, float, Q> const & m2) + { + auto MulRow = [&](int l) { + float32x4_t const SrcA = m2[l].data; + + float32x4_t r = neon::mul_lane(m1[0].data, SrcA, 0); + r = neon::madd_lane(r, m1[1].data, SrcA, 1); + r = neon::madd_lane(r, m1[2].data, SrcA, 2); + r = neon::madd_lane(r, m1[3].data, SrcA, 3); + + return r; + }; + + mat<4, 4, float, aligned_highp> Result; + Result[0].data = MulRow(0); + Result[1].data = MulRow(1); + Result[2].data = MulRow(2); + Result[3].data = MulRow(3); + + return Result; + } +#endif // CXX11 + +namespace detail +{ + template + struct compute_inverse<4, 4, float, Q, true> + { + GLM_FUNC_QUALIFIER static mat<4, 4, float, Q> call(mat<4, 4, float, Q> const& m) + { + float32x4_t const& m0 = m[0].data; + float32x4_t const& m1 = m[1].data; + float32x4_t const& m2 = m[2].data; + float32x4_t const& m3 = m[3].data; + + // m[2][2] * m[3][3] - m[3][2] * m[2][3]; + // m[2][2] * m[3][3] - m[3][2] * m[2][3]; + // m[1][2] * m[3][3] - m[3][2] * m[1][3]; + // m[1][2] * m[2][3] - m[2][2] * m[1][3]; + + float32x4_t Fac0; + { + float32x4_t w0 = vcombine_f32(neon::dup_lane(m2, 2), neon::dup_lane(m1, 2)); + float32x4_t w1 = neon::copy_lane(neon::dupq_lane(m3, 3), 3, m2, 3); + float32x4_t w2 = neon::copy_lane(neon::dupq_lane(m3, 2), 3, m2, 2); + float32x4_t w3 = vcombine_f32(neon::dup_lane(m2, 3), neon::dup_lane(m1, 3)); + Fac0 = w0 * w1 - w2 * w3; + } + + // m[2][1] * m[3][3] - m[3][1] * m[2][3]; + // m[2][1] * m[3][3] - m[3][1] * m[2][3]; + // m[1][1] * m[3][3] - m[3][1] * m[1][3]; + // m[1][1] * m[2][3] - m[2][1] * m[1][3]; + + float32x4_t Fac1; + { + float32x4_t w0 = vcombine_f32(neon::dup_lane(m2, 1), neon::dup_lane(m1, 1)); + float32x4_t w1 = neon::copy_lane(neon::dupq_lane(m3, 3), 3, m2, 3); + float32x4_t w2 = neon::copy_lane(neon::dupq_lane(m3, 1), 3, m2, 1); + float32x4_t w3 = vcombine_f32(neon::dup_lane(m2, 3), neon::dup_lane(m1, 3)); + Fac1 = w0 * w1 - w2 * w3; + } + + // m[2][1] * m[3][2] - m[3][1] * m[2][2]; + // m[2][1] * m[3][2] - m[3][1] * m[2][2]; + // m[1][1] * m[3][2] - m[3][1] * m[1][2]; + // m[1][1] * m[2][2] - m[2][1] * m[1][2]; + + float32x4_t Fac2; + { + float32x4_t w0 = vcombine_f32(neon::dup_lane(m2, 1), neon::dup_lane(m1, 1)); + float32x4_t w1 = neon::copy_lane(neon::dupq_lane(m3, 2), 3, m2, 2); + float32x4_t w2 = neon::copy_lane(neon::dupq_lane(m3, 1), 3, m2, 1); + float32x4_t w3 = vcombine_f32(neon::dup_lane(m2, 2), neon::dup_lane(m1, 2)); + Fac2 = w0 * w1 - w2 * w3; + } + + // m[2][0] * m[3][3] - m[3][0] * m[2][3]; + // m[2][0] * m[3][3] - m[3][0] * m[2][3]; + // m[1][0] * m[3][3] - m[3][0] * m[1][3]; + // m[1][0] * m[2][3] - m[2][0] * m[1][3]; + + float32x4_t Fac3; + { + float32x4_t w0 = vcombine_f32(neon::dup_lane(m2, 0), neon::dup_lane(m1, 0)); + float32x4_t w1 = neon::copy_lane(neon::dupq_lane(m3, 3), 3, m2, 3); + float32x4_t w2 = neon::copy_lane(neon::dupq_lane(m3, 0), 3, m2, 0); + float32x4_t w3 = vcombine_f32(neon::dup_lane(m2, 3), neon::dup_lane(m1, 3)); + Fac3 = w0 * w1 - w2 * w3; + } + + // m[2][0] * m[3][2] - m[3][0] * m[2][2]; + // m[2][0] * m[3][2] - m[3][0] * m[2][2]; + // m[1][0] * m[3][2] - m[3][0] * m[1][2]; + // m[1][0] * m[2][2] - m[2][0] * m[1][2]; + + float32x4_t Fac4; + { + float32x4_t w0 = vcombine_f32(neon::dup_lane(m2, 0), neon::dup_lane(m1, 0)); + float32x4_t w1 = neon::copy_lane(neon::dupq_lane(m3, 2), 3, m2, 2); + float32x4_t w2 = neon::copy_lane(neon::dupq_lane(m3, 0), 3, m2, 0); + float32x4_t w3 = vcombine_f32(neon::dup_lane(m2, 2), neon::dup_lane(m1, 2)); + Fac4 = w0 * w1 - w2 * w3; + } + + // m[2][0] * m[3][1] - m[3][0] * m[2][1]; + // m[2][0] * m[3][1] - m[3][0] * m[2][1]; + // m[1][0] * m[3][1] - m[3][0] * m[1][1]; + // m[1][0] * m[2][1] - m[2][0] * m[1][1]; + + float32x4_t Fac5; + { + float32x4_t w0 = vcombine_f32(neon::dup_lane(m2, 0), neon::dup_lane(m1, 0)); + float32x4_t w1 = neon::copy_lane(neon::dupq_lane(m3, 1), 3, m2, 1); + float32x4_t w2 = neon::copy_lane(neon::dupq_lane(m3, 0), 3, m2, 0); + float32x4_t w3 = vcombine_f32(neon::dup_lane(m2, 1), neon::dup_lane(m1, 1)); + Fac5 = w0 * w1 - w2 * w3; + } + + float32x4_t Vec0 = neon::copy_lane(neon::dupq_lane(m0, 0), 0, m1, 0); // (m[1][0], m[0][0], m[0][0], m[0][0]); + float32x4_t Vec1 = neon::copy_lane(neon::dupq_lane(m0, 1), 0, m1, 1); // (m[1][1], m[0][1], m[0][1], m[0][1]); + float32x4_t Vec2 = neon::copy_lane(neon::dupq_lane(m0, 2), 0, m1, 2); // (m[1][2], m[0][2], m[0][2], m[0][2]); + float32x4_t Vec3 = neon::copy_lane(neon::dupq_lane(m0, 3), 0, m1, 3); // (m[1][3], m[0][3], m[0][3], m[0][3]); + + float32x4_t Inv0 = Vec1 * Fac0 - Vec2 * Fac1 + Vec3 * Fac2; + float32x4_t Inv1 = Vec0 * Fac0 - Vec2 * Fac3 + Vec3 * Fac4; + float32x4_t Inv2 = Vec0 * Fac1 - Vec1 * Fac3 + Vec3 * Fac5; + float32x4_t Inv3 = Vec0 * Fac2 - Vec1 * Fac4 + Vec2 * Fac5; + + float32x4_t r0 = float32x4_t{-1, +1, -1, +1} * Inv0; + float32x4_t r1 = float32x4_t{+1, -1, +1, -1} * Inv1; + float32x4_t r2 = float32x4_t{-1, +1, -1, +1} * Inv2; + float32x4_t r3 = float32x4_t{+1, -1, +1, -1} * Inv3; + + float32x4_t det = neon::mul_lane(r0, m0, 0); + det = neon::madd_lane(det, r1, m0, 1); + det = neon::madd_lane(det, r2, m0, 2); + det = neon::madd_lane(det, r3, m0, 3); + + float32x4_t rdet = vdupq_n_f32(1 / vgetq_lane_f32(det, 0)); + + mat<4, 4, float, Q> r; + r[0].data = vmulq_f32(r0, rdet); + r[1].data = vmulq_f32(r1, rdet); + r[2].data = vmulq_f32(r2, rdet); + r[3].data = vmulq_f32(r3, rdet); + return r; + } + }; +}//namespace detail +}//namespace glm +#endif diff --git a/thirdparty/glm/glm/detail/func_packing.inl b/thirdparty/glm/glm/detail/func_packing.inl new file mode 100644 index 000000000000..234b093c081c --- /dev/null +++ b/thirdparty/glm/glm/detail/func_packing.inl @@ -0,0 +1,189 @@ +/// @ref core +/// @file glm/detail/func_packing.inl + +#include "../common.hpp" +#include "type_half.hpp" + +namespace glm +{ + GLM_FUNC_QUALIFIER uint packUnorm2x16(vec2 const& v) + { + union + { + unsigned short in[2]; + uint out; + } u; + + vec<2, unsigned short, defaultp> result(round(clamp(v, 0.0f, 1.0f) * 65535.0f)); + + u.in[0] = result[0]; + u.in[1] = result[1]; + + return u.out; + } + + GLM_FUNC_QUALIFIER vec2 unpackUnorm2x16(uint p) + { + union + { + uint in; + unsigned short out[2]; + } u; + + u.in = p; + + return vec2(u.out[0], u.out[1]) * 1.5259021896696421759365224689097e-5f; + } + + GLM_FUNC_QUALIFIER uint packSnorm2x16(vec2 const& v) + { + union + { + signed short in[2]; + uint out; + } u; + + vec<2, short, defaultp> result(round(clamp(v, -1.0f, 1.0f) * 32767.0f)); + + u.in[0] = result[0]; + u.in[1] = result[1]; + + return u.out; + } + + GLM_FUNC_QUALIFIER vec2 unpackSnorm2x16(uint p) + { + union + { + uint in; + signed short out[2]; + } u; + + u.in = p; + + return clamp(vec2(u.out[0], u.out[1]) * 3.0518509475997192297128208258309e-5f, -1.0f, 1.0f); + } + + GLM_FUNC_QUALIFIER uint packUnorm4x8(vec4 const& v) + { + union + { + unsigned char in[4]; + uint out; + } u; + + vec<4, unsigned char, defaultp> result(round(clamp(v, 0.0f, 1.0f) * 255.0f)); + + u.in[0] = result[0]; + u.in[1] = result[1]; + u.in[2] = result[2]; + u.in[3] = result[3]; + + return u.out; + } + + GLM_FUNC_QUALIFIER vec4 unpackUnorm4x8(uint p) + { + union + { + uint in; + unsigned char out[4]; + } u; + + u.in = p; + + return vec4(u.out[0], u.out[1], u.out[2], u.out[3]) * 0.0039215686274509803921568627451f; + } + + GLM_FUNC_QUALIFIER uint packSnorm4x8(vec4 const& v) + { + union + { + signed char in[4]; + uint out; + } u; + + vec<4, signed char, defaultp> result(round(clamp(v, -1.0f, 1.0f) * 127.0f)); + + u.in[0] = result[0]; + u.in[1] = result[1]; + u.in[2] = result[2]; + u.in[3] = result[3]; + + return u.out; + } + + GLM_FUNC_QUALIFIER glm::vec4 unpackSnorm4x8(uint p) + { + union + { + uint in; + signed char out[4]; + } u; + + u.in = p; + + return clamp(vec4(u.out[0], u.out[1], u.out[2], u.out[3]) * 0.0078740157480315f, -1.0f, 1.0f); + } + + GLM_FUNC_QUALIFIER double packDouble2x32(uvec2 const& v) + { + union + { + uint in[2]; + double out; + } u; + + u.in[0] = v[0]; + u.in[1] = v[1]; + + return u.out; + } + + GLM_FUNC_QUALIFIER uvec2 unpackDouble2x32(double v) + { + union + { + double in; + uint out[2]; + } u; + + u.in = v; + + return uvec2(u.out[0], u.out[1]); + } + + GLM_FUNC_QUALIFIER uint packHalf2x16(vec2 const& v) + { + union + { + signed short in[2]; + uint out; + } u; + + u.in[0] = detail::toFloat16(v.x); + u.in[1] = detail::toFloat16(v.y); + + return u.out; + } + + GLM_FUNC_QUALIFIER vec2 unpackHalf2x16(uint v) + { + union + { + uint in; + signed short out[2]; + } u; + + u.in = v; + + return vec2( + detail::toFloat32(u.out[0]), + detail::toFloat32(u.out[1])); + } +}//namespace glm + +#if GLM_CONFIG_SIMD == GLM_ENABLE +# include "func_packing_simd.inl" +#endif + diff --git a/thirdparty/glm/glm/detail/func_packing_simd.inl b/thirdparty/glm/glm/detail/func_packing_simd.inl new file mode 100644 index 000000000000..fd0fe8b7d9b4 --- /dev/null +++ b/thirdparty/glm/glm/detail/func_packing_simd.inl @@ -0,0 +1,6 @@ +namespace glm{ +namespace detail +{ + +}//namespace detail +}//namespace glm diff --git a/thirdparty/glm/glm/detail/func_trigonometric.inl b/thirdparty/glm/glm/detail/func_trigonometric.inl new file mode 100644 index 000000000000..9e6d9cfb1ce7 --- /dev/null +++ b/thirdparty/glm/glm/detail/func_trigonometric.inl @@ -0,0 +1,197 @@ +#include "_vectorize.hpp" +#include +#include + +namespace glm +{ + // radians + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType radians(genType degrees) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'radians' only accept floating-point input"); + + return degrees * static_cast(0.01745329251994329576923690768489); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec radians(vec const& v) + { + return detail::functor1::call(radians, v); + } + + // degrees + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType degrees(genType radians) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'degrees' only accept floating-point input"); + + return radians * static_cast(57.295779513082320876798154814105); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec degrees(vec const& v) + { + return detail::functor1::call(degrees, v); + } + + // sin + using ::std::sin; + + template + GLM_FUNC_QUALIFIER vec sin(vec const& v) + { + return detail::functor1::call(sin, v); + } + + // cos + using std::cos; + + template + GLM_FUNC_QUALIFIER vec cos(vec const& v) + { + return detail::functor1::call(cos, v); + } + + // tan + using std::tan; + + template + GLM_FUNC_QUALIFIER vec tan(vec const& v) + { + return detail::functor1::call(tan, v); + } + + // asin + using std::asin; + + template + GLM_FUNC_QUALIFIER vec asin(vec const& v) + { + return detail::functor1::call(asin, v); + } + + // acos + using std::acos; + + template + GLM_FUNC_QUALIFIER vec acos(vec const& v) + { + return detail::functor1::call(acos, v); + } + + // atan + template + GLM_FUNC_QUALIFIER genType atan(genType y, genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'atan' only accept floating-point input"); + + return ::std::atan2(y, x); + } + + template + GLM_FUNC_QUALIFIER vec atan(vec const& y, vec const& x) + { + return detail::functor2::call(::std::atan2, y, x); + } + + using std::atan; + + template + GLM_FUNC_QUALIFIER vec atan(vec const& v) + { + return detail::functor1::call(atan, v); + } + + // sinh + using std::sinh; + + template + GLM_FUNC_QUALIFIER vec sinh(vec const& v) + { + return detail::functor1::call(sinh, v); + } + + // cosh + using std::cosh; + + template + GLM_FUNC_QUALIFIER vec cosh(vec const& v) + { + return detail::functor1::call(cosh, v); + } + + // tanh + using std::tanh; + + template + GLM_FUNC_QUALIFIER vec tanh(vec const& v) + { + return detail::functor1::call(tanh, v); + } + + // asinh +# if GLM_HAS_CXX11_STL + using std::asinh; +# else + template + GLM_FUNC_QUALIFIER genType asinh(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'asinh' only accept floating-point input"); + + return (x < static_cast(0) ? static_cast(-1) : (x > static_cast(0) ? static_cast(1) : static_cast(0))) * log(std::abs(x) + sqrt(static_cast(1) + x * x)); + } +# endif + + template + GLM_FUNC_QUALIFIER vec asinh(vec const& v) + { + return detail::functor1::call(asinh, v); + } + + // acosh +# if GLM_HAS_CXX11_STL + using std::acosh; +# else + template + GLM_FUNC_QUALIFIER genType acosh(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'acosh' only accept floating-point input"); + + if(x < static_cast(1)) + return static_cast(0); + return log(x + sqrt(x * x - static_cast(1))); + } +# endif + + template + GLM_FUNC_QUALIFIER vec acosh(vec const& v) + { + return detail::functor1::call(acosh, v); + } + + // atanh +# if GLM_HAS_CXX11_STL + using std::atanh; +# else + template + GLM_FUNC_QUALIFIER genType atanh(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'atanh' only accept floating-point input"); + + if(std::abs(x) >= static_cast(1)) + return 0; + return static_cast(0.5) * log((static_cast(1) + x) / (static_cast(1) - x)); + } +# endif + + template + GLM_FUNC_QUALIFIER vec atanh(vec const& v) + { + return detail::functor1::call(atanh, v); + } +}//namespace glm + +#if GLM_CONFIG_SIMD == GLM_ENABLE +# include "func_trigonometric_simd.inl" +#endif + diff --git a/thirdparty/glm/glm/detail/func_trigonometric_simd.inl b/thirdparty/glm/glm/detail/func_trigonometric_simd.inl new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/thirdparty/glm/glm/detail/func_vector_relational.inl b/thirdparty/glm/glm/detail/func_vector_relational.inl new file mode 100644 index 000000000000..80c9e87fcb97 --- /dev/null +++ b/thirdparty/glm/glm/detail/func_vector_relational.inl @@ -0,0 +1,87 @@ +namespace glm +{ + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec lessThan(vec const& x, vec const& y) + { + vec Result(true); + for(length_t i = 0; i < L; ++i) + Result[i] = x[i] < y[i]; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec lessThanEqual(vec const& x, vec const& y) + { + vec Result(true); + for(length_t i = 0; i < L; ++i) + Result[i] = x[i] <= y[i]; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec greaterThan(vec const& x, vec const& y) + { + vec Result(true); + for(length_t i = 0; i < L; ++i) + Result[i] = x[i] > y[i]; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec greaterThanEqual(vec const& x, vec const& y) + { + vec Result(true); + for(length_t i = 0; i < L; ++i) + Result[i] = x[i] >= y[i]; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec equal(vec const& x, vec const& y) + { + vec Result(true); + for(length_t i = 0; i < L; ++i) + Result[i] = x[i] == y[i]; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec notEqual(vec const& x, vec const& y) + { + vec Result(true); + for(length_t i = 0; i < L; ++i) + Result[i] = x[i] != y[i]; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool any(vec const& v) + { + bool Result = false; + for(length_t i = 0; i < L; ++i) + Result = Result || v[i]; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool all(vec const& v) + { + bool Result = true; + for(length_t i = 0; i < L; ++i) + Result = Result && v[i]; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec not_(vec const& v) + { + vec Result(true); + for(length_t i = 0; i < L; ++i) + Result[i] = !v[i]; + return Result; + } +}//namespace glm + +#if GLM_CONFIG_SIMD == GLM_ENABLE +# include "func_vector_relational_simd.inl" +#endif diff --git a/thirdparty/glm/glm/detail/func_vector_relational_simd.inl b/thirdparty/glm/glm/detail/func_vector_relational_simd.inl new file mode 100644 index 000000000000..fd0fe8b7d9b4 --- /dev/null +++ b/thirdparty/glm/glm/detail/func_vector_relational_simd.inl @@ -0,0 +1,6 @@ +namespace glm{ +namespace detail +{ + +}//namespace detail +}//namespace glm diff --git a/thirdparty/glm/glm/detail/glm.cpp b/thirdparty/glm/glm/detail/glm.cpp new file mode 100644 index 000000000000..e0755bd65d46 --- /dev/null +++ b/thirdparty/glm/glm/detail/glm.cpp @@ -0,0 +1,263 @@ +/// @ref core +/// @file glm/glm.cpp + +#ifndef GLM_ENABLE_EXPERIMENTAL +#define GLM_ENABLE_EXPERIMENTAL +#endif +#include +#include +#include +#include +#include +#include + +namespace glm +{ +// tvec1 type explicit instantiation +template struct vec<1, uint8, lowp>; +template struct vec<1, uint16, lowp>; +template struct vec<1, uint32, lowp>; +template struct vec<1, uint64, lowp>; +template struct vec<1, int8, lowp>; +template struct vec<1, int16, lowp>; +template struct vec<1, int32, lowp>; +template struct vec<1, int64, lowp>; +template struct vec<1, float32, lowp>; +template struct vec<1, float64, lowp>; + +template struct vec<1, uint8, mediump>; +template struct vec<1, uint16, mediump>; +template struct vec<1, uint32, mediump>; +template struct vec<1, uint64, mediump>; +template struct vec<1, int8, mediump>; +template struct vec<1, int16, mediump>; +template struct vec<1, int32, mediump>; +template struct vec<1, int64, mediump>; +template struct vec<1, float32, mediump>; +template struct vec<1, float64, mediump>; + +template struct vec<1, uint8, highp>; +template struct vec<1, uint16, highp>; +template struct vec<1, uint32, highp>; +template struct vec<1, uint64, highp>; +template struct vec<1, int8, highp>; +template struct vec<1, int16, highp>; +template struct vec<1, int32, highp>; +template struct vec<1, int64, highp>; +template struct vec<1, float32, highp>; +template struct vec<1, float64, highp>; + +// tvec2 type explicit instantiation +template struct vec<2, uint8, lowp>; +template struct vec<2, uint16, lowp>; +template struct vec<2, uint32, lowp>; +template struct vec<2, uint64, lowp>; +template struct vec<2, int8, lowp>; +template struct vec<2, int16, lowp>; +template struct vec<2, int32, lowp>; +template struct vec<2, int64, lowp>; +template struct vec<2, float32, lowp>; +template struct vec<2, float64, lowp>; + +template struct vec<2, uint8, mediump>; +template struct vec<2, uint16, mediump>; +template struct vec<2, uint32, mediump>; +template struct vec<2, uint64, mediump>; +template struct vec<2, int8, mediump>; +template struct vec<2, int16, mediump>; +template struct vec<2, int32, mediump>; +template struct vec<2, int64, mediump>; +template struct vec<2, float32, mediump>; +template struct vec<2, float64, mediump>; + +template struct vec<2, uint8, highp>; +template struct vec<2, uint16, highp>; +template struct vec<2, uint32, highp>; +template struct vec<2, uint64, highp>; +template struct vec<2, int8, highp>; +template struct vec<2, int16, highp>; +template struct vec<2, int32, highp>; +template struct vec<2, int64, highp>; +template struct vec<2, float32, highp>; +template struct vec<2, float64, highp>; + +// tvec3 type explicit instantiation +template struct vec<3, uint8, lowp>; +template struct vec<3, uint16, lowp>; +template struct vec<3, uint32, lowp>; +template struct vec<3, uint64, lowp>; +template struct vec<3, int8, lowp>; +template struct vec<3, int16, lowp>; +template struct vec<3, int32, lowp>; +template struct vec<3, int64, lowp>; +template struct vec<3, float32, lowp>; +template struct vec<3, float64, lowp>; + +template struct vec<3, uint8, mediump>; +template struct vec<3, uint16, mediump>; +template struct vec<3, uint32, mediump>; +template struct vec<3, uint64, mediump>; +template struct vec<3, int8, mediump>; +template struct vec<3, int16, mediump>; +template struct vec<3, int32, mediump>; +template struct vec<3, int64, mediump>; +template struct vec<3, float32, mediump>; +template struct vec<3, float64, mediump>; + +template struct vec<3, uint8, highp>; +template struct vec<3, uint16, highp>; +template struct vec<3, uint32, highp>; +template struct vec<3, uint64, highp>; +template struct vec<3, int8, highp>; +template struct vec<3, int16, highp>; +template struct vec<3, int32, highp>; +template struct vec<3, int64, highp>; +template struct vec<3, float32, highp>; +template struct vec<3, float64, highp>; + +// tvec4 type explicit instantiation +template struct vec<4, uint8, lowp>; +template struct vec<4, uint16, lowp>; +template struct vec<4, uint32, lowp>; +template struct vec<4, uint64, lowp>; +template struct vec<4, int8, lowp>; +template struct vec<4, int16, lowp>; +template struct vec<4, int32, lowp>; +template struct vec<4, int64, lowp>; +template struct vec<4, float32, lowp>; +template struct vec<4, float64, lowp>; + +template struct vec<4, uint8, mediump>; +template struct vec<4, uint16, mediump>; +template struct vec<4, uint32, mediump>; +template struct vec<4, uint64, mediump>; +template struct vec<4, int8, mediump>; +template struct vec<4, int16, mediump>; +template struct vec<4, int32, mediump>; +template struct vec<4, int64, mediump>; +template struct vec<4, float32, mediump>; +template struct vec<4, float64, mediump>; + +template struct vec<4, uint8, highp>; +template struct vec<4, uint16, highp>; +template struct vec<4, uint32, highp>; +template struct vec<4, uint64, highp>; +template struct vec<4, int8, highp>; +template struct vec<4, int16, highp>; +template struct vec<4, int32, highp>; +template struct vec<4, int64, highp>; +template struct vec<4, float32, highp>; +template struct vec<4, float64, highp>; + +// tmat2x2 type explicit instantiation +template struct mat<2, 2, float32, lowp>; +template struct mat<2, 2, float64, lowp>; + +template struct mat<2, 2, float32, mediump>; +template struct mat<2, 2, float64, mediump>; + +template struct mat<2, 2, float32, highp>; +template struct mat<2, 2, float64, highp>; + +// tmat2x3 type explicit instantiation +template struct mat<2, 3, float32, lowp>; +template struct mat<2, 3, float64, lowp>; + +template struct mat<2, 3, float32, mediump>; +template struct mat<2, 3, float64, mediump>; + +template struct mat<2, 3, float32, highp>; +template struct mat<2, 3, float64, highp>; + +// tmat2x4 type explicit instantiation +template struct mat<2, 4, float32, lowp>; +template struct mat<2, 4, float64, lowp>; + +template struct mat<2, 4, float32, mediump>; +template struct mat<2, 4, float64, mediump>; + +template struct mat<2, 4, float32, highp>; +template struct mat<2, 4, float64, highp>; + +// tmat3x2 type explicit instantiation +template struct mat<3, 2, float32, lowp>; +template struct mat<3, 2, float64, lowp>; + +template struct mat<3, 2, float32, mediump>; +template struct mat<3, 2, float64, mediump>; + +template struct mat<3, 2, float32, highp>; +template struct mat<3, 2, float64, highp>; + +// tmat3x3 type explicit instantiation +template struct mat<3, 3, float32, lowp>; +template struct mat<3, 3, float64, lowp>; + +template struct mat<3, 3, float32, mediump>; +template struct mat<3, 3, float64, mediump>; + +template struct mat<3, 3, float32, highp>; +template struct mat<3, 3, float64, highp>; + +// tmat3x4 type explicit instantiation +template struct mat<3, 4, float32, lowp>; +template struct mat<3, 4, float64, lowp>; + +template struct mat<3, 4, float32, mediump>; +template struct mat<3, 4, float64, mediump>; + +template struct mat<3, 4, float32, highp>; +template struct mat<3, 4, float64, highp>; + +// tmat4x2 type explicit instantiation +template struct mat<4, 2, float32, lowp>; +template struct mat<4, 2, float64, lowp>; + +template struct mat<4, 2, float32, mediump>; +template struct mat<4, 2, float64, mediump>; + +template struct mat<4, 2, float32, highp>; +template struct mat<4, 2, float64, highp>; + +// tmat4x3 type explicit instantiation +template struct mat<4, 3, float32, lowp>; +template struct mat<4, 3, float64, lowp>; + +template struct mat<4, 3, float32, mediump>; +template struct mat<4, 3, float64, mediump>; + +template struct mat<4, 3, float32, highp>; +template struct mat<4, 3, float64, highp>; + +// tmat4x4 type explicit instantiation +template struct mat<4, 4, float32, lowp>; +template struct mat<4, 4, float64, lowp>; + +template struct mat<4, 4, float32, mediump>; +template struct mat<4, 4, float64, mediump>; + +template struct mat<4, 4, float32, highp>; +template struct mat<4, 4, float64, highp>; + +// tquat type explicit instantiation +template struct qua; +template struct qua; + +template struct qua; +template struct qua; + +template struct qua; +template struct qua; + +//tdualquat type explicit instantiation +template struct tdualquat; +template struct tdualquat; + +template struct tdualquat; +template struct tdualquat; + +template struct tdualquat; +template struct tdualquat; + +}//namespace glm + diff --git a/thirdparty/glm/glm/detail/qualifier.hpp b/thirdparty/glm/glm/detail/qualifier.hpp new file mode 100644 index 000000000000..a6c96cca5c2e --- /dev/null +++ b/thirdparty/glm/glm/detail/qualifier.hpp @@ -0,0 +1,229 @@ +#pragma once + +#include "setup.hpp" + +namespace glm +{ + /// Qualify GLM types in term of alignment (packed, aligned) and precision in term of ULPs (lowp, mediump, highp) + enum qualifier + { + packed_highp, ///< Typed data is tightly packed in memory and operations are executed with high precision in term of ULPs + packed_mediump, ///< Typed data is tightly packed in memory and operations are executed with medium precision in term of ULPs for higher performance + packed_lowp, ///< Typed data is tightly packed in memory and operations are executed with low precision in term of ULPs to maximize performance + +# if GLM_CONFIG_ALIGNED_GENTYPES == GLM_ENABLE + aligned_highp, ///< Typed data is aligned in memory allowing SIMD optimizations and operations are executed with high precision in term of ULPs + aligned_mediump, ///< Typed data is aligned in memory allowing SIMD optimizations and operations are executed with high precision in term of ULPs for higher performance + aligned_lowp, // ///< Typed data is aligned in memory allowing SIMD optimizations and operations are executed with high precision in term of ULPs to maximize performance + aligned = aligned_highp, ///< By default aligned qualifier is also high precision +# endif + + highp = packed_highp, ///< By default highp qualifier is also packed + mediump = packed_mediump, ///< By default mediump qualifier is also packed + lowp = packed_lowp, ///< By default lowp qualifier is also packed + packed = packed_highp, ///< By default packed qualifier is also high precision + +# if GLM_CONFIG_ALIGNED_GENTYPES == GLM_ENABLE && defined(GLM_FORCE_DEFAULT_ALIGNED_GENTYPES) + defaultp = aligned_highp +# else + defaultp = highp +# endif + }; + + typedef qualifier precision; + + template struct vec; + template struct mat; + template struct qua; + +# if GLM_HAS_TEMPLATE_ALIASES + template using tvec1 = vec<1, T, Q>; + template using tvec2 = vec<2, T, Q>; + template using tvec3 = vec<3, T, Q>; + template using tvec4 = vec<4, T, Q>; + template using tmat2x2 = mat<2, 2, T, Q>; + template using tmat2x3 = mat<2, 3, T, Q>; + template using tmat2x4 = mat<2, 4, T, Q>; + template using tmat3x2 = mat<3, 2, T, Q>; + template using tmat3x3 = mat<3, 3, T, Q>; + template using tmat3x4 = mat<3, 4, T, Q>; + template using tmat4x2 = mat<4, 2, T, Q>; + template using tmat4x3 = mat<4, 3, T, Q>; + template using tmat4x4 = mat<4, 4, T, Q>; + template using tquat = qua; +# endif + +namespace detail +{ + template + struct is_aligned + { + static const bool value = false; + }; + +# if GLM_CONFIG_ALIGNED_GENTYPES == GLM_ENABLE + template<> + struct is_aligned + { + static const bool value = true; + }; + + template<> + struct is_aligned + { + static const bool value = true; + }; + + template<> + struct is_aligned + { + static const bool value = true; + }; +# endif + + template + struct storage + { + typedef struct type { + T data[L]; + } type; + }; + +# if GLM_HAS_ALIGNOF + template + struct storage + { + typedef struct alignas(L * sizeof(T)) type { + T data[L]; + } type; + }; + + template + struct storage<3, T, true> + { + typedef struct alignas(4 * sizeof(T)) type { + T data[4]; + } type; + }; +# endif + +# if GLM_ARCH & GLM_ARCH_SSE2_BIT + template<> + struct storage<4, float, true> + { + typedef glm_f32vec4 type; + }; + + template<> + struct storage<4, int, true> + { + typedef glm_i32vec4 type; + }; + + template<> + struct storage<4, unsigned int, true> + { + typedef glm_u32vec4 type; + }; + + template<> + struct storage<2, double, true> + { + typedef glm_f64vec2 type; + }; + + template<> + struct storage<2, detail::int64, true> + { + typedef glm_i64vec2 type; + }; + + template<> + struct storage<2, detail::uint64, true> + { + typedef glm_u64vec2 type; + }; +# endif +# if (GLM_ARCH & GLM_ARCH_AVX_BIT) + template<> + struct storage<4, double, true> + { + typedef glm_f64vec4 type; + }; +# endif + +# if (GLM_ARCH & GLM_ARCH_AVX2_BIT) + template<> + struct storage<4, detail::int64, true> + { + typedef glm_i64vec4 type; + }; + + template<> + struct storage<4, detail::uint64, true> + { + typedef glm_u64vec4 type; + }; +# endif + +# if GLM_ARCH & GLM_ARCH_NEON_BIT + template<> + struct storage<4, float, true> + { + typedef glm_f32vec4 type; + }; + + template<> + struct storage<4, int, true> + { + typedef glm_i32vec4 type; + }; + + template<> + struct storage<4, unsigned int, true> + { + typedef glm_u32vec4 type; + }; +# endif + + enum genTypeEnum + { + GENTYPE_VEC, + GENTYPE_MAT, + GENTYPE_QUAT + }; + + template + struct genTypeTrait + {}; + + template + struct genTypeTrait > + { + static const genTypeEnum GENTYPE = GENTYPE_MAT; + }; + + template + struct init_gentype + { + }; + + template + struct init_gentype + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static genType identity() + { + return genType(1, 0, 0, 0); + } + }; + + template + struct init_gentype + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static genType identity() + { + return genType(1); + } + }; +}//namespace detail +}//namespace glm diff --git a/thirdparty/glm/glm/detail/setup.hpp b/thirdparty/glm/glm/detail/setup.hpp new file mode 100644 index 000000000000..19953bcb4e57 --- /dev/null +++ b/thirdparty/glm/glm/detail/setup.hpp @@ -0,0 +1,1167 @@ +#ifndef GLM_SETUP_INCLUDED + +#include +#include + +#define GLM_VERSION_MAJOR 0 +#define GLM_VERSION_MINOR 9 +#define GLM_VERSION_PATCH 9 +#define GLM_VERSION_REVISION 9 +#define GLM_VERSION 999 +#define GLM_VERSION_MESSAGE "GLM: version 0.9.9.9" + +#define GLM_SETUP_INCLUDED GLM_VERSION + +/////////////////////////////////////////////////////////////////////////////////// +// Active states + +#define GLM_DISABLE 0 +#define GLM_ENABLE 1 + +/////////////////////////////////////////////////////////////////////////////////// +// Messages + +#if defined(GLM_FORCE_MESSAGES) +# define GLM_MESSAGES GLM_ENABLE +#else +# define GLM_MESSAGES GLM_DISABLE +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// Detect the platform + +#include "../simd/platform.h" + +/////////////////////////////////////////////////////////////////////////////////// +// Build model + +#if defined(_M_ARM64) || defined(__LP64__) || defined(_M_X64) || defined(__ppc64__) || defined(__x86_64__) +# define GLM_MODEL GLM_MODEL_64 +#elif defined(__i386__) || defined(__ppc__) || defined(__ILP32__) || defined(_M_ARM) +# define GLM_MODEL GLM_MODEL_32 +#else +# define GLM_MODEL GLM_MODEL_32 +#endif// + +#if !defined(GLM_MODEL) && GLM_COMPILER != 0 +# error "GLM_MODEL undefined, your compiler may not be supported by GLM. Add #define GLM_MODEL 0 to ignore this message." +#endif//GLM_MODEL + +/////////////////////////////////////////////////////////////////////////////////// +// C++ Version + +// User defines: GLM_FORCE_CXX98, GLM_FORCE_CXX03, GLM_FORCE_CXX11, GLM_FORCE_CXX14, GLM_FORCE_CXX17, GLM_FORCE_CXX2A + +#define GLM_LANG_CXX98_FLAG (1 << 1) +#define GLM_LANG_CXX03_FLAG (1 << 2) +#define GLM_LANG_CXX0X_FLAG (1 << 3) +#define GLM_LANG_CXX11_FLAG (1 << 4) +#define GLM_LANG_CXX14_FLAG (1 << 5) +#define GLM_LANG_CXX17_FLAG (1 << 6) +#define GLM_LANG_CXX20_FLAG (1 << 7) +#define GLM_LANG_CXXMS_FLAG (1 << 8) +#define GLM_LANG_CXXGNU_FLAG (1 << 9) + +#define GLM_LANG_CXX98 GLM_LANG_CXX98_FLAG +#define GLM_LANG_CXX03 (GLM_LANG_CXX98 | GLM_LANG_CXX03_FLAG) +#define GLM_LANG_CXX0X (GLM_LANG_CXX03 | GLM_LANG_CXX0X_FLAG) +#define GLM_LANG_CXX11 (GLM_LANG_CXX0X | GLM_LANG_CXX11_FLAG) +#define GLM_LANG_CXX14 (GLM_LANG_CXX11 | GLM_LANG_CXX14_FLAG) +#define GLM_LANG_CXX17 (GLM_LANG_CXX14 | GLM_LANG_CXX17_FLAG) +#define GLM_LANG_CXX20 (GLM_LANG_CXX17 | GLM_LANG_CXX20_FLAG) +#define GLM_LANG_CXXMS GLM_LANG_CXXMS_FLAG +#define GLM_LANG_CXXGNU GLM_LANG_CXXGNU_FLAG + +#if (defined(_MSC_EXTENSIONS)) +# define GLM_LANG_EXT GLM_LANG_CXXMS_FLAG +#elif ((GLM_COMPILER & (GLM_COMPILER_CLANG | GLM_COMPILER_GCC)) && (GLM_ARCH & GLM_ARCH_SIMD_BIT)) +# define GLM_LANG_EXT GLM_LANG_CXXMS_FLAG +#else +# define GLM_LANG_EXT 0 +#endif + +#if (defined(GLM_FORCE_CXX_UNKNOWN)) +# define GLM_LANG 0 +#elif defined(GLM_FORCE_CXX20) +# define GLM_LANG (GLM_LANG_CXX20 | GLM_LANG_EXT) +# define GLM_LANG_STL11_FORCED +#elif defined(GLM_FORCE_CXX17) +# define GLM_LANG (GLM_LANG_CXX17 | GLM_LANG_EXT) +# define GLM_LANG_STL11_FORCED +#elif defined(GLM_FORCE_CXX14) +# define GLM_LANG (GLM_LANG_CXX14 | GLM_LANG_EXT) +# define GLM_LANG_STL11_FORCED +#elif defined(GLM_FORCE_CXX11) +# define GLM_LANG (GLM_LANG_CXX11 | GLM_LANG_EXT) +# define GLM_LANG_STL11_FORCED +#elif defined(GLM_FORCE_CXX03) +# define GLM_LANG (GLM_LANG_CXX03 | GLM_LANG_EXT) +#elif defined(GLM_FORCE_CXX98) +# define GLM_LANG (GLM_LANG_CXX98 | GLM_LANG_EXT) +#else +# if GLM_COMPILER & GLM_COMPILER_VC && defined(_MSVC_LANG) +# if GLM_COMPILER >= GLM_COMPILER_VC15_7 +# define GLM_LANG_PLATFORM _MSVC_LANG +# elif GLM_COMPILER >= GLM_COMPILER_VC15 +# if _MSVC_LANG > 201402L +# define GLM_LANG_PLATFORM 201402L +# else +# define GLM_LANG_PLATFORM _MSVC_LANG +# endif +# else +# define GLM_LANG_PLATFORM 0 +# endif +# else +# define GLM_LANG_PLATFORM 0 +# endif + +# if __cplusplus > 201703L || GLM_LANG_PLATFORM > 201703L +# define GLM_LANG (GLM_LANG_CXX20 | GLM_LANG_EXT) +# elif __cplusplus == 201703L || GLM_LANG_PLATFORM == 201703L +# define GLM_LANG (GLM_LANG_CXX17 | GLM_LANG_EXT) +# elif __cplusplus == 201402L || __cplusplus == 201406L || __cplusplus == 201500L || GLM_LANG_PLATFORM == 201402L +# define GLM_LANG (GLM_LANG_CXX14 | GLM_LANG_EXT) +# elif __cplusplus == 201103L || GLM_LANG_PLATFORM == 201103L +# define GLM_LANG (GLM_LANG_CXX11 | GLM_LANG_EXT) +# elif defined(__INTEL_CXX11_MODE__) || defined(_MSC_VER) || defined(__GXX_EXPERIMENTAL_CXX0X__) +# define GLM_LANG (GLM_LANG_CXX0X | GLM_LANG_EXT) +# elif __cplusplus == 199711L +# define GLM_LANG (GLM_LANG_CXX98 | GLM_LANG_EXT) +# else +# define GLM_LANG (0 | GLM_LANG_EXT) +# endif +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// Has of C++ features + +// http://clang.llvm.org/cxx_status.html +// http://gcc.gnu.org/projects/cxx0x.html +// http://msdn.microsoft.com/en-us/library/vstudio/hh567368(v=vs.120).aspx + +// Android has multiple STLs but C++11 STL detection doesn't always work #284 #564 +#if GLM_PLATFORM == GLM_PLATFORM_ANDROID && !defined(GLM_LANG_STL11_FORCED) +# define GLM_HAS_CXX11_STL 0 +#elif (GLM_COMPILER & GLM_COMPILER_CUDA_RTC) == GLM_COMPILER_CUDA_RTC +# define GLM_HAS_CXX11_STL 0 +#elif (GLM_COMPILER & GLM_COMPILER_HIP) +# define GLM_HAS_CXX11_STL 0 +#elif GLM_COMPILER & GLM_COMPILER_CLANG +# if (defined(_LIBCPP_VERSION) || (GLM_LANG & GLM_LANG_CXX11_FLAG) || defined(GLM_LANG_STL11_FORCED)) +# define GLM_HAS_CXX11_STL 1 +# else +# define GLM_HAS_CXX11_STL 0 +# endif +#elif GLM_LANG & GLM_LANG_CXX11_FLAG +# define GLM_HAS_CXX11_STL 1 +#else +# define GLM_HAS_CXX11_STL ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\ + ((GLM_COMPILER & GLM_COMPILER_GCC) && (GLM_COMPILER >= GLM_COMPILER_GCC48)) || \ + ((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC12)) || \ + ((GLM_PLATFORM != GLM_PLATFORM_WINDOWS) && (GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_COMPILER >= GLM_COMPILER_INTEL15)))) +#endif + +// N1720 +#if GLM_COMPILER & GLM_COMPILER_CLANG +# define GLM_HAS_STATIC_ASSERT __has_feature(cxx_static_assert) +#elif GLM_LANG & GLM_LANG_CXX11_FLAG +# define GLM_HAS_STATIC_ASSERT 1 +#else +# define GLM_HAS_STATIC_ASSERT ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\ + ((GLM_COMPILER & GLM_COMPILER_CUDA)) || \ + ((GLM_COMPILER & GLM_COMPILER_VC)) || \ + ((GLM_COMPILER & GLM_COMPILER_HIP)))) +#endif + +// N1988 +#if GLM_LANG & GLM_LANG_CXX11_FLAG +# define GLM_HAS_EXTENDED_INTEGER_TYPE 1 +#else +# define GLM_HAS_EXTENDED_INTEGER_TYPE (\ + ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (GLM_COMPILER & GLM_COMPILER_VC)) || \ + ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (GLM_COMPILER & GLM_COMPILER_CUDA)) || \ + ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (GLM_COMPILER & GLM_COMPILER_CLANG)) || \ + ((GLM_COMPILER & GLM_COMPILER_HIP))) +#endif + +// N2672 Initializer lists http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2672.htm +#if GLM_COMPILER & GLM_COMPILER_CLANG +# define GLM_HAS_INITIALIZER_LISTS __has_feature(cxx_generalized_initializers) +#elif GLM_LANG & GLM_LANG_CXX11_FLAG +# define GLM_HAS_INITIALIZER_LISTS 1 +#else +# define GLM_HAS_INITIALIZER_LISTS ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\ + ((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC15)) || \ + ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_COMPILER >= GLM_COMPILER_INTEL14)) || \ + ((GLM_COMPILER & GLM_COMPILER_CUDA)) || \ + ((GLM_COMPILER & GLM_COMPILER_HIP)))) +#endif + +// N2544 Unrestricted unions http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2544.pdf +#if GLM_COMPILER & GLM_COMPILER_CLANG +# define GLM_HAS_UNRESTRICTED_UNIONS __has_feature(cxx_unrestricted_unions) +#elif GLM_LANG & GLM_LANG_CXX11_FLAG +# define GLM_HAS_UNRESTRICTED_UNIONS 1 +#else +# define GLM_HAS_UNRESTRICTED_UNIONS (GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\ + (GLM_COMPILER & GLM_COMPILER_VC) || \ + ((GLM_COMPILER & GLM_COMPILER_CUDA)) || \ + ((GLM_COMPILER & GLM_COMPILER_HIP))) +#endif + +// N2346 +#if GLM_COMPILER & GLM_COMPILER_CLANG +# define GLM_HAS_DEFAULTED_FUNCTIONS __has_feature(cxx_defaulted_functions) +#elif GLM_LANG & GLM_LANG_CXX11_FLAG +# define GLM_HAS_DEFAULTED_FUNCTIONS 1 +#else +# define GLM_HAS_DEFAULTED_FUNCTIONS ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\ + ((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC12)) || \ + ((GLM_COMPILER & GLM_COMPILER_INTEL)) || \ + (GLM_COMPILER & GLM_COMPILER_CUDA)) || \ + ((GLM_COMPILER & GLM_COMPILER_HIP))) +#endif + +// N2118 +#if GLM_COMPILER & GLM_COMPILER_CLANG +# define GLM_HAS_RVALUE_REFERENCES __has_feature(cxx_rvalue_references) +#elif GLM_LANG & GLM_LANG_CXX11_FLAG +# define GLM_HAS_RVALUE_REFERENCES 1 +#else +# define GLM_HAS_RVALUE_REFERENCES ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\ + ((GLM_COMPILER & GLM_COMPILER_VC)) || \ + ((GLM_COMPILER & GLM_COMPILER_CUDA)) || \ + ((GLM_COMPILER & GLM_COMPILER_HIP)))) +#endif + +// N2437 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2437.pdf +#if GLM_COMPILER & GLM_COMPILER_CLANG +# define GLM_HAS_EXPLICIT_CONVERSION_OPERATORS __has_feature(cxx_explicit_conversions) +#elif GLM_LANG & GLM_LANG_CXX11_FLAG +# define GLM_HAS_EXPLICIT_CONVERSION_OPERATORS 1 +#else +# define GLM_HAS_EXPLICIT_CONVERSION_OPERATORS ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\ + ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_COMPILER >= GLM_COMPILER_INTEL14)) || \ + ((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC12)) || \ + ((GLM_COMPILER & GLM_COMPILER_CUDA)) || \ + ((GLM_COMPILER & GLM_COMPILER_HIP)))) +#endif + +// N2258 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2258.pdf +#if GLM_COMPILER & GLM_COMPILER_CLANG +# define GLM_HAS_TEMPLATE_ALIASES __has_feature(cxx_alias_templates) +#elif GLM_LANG & GLM_LANG_CXX11_FLAG +# define GLM_HAS_TEMPLATE_ALIASES 1 +#else +# define GLM_HAS_TEMPLATE_ALIASES ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\ + ((GLM_COMPILER & GLM_COMPILER_INTEL)) || \ + ((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC12)) || \ + ((GLM_COMPILER & GLM_COMPILER_CUDA)) || \ + ((GLM_COMPILER & GLM_COMPILER_HIP)))) +#endif + +// N2930 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2930.html +#if GLM_COMPILER & GLM_COMPILER_CLANG +# define GLM_HAS_RANGE_FOR __has_feature(cxx_range_for) +#elif GLM_LANG & GLM_LANG_CXX11_FLAG +# define GLM_HAS_RANGE_FOR 1 +#else +# define GLM_HAS_RANGE_FOR ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\ + ((GLM_COMPILER & GLM_COMPILER_INTEL)) || \ + ((GLM_COMPILER & GLM_COMPILER_VC)) || \ + ((GLM_COMPILER & GLM_COMPILER_CUDA)) || \ + ((GLM_COMPILER & GLM_COMPILER_HIP)))) +#endif + +// N2341 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2341.pdf +#if GLM_COMPILER & GLM_COMPILER_CLANG +# define GLM_HAS_ALIGNOF __has_feature(cxx_alignas) +#elif GLM_LANG & GLM_LANG_CXX11_FLAG +# define GLM_HAS_ALIGNOF 1 +#else +# define GLM_HAS_ALIGNOF ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\ + ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_COMPILER >= GLM_COMPILER_INTEL15)) || \ + ((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC14)) || \ + ((GLM_COMPILER & GLM_COMPILER_CUDA)) || \ + ((GLM_COMPILER & GLM_COMPILER_HIP)))) +#endif + +// N2235 Generalized Constant Expressions http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2235.pdf +// N3652 Extended Constant Expressions http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3652.html +#if (GLM_ARCH & GLM_ARCH_SIMD_BIT) // Compiler SIMD intrinsics don't support constexpr... +# define GLM_HAS_CONSTEXPR 0 +#elif (GLM_COMPILER & GLM_COMPILER_CLANG) +# define GLM_HAS_CONSTEXPR __has_feature(cxx_relaxed_constexpr) +#elif (GLM_LANG & GLM_LANG_CXX14_FLAG) +# define GLM_HAS_CONSTEXPR 1 +#else +# define GLM_HAS_CONSTEXPR ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && GLM_HAS_INITIALIZER_LISTS && (\ + ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_COMPILER >= GLM_COMPILER_INTEL17)) || \ + ((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC15)))) +#endif + +#if GLM_HAS_CONSTEXPR +# define GLM_CONSTEXPR constexpr +#else +# define GLM_CONSTEXPR +#endif + +// +#if GLM_HAS_CONSTEXPR +# if (GLM_COMPILER & GLM_COMPILER_CLANG) +# if __has_feature(cxx_if_constexpr) +# define GLM_HAS_IF_CONSTEXPR 1 +# else +# define GLM_HAS_IF_CONSTEXPR 0 +# endif +# elif (GLM_LANG & GLM_LANG_CXX17_FLAG) +# define GLM_HAS_IF_CONSTEXPR 1 +# else +# define GLM_HAS_IF_CONSTEXPR 0 +# endif +#else +# define GLM_HAS_IF_CONSTEXPR 0 +#endif + +#if GLM_HAS_IF_CONSTEXPR +# define GLM_IF_CONSTEXPR if constexpr +#else +# define GLM_IF_CONSTEXPR if +#endif + +// +#if GLM_LANG & GLM_LANG_CXX11_FLAG +# define GLM_HAS_ASSIGNABLE 1 +#else +# define GLM_HAS_ASSIGNABLE ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\ + ((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC15)) || \ + ((GLM_COMPILER & GLM_COMPILER_GCC) && (GLM_COMPILER >= GLM_COMPILER_GCC49)))) +#endif + +// +#define GLM_HAS_TRIVIAL_QUERIES 0 + +// +#if GLM_LANG & GLM_LANG_CXX11_FLAG +# define GLM_HAS_MAKE_SIGNED 1 +#else +# define GLM_HAS_MAKE_SIGNED ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\ + ((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC12)) || \ + ((GLM_COMPILER & GLM_COMPILER_CUDA)) || \ + ((GLM_COMPILER & GLM_COMPILER_HIP)))) +#endif + +// +#if defined(GLM_FORCE_INTRINSICS) +# define GLM_HAS_BITSCAN_WINDOWS ((GLM_PLATFORM & GLM_PLATFORM_WINDOWS) && (\ + ((GLM_COMPILER & GLM_COMPILER_INTEL)) || \ + ((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC14) && (GLM_ARCH & GLM_ARCH_X86_BIT)))) +#else +# define GLM_HAS_BITSCAN_WINDOWS 0 +#endif + +#if GLM_LANG & GLM_LANG_CXX11_FLAG +# define GLM_HAS_NOEXCEPT 1 +#else +# define GLM_HAS_NOEXCEPT 0 +#endif + +#if GLM_HAS_NOEXCEPT +# define GLM_NOEXCEPT noexcept +#else +# define GLM_NOEXCEPT +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// OpenMP +#ifdef _OPENMP +# if GLM_COMPILER & GLM_COMPILER_GCC +# if GLM_COMPILER >= GLM_COMPILER_GCC61 +# define GLM_HAS_OPENMP 45 +# elif GLM_COMPILER >= GLM_COMPILER_GCC49 +# define GLM_HAS_OPENMP 40 +# elif GLM_COMPILER >= GLM_COMPILER_GCC47 +# define GLM_HAS_OPENMP 31 +# else +# define GLM_HAS_OPENMP 0 +# endif +# elif GLM_COMPILER & GLM_COMPILER_CLANG +# if GLM_COMPILER >= GLM_COMPILER_CLANG38 +# define GLM_HAS_OPENMP 31 +# else +# define GLM_HAS_OPENMP 0 +# endif +# elif GLM_COMPILER & GLM_COMPILER_VC +# define GLM_HAS_OPENMP 20 +# elif GLM_COMPILER & GLM_COMPILER_INTEL +# if GLM_COMPILER >= GLM_COMPILER_INTEL16 +# define GLM_HAS_OPENMP 40 +# else +# define GLM_HAS_OPENMP 0 +# endif +# else +# define GLM_HAS_OPENMP 0 +# endif +#else +# define GLM_HAS_OPENMP 0 +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// nullptr + +#if GLM_LANG & GLM_LANG_CXX0X_FLAG +# define GLM_CONFIG_NULLPTR GLM_ENABLE +#else +# define GLM_CONFIG_NULLPTR GLM_DISABLE +#endif + +#if GLM_CONFIG_NULLPTR == GLM_ENABLE +# define GLM_NULLPTR nullptr +#else +# define GLM_NULLPTR 0 +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// Static assert + +#if GLM_HAS_STATIC_ASSERT +# define GLM_STATIC_ASSERT(x, message) static_assert(x, message) +#elif GLM_COMPILER & GLM_COMPILER_VC +# define GLM_STATIC_ASSERT(x, message) typedef char __CASSERT__##__LINE__[(x) ? 1 : -1] +#else +# define GLM_STATIC_ASSERT(x, message) assert(x) +#endif//GLM_LANG + +/////////////////////////////////////////////////////////////////////////////////// +// Qualifiers + +// User defines: GLM_CUDA_FORCE_DEVICE_FUNC, GLM_CUDA_FORCE_HOST_FUNC + +#if (GLM_COMPILER & GLM_COMPILER_CUDA) || (GLM_COMPILER & GLM_COMPILER_HIP) +# if defined(GLM_CUDA_FORCE_DEVICE_FUNC) && defined(GLM_CUDA_FORCE_HOST_FUNC) +# error "GLM error: GLM_CUDA_FORCE_DEVICE_FUNC and GLM_CUDA_FORCE_HOST_FUNC should not be defined at the same time, GLM by default generates both device and host code for CUDA compiler." +# endif//defined(GLM_CUDA_FORCE_DEVICE_FUNC) && defined(GLM_CUDA_FORCE_HOST_FUNC) + +# if defined(GLM_CUDA_FORCE_DEVICE_FUNC) +# define GLM_CUDA_FUNC_DEF __device__ +# define GLM_CUDA_FUNC_DECL __device__ +# elif defined(GLM_CUDA_FORCE_HOST_FUNC) +# define GLM_CUDA_FUNC_DEF __host__ +# define GLM_CUDA_FUNC_DECL __host__ +# else +# define GLM_CUDA_FUNC_DEF __device__ __host__ +# define GLM_CUDA_FUNC_DECL __device__ __host__ +# endif//defined(GLM_CUDA_FORCE_XXXX_FUNC) +#else +# define GLM_CUDA_FUNC_DEF +# define GLM_CUDA_FUNC_DECL +#endif + +#if defined(GLM_FORCE_INLINE) +# if GLM_COMPILER & GLM_COMPILER_VC +# define GLM_INLINE __forceinline +# define GLM_NEVER_INLINE __declspec(noinline) +# elif GLM_COMPILER & (GLM_COMPILER_GCC | GLM_COMPILER_CLANG) +# define GLM_INLINE inline __attribute__((__always_inline__)) +# define GLM_NEVER_INLINE __attribute__((__noinline__)) +# elif (GLM_COMPILER & GLM_COMPILER_CUDA) || (GLM_COMPILER & GLM_COMPILER_HIP) +# define GLM_INLINE __forceinline__ +# define GLM_NEVER_INLINE __noinline__ +# else +# define GLM_INLINE inline +# define GLM_NEVER_INLINE +# endif//GLM_COMPILER +#else +# define GLM_INLINE inline +# define GLM_NEVER_INLINE +#endif//defined(GLM_FORCE_INLINE) + +#define GLM_FUNC_DECL GLM_CUDA_FUNC_DECL +#define GLM_FUNC_QUALIFIER GLM_CUDA_FUNC_DEF GLM_INLINE + +// Do not use CUDA function qualifiers on CUDA compiler when functions are made default +#if GLM_HAS_DEFAULTED_FUNCTIONS +# define GLM_DEFAULTED_FUNC_DECL +# define GLM_DEFAULTED_FUNC_QUALIFIER GLM_INLINE +#else +# define GLM_DEFAULTED_FUNC_DECL GLM_FUNC_DECL +# define GLM_DEFAULTED_FUNC_QUALIFIER GLM_FUNC_QUALIFIER +#endif//GLM_HAS_DEFAULTED_FUNCTIONS +#if !defined(GLM_FORCE_CTOR_INIT) +# define GLM_DEFAULTED_DEFAULT_CTOR_DECL GLM_DEFAULTED_FUNC_DECL +# define GLM_DEFAULTED_DEFAULT_CTOR_QUALIFIER GLM_DEFAULTED_FUNC_QUALIFIER +#else +# define GLM_DEFAULTED_DEFAULT_CTOR_DECL GLM_FUNC_DECL +# define GLM_DEFAULTED_DEFAULT_CTOR_QUALIFIER GLM_FUNC_QUALIFIER +#endif//GLM_FORCE_CTOR_INIT + +/////////////////////////////////////////////////////////////////////////////////// +// Swizzle operators + +// User defines: GLM_FORCE_SWIZZLE + +#define GLM_SWIZZLE_DISABLED 0 +#define GLM_SWIZZLE_OPERATOR 1 +#define GLM_SWIZZLE_FUNCTION 2 + +#if defined(GLM_SWIZZLE) +# pragma message("GLM: GLM_SWIZZLE is deprecated, use GLM_FORCE_SWIZZLE instead.") +# define GLM_FORCE_SWIZZLE +#endif + +#if defined(GLM_FORCE_SWIZZLE) && (GLM_LANG & GLM_LANG_CXXMS_FLAG) && !defined(GLM_FORCE_XYZW_ONLY) +# define GLM_CONFIG_SWIZZLE GLM_SWIZZLE_OPERATOR +#elif defined(GLM_FORCE_SWIZZLE) +# define GLM_CONFIG_SWIZZLE GLM_SWIZZLE_FUNCTION +#else +# define GLM_CONFIG_SWIZZLE GLM_SWIZZLE_DISABLED +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// Allows using not basic types as genType + +// #define GLM_FORCE_UNRESTRICTED_GENTYPE + +#ifdef GLM_FORCE_UNRESTRICTED_GENTYPE +# define GLM_CONFIG_UNRESTRICTED_GENTYPE GLM_ENABLE +#else +# define GLM_CONFIG_UNRESTRICTED_GENTYPE GLM_DISABLE +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// Allows using any scaler as float + +// #define GLM_FORCE_UNRESTRICTED_FLOAT + +#ifdef GLM_FORCE_UNRESTRICTED_FLOAT +# define GLM_CONFIG_UNRESTRICTED_FLOAT GLM_ENABLE +#else +# define GLM_CONFIG_UNRESTRICTED_FLOAT GLM_DISABLE +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// Clip control, define GLM_FORCE_DEPTH_ZERO_TO_ONE before including GLM +// to use a clip space between 0 to 1. +// Coordinate system, define GLM_FORCE_LEFT_HANDED before including GLM +// to use left handed coordinate system by default. + +#define GLM_CLIP_CONTROL_ZO_BIT (1 << 0) // ZERO_TO_ONE +#define GLM_CLIP_CONTROL_NO_BIT (1 << 1) // NEGATIVE_ONE_TO_ONE +#define GLM_CLIP_CONTROL_LH_BIT (1 << 2) // LEFT_HANDED, For DirectX, Metal, Vulkan +#define GLM_CLIP_CONTROL_RH_BIT (1 << 3) // RIGHT_HANDED, For OpenGL, default in GLM + +#define GLM_CLIP_CONTROL_LH_ZO (GLM_CLIP_CONTROL_LH_BIT | GLM_CLIP_CONTROL_ZO_BIT) +#define GLM_CLIP_CONTROL_LH_NO (GLM_CLIP_CONTROL_LH_BIT | GLM_CLIP_CONTROL_NO_BIT) +#define GLM_CLIP_CONTROL_RH_ZO (GLM_CLIP_CONTROL_RH_BIT | GLM_CLIP_CONTROL_ZO_BIT) +#define GLM_CLIP_CONTROL_RH_NO (GLM_CLIP_CONTROL_RH_BIT | GLM_CLIP_CONTROL_NO_BIT) + +#ifdef GLM_FORCE_DEPTH_ZERO_TO_ONE +# ifdef GLM_FORCE_LEFT_HANDED +# define GLM_CONFIG_CLIP_CONTROL GLM_CLIP_CONTROL_LH_ZO +# else +# define GLM_CONFIG_CLIP_CONTROL GLM_CLIP_CONTROL_RH_ZO +# endif +#else +# ifdef GLM_FORCE_LEFT_HANDED +# define GLM_CONFIG_CLIP_CONTROL GLM_CLIP_CONTROL_LH_NO +# else +# define GLM_CONFIG_CLIP_CONTROL GLM_CLIP_CONTROL_RH_NO +# endif +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// Qualifiers + +#if (GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS)) +# define GLM_DEPRECATED __declspec(deprecated) +# define GLM_ALIGNED_TYPEDEF(type, name, alignment) typedef __declspec(align(alignment)) type name +#elif GLM_COMPILER & (GLM_COMPILER_GCC | GLM_COMPILER_CLANG | GLM_COMPILER_INTEL) +# define GLM_DEPRECATED __attribute__((__deprecated__)) +# define GLM_ALIGNED_TYPEDEF(type, name, alignment) typedef type name __attribute__((aligned(alignment))) +#elif (GLM_COMPILER & GLM_COMPILER_CUDA) || (GLM_COMPILER & GLM_COMPILER_HIP) +# define GLM_DEPRECATED +# define GLM_ALIGNED_TYPEDEF(type, name, alignment) typedef type name __align__(x) +#else +# define GLM_DEPRECATED +# define GLM_ALIGNED_TYPEDEF(type, name, alignment) typedef type name +#endif + +/////////////////////////////////////////////////////////////////////////////////// + +#ifdef GLM_FORCE_EXPLICIT_CTOR +# define GLM_EXPLICIT explicit +#else +# define GLM_EXPLICIT +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// Length type: all length functions returns a length_t type. +// When GLM_FORCE_SIZE_T_LENGTH is defined, length_t is a typedef of size_t otherwise +// length_t is a typedef of int like GLSL defines it. + +#define GLM_LENGTH_INT 1 +#define GLM_LENGTH_SIZE_T 2 + +#ifdef GLM_FORCE_SIZE_T_LENGTH +# define GLM_CONFIG_LENGTH_TYPE GLM_LENGTH_SIZE_T +#else +# define GLM_CONFIG_LENGTH_TYPE GLM_LENGTH_INT +#endif + +namespace glm +{ + using std::size_t; +# if GLM_CONFIG_LENGTH_TYPE == GLM_LENGTH_SIZE_T + typedef size_t length_t; +# else + typedef int length_t; +# endif +}//namespace glm + +/////////////////////////////////////////////////////////////////////////////////// +// constexpr + +#if GLM_HAS_CONSTEXPR +# define GLM_CONFIG_CONSTEXP GLM_ENABLE + + namespace glm + { + template + constexpr std::size_t countof(T const (&)[N]) + { + return N; + } + }//namespace glm +# define GLM_COUNTOF(arr) glm::countof(arr) +#elif defined(_MSC_VER) +# define GLM_CONFIG_CONSTEXP GLM_DISABLE + +# define GLM_COUNTOF(arr) _countof(arr) +#else +# define GLM_CONFIG_CONSTEXP GLM_DISABLE + +# define GLM_COUNTOF(arr) sizeof(arr) / sizeof(arr[0]) +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// uint + +namespace glm{ +namespace detail +{ + template + struct is_int + { + enum test {value = 0}; + }; + + template<> + struct is_int + { + enum test {value = ~0}; + }; + + template<> + struct is_int + { + enum test {value = ~0}; + }; +}//namespace detail + + typedef unsigned int uint; +}//namespace glm + +/////////////////////////////////////////////////////////////////////////////////// +// 64-bit int + +#if GLM_HAS_EXTENDED_INTEGER_TYPE +# include +#endif + +namespace glm{ +namespace detail +{ +# if GLM_HAS_EXTENDED_INTEGER_TYPE + typedef std::uint64_t uint64; + typedef std::int64_t int64; +# elif (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) // C99 detected, 64 bit types available + typedef uint64_t uint64; + typedef int64_t int64; +# elif GLM_COMPILER & GLM_COMPILER_VC + typedef unsigned __int64 uint64; + typedef signed __int64 int64; +# elif GLM_COMPILER & GLM_COMPILER_GCC +# pragma GCC diagnostic ignored "-Wlong-long" + __extension__ typedef unsigned long long uint64; + __extension__ typedef signed long long int64; +# elif (GLM_COMPILER & GLM_COMPILER_CLANG) +# pragma clang diagnostic ignored "-Wc++11-long-long" + typedef unsigned long long uint64; + typedef signed long long int64; +# else//unknown compiler + typedef unsigned long long uint64; + typedef signed long long int64; +# endif +}//namespace detail +}//namespace glm + +/////////////////////////////////////////////////////////////////////////////////// +// make_unsigned + +#if GLM_HAS_MAKE_SIGNED +# include + +namespace glm{ +namespace detail +{ + using std::make_unsigned; +}//namespace detail +}//namespace glm + +#else + +namespace glm{ +namespace detail +{ + template + struct make_unsigned + {}; + + template<> + struct make_unsigned + { + typedef unsigned char type; + }; + + template<> + struct make_unsigned + { + typedef unsigned char type; + }; + + template<> + struct make_unsigned + { + typedef unsigned short type; + }; + + template<> + struct make_unsigned + { + typedef unsigned int type; + }; + + template<> + struct make_unsigned + { + typedef unsigned long type; + }; + + template<> + struct make_unsigned + { + typedef uint64 type; + }; + + template<> + struct make_unsigned + { + typedef unsigned char type; + }; + + template<> + struct make_unsigned + { + typedef unsigned short type; + }; + + template<> + struct make_unsigned + { + typedef unsigned int type; + }; + + template<> + struct make_unsigned + { + typedef unsigned long type; + }; + + template<> + struct make_unsigned + { + typedef uint64 type; + }; +}//namespace detail +}//namespace glm +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// Only use x, y, z, w as vector type components + +#ifdef GLM_FORCE_XYZW_ONLY +# define GLM_CONFIG_XYZW_ONLY GLM_ENABLE +#else +# define GLM_CONFIG_XYZW_ONLY GLM_DISABLE +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// Configure the use of defaulted initialized types + +#define GLM_CTOR_INIT_DISABLE 0 +#define GLM_CTOR_INITIALIZER_LIST 1 +#define GLM_CTOR_INITIALISATION 2 + +#if defined(GLM_FORCE_CTOR_INIT) && GLM_HAS_INITIALIZER_LISTS +# define GLM_CONFIG_CTOR_INIT GLM_CTOR_INITIALIZER_LIST +#elif defined(GLM_FORCE_CTOR_INIT) && !GLM_HAS_INITIALIZER_LISTS +# define GLM_CONFIG_CTOR_INIT GLM_CTOR_INITIALISATION +#else +# define GLM_CONFIG_CTOR_INIT GLM_CTOR_INIT_DISABLE +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// Use SIMD instruction sets + +#if GLM_HAS_ALIGNOF && (GLM_LANG & GLM_LANG_CXXMS_FLAG) && (GLM_ARCH & GLM_ARCH_SIMD_BIT) +# define GLM_CONFIG_SIMD GLM_ENABLE +#else +# define GLM_CONFIG_SIMD GLM_DISABLE +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// Configure the use of defaulted function + +#if GLM_HAS_DEFAULTED_FUNCTIONS +# define GLM_CONFIG_DEFAULTED_FUNCTIONS GLM_ENABLE +# define GLM_DEFAULT = default +#else +# define GLM_CONFIG_DEFAULTED_FUNCTIONS GLM_DISABLE +# define GLM_DEFAULT +#endif + +#if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INIT_DISABLE && GLM_CONFIG_DEFAULTED_FUNCTIONS == GLM_ENABLE +# define GLM_CONFIG_DEFAULTED_DEFAULT_CTOR GLM_ENABLE +# define GLM_DEFAULT_CTOR GLM_DEFAULT +#else +# define GLM_CONFIG_DEFAULTED_DEFAULT_CTOR GLM_DISABLE +# define GLM_DEFAULT_CTOR +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// Configure the use of aligned gentypes + +#ifdef GLM_FORCE_ALIGNED // Legacy define +# define GLM_FORCE_DEFAULT_ALIGNED_GENTYPES +#endif + +#ifdef GLM_FORCE_DEFAULT_ALIGNED_GENTYPES +# define GLM_FORCE_ALIGNED_GENTYPES +#endif + +#if GLM_HAS_ALIGNOF && (GLM_LANG & GLM_LANG_CXXMS_FLAG) && (defined(GLM_FORCE_ALIGNED_GENTYPES) || (GLM_CONFIG_SIMD == GLM_ENABLE)) +# define GLM_CONFIG_ALIGNED_GENTYPES GLM_ENABLE +#else +# define GLM_CONFIG_ALIGNED_GENTYPES GLM_DISABLE +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// Configure the use of anonymous structure as implementation detail + +#if ((GLM_CONFIG_SIMD == GLM_ENABLE) || (GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR) || (GLM_CONFIG_ALIGNED_GENTYPES == GLM_ENABLE)) +# define GLM_CONFIG_ANONYMOUS_STRUCT GLM_ENABLE +#else +# define GLM_CONFIG_ANONYMOUS_STRUCT GLM_DISABLE +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// Silent warnings + +#ifdef GLM_FORCE_SILENT_WARNINGS +# define GLM_SILENT_WARNINGS GLM_ENABLE +#else +# define GLM_SILENT_WARNINGS GLM_DISABLE +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// Precision + +#define GLM_HIGHP 1 +#define GLM_MEDIUMP 2 +#define GLM_LOWP 3 + +#if defined(GLM_FORCE_PRECISION_HIGHP_BOOL) || defined(GLM_PRECISION_HIGHP_BOOL) +# define GLM_CONFIG_PRECISION_BOOL GLM_HIGHP +#elif defined(GLM_FORCE_PRECISION_MEDIUMP_BOOL) || defined(GLM_PRECISION_MEDIUMP_BOOL) +# define GLM_CONFIG_PRECISION_BOOL GLM_MEDIUMP +#elif defined(GLM_FORCE_PRECISION_LOWP_BOOL) || defined(GLM_PRECISION_LOWP_BOOL) +# define GLM_CONFIG_PRECISION_BOOL GLM_LOWP +#else +# define GLM_CONFIG_PRECISION_BOOL GLM_HIGHP +#endif + +#if defined(GLM_FORCE_PRECISION_HIGHP_INT) || defined(GLM_PRECISION_HIGHP_INT) +# define GLM_CONFIG_PRECISION_INT GLM_HIGHP +#elif defined(GLM_FORCE_PRECISION_MEDIUMP_INT) || defined(GLM_PRECISION_MEDIUMP_INT) +# define GLM_CONFIG_PRECISION_INT GLM_MEDIUMP +#elif defined(GLM_FORCE_PRECISION_LOWP_INT) || defined(GLM_PRECISION_LOWP_INT) +# define GLM_CONFIG_PRECISION_INT GLM_LOWP +#else +# define GLM_CONFIG_PRECISION_INT GLM_HIGHP +#endif + +#if defined(GLM_FORCE_PRECISION_HIGHP_UINT) || defined(GLM_PRECISION_HIGHP_UINT) +# define GLM_CONFIG_PRECISION_UINT GLM_HIGHP +#elif defined(GLM_FORCE_PRECISION_MEDIUMP_UINT) || defined(GLM_PRECISION_MEDIUMP_UINT) +# define GLM_CONFIG_PRECISION_UINT GLM_MEDIUMP +#elif defined(GLM_FORCE_PRECISION_LOWP_UINT) || defined(GLM_PRECISION_LOWP_UINT) +# define GLM_CONFIG_PRECISION_UINT GLM_LOWP +#else +# define GLM_CONFIG_PRECISION_UINT GLM_HIGHP +#endif + +#if defined(GLM_FORCE_PRECISION_HIGHP_FLOAT) || defined(GLM_PRECISION_HIGHP_FLOAT) +# define GLM_CONFIG_PRECISION_FLOAT GLM_HIGHP +#elif defined(GLM_FORCE_PRECISION_MEDIUMP_FLOAT) || defined(GLM_PRECISION_MEDIUMP_FLOAT) +# define GLM_CONFIG_PRECISION_FLOAT GLM_MEDIUMP +#elif defined(GLM_FORCE_PRECISION_LOWP_FLOAT) || defined(GLM_PRECISION_LOWP_FLOAT) +# define GLM_CONFIG_PRECISION_FLOAT GLM_LOWP +#else +# define GLM_CONFIG_PRECISION_FLOAT GLM_HIGHP +#endif + +#if defined(GLM_FORCE_PRECISION_HIGHP_DOUBLE) || defined(GLM_PRECISION_HIGHP_DOUBLE) +# define GLM_CONFIG_PRECISION_DOUBLE GLM_HIGHP +#elif defined(GLM_FORCE_PRECISION_MEDIUMP_DOUBLE) || defined(GLM_PRECISION_MEDIUMP_DOUBLE) +# define GLM_CONFIG_PRECISION_DOUBLE GLM_MEDIUMP +#elif defined(GLM_FORCE_PRECISION_LOWP_DOUBLE) || defined(GLM_PRECISION_LOWP_DOUBLE) +# define GLM_CONFIG_PRECISION_DOUBLE GLM_LOWP +#else +# define GLM_CONFIG_PRECISION_DOUBLE GLM_HIGHP +#endif + +/////////////////////////////////////////////////////////////////////////////////// +// Check inclusions of different versions of GLM + +#elif ((GLM_SETUP_INCLUDED != GLM_VERSION) && !defined(GLM_FORCE_IGNORE_VERSION)) +# error "GLM error: A different version of GLM is already included. Define GLM_FORCE_IGNORE_VERSION before including GLM headers to ignore this error." +#elif GLM_SETUP_INCLUDED == GLM_VERSION + +/////////////////////////////////////////////////////////////////////////////////// +// Messages + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_MESSAGE_DISPLAYED) +# define GLM_MESSAGE_DISPLAYED +# define GLM_STR_HELPER(x) #x +# define GLM_STR(x) GLM_STR_HELPER(x) + + // Report GLM version +# pragma message (GLM_STR(GLM_VERSION_MESSAGE)) + + // Report C++ language +# if (GLM_LANG & GLM_LANG_CXX20_FLAG) && (GLM_LANG & GLM_LANG_EXT) +# pragma message("GLM: C++ 20 with extensions") +# elif (GLM_LANG & GLM_LANG_CXX20_FLAG) +# pragma message("GLM: C++ 2A") +# elif (GLM_LANG & GLM_LANG_CXX17_FLAG) && (GLM_LANG & GLM_LANG_EXT) +# pragma message("GLM: C++ 17 with extensions") +# elif (GLM_LANG & GLM_LANG_CXX17_FLAG) +# pragma message("GLM: C++ 17") +# elif (GLM_LANG & GLM_LANG_CXX14_FLAG) && (GLM_LANG & GLM_LANG_EXT) +# pragma message("GLM: C++ 14 with extensions") +# elif (GLM_LANG & GLM_LANG_CXX14_FLAG) +# pragma message("GLM: C++ 14") +# elif (GLM_LANG & GLM_LANG_CXX11_FLAG) && (GLM_LANG & GLM_LANG_EXT) +# pragma message("GLM: C++ 11 with extensions") +# elif (GLM_LANG & GLM_LANG_CXX11_FLAG) +# pragma message("GLM: C++ 11") +# elif (GLM_LANG & GLM_LANG_CXX0X_FLAG) && (GLM_LANG & GLM_LANG_EXT) +# pragma message("GLM: C++ 0x with extensions") +# elif (GLM_LANG & GLM_LANG_CXX0X_FLAG) +# pragma message("GLM: C++ 0x") +# elif (GLM_LANG & GLM_LANG_CXX03_FLAG) && (GLM_LANG & GLM_LANG_EXT) +# pragma message("GLM: C++ 03 with extensions") +# elif (GLM_LANG & GLM_LANG_CXX03_FLAG) +# pragma message("GLM: C++ 03") +# elif (GLM_LANG & GLM_LANG_CXX98_FLAG) && (GLM_LANG & GLM_LANG_EXT) +# pragma message("GLM: C++ 98 with extensions") +# elif (GLM_LANG & GLM_LANG_CXX98_FLAG) +# pragma message("GLM: C++ 98") +# else +# pragma message("GLM: C++ language undetected") +# endif//GLM_LANG + + // Report compiler detection +# if GLM_COMPILER & GLM_COMPILER_CUDA +# pragma message("GLM: CUDA compiler detected") +# elif GLM_COMPILER & GLM_COMPILER_HIP +# pragma message("GLM: HIP compiler detected") +# elif GLM_COMPILER & GLM_COMPILER_VC +# pragma message("GLM: Visual C++ compiler detected") +# elif GLM_COMPILER & GLM_COMPILER_CLANG +# pragma message("GLM: Clang compiler detected") +# elif GLM_COMPILER & GLM_COMPILER_INTEL +# pragma message("GLM: Intel Compiler detected") +# elif GLM_COMPILER & GLM_COMPILER_GCC +# pragma message("GLM: GCC compiler detected") +# else +# pragma message("GLM: Compiler not detected") +# endif + + // Report build target +# if (GLM_ARCH & GLM_ARCH_AVX2_BIT) && (GLM_MODEL == GLM_MODEL_64) +# pragma message("GLM: x86 64 bits with AVX2 instruction set build target") +# elif (GLM_ARCH & GLM_ARCH_AVX2_BIT) && (GLM_MODEL == GLM_MODEL_32) +# pragma message("GLM: x86 32 bits with AVX2 instruction set build target") + +# elif (GLM_ARCH & GLM_ARCH_AVX_BIT) && (GLM_MODEL == GLM_MODEL_64) +# pragma message("GLM: x86 64 bits with AVX instruction set build target") +# elif (GLM_ARCH & GLM_ARCH_AVX_BIT) && (GLM_MODEL == GLM_MODEL_32) +# pragma message("GLM: x86 32 bits with AVX instruction set build target") + +# elif (GLM_ARCH & GLM_ARCH_SSE42_BIT) && (GLM_MODEL == GLM_MODEL_64) +# pragma message("GLM: x86 64 bits with SSE4.2 instruction set build target") +# elif (GLM_ARCH & GLM_ARCH_SSE42_BIT) && (GLM_MODEL == GLM_MODEL_32) +# pragma message("GLM: x86 32 bits with SSE4.2 instruction set build target") + +# elif (GLM_ARCH & GLM_ARCH_SSE41_BIT) && (GLM_MODEL == GLM_MODEL_64) +# pragma message("GLM: x86 64 bits with SSE4.1 instruction set build target") +# elif (GLM_ARCH & GLM_ARCH_SSE41_BIT) && (GLM_MODEL == GLM_MODEL_32) +# pragma message("GLM: x86 32 bits with SSE4.1 instruction set build target") + +# elif (GLM_ARCH & GLM_ARCH_SSSE3_BIT) && (GLM_MODEL == GLM_MODEL_64) +# pragma message("GLM: x86 64 bits with SSSE3 instruction set build target") +# elif (GLM_ARCH & GLM_ARCH_SSSE3_BIT) && (GLM_MODEL == GLM_MODEL_32) +# pragma message("GLM: x86 32 bits with SSSE3 instruction set build target") + +# elif (GLM_ARCH & GLM_ARCH_SSE3_BIT) && (GLM_MODEL == GLM_MODEL_64) +# pragma message("GLM: x86 64 bits with SSE3 instruction set build target") +# elif (GLM_ARCH & GLM_ARCH_SSE3_BIT) && (GLM_MODEL == GLM_MODEL_32) +# pragma message("GLM: x86 32 bits with SSE3 instruction set build target") + +# elif (GLM_ARCH & GLM_ARCH_SSE2_BIT) && (GLM_MODEL == GLM_MODEL_64) +# pragma message("GLM: x86 64 bits with SSE2 instruction set build target") +# elif (GLM_ARCH & GLM_ARCH_SSE2_BIT) && (GLM_MODEL == GLM_MODEL_32) +# pragma message("GLM: x86 32 bits with SSE2 instruction set build target") + +# elif (GLM_ARCH & GLM_ARCH_X86_BIT) && (GLM_MODEL == GLM_MODEL_64) +# pragma message("GLM: x86 64 bits build target") +# elif (GLM_ARCH & GLM_ARCH_X86_BIT) && (GLM_MODEL == GLM_MODEL_32) +# pragma message("GLM: x86 32 bits build target") + +# elif (GLM_ARCH & GLM_ARCH_NEON_BIT) && (GLM_MODEL == GLM_MODEL_64) +# pragma message("GLM: ARM 64 bits with Neon instruction set build target") +# elif (GLM_ARCH & GLM_ARCH_NEON_BIT) && (GLM_MODEL == GLM_MODEL_32) +# pragma message("GLM: ARM 32 bits with Neon instruction set build target") + +# elif (GLM_ARCH & GLM_ARCH_ARM_BIT) && (GLM_MODEL == GLM_MODEL_64) +# pragma message("GLM: ARM 64 bits build target") +# elif (GLM_ARCH & GLM_ARCH_ARM_BIT) && (GLM_MODEL == GLM_MODEL_32) +# pragma message("GLM: ARM 32 bits build target") + +# elif (GLM_ARCH & GLM_ARCH_MIPS_BIT) && (GLM_MODEL == GLM_MODEL_64) +# pragma message("GLM: MIPS 64 bits build target") +# elif (GLM_ARCH & GLM_ARCH_MIPS_BIT) && (GLM_MODEL == GLM_MODEL_32) +# pragma message("GLM: MIPS 32 bits build target") + +# elif (GLM_ARCH & GLM_ARCH_PPC_BIT) && (GLM_MODEL == GLM_MODEL_64) +# pragma message("GLM: PowerPC 64 bits build target") +# elif (GLM_ARCH & GLM_ARCH_PPC_BIT) && (GLM_MODEL == GLM_MODEL_32) +# pragma message("GLM: PowerPC 32 bits build target") +# else +# pragma message("GLM: Unknown build target") +# endif//GLM_ARCH + + // Report platform name +# if(GLM_PLATFORM & GLM_PLATFORM_QNXNTO) +# pragma message("GLM: QNX platform detected") +//# elif(GLM_PLATFORM & GLM_PLATFORM_IOS) +//# pragma message("GLM: iOS platform detected") +# elif(GLM_PLATFORM & GLM_PLATFORM_APPLE) +# pragma message("GLM: Apple platform detected") +# elif(GLM_PLATFORM & GLM_PLATFORM_WINCE) +# pragma message("GLM: WinCE platform detected") +# elif(GLM_PLATFORM & GLM_PLATFORM_WINDOWS) +# pragma message("GLM: Windows platform detected") +# elif(GLM_PLATFORM & GLM_PLATFORM_CHROME_NACL) +# pragma message("GLM: Native Client detected") +# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) +# pragma message("GLM: Android platform detected") +# elif(GLM_PLATFORM & GLM_PLATFORM_LINUX) +# pragma message("GLM: Linux platform detected") +# elif(GLM_PLATFORM & GLM_PLATFORM_UNIX) +# pragma message("GLM: UNIX platform detected") +# elif(GLM_PLATFORM & GLM_PLATFORM_UNKNOWN) +# pragma message("GLM: platform unknown") +# else +# pragma message("GLM: platform not detected") +# endif + + // Report whether only xyzw component are used +# if defined GLM_FORCE_XYZW_ONLY +# pragma message("GLM: GLM_FORCE_XYZW_ONLY is defined. Only x, y, z and w component are available in vector type. This define disables swizzle operators and SIMD instruction sets.") +# endif + + // Report swizzle operator support +# if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR +# pragma message("GLM: GLM_FORCE_SWIZZLE is defined, swizzling operators enabled.") +# elif GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_FUNCTION +# pragma message("GLM: GLM_FORCE_SWIZZLE is defined, swizzling functions enabled. Enable compiler C++ language extensions to enable swizzle operators.") +# else +# pragma message("GLM: GLM_FORCE_SWIZZLE is undefined. swizzling functions or operators are disabled.") +# endif + + // Report .length() type +# if GLM_CONFIG_LENGTH_TYPE == GLM_LENGTH_SIZE_T +# pragma message("GLM: GLM_FORCE_SIZE_T_LENGTH is defined. .length() returns a glm::length_t, a typedef of std::size_t.") +# else +# pragma message("GLM: GLM_FORCE_SIZE_T_LENGTH is undefined. .length() returns a glm::length_t, a typedef of int following GLSL.") +# endif + +# if GLM_CONFIG_UNRESTRICTED_GENTYPE == GLM_ENABLE +# pragma message("GLM: GLM_FORCE_UNRESTRICTED_GENTYPE is defined. Removes GLSL restrictions on valid function genTypes.") +# else +# pragma message("GLM: GLM_FORCE_UNRESTRICTED_GENTYPE is undefined. Follows strictly GLSL on valid function genTypes.") +# endif + +# if GLM_SILENT_WARNINGS == GLM_ENABLE +# pragma message("GLM: GLM_FORCE_SILENT_WARNINGS is defined. Ignores C++ warnings from using C++ language extensions.") +# else +# pragma message("GLM: GLM_FORCE_SILENT_WARNINGS is undefined. Shows C++ warnings from using C++ language extensions.") +# endif + +# ifdef GLM_FORCE_SINGLE_ONLY +# pragma message("GLM: GLM_FORCE_SINGLE_ONLY is defined. Using only single precision floating-point types.") +# endif + +# if defined(GLM_FORCE_ALIGNED_GENTYPES) && (GLM_CONFIG_ALIGNED_GENTYPES == GLM_ENABLE) +# undef GLM_FORCE_ALIGNED_GENTYPES +# pragma message("GLM: GLM_FORCE_ALIGNED_GENTYPES is defined, allowing aligned types. This prevents the use of C++ constexpr.") +# elif defined(GLM_FORCE_ALIGNED_GENTYPES) && (GLM_CONFIG_ALIGNED_GENTYPES == GLM_DISABLE) +# undef GLM_FORCE_ALIGNED_GENTYPES +# pragma message("GLM: GLM_FORCE_ALIGNED_GENTYPES is defined but is disabled. It requires C++11 and language extensions.") +# endif + +# if defined(GLM_FORCE_DEFAULT_ALIGNED_GENTYPES) +# if GLM_CONFIG_ALIGNED_GENTYPES == GLM_DISABLE +# undef GLM_FORCE_DEFAULT_ALIGNED_GENTYPES +# pragma message("GLM: GLM_FORCE_DEFAULT_ALIGNED_GENTYPES is defined but is disabled. It requires C++11 and language extensions.") +# elif GLM_CONFIG_ALIGNED_GENTYPES == GLM_ENABLE +# pragma message("GLM: GLM_FORCE_DEFAULT_ALIGNED_GENTYPES is defined. All gentypes (e.g. vec3) will be aligned and padded by default.") +# endif +# endif + +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT +# pragma message("GLM: GLM_FORCE_DEPTH_ZERO_TO_ONE is defined. Using zero to one depth clip space.") +# else +# pragma message("GLM: GLM_FORCE_DEPTH_ZERO_TO_ONE is undefined. Using negative one to one depth clip space.") +# endif + +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT +# pragma message("GLM: GLM_FORCE_LEFT_HANDED is defined. Using left handed coordinate system.") +# else +# pragma message("GLM: GLM_FORCE_LEFT_HANDED is undefined. Using right handed coordinate system.") +# endif +#endif//GLM_MESSAGES + +#endif//GLM_SETUP_INCLUDED diff --git a/thirdparty/glm/glm/detail/type_float.hpp b/thirdparty/glm/glm/detail/type_float.hpp new file mode 100644 index 000000000000..c8037ebd7aa2 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_float.hpp @@ -0,0 +1,68 @@ +#pragma once + +#include "setup.hpp" + +#if GLM_COMPILER == GLM_COMPILER_VC12 +# pragma warning(push) +# pragma warning(disable: 4512) // assignment operator could not be generated +#endif + +namespace glm{ +namespace detail +{ + template + union float_t + {}; + + // https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ + template <> + union float_t + { + typedef int int_type; + typedef float float_type; + + GLM_CONSTEXPR float_t(float_type Num = 0.0f) : f(Num) {} + + GLM_CONSTEXPR float_t& operator=(float_t const& x) + { + f = x.f; + return *this; + } + + // Portable extraction of components. + GLM_CONSTEXPR bool negative() const { return i < 0; } + GLM_CONSTEXPR int_type mantissa() const { return i & ((1 << 23) - 1); } + GLM_CONSTEXPR int_type exponent() const { return (i >> 23) & ((1 << 8) - 1); } + + int_type i; + float_type f; + }; + + template <> + union float_t + { + typedef detail::int64 int_type; + typedef double float_type; + + GLM_CONSTEXPR float_t(float_type Num = static_cast(0)) : f(Num) {} + + GLM_CONSTEXPR float_t& operator=(float_t const& x) + { + f = x.f; + return *this; + } + + // Portable extraction of components. + GLM_CONSTEXPR bool negative() const { return i < 0; } + GLM_CONSTEXPR int_type mantissa() const { return i & ((int_type(1) << 52) - 1); } + GLM_CONSTEXPR int_type exponent() const { return (i >> 52) & ((int_type(1) << 11) - 1); } + + int_type i; + float_type f; + }; +}//namespace detail +}//namespace glm + +#if GLM_COMPILER == GLM_COMPILER_VC12 +# pragma warning(pop) +#endif diff --git a/thirdparty/glm/glm/detail/type_half.hpp b/thirdparty/glm/glm/detail/type_half.hpp new file mode 100644 index 000000000000..40b8bec00d34 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_half.hpp @@ -0,0 +1,16 @@ +#pragma once + +#include "setup.hpp" + +namespace glm{ +namespace detail +{ + typedef short hdata; + + GLM_FUNC_DECL float toFloat32(hdata value); + GLM_FUNC_DECL hdata toFloat16(float const& value); + +}//namespace detail +}//namespace glm + +#include "type_half.inl" diff --git a/thirdparty/glm/glm/detail/type_half.inl b/thirdparty/glm/glm/detail/type_half.inl new file mode 100644 index 000000000000..5d239cf22c25 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_half.inl @@ -0,0 +1,241 @@ +namespace glm{ +namespace detail +{ + GLM_FUNC_QUALIFIER float overflow() + { + volatile float f = 1e10; + + for(int i = 0; i < 10; ++i) + f = f * f; // this will overflow before the for loop terminates + return f; + } + + union uif32 + { + GLM_FUNC_QUALIFIER uif32() : + i(0) + {} + + GLM_FUNC_QUALIFIER uif32(float f_) : + f(f_) + {} + + GLM_FUNC_QUALIFIER uif32(unsigned int i_) : + i(i_) + {} + + float f; + unsigned int i; + }; + + GLM_FUNC_QUALIFIER float toFloat32(hdata value) + { + int s = (value >> 15) & 0x00000001; + int e = (value >> 10) & 0x0000001f; + int m = value & 0x000003ff; + + if(e == 0) + { + if(m == 0) + { + // + // Plus or minus zero + // + + detail::uif32 result; + result.i = static_cast(s << 31); + return result.f; + } + else + { + // + // Denormalized number -- renormalize it + // + + while(!(m & 0x00000400)) + { + m <<= 1; + e -= 1; + } + + e += 1; + m &= ~0x00000400; + } + } + else if(e == 31) + { + if(m == 0) + { + // + // Positive or negative infinity + // + + uif32 result; + result.i = static_cast((s << 31) | 0x7f800000); + return result.f; + } + else + { + // + // Nan -- preserve sign and significand bits + // + + uif32 result; + result.i = static_cast((s << 31) | 0x7f800000 | (m << 13)); + return result.f; + } + } + + // + // Normalized number + // + + e = e + (127 - 15); + m = m << 13; + + // + // Assemble s, e and m. + // + + uif32 Result; + Result.i = static_cast((s << 31) | (e << 23) | m); + return Result.f; + } + + GLM_FUNC_QUALIFIER hdata toFloat16(float const& f) + { + uif32 Entry; + Entry.f = f; + int i = static_cast(Entry.i); + + // + // Our floating point number, f, is represented by the bit + // pattern in integer i. Disassemble that bit pattern into + // the sign, s, the exponent, e, and the significand, m. + // Shift s into the position where it will go in the + // resulting half number. + // Adjust e, accounting for the different exponent bias + // of float and half (127 versus 15). + // + + int s = (i >> 16) & 0x00008000; + int e = ((i >> 23) & 0x000000ff) - (127 - 15); + int m = i & 0x007fffff; + + // + // Now reassemble s, e and m into a half: + // + + if(e <= 0) + { + if(e < -10) + { + // + // E is less than -10. The absolute value of f is + // less than half_MIN (f may be a small normalized + // float, a denormalized float or a zero). + // + // We convert f to a half zero. + // + + return hdata(s); + } + + // + // E is between -10 and 0. F is a normalized float, + // whose magnitude is less than __half_NRM_MIN. + // + // We convert f to a denormalized half. + // + + m = (m | 0x00800000) >> (1 - e); + + // + // Round to nearest, round "0.5" up. + // + // Rounding may cause the significand to overflow and make + // our number normalized. Because of the way a half's bits + // are laid out, we don't have to treat this case separately; + // the code below will handle it correctly. + // + + if(m & 0x00001000) + m += 0x00002000; + + // + // Assemble the half from s, e (zero) and m. + // + + return hdata(s | (m >> 13)); + } + else if(e == 0xff - (127 - 15)) + { + if(m == 0) + { + // + // F is an infinity; convert f to a half + // infinity with the same sign as f. + // + + return hdata(s | 0x7c00); + } + else + { + // + // F is a NAN; we produce a half NAN that preserves + // the sign bit and the 10 leftmost bits of the + // significand of f, with one exception: If the 10 + // leftmost bits are all zero, the NAN would turn + // into an infinity, so we have to set at least one + // bit in the significand. + // + + m >>= 13; + + return hdata(s | 0x7c00 | m | (m == 0)); + } + } + else + { + // + // E is greater than zero. F is a normalized float. + // We try to convert f to a normalized half. + // + + // + // Round to nearest, round "0.5" up + // + + if(m & 0x00001000) + { + m += 0x00002000; + + if(m & 0x00800000) + { + m = 0; // overflow in significand, + e += 1; // adjust exponent + } + } + + // + // Handle exponent overflow + // + + if (e > 30) + { + overflow(); // Cause a hardware floating point overflow; + + return hdata(s | 0x7c00); + // if this returns, the half becomes an + } // infinity with the same sign as f. + + // + // Assemble the half from s, e and m. + // + + return hdata(s | (e << 10) | (m >> 13)); + } + } + +}//namespace detail +}//namespace glm diff --git a/thirdparty/glm/glm/detail/type_mat2x2.hpp b/thirdparty/glm/glm/detail/type_mat2x2.hpp new file mode 100644 index 000000000000..a61bded4b7ae --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat2x2.hpp @@ -0,0 +1,177 @@ +/// @ref core +/// @file glm/detail/type_mat2x2.hpp + +#pragma once + +#include "type_vec2.hpp" +#include +#include + +namespace glm +{ + template + struct mat<2, 2, T, Q> + { + typedef vec<2, T, Q> col_type; + typedef vec<2, T, Q> row_type; + typedef mat<2, 2, T, Q> type; + typedef mat<2, 2, T, Q> transpose_type; + typedef T value_type; + + private: + col_type value[2]; + + public: + // -- Accesses -- + + typedef length_t length_type; + GLM_FUNC_DECL static GLM_CONSTEXPR length_type length() { return 2; } + + GLM_FUNC_DECL GLM_CONSTEXPR col_type & operator[](length_type i) GLM_NOEXCEPT; + GLM_FUNC_DECL GLM_CONSTEXPR col_type const& operator[](length_type i) const GLM_NOEXCEPT; + + // -- Constructors -- + + GLM_DEFAULTED_DEFAULT_CTOR_DECL GLM_CONSTEXPR mat() GLM_DEFAULT_CTOR; + template + GLM_FUNC_DECL GLM_CONSTEXPR mat(mat<2, 2, T, P> const& m); + + GLM_FUNC_DECL explicit GLM_CONSTEXPR mat(T scalar); + GLM_FUNC_DECL GLM_CONSTEXPR mat( + T const& x1, T const& y1, + T const& x2, T const& y2); + GLM_FUNC_DECL GLM_CONSTEXPR mat( + col_type const& v1, + col_type const& v2); + + // -- Conversions -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat( + U const& x1, V const& y1, + M const& x2, N const& y2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat( + vec<2, U, Q> const& v1, + vec<2, V, Q> const& v2); + + // -- Matrix conversions -- + + template + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 2, U, P> const& m); + + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 3, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 3, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 3, T, Q> const& x); + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> & operator=(mat<2, 2, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> & operator+=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> & operator+=(mat<2, 2, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> & operator-=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> & operator-=(mat<2, 2, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> & operator*=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> & operator*=(mat<2, 2, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> & operator/=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> & operator/=(mat<2, 2, U, Q> const& m); + + // -- Increment and decrement operators -- + + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> & operator++ (); + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> & operator-- (); + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> operator++(int); + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> operator--(int); + }; + + // -- Unary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> operator+(mat<2, 2, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> operator-(mat<2, 2, T, Q> const& m); + + // -- Binary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> operator+(mat<2, 2, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> operator+(T scalar, mat<2, 2, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> operator+(mat<2, 2, T, Q> const& m1, mat<2, 2, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> operator-(mat<2, 2, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> operator-(T scalar, mat<2, 2, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> operator-(mat<2, 2, T, Q> const& m1, mat<2, 2, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> operator*(mat<2, 2, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> operator*(T scalar, mat<2, 2, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<2, 2, T, Q>::col_type operator*(mat<2, 2, T, Q> const& m, typename mat<2, 2, T, Q>::row_type const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<2, 2, T, Q>::row_type operator*(typename mat<2, 2, T, Q>::col_type const& v, mat<2, 2, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> operator*(mat<2, 2, T, Q> const& m1, mat<2, 2, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> operator*(mat<2, 2, T, Q> const& m1, mat<3, 2, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> operator*(mat<2, 2, T, Q> const& m1, mat<4, 2, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> operator/(mat<2, 2, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> operator/(T scalar, mat<2, 2, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<2, 2, T, Q>::col_type operator/(mat<2, 2, T, Q> const& m, typename mat<2, 2, T, Q>::row_type const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<2, 2, T, Q>::row_type operator/(typename mat<2, 2, T, Q>::col_type const& v, mat<2, 2, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> operator/(mat<2, 2, T, Q> const& m1, mat<2, 2, T, Q> const& m2); + + // -- Boolean operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator==(mat<2, 2, T, Q> const& m1, mat<2, 2, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator!=(mat<2, 2, T, Q> const& m1, mat<2, 2, T, Q> const& m2); +} //namespace glm + +#ifndef GLM_EXTERNAL_TEMPLATE +#include "type_mat2x2.inl" +#endif diff --git a/thirdparty/glm/glm/detail/type_mat2x2.inl b/thirdparty/glm/glm/detail/type_mat2x2.inl new file mode 100644 index 000000000000..88eca20b4040 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat2x2.inl @@ -0,0 +1,536 @@ +#include "../matrix.hpp" + +namespace glm +{ + // -- Constructors -- + +# if GLM_CONFIG_DEFAULTED_DEFAULT_CTOR == GLM_DISABLE + template + GLM_DEFAULTED_DEFAULT_CTOR_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>::mat() +# if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INITIALIZER_LIST + : value{col_type(1, 0), col_type(0, 1)} +# endif + { +# if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INITIALISATION + this->value[0] = col_type(1, 0); + this->value[1] = col_type(0, 1); +# endif + } +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>::mat(mat<2, 2, T, P> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = m[0]; + this->value[1] = m[1]; +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>::mat(T scalar) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(scalar, 0), col_type(0, scalar)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(scalar, 0); + this->value[1] = col_type(0, scalar); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>::mat + ( + T const& x0, T const& y0, + T const& x1, T const& y1 + ) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(x0, y0), col_type(x1, y1)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(x0, y0); + this->value[1] = col_type(x1, y1); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>::mat(col_type const& v0, col_type const& v1) +# if GLM_HAS_INITIALIZER_LISTS + : value{v0, v1} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = v0; + this->value[1] = v1; +# endif + } + + // -- Conversion constructors -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>::mat + ( + X1 const& x1, Y1 const& y1, + X2 const& x2, Y2 const& y2 + ) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(static_cast(x1), value_type(y1)), col_type(static_cast(x2), value_type(y2)) } +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(static_cast(x1), value_type(y1)); + this->value[1] = col_type(static_cast(x2), value_type(y2)); +# endif + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>::mat(vec<2, V1, Q> const& v1, vec<2, V2, Q> const& v2) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(v1), col_type(v2)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(v1); + this->value[1] = col_type(v2); +# endif + } + + // -- mat2x2 matrix conversions -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>::mat(mat<2, 2, U, P> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>::mat(mat<3, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>::mat(mat<4, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>::mat(mat<2, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>::mat(mat<3, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>::mat(mat<2, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>::mat(mat<4, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>::mat(mat<3, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>::mat(mat<4, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); +# endif + } + + // -- Accesses -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<2, 2, T, Q>::col_type& mat<2, 2, T, Q>::operator[](typename mat<2, 2, T, Q>::length_type i) GLM_NOEXCEPT + { + assert(i < this->length()); + return this->value[i]; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<2, 2, T, Q>::col_type const& mat<2, 2, T, Q>::operator[](typename mat<2, 2, T, Q>::length_type i) const GLM_NOEXCEPT + { + assert(i < this->length()); + return this->value[i]; + } + + // -- Unary updatable operators -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>& mat<2, 2, T, Q>::operator=(mat<2, 2, U, Q> const& m) + { + this->value[0] = m[0]; + this->value[1] = m[1]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>& mat<2, 2, T, Q>::operator+=(U scalar) + { + this->value[0] += scalar; + this->value[1] += scalar; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>& mat<2, 2, T, Q>::operator+=(mat<2, 2, U, Q> const& m) + { + this->value[0] += m[0]; + this->value[1] += m[1]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>& mat<2, 2, T, Q>::operator-=(U scalar) + { + this->value[0] -= scalar; + this->value[1] -= scalar; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>& mat<2, 2, T, Q>::operator-=(mat<2, 2, U, Q> const& m) + { + this->value[0] -= m[0]; + this->value[1] -= m[1]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>& mat<2, 2, T, Q>::operator*=(U scalar) + { + this->value[0] *= scalar; + this->value[1] *= scalar; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>& mat<2, 2, T, Q>::operator*=(mat<2, 2, U, Q> const& m) + { + return (*this = *this * m); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>& mat<2, 2, T, Q>::operator/=(U scalar) + { + this->value[0] /= scalar; + this->value[1] /= scalar; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>& mat<2, 2, T, Q>::operator/=(mat<2, 2, U, Q> const& m) + { + return *this *= inverse(m); + } + + // -- Increment and decrement operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>& mat<2, 2, T, Q>::operator++() + { + ++this->value[0]; + ++this->value[1]; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q>& mat<2, 2, T, Q>::operator--() + { + --this->value[0]; + --this->value[1]; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q> mat<2, 2, T, Q>::operator++(int) + { + mat<2, 2, T, Q> Result(*this); + ++*this; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q> mat<2, 2, T, Q>::operator--(int) + { + mat<2, 2, T, Q> Result(*this); + --*this; + return Result; + } + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q> operator+(mat<2, 2, T, Q> const& m) + { + return m; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q> operator-(mat<2, 2, T, Q> const& m) + { + return mat<2, 2, T, Q>( + -m[0], + -m[1]); + } + + // -- Binary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q> operator+(mat<2, 2, T, Q> const& m, T scalar) + { + return mat<2, 2, T, Q>( + m[0] + scalar, + m[1] + scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q> operator+(T scalar, mat<2, 2, T, Q> const& m) + { + return mat<2, 2, T, Q>( + m[0] + scalar, + m[1] + scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q> operator+(mat<2, 2, T, Q> const& m1, mat<2, 2, T, Q> const& m2) + { + return mat<2, 2, T, Q>( + m1[0] + m2[0], + m1[1] + m2[1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q> operator-(mat<2, 2, T, Q> const& m, T scalar) + { + return mat<2, 2, T, Q>( + m[0] - scalar, + m[1] - scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q> operator-(T scalar, mat<2, 2, T, Q> const& m) + { + return mat<2, 2, T, Q>( + scalar - m[0], + scalar - m[1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q> operator-(mat<2, 2, T, Q> const& m1, mat<2, 2, T, Q> const& m2) + { + return mat<2, 2, T, Q>( + m1[0] - m2[0], + m1[1] - m2[1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q> operator*(mat<2, 2, T, Q> const& m, T scalar) + { + return mat<2, 2, T, Q>( + m[0] * scalar, + m[1] * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q> operator*(T scalar, mat<2, 2, T, Q> const& m) + { + return mat<2, 2, T, Q>( + m[0] * scalar, + m[1] * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<2, 2, T, Q>::col_type operator* + ( + mat<2, 2, T, Q> const& m, + typename mat<2, 2, T, Q>::row_type const& v + ) + { + return vec<2, T, Q>( + m[0][0] * v.x + m[1][0] * v.y, + m[0][1] * v.x + m[1][1] * v.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<2, 2, T, Q>::row_type operator* + ( + typename mat<2, 2, T, Q>::col_type const& v, + mat<2, 2, T, Q> const& m + ) + { + return vec<2, T, Q>( + v.x * m[0][0] + v.y * m[0][1], + v.x * m[1][0] + v.y * m[1][1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q> operator*(mat<2, 2, T, Q> const& m1, mat<2, 2, T, Q> const& m2) + { + return mat<2, 2, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q> operator*(mat<2, 2, T, Q> const& m1, mat<3, 2, T, Q> const& m2) + { + return mat<3, 2, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1], + m1[0][0] * m2[2][0] + m1[1][0] * m2[2][1], + m1[0][1] * m2[2][0] + m1[1][1] * m2[2][1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> operator*(mat<2, 2, T, Q> const& m1, mat<4, 2, T, Q> const& m2) + { + return mat<4, 2, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1], + m1[0][0] * m2[2][0] + m1[1][0] * m2[2][1], + m1[0][1] * m2[2][0] + m1[1][1] * m2[2][1], + m1[0][0] * m2[3][0] + m1[1][0] * m2[3][1], + m1[0][1] * m2[3][0] + m1[1][1] * m2[3][1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q> operator/(mat<2, 2, T, Q> const& m, T scalar) + { + return mat<2, 2, T, Q>( + m[0] / scalar, + m[1] / scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q> operator/(T scalar, mat<2, 2, T, Q> const& m) + { + return mat<2, 2, T, Q>( + scalar / m[0], + scalar / m[1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<2, 2, T, Q>::col_type operator/(mat<2, 2, T, Q> const& m, typename mat<2, 2, T, Q>::row_type const& v) + { + return inverse(m) * v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<2, 2, T, Q>::row_type operator/(typename mat<2, 2, T, Q>::col_type const& v, mat<2, 2, T, Q> const& m) + { + return v * inverse(m); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q> operator/(mat<2, 2, T, Q> const& m1, mat<2, 2, T, Q> const& m2) + { + mat<2, 2, T, Q> m1_copy(m1); + return m1_copy /= m2; + } + + // -- Boolean operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator==(mat<2, 2, T, Q> const& m1, mat<2, 2, T, Q> const& m2) + { + return (m1[0] == m2[0]) && (m1[1] == m2[1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator!=(mat<2, 2, T, Q> const& m1, mat<2, 2, T, Q> const& m2) + { + return (m1[0] != m2[0]) || (m1[1] != m2[1]); + } +} //namespace glm diff --git a/thirdparty/glm/glm/detail/type_mat2x3.hpp b/thirdparty/glm/glm/detail/type_mat2x3.hpp new file mode 100644 index 000000000000..21015f485d15 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat2x3.hpp @@ -0,0 +1,159 @@ +/// @ref core +/// @file glm/detail/type_mat2x3.hpp + +#pragma once + +#include "type_vec2.hpp" +#include "type_vec3.hpp" +#include +#include + +namespace glm +{ + template + struct mat<2, 3, T, Q> + { + typedef vec<3, T, Q> col_type; + typedef vec<2, T, Q> row_type; + typedef mat<2, 3, T, Q> type; + typedef mat<3, 2, T, Q> transpose_type; + typedef T value_type; + + private: + col_type value[2]; + + public: + // -- Accesses -- + + typedef length_t length_type; + GLM_FUNC_DECL static GLM_CONSTEXPR length_type length() { return 2; } + + GLM_FUNC_DECL GLM_CONSTEXPR col_type & operator[](length_type i) GLM_NOEXCEPT; + GLM_FUNC_DECL GLM_CONSTEXPR col_type const& operator[](length_type i) const GLM_NOEXCEPT; + + // -- Constructors -- + + GLM_DEFAULTED_DEFAULT_CTOR_DECL GLM_CONSTEXPR mat() GLM_DEFAULT_CTOR; + template + GLM_FUNC_DECL GLM_CONSTEXPR mat(mat<2, 3, T, P> const& m); + + GLM_FUNC_DECL explicit GLM_CONSTEXPR mat(T scalar); + GLM_FUNC_DECL GLM_CONSTEXPR mat( + T x0, T y0, T z0, + T x1, T y1, T z1); + GLM_FUNC_DECL GLM_CONSTEXPR mat( + col_type const& v0, + col_type const& v1); + + // -- Conversions -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat( + X1 x1, Y1 y1, Z1 z1, + X2 x2, Y2 y2, Z2 z2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat( + vec<3, U, Q> const& v1, + vec<3, V, Q> const& v2); + + // -- Matrix conversions -- + + template + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 3, U, P> const& m); + + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 3, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 3, T, Q> const& x); + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> & operator=(mat<2, 3, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> & operator+=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> & operator+=(mat<2, 3, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> & operator-=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> & operator-=(mat<2, 3, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> & operator*=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> & operator/=(U s); + + // -- Increment and decrement operators -- + + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> & operator++ (); + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> & operator-- (); + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> operator++(int); + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> operator--(int); + }; + + // -- Unary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> operator+(mat<2, 3, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> operator-(mat<2, 3, T, Q> const& m); + + // -- Binary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> operator+(mat<2, 3, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> operator+(mat<2, 3, T, Q> const& m1, mat<2, 3, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> operator-(mat<2, 3, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> operator-(mat<2, 3, T, Q> const& m1, mat<2, 3, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> operator*(mat<2, 3, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> operator*(T scalar, mat<2, 3, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<2, 3, T, Q>::col_type operator*(mat<2, 3, T, Q> const& m, typename mat<2, 3, T, Q>::row_type const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<2, 3, T, Q>::row_type operator*(typename mat<2, 3, T, Q>::col_type const& v, mat<2, 3, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> operator*(mat<2, 3, T, Q> const& m1, mat<2, 2, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> operator*(mat<2, 3, T, Q> const& m1, mat<3, 2, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> operator*(mat<2, 3, T, Q> const& m1, mat<4, 2, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> operator/(mat<2, 3, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> operator/(T scalar, mat<2, 3, T, Q> const& m); + + // -- Boolean operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator==(mat<2, 3, T, Q> const& m1, mat<2, 3, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator!=(mat<2, 3, T, Q> const& m1, mat<2, 3, T, Q> const& m2); +}//namespace glm + +#ifndef GLM_EXTERNAL_TEMPLATE +#include "type_mat2x3.inl" +#endif diff --git a/thirdparty/glm/glm/detail/type_mat2x3.inl b/thirdparty/glm/glm/detail/type_mat2x3.inl new file mode 100644 index 000000000000..88077518f9f0 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat2x3.inl @@ -0,0 +1,510 @@ +namespace glm +{ + // -- Constructors -- + +# if GLM_CONFIG_DEFAULTED_DEFAULT_CTOR == GLM_DISABLE + template + GLM_DEFAULTED_DEFAULT_CTOR_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>::mat() +# if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INITIALIZER_LIST + : value{col_type(1, 0, 0), col_type(0, 1, 0)} +# endif + { +# if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INITIALISATION + this->value[0] = col_type(1, 0, 0); + this->value[1] = col_type(0, 1, 0); +# endif + } +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>::mat(mat<2, 3, T, P> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = m.value[0]; + this->value[1] = m.value[1]; +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>::mat(T scalar) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(scalar, 0, 0), col_type(0, scalar, 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(scalar, 0, 0); + this->value[1] = col_type(0, scalar, 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>::mat + ( + T x0, T y0, T z0, + T x1, T y1, T z1 + ) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(x0, y0, z0), col_type(x1, y1, z1)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(x0, y0, z0); + this->value[1] = col_type(x1, y1, z1); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>::mat(col_type const& v0, col_type const& v1) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(v0), col_type(v1)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(v0); + this->value[1] = col_type(v1); +# endif + } + + // -- Conversion constructors -- + + template + template< + typename X1, typename Y1, typename Z1, + typename X2, typename Y2, typename Z2> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>::mat + ( + X1 x1, Y1 y1, Z1 z1, + X2 x2, Y2 y2, Z2 z2 + ) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(x1, y1, z1), col_type(x2, y2, z2)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(x1, y1, z1); + this->value[1] = col_type(x2, y2, z2); +# endif + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>::mat(vec<3, V1, Q> const& v1, vec<3, V2, Q> const& v2) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(v1), col_type(v2)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(v1); + this->value[1] = col_type(v2); +# endif + } + + // -- Matrix conversions -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>::mat(mat<2, 3, U, P> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>::mat(mat<2, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0), col_type(m[1], 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0); + this->value[1] = col_type(m[1], 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>::mat(mat<3, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>::mat(mat<4, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>::mat(mat<2, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>::mat(mat<3, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0), col_type(m[1], 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0); + this->value[1] = col_type(m[1], 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>::mat(mat<3, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>::mat(mat<4, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0), col_type(m[1], 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0); + this->value[1] = col_type(m[1], 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>::mat(mat<4, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); +# endif + } + + // -- Accesses -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<2, 3, T, Q>::col_type & mat<2, 3, T, Q>::operator[](typename mat<2, 3, T, Q>::length_type i) GLM_NOEXCEPT + { + assert(i < this->length()); + return this->value[i]; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<2, 3, T, Q>::col_type const& mat<2, 3, T, Q>::operator[](typename mat<2, 3, T, Q>::length_type i) const GLM_NOEXCEPT + { + assert(i < this->length()); + return this->value[i]; + } + + // -- Unary updatable operators -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>& mat<2, 3, T, Q>::operator=(mat<2, 3, U, Q> const& m) + { + this->value[0] = m[0]; + this->value[1] = m[1]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> & mat<2, 3, T, Q>::operator+=(U s) + { + this->value[0] += s; + this->value[1] += s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>& mat<2, 3, T, Q>::operator+=(mat<2, 3, U, Q> const& m) + { + this->value[0] += m[0]; + this->value[1] += m[1]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>& mat<2, 3, T, Q>::operator-=(U s) + { + this->value[0] -= s; + this->value[1] -= s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>& mat<2, 3, T, Q>::operator-=(mat<2, 3, U, Q> const& m) + { + this->value[0] -= m[0]; + this->value[1] -= m[1]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q>& mat<2, 3, T, Q>::operator*=(U s) + { + this->value[0] *= s; + this->value[1] *= s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> & mat<2, 3, T, Q>::operator/=(U s) + { + this->value[0] /= s; + this->value[1] /= s; + return *this; + } + + // -- Increment and decrement operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> & mat<2, 3, T, Q>::operator++() + { + ++this->value[0]; + ++this->value[1]; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> & mat<2, 3, T, Q>::operator--() + { + --this->value[0]; + --this->value[1]; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> mat<2, 3, T, Q>::operator++(int) + { + mat<2, 3, T, Q> Result(*this); + ++*this; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> mat<2, 3, T, Q>::operator--(int) + { + mat<2, 3, T, Q> Result(*this); + --*this; + return Result; + } + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> operator+(mat<2, 3, T, Q> const& m) + { + return m; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> operator-(mat<2, 3, T, Q> const& m) + { + return mat<2, 3, T, Q>( + -m[0], + -m[1]); + } + + // -- Binary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> operator+(mat<2, 3, T, Q> const& m, T scalar) + { + return mat<2, 3, T, Q>( + m[0] + scalar, + m[1] + scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> operator+(mat<2, 3, T, Q> const& m1, mat<2, 3, T, Q> const& m2) + { + return mat<2, 3, T, Q>( + m1[0] + m2[0], + m1[1] + m2[1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> operator-(mat<2, 3, T, Q> const& m, T scalar) + { + return mat<2, 3, T, Q>( + m[0] - scalar, + m[1] - scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> operator-(mat<2, 3, T, Q> const& m1, mat<2, 3, T, Q> const& m2) + { + return mat<2, 3, T, Q>( + m1[0] - m2[0], + m1[1] - m2[1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> operator*(mat<2, 3, T, Q> const& m, T scalar) + { + return mat<2, 3, T, Q>( + m[0] * scalar, + m[1] * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> operator*(T scalar, mat<2, 3, T, Q> const& m) + { + return mat<2, 3, T, Q>( + m[0] * scalar, + m[1] * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<2, 3, T, Q>::col_type operator* + ( + mat<2, 3, T, Q> const& m, + typename mat<2, 3, T, Q>::row_type const& v) + { + return typename mat<2, 3, T, Q>::col_type( + m[0][0] * v.x + m[1][0] * v.y, + m[0][1] * v.x + m[1][1] * v.y, + m[0][2] * v.x + m[1][2] * v.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<2, 3, T, Q>::row_type operator* + ( + typename mat<2, 3, T, Q>::col_type const& v, + mat<2, 3, T, Q> const& m) + { + return typename mat<2, 3, T, Q>::row_type( + v.x * m[0][0] + v.y * m[0][1] + v.z * m[0][2], + v.x * m[1][0] + v.y * m[1][1] + v.z * m[1][2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> operator*(mat<2, 3, T, Q> const& m1, mat<2, 2, T, Q> const& m2) + { + return mat<2, 3, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1], + m1[0][2] * m2[0][0] + m1[1][2] * m2[0][1], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1], + m1[0][2] * m2[1][0] + m1[1][2] * m2[1][1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> operator*(mat<2, 3, T, Q> const& m1, mat<3, 2, T, Q> const& m2) + { + T SrcA00 = m1[0][0]; + T SrcA01 = m1[0][1]; + T SrcA02 = m1[0][2]; + T SrcA10 = m1[1][0]; + T SrcA11 = m1[1][1]; + T SrcA12 = m1[1][2]; + + T SrcB00 = m2[0][0]; + T SrcB01 = m2[0][1]; + T SrcB10 = m2[1][0]; + T SrcB11 = m2[1][1]; + T SrcB20 = m2[2][0]; + T SrcB21 = m2[2][1]; + + mat<3, 3, T, Q> Result; + Result[0][0] = SrcA00 * SrcB00 + SrcA10 * SrcB01; + Result[0][1] = SrcA01 * SrcB00 + SrcA11 * SrcB01; + Result[0][2] = SrcA02 * SrcB00 + SrcA12 * SrcB01; + Result[1][0] = SrcA00 * SrcB10 + SrcA10 * SrcB11; + Result[1][1] = SrcA01 * SrcB10 + SrcA11 * SrcB11; + Result[1][2] = SrcA02 * SrcB10 + SrcA12 * SrcB11; + Result[2][0] = SrcA00 * SrcB20 + SrcA10 * SrcB21; + Result[2][1] = SrcA01 * SrcB20 + SrcA11 * SrcB21; + Result[2][2] = SrcA02 * SrcB20 + SrcA12 * SrcB21; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> operator*(mat<2, 3, T, Q> const& m1, mat<4, 2, T, Q> const& m2) + { + return mat<4, 3, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1], + m1[0][2] * m2[0][0] + m1[1][2] * m2[0][1], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1], + m1[0][2] * m2[1][0] + m1[1][2] * m2[1][1], + m1[0][0] * m2[2][0] + m1[1][0] * m2[2][1], + m1[0][1] * m2[2][0] + m1[1][1] * m2[2][1], + m1[0][2] * m2[2][0] + m1[1][2] * m2[2][1], + m1[0][0] * m2[3][0] + m1[1][0] * m2[3][1], + m1[0][1] * m2[3][0] + m1[1][1] * m2[3][1], + m1[0][2] * m2[3][0] + m1[1][2] * m2[3][1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> operator/(mat<2, 3, T, Q> const& m, T scalar) + { + return mat<2, 3, T, Q>( + m[0] / scalar, + m[1] / scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> operator/(T scalar, mat<2, 3, T, Q> const& m) + { + return mat<2, 3, T, Q>( + scalar / m[0], + scalar / m[1]); + } + + // -- Boolean operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator==(mat<2, 3, T, Q> const& m1, mat<2, 3, T, Q> const& m2) + { + return (m1[0] == m2[0]) && (m1[1] == m2[1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator!=(mat<2, 3, T, Q> const& m1, mat<2, 3, T, Q> const& m2) + { + return (m1[0] != m2[0]) || (m1[1] != m2[1]); + } +} //namespace glm diff --git a/thirdparty/glm/glm/detail/type_mat2x4.hpp b/thirdparty/glm/glm/detail/type_mat2x4.hpp new file mode 100644 index 000000000000..ee6dc68574e5 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat2x4.hpp @@ -0,0 +1,161 @@ +/// @ref core +/// @file glm/detail/type_mat2x4.hpp + +#pragma once + +#include "type_vec2.hpp" +#include "type_vec4.hpp" +#include +#include + +namespace glm +{ + template + struct mat<2, 4, T, Q> + { + typedef vec<4, T, Q> col_type; + typedef vec<2, T, Q> row_type; + typedef mat<2, 4, T, Q> type; + typedef mat<4, 2, T, Q> transpose_type; + typedef T value_type; + + private: + col_type value[2]; + + public: + // -- Accesses -- + + typedef length_t length_type; + GLM_FUNC_DECL static GLM_CONSTEXPR length_type length() { return 2; } + + GLM_FUNC_DECL GLM_CONSTEXPR col_type & operator[](length_type i) GLM_NOEXCEPT; + GLM_FUNC_DECL GLM_CONSTEXPR col_type const& operator[](length_type i) const GLM_NOEXCEPT; + + // -- Constructors -- + + GLM_DEFAULTED_DEFAULT_CTOR_DECL GLM_CONSTEXPR mat() GLM_DEFAULT_CTOR; + template + GLM_FUNC_DECL GLM_CONSTEXPR mat(mat<2, 4, T, P> const& m); + + GLM_FUNC_DECL explicit GLM_CONSTEXPR mat(T scalar); + GLM_FUNC_DECL GLM_CONSTEXPR mat( + T x0, T y0, T z0, T w0, + T x1, T y1, T z1, T w1); + GLM_FUNC_DECL GLM_CONSTEXPR mat( + col_type const& v0, + col_type const& v1); + + // -- Conversions -- + + template< + typename X1, typename Y1, typename Z1, typename W1, + typename X2, typename Y2, typename Z2, typename W2> + GLM_FUNC_DECL GLM_CONSTEXPR mat( + X1 x1, Y1 y1, Z1 z1, W1 w1, + X2 x2, Y2 y2, Z2 z2, W2 w2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat( + vec<4, U, Q> const& v1, + vec<4, V, Q> const& v2); + + // -- Matrix conversions -- + + template + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 4, U, P> const& m); + + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 3, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 3, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 3, T, Q> const& x); + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> & operator=(mat<2, 4, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> & operator+=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> & operator+=(mat<2, 4, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> & operator-=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> & operator-=(mat<2, 4, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> & operator*=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> & operator/=(U s); + + // -- Increment and decrement operators -- + + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> & operator++ (); + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> & operator-- (); + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> operator++(int); + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> operator--(int); + }; + + // -- Unary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> operator+(mat<2, 4, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> operator-(mat<2, 4, T, Q> const& m); + + // -- Binary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> operator+(mat<2, 4, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> operator+(mat<2, 4, T, Q> const& m1, mat<2, 4, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> operator-(mat<2, 4, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> operator-(mat<2, 4, T, Q> const& m1, mat<2, 4, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> operator*(mat<2, 4, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> operator*(T scalar, mat<2, 4, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<2, 4, T, Q>::col_type operator*(mat<2, 4, T, Q> const& m, typename mat<2, 4, T, Q>::row_type const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<2, 4, T, Q>::row_type operator*(typename mat<2, 4, T, Q>::col_type const& v, mat<2, 4, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> operator*(mat<2, 4, T, Q> const& m1, mat<4, 2, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> operator*(mat<2, 4, T, Q> const& m1, mat<2, 2, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> operator*(mat<2, 4, T, Q> const& m1, mat<3, 2, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> operator/(mat<2, 4, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> operator/(T scalar, mat<2, 4, T, Q> const& m); + + // -- Boolean operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator==(mat<2, 4, T, Q> const& m1, mat<2, 4, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator!=(mat<2, 4, T, Q> const& m1, mat<2, 4, T, Q> const& m2); +}//namespace glm + +#ifndef GLM_EXTERNAL_TEMPLATE +#include "type_mat2x4.inl" +#endif diff --git a/thirdparty/glm/glm/detail/type_mat2x4.inl b/thirdparty/glm/glm/detail/type_mat2x4.inl new file mode 100644 index 000000000000..e70753c06a3a --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat2x4.inl @@ -0,0 +1,520 @@ +namespace glm +{ + // -- Constructors -- + +# if GLM_CONFIG_DEFAULTED_DEFAULT_CTOR == GLM_DISABLE + template + GLM_DEFAULTED_DEFAULT_CTOR_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>::mat() +# if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INITIALIZER_LIST + : value{col_type(1, 0, 0, 0), col_type(0, 1, 0, 0)} +# endif + { +# if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INITIALISATION + this->value[0] = col_type(1, 0, 0, 0); + this->value[1] = col_type(0, 1, 0, 0); +# endif + } +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>::mat(mat<2, 4, T, P> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = m[0]; + this->value[1] = m[1]; +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>::mat(T s) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(s, 0, 0, 0), col_type(0, s, 0, 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(s, 0, 0, 0); + this->value[1] = col_type(0, s, 0, 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>::mat + ( + T x0, T y0, T z0, T w0, + T x1, T y1, T z1, T w1 + ) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(x0, y0, z0, w0), col_type(x1, y1, z1, w1)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(x0, y0, z0, w0); + this->value[1] = col_type(x1, y1, z1, w1); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>::mat(col_type const& v0, col_type const& v1) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(v0), col_type(v1)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = v0; + this->value[1] = v1; +# endif + } + + // -- Conversion constructors -- + + template + template< + typename X1, typename Y1, typename Z1, typename W1, + typename X2, typename Y2, typename Z2, typename W2> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>::mat + ( + X1 x1, Y1 y1, Z1 z1, W1 w1, + X2 x2, Y2 y2, Z2 z2, W2 w2 + ) +# if GLM_HAS_INITIALIZER_LISTS + : value{ + col_type(x1, y1, z1, w1), + col_type(x2, y2, z2, w2)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(x1, y1, z1, w1); + this->value[1] = col_type(x2, y2, z2, w2); +# endif + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>::mat(vec<4, V1, Q> const& v1, vec<4, V2, Q> const& v2) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(v1), col_type(v2)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(v1); + this->value[1] = col_type(v2); +# endif + } + + // -- Matrix conversions -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>::mat(mat<2, 4, U, P> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>::mat(mat<2, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0, 0), col_type(m[1], 0, 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0, 0); + this->value[1] = col_type(m[1], 0, 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>::mat(mat<3, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0), col_type(m[1], 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0); + this->value[1] = col_type(m[1], 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>::mat(mat<4, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>::mat(mat<2, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0), col_type(m[1], 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0); + this->value[1] = col_type(m[1], 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>::mat(mat<3, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0, 0), col_type(m[1], 0, 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0, 0); + this->value[1] = col_type(m[1], 0, 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>::mat(mat<3, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>::mat(mat<4, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0, 0), col_type(m[1], 0, 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0, 0); + this->value[1] = col_type(m[1], 0, 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>::mat(mat<4, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0), col_type(m[1], 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0); + this->value[1] = col_type(m[1], 0); +# endif + } + + // -- Accesses -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<2, 4, T, Q>::col_type & mat<2, 4, T, Q>::operator[](typename mat<2, 4, T, Q>::length_type i) GLM_NOEXCEPT + { + assert(i < this->length()); + return this->value[i]; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<2, 4, T, Q>::col_type const& mat<2, 4, T, Q>::operator[](typename mat<2, 4, T, Q>::length_type i) const GLM_NOEXCEPT + { + assert(i < this->length()); + return this->value[i]; + } + + // -- Unary updatable operators -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>& mat<2, 4, T, Q>::operator=(mat<2, 4, U, Q> const& m) + { + this->value[0] = m[0]; + this->value[1] = m[1]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>& mat<2, 4, T, Q>::operator+=(U s) + { + this->value[0] += s; + this->value[1] += s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>& mat<2, 4, T, Q>::operator+=(mat<2, 4, U, Q> const& m) + { + this->value[0] += m[0]; + this->value[1] += m[1]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>& mat<2, 4, T, Q>::operator-=(U s) + { + this->value[0] -= s; + this->value[1] -= s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>& mat<2, 4, T, Q>::operator-=(mat<2, 4, U, Q> const& m) + { + this->value[0] -= m[0]; + this->value[1] -= m[1]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>& mat<2, 4, T, Q>::operator*=(U s) + { + this->value[0] *= s; + this->value[1] *= s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q> & mat<2, 4, T, Q>::operator/=(U s) + { + this->value[0] /= s; + this->value[1] /= s; + return *this; + } + + // -- Increment and decrement operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>& mat<2, 4, T, Q>::operator++() + { + ++this->value[0]; + ++this->value[1]; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q>& mat<2, 4, T, Q>::operator--() + { + --this->value[0]; + --this->value[1]; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q> mat<2, 4, T, Q>::operator++(int) + { + mat<2, 4, T, Q> Result(*this); + ++*this; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q> mat<2, 4, T, Q>::operator--(int) + { + mat<2, 4, T, Q> Result(*this); + --*this; + return Result; + } + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q> operator+(mat<2, 4, T, Q> const& m) + { + return m; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q> operator-(mat<2, 4, T, Q> const& m) + { + return mat<2, 4, T, Q>( + -m[0], + -m[1]); + } + + // -- Binary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q> operator+(mat<2, 4, T, Q> const& m, T scalar) + { + return mat<2, 4, T, Q>( + m[0] + scalar, + m[1] + scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q> operator+(mat<2, 4, T, Q> const& m1, mat<2, 4, T, Q> const& m2) + { + return mat<2, 4, T, Q>( + m1[0] + m2[0], + m1[1] + m2[1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q> operator-(mat<2, 4, T, Q> const& m, T scalar) + { + return mat<2, 4, T, Q>( + m[0] - scalar, + m[1] - scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q> operator-(mat<2, 4, T, Q> const& m1, mat<2, 4, T, Q> const& m2) + { + return mat<2, 4, T, Q>( + m1[0] - m2[0], + m1[1] - m2[1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q> operator*(mat<2, 4, T, Q> const& m, T scalar) + { + return mat<2, 4, T, Q>( + m[0] * scalar, + m[1] * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q> operator*(T scalar, mat<2, 4, T, Q> const& m) + { + return mat<2, 4, T, Q>( + m[0] * scalar, + m[1] * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<2, 4, T, Q>::col_type operator*(mat<2, 4, T, Q> const& m, typename mat<2, 4, T, Q>::row_type const& v) + { + return typename mat<2, 4, T, Q>::col_type( + m[0][0] * v.x + m[1][0] * v.y, + m[0][1] * v.x + m[1][1] * v.y, + m[0][2] * v.x + m[1][2] * v.y, + m[0][3] * v.x + m[1][3] * v.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<2, 4, T, Q>::row_type operator*(typename mat<2, 4, T, Q>::col_type const& v, mat<2, 4, T, Q> const& m) + { + return typename mat<2, 4, T, Q>::row_type( + v.x * m[0][0] + v.y * m[0][1] + v.z * m[0][2] + v.w * m[0][3], + v.x * m[1][0] + v.y * m[1][1] + v.z * m[1][2] + v.w * m[1][3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> operator*(mat<2, 4, T, Q> const& m1, mat<4, 2, T, Q> const& m2) + { + T SrcA00 = m1[0][0]; + T SrcA01 = m1[0][1]; + T SrcA02 = m1[0][2]; + T SrcA03 = m1[0][3]; + T SrcA10 = m1[1][0]; + T SrcA11 = m1[1][1]; + T SrcA12 = m1[1][2]; + T SrcA13 = m1[1][3]; + + T SrcB00 = m2[0][0]; + T SrcB01 = m2[0][1]; + T SrcB10 = m2[1][0]; + T SrcB11 = m2[1][1]; + T SrcB20 = m2[2][0]; + T SrcB21 = m2[2][1]; + T SrcB30 = m2[3][0]; + T SrcB31 = m2[3][1]; + + mat<4, 4, T, Q> Result; + Result[0][0] = SrcA00 * SrcB00 + SrcA10 * SrcB01; + Result[0][1] = SrcA01 * SrcB00 + SrcA11 * SrcB01; + Result[0][2] = SrcA02 * SrcB00 + SrcA12 * SrcB01; + Result[0][3] = SrcA03 * SrcB00 + SrcA13 * SrcB01; + Result[1][0] = SrcA00 * SrcB10 + SrcA10 * SrcB11; + Result[1][1] = SrcA01 * SrcB10 + SrcA11 * SrcB11; + Result[1][2] = SrcA02 * SrcB10 + SrcA12 * SrcB11; + Result[1][3] = SrcA03 * SrcB10 + SrcA13 * SrcB11; + Result[2][0] = SrcA00 * SrcB20 + SrcA10 * SrcB21; + Result[2][1] = SrcA01 * SrcB20 + SrcA11 * SrcB21; + Result[2][2] = SrcA02 * SrcB20 + SrcA12 * SrcB21; + Result[2][3] = SrcA03 * SrcB20 + SrcA13 * SrcB21; + Result[3][0] = SrcA00 * SrcB30 + SrcA10 * SrcB31; + Result[3][1] = SrcA01 * SrcB30 + SrcA11 * SrcB31; + Result[3][2] = SrcA02 * SrcB30 + SrcA12 * SrcB31; + Result[3][3] = SrcA03 * SrcB30 + SrcA13 * SrcB31; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q> operator*(mat<2, 4, T, Q> const& m1, mat<2, 2, T, Q> const& m2) + { + return mat<2, 4, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1], + m1[0][2] * m2[0][0] + m1[1][2] * m2[0][1], + m1[0][3] * m2[0][0] + m1[1][3] * m2[0][1], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1], + m1[0][2] * m2[1][0] + m1[1][2] * m2[1][1], + m1[0][3] * m2[1][0] + m1[1][3] * m2[1][1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q> operator*(mat<2, 4, T, Q> const& m1, mat<3, 2, T, Q> const& m2) + { + return mat<3, 4, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1], + m1[0][2] * m2[0][0] + m1[1][2] * m2[0][1], + m1[0][3] * m2[0][0] + m1[1][3] * m2[0][1], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1], + m1[0][2] * m2[1][0] + m1[1][2] * m2[1][1], + m1[0][3] * m2[1][0] + m1[1][3] * m2[1][1], + m1[0][0] * m2[2][0] + m1[1][0] * m2[2][1], + m1[0][1] * m2[2][0] + m1[1][1] * m2[2][1], + m1[0][2] * m2[2][0] + m1[1][2] * m2[2][1], + m1[0][3] * m2[2][0] + m1[1][3] * m2[2][1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q> operator/(mat<2, 4, T, Q> const& m, T scalar) + { + return mat<2, 4, T, Q>( + m[0] / scalar, + m[1] / scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q> operator/(T scalar, mat<2, 4, T, Q> const& m) + { + return mat<2, 4, T, Q>( + scalar / m[0], + scalar / m[1]); + } + + // -- Boolean operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator==(mat<2, 4, T, Q> const& m1, mat<2, 4, T, Q> const& m2) + { + return (m1[0] == m2[0]) && (m1[1] == m2[1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator!=(mat<2, 4, T, Q> const& m1, mat<2, 4, T, Q> const& m2) + { + return (m1[0] != m2[0]) || (m1[1] != m2[1]); + } +} //namespace glm diff --git a/thirdparty/glm/glm/detail/type_mat3x2.hpp b/thirdparty/glm/glm/detail/type_mat3x2.hpp new file mode 100644 index 000000000000..4fe521aa89a0 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat3x2.hpp @@ -0,0 +1,167 @@ +/// @ref core +/// @file glm/detail/type_mat3x2.hpp + +#pragma once + +#include "type_vec2.hpp" +#include "type_vec3.hpp" +#include +#include + +namespace glm +{ + template + struct mat<3, 2, T, Q> + { + typedef vec<2, T, Q> col_type; + typedef vec<3, T, Q> row_type; + typedef mat<3, 2, T, Q> type; + typedef mat<2, 3, T, Q> transpose_type; + typedef T value_type; + + private: + col_type value[3]; + + public: + // -- Accesses -- + + typedef length_t length_type; + GLM_FUNC_DECL static GLM_CONSTEXPR length_type length() { return 3; } + + GLM_FUNC_DECL GLM_CONSTEXPR col_type & operator[](length_type i) GLM_NOEXCEPT; + GLM_FUNC_DECL GLM_CONSTEXPR col_type const& operator[](length_type i) const GLM_NOEXCEPT; + + // -- Constructors -- + + GLM_DEFAULTED_DEFAULT_CTOR_DECL GLM_CONSTEXPR mat() GLM_DEFAULT_CTOR; + template + GLM_FUNC_DECL GLM_CONSTEXPR mat(mat<3, 2, T, P> const& m); + + GLM_FUNC_DECL explicit GLM_CONSTEXPR mat(T scalar); + GLM_FUNC_DECL GLM_CONSTEXPR mat( + T x0, T y0, + T x1, T y1, + T x2, T y2); + GLM_FUNC_DECL GLM_CONSTEXPR mat( + col_type const& v0, + col_type const& v1, + col_type const& v2); + + // -- Conversions -- + + template< + typename X1, typename Y1, + typename X2, typename Y2, + typename X3, typename Y3> + GLM_FUNC_DECL GLM_CONSTEXPR mat( + X1 x1, Y1 y1, + X2 x2, Y2 y2, + X3 x3, Y3 y3); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat( + vec<2, V1, Q> const& v1, + vec<2, V2, Q> const& v2, + vec<2, V3, Q> const& v3); + + // -- Matrix conversions -- + + template + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 2, U, P> const& m); + + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 3, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 3, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 3, T, Q> const& x); + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> & operator=(mat<3, 2, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> & operator+=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> & operator+=(mat<3, 2, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> & operator-=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> & operator-=(mat<3, 2, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> & operator*=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> & operator/=(U s); + + // -- Increment and decrement operators -- + + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> & operator++ (); + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> & operator-- (); + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> operator++(int); + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> operator--(int); + }; + + // -- Unary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> operator+(mat<3, 2, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> operator-(mat<3, 2, T, Q> const& m); + + // -- Binary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> operator+(mat<3, 2, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> operator+(mat<3, 2, T, Q> const& m1, mat<3, 2, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> operator-(mat<3, 2, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> operator-(mat<3, 2, T, Q> const& m1, mat<3, 2, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> operator*(mat<3, 2, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> operator*(T scalar, mat<3, 2, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<3, 2, T, Q>::col_type operator*(mat<3, 2, T, Q> const& m, typename mat<3, 2, T, Q>::row_type const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<3, 2, T, Q>::row_type operator*(typename mat<3, 2, T, Q>::col_type const& v, mat<3, 2, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> operator*(mat<3, 2, T, Q> const& m1, mat<2, 3, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> operator*(mat<3, 2, T, Q> const& m1, mat<3, 3, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> operator*(mat<3, 2, T, Q> const& m1, mat<4, 3, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> operator/(mat<3, 2, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> operator/(T scalar, mat<3, 2, T, Q> const& m); + + // -- Boolean operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator==(mat<3, 2, T, Q> const& m1, mat<3, 2, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator!=(mat<3, 2, T, Q> const& m1, mat<3, 2, T, Q> const& m2); + +}//namespace glm + +#ifndef GLM_EXTERNAL_TEMPLATE +#include "type_mat3x2.inl" +#endif diff --git a/thirdparty/glm/glm/detail/type_mat3x2.inl b/thirdparty/glm/glm/detail/type_mat3x2.inl new file mode 100644 index 000000000000..5a1b4c010a04 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat3x2.inl @@ -0,0 +1,532 @@ +namespace glm +{ + // -- Constructors -- + +# if GLM_CONFIG_DEFAULTED_DEFAULT_CTOR == GLM_DISABLE + template + GLM_DEFAULTED_DEFAULT_CTOR_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>::mat() +# if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INITIALIZER_LIST + : value{col_type(1, 0), col_type(0, 1), col_type(0, 0)} +# endif + { +# if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INITIALISATION + this->value[0] = col_type(1, 0); + this->value[1] = col_type(0, 1); + this->value[2] = col_type(0, 0); +# endif + } +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>::mat(mat<3, 2, T, P> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = m[0]; + this->value[1] = m[1]; + this->value[2] = m[2]; +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>::mat(T s) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(s, 0), col_type(0, s), col_type(0, 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(s, 0); + this->value[1] = col_type(0, s); + this->value[2] = col_type(0, 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>::mat + ( + T x0, T y0, + T x1, T y1, + T x2, T y2 + ) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(x0, y0), col_type(x1, y1), col_type(x2, y2)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(x0, y0); + this->value[1] = col_type(x1, y1); + this->value[2] = col_type(x2, y2); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>::mat(col_type const& v0, col_type const& v1, col_type const& v2) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(v0), col_type(v1), col_type(v2)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = v0; + this->value[1] = v1; + this->value[2] = v2; +# endif + } + + // -- Conversion constructors -- + + template + template< + typename X0, typename Y0, + typename X1, typename Y1, + typename X2, typename Y2> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>::mat + ( + X0 x0, Y0 y0, + X1 x1, Y1 y1, + X2 x2, Y2 y2 + ) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(x0, y0), col_type(x1, y1), col_type(x2, y2)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(x0, y0); + this->value[1] = col_type(x1, y1); + this->value[2] = col_type(x2, y2); +# endif + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>::mat(vec<2, V0, Q> const& v0, vec<2, V1, Q> const& v1, vec<2, V2, Q> const& v2) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(v0), col_type(v1), col_type(v2)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(v0); + this->value[1] = col_type(v1); + this->value[2] = col_type(v2); +# endif + } + + // -- Matrix conversions -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>::mat(mat<3, 2, U, P> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>::mat(mat<2, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = m[0]; + this->value[1] = m[1]; + this->value[2] = col_type(0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>::mat(mat<3, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>::mat(mat<4, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>::mat(mat<2, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>::mat(mat<2, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>::mat(mat<3, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>::mat(mat<4, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = m[0]; + this->value[1] = m[1]; + this->value[2] = m[2]; +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>::mat(mat<4, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); +# endif + } + + // -- Accesses -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<3, 2, T, Q>::col_type & mat<3, 2, T, Q>::operator[](typename mat<3, 2, T, Q>::length_type i) GLM_NOEXCEPT + { + assert(i < this->length()); + return this->value[i]; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<3, 2, T, Q>::col_type const& mat<3, 2, T, Q>::operator[](typename mat<3, 2, T, Q>::length_type i) const GLM_NOEXCEPT + { + assert(i < this->length()); + return this->value[i]; + } + + // -- Unary updatable operators -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>& mat<3, 2, T, Q>::operator=(mat<3, 2, U, Q> const& m) + { + this->value[0] = m[0]; + this->value[1] = m[1]; + this->value[2] = m[2]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>& mat<3, 2, T, Q>::operator+=(U s) + { + this->value[0] += s; + this->value[1] += s; + this->value[2] += s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>& mat<3, 2, T, Q>::operator+=(mat<3, 2, U, Q> const& m) + { + this->value[0] += m[0]; + this->value[1] += m[1]; + this->value[2] += m[2]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>& mat<3, 2, T, Q>::operator-=(U s) + { + this->value[0] -= s; + this->value[1] -= s; + this->value[2] -= s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>& mat<3, 2, T, Q>::operator-=(mat<3, 2, U, Q> const& m) + { + this->value[0] -= m[0]; + this->value[1] -= m[1]; + this->value[2] -= m[2]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>& mat<3, 2, T, Q>::operator*=(U s) + { + this->value[0] *= s; + this->value[1] *= s; + this->value[2] *= s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q> & mat<3, 2, T, Q>::operator/=(U s) + { + this->value[0] /= s; + this->value[1] /= s; + this->value[2] /= s; + return *this; + } + + // -- Increment and decrement operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>& mat<3, 2, T, Q>::operator++() + { + ++this->value[0]; + ++this->value[1]; + ++this->value[2]; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q>& mat<3, 2, T, Q>::operator--() + { + --this->value[0]; + --this->value[1]; + --this->value[2]; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q> mat<3, 2, T, Q>::operator++(int) + { + mat<3, 2, T, Q> Result(*this); + ++*this; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q> mat<3, 2, T, Q>::operator--(int) + { + mat<3, 2, T, Q> Result(*this); + --*this; + return Result; + } + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q> operator+(mat<3, 2, T, Q> const& m) + { + return m; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q> operator-(mat<3, 2, T, Q> const& m) + { + return mat<3, 2, T, Q>( + -m[0], + -m[1], + -m[2]); + } + + // -- Binary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q> operator+(mat<3, 2, T, Q> const& m, T scalar) + { + return mat<3, 2, T, Q>( + m[0] + scalar, + m[1] + scalar, + m[2] + scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q> operator+(mat<3, 2, T, Q> const& m1, mat<3, 2, T, Q> const& m2) + { + return mat<3, 2, T, Q>( + m1[0] + m2[0], + m1[1] + m2[1], + m1[2] + m2[2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q> operator-(mat<3, 2, T, Q> const& m, T scalar) + { + return mat<3, 2, T, Q>( + m[0] - scalar, + m[1] - scalar, + m[2] - scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q> operator-(mat<3, 2, T, Q> const& m1, mat<3, 2, T, Q> const& m2) + { + return mat<3, 2, T, Q>( + m1[0] - m2[0], + m1[1] - m2[1], + m1[2] - m2[2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q> operator*(mat<3, 2, T, Q> const& m, T scalar) + { + return mat<3, 2, T, Q>( + m[0] * scalar, + m[1] * scalar, + m[2] * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q> operator*(T scalar, mat<3, 2, T, Q> const& m) + { + return mat<3, 2, T, Q>( + m[0] * scalar, + m[1] * scalar, + m[2] * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<3, 2, T, Q>::col_type operator*(mat<3, 2, T, Q> const& m, typename mat<3, 2, T, Q>::row_type const& v) + { + return typename mat<3, 2, T, Q>::col_type( + m[0][0] * v.x + m[1][0] * v.y + m[2][0] * v.z, + m[0][1] * v.x + m[1][1] * v.y + m[2][1] * v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<3, 2, T, Q>::row_type operator*(typename mat<3, 2, T, Q>::col_type const& v, mat<3, 2, T, Q> const& m) + { + return typename mat<3, 2, T, Q>::row_type( + v.x * m[0][0] + v.y * m[0][1], + v.x * m[1][0] + v.y * m[1][1], + v.x * m[2][0] + v.y * m[2][1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q> operator*(mat<3, 2, T, Q> const& m1, mat<2, 3, T, Q> const& m2) + { + const T SrcA00 = m1[0][0]; + const T SrcA01 = m1[0][1]; + const T SrcA10 = m1[1][0]; + const T SrcA11 = m1[1][1]; + const T SrcA20 = m1[2][0]; + const T SrcA21 = m1[2][1]; + + const T SrcB00 = m2[0][0]; + const T SrcB01 = m2[0][1]; + const T SrcB02 = m2[0][2]; + const T SrcB10 = m2[1][0]; + const T SrcB11 = m2[1][1]; + const T SrcB12 = m2[1][2]; + + mat<2, 2, T, Q> Result; + Result[0][0] = SrcA00 * SrcB00 + SrcA10 * SrcB01 + SrcA20 * SrcB02; + Result[0][1] = SrcA01 * SrcB00 + SrcA11 * SrcB01 + SrcA21 * SrcB02; + Result[1][0] = SrcA00 * SrcB10 + SrcA10 * SrcB11 + SrcA20 * SrcB12; + Result[1][1] = SrcA01 * SrcB10 + SrcA11 * SrcB11 + SrcA21 * SrcB12; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q> operator*(mat<3, 2, T, Q> const& m1, mat<3, 3, T, Q> const& m2) + { + return mat<3, 2, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1] + m1[2][0] * m2[0][2], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1] + m1[2][1] * m2[0][2], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1] + m1[2][0] * m2[1][2], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1] + m1[2][1] * m2[1][2], + m1[0][0] * m2[2][0] + m1[1][0] * m2[2][1] + m1[2][0] * m2[2][2], + m1[0][1] * m2[2][0] + m1[1][1] * m2[2][1] + m1[2][1] * m2[2][2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> operator*(mat<3, 2, T, Q> const& m1, mat<4, 3, T, Q> const& m2) + { + return mat<4, 2, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1] + m1[2][0] * m2[0][2], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1] + m1[2][1] * m2[0][2], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1] + m1[2][0] * m2[1][2], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1] + m1[2][1] * m2[1][2], + m1[0][0] * m2[2][0] + m1[1][0] * m2[2][1] + m1[2][0] * m2[2][2], + m1[0][1] * m2[2][0] + m1[1][1] * m2[2][1] + m1[2][1] * m2[2][2], + m1[0][0] * m2[3][0] + m1[1][0] * m2[3][1] + m1[2][0] * m2[3][2], + m1[0][1] * m2[3][0] + m1[1][1] * m2[3][1] + m1[2][1] * m2[3][2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q> operator/(mat<3, 2, T, Q> const& m, T scalar) + { + return mat<3, 2, T, Q>( + m[0] / scalar, + m[1] / scalar, + m[2] / scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q> operator/(T scalar, mat<3, 2, T, Q> const& m) + { + return mat<3, 2, T, Q>( + scalar / m[0], + scalar / m[1], + scalar / m[2]); + } + + // -- Boolean operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator==(mat<3, 2, T, Q> const& m1, mat<3, 2, T, Q> const& m2) + { + return (m1[0] == m2[0]) && (m1[1] == m2[1]) && (m1[2] == m2[2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator!=(mat<3, 2, T, Q> const& m1, mat<3, 2, T, Q> const& m2) + { + return (m1[0] != m2[0]) || (m1[1] != m2[1]) || (m1[2] != m2[2]); + } +} //namespace glm diff --git a/thirdparty/glm/glm/detail/type_mat3x3.hpp b/thirdparty/glm/glm/detail/type_mat3x3.hpp new file mode 100644 index 000000000000..fc7df9824a0f --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat3x3.hpp @@ -0,0 +1,184 @@ +/// @ref core +/// @file glm/detail/type_mat3x3.hpp + +#pragma once + +#include "type_vec3.hpp" +#include +#include + +namespace glm +{ + template + struct mat<3, 3, T, Q> + { + typedef vec<3, T, Q> col_type; + typedef vec<3, T, Q> row_type; + typedef mat<3, 3, T, Q> type; + typedef mat<3, 3, T, Q> transpose_type; + typedef T value_type; + + private: + col_type value[3]; + + public: + // -- Accesses -- + + typedef length_t length_type; + GLM_FUNC_DECL static GLM_CONSTEXPR length_type length() { return 3; } + + GLM_FUNC_DECL GLM_CONSTEXPR col_type & operator[](length_type i) GLM_NOEXCEPT; + GLM_FUNC_DECL GLM_CONSTEXPR col_type const& operator[](length_type i) const GLM_NOEXCEPT; + + // -- Constructors -- + + GLM_DEFAULTED_DEFAULT_CTOR_DECL GLM_CONSTEXPR mat() GLM_DEFAULT_CTOR; + template + GLM_FUNC_DECL GLM_CONSTEXPR mat(mat<3, 3, T, P> const& m); + + GLM_FUNC_DECL explicit GLM_CONSTEXPR mat(T scalar); + GLM_FUNC_DECL GLM_CONSTEXPR mat( + T x0, T y0, T z0, + T x1, T y1, T z1, + T x2, T y2, T z2); + GLM_FUNC_DECL GLM_CONSTEXPR mat( + col_type const& v0, + col_type const& v1, + col_type const& v2); + + // -- Conversions -- + + template< + typename X1, typename Y1, typename Z1, + typename X2, typename Y2, typename Z2, + typename X3, typename Y3, typename Z3> + GLM_FUNC_DECL GLM_CONSTEXPR mat( + X1 x1, Y1 y1, Z1 z1, + X2 x2, Y2 y2, Z2 z2, + X3 x3, Y3 y3, Z3 z3); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat( + vec<3, V1, Q> const& v1, + vec<3, V2, Q> const& v2, + vec<3, V3, Q> const& v3); + + // -- Matrix conversions -- + + template + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 3, U, P> const& m); + + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 3, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 3, T, Q> const& x); + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> & operator=(mat<3, 3, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> & operator+=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> & operator+=(mat<3, 3, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> & operator-=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> & operator-=(mat<3, 3, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> & operator*=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> & operator*=(mat<3, 3, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> & operator/=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> & operator/=(mat<3, 3, U, Q> const& m); + + // -- Increment and decrement operators -- + + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> & operator++(); + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> & operator--(); + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> operator++(int); + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> operator--(int); + }; + + // -- Unary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> operator+(mat<3, 3, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> operator-(mat<3, 3, T, Q> const& m); + + // -- Binary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> operator+(mat<3, 3, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> operator+(T scalar, mat<3, 3, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> operator+(mat<3, 3, T, Q> const& m1, mat<3, 3, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> operator-(mat<3, 3, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> operator-(T scalar, mat<3, 3, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> operator-(mat<3, 3, T, Q> const& m1, mat<3, 3, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> operator*(mat<3, 3, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> operator*(T scalar, mat<3, 3, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<3, 3, T, Q>::col_type operator*(mat<3, 3, T, Q> const& m, typename mat<3, 3, T, Q>::row_type const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<3, 3, T, Q>::row_type operator*(typename mat<3, 3, T, Q>::col_type const& v, mat<3, 3, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> operator*(mat<3, 3, T, Q> const& m1, mat<3, 3, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> operator*(mat<3, 3, T, Q> const& m1, mat<2, 3, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> operator*(mat<3, 3, T, Q> const& m1, mat<4, 3, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> operator/(mat<3, 3, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> operator/(T scalar, mat<3, 3, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<3, 3, T, Q>::col_type operator/(mat<3, 3, T, Q> const& m, typename mat<3, 3, T, Q>::row_type const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<3, 3, T, Q>::row_type operator/(typename mat<3, 3, T, Q>::col_type const& v, mat<3, 3, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> operator/(mat<3, 3, T, Q> const& m1, mat<3, 3, T, Q> const& m2); + + // -- Boolean operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator==(mat<3, 3, T, Q> const& m1, mat<3, 3, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator!=(mat<3, 3, T, Q> const& m1, mat<3, 3, T, Q> const& m2); +}//namespace glm + +#ifndef GLM_EXTERNAL_TEMPLATE +#include "type_mat3x3.inl" +#endif diff --git a/thirdparty/glm/glm/detail/type_mat3x3.inl b/thirdparty/glm/glm/detail/type_mat3x3.inl new file mode 100644 index 000000000000..ddb00d46bd23 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat3x3.inl @@ -0,0 +1,601 @@ +#include "../matrix.hpp" + +namespace glm +{ + // -- Constructors -- + +# if GLM_CONFIG_DEFAULTED_DEFAULT_CTOR == GLM_DISABLE + template + GLM_DEFAULTED_DEFAULT_CTOR_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q>::mat() +# if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INITIALIZER_LIST + : value{col_type(1, 0, 0), col_type(0, 1, 0), col_type(0, 0, 1)} +# endif + { +# if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INITIALISATION + this->value[0] = col_type(1, 0, 0); + this->value[1] = col_type(0, 1, 0); + this->value[2] = col_type(0, 0, 1); +# endif + } +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q>::mat(mat<3, 3, T, P> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q>::mat(T s) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(s, 0, 0), col_type(0, s, 0), col_type(0, 0, s)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(s, 0, 0); + this->value[1] = col_type(0, s, 0); + this->value[2] = col_type(0, 0, s); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q>::mat + ( + T x0, T y0, T z0, + T x1, T y1, T z1, + T x2, T y2, T z2 + ) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(x0, y0, z0), col_type(x1, y1, z1), col_type(x2, y2, z2)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(x0, y0, z0); + this->value[1] = col_type(x1, y1, z1); + this->value[2] = col_type(x2, y2, z2); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q>::mat(col_type const& v0, col_type const& v1, col_type const& v2) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(v0), col_type(v1), col_type(v2)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(v0); + this->value[1] = col_type(v1); + this->value[2] = col_type(v2); +# endif + } + + // -- Conversion constructors -- + + template + template< + typename X1, typename Y1, typename Z1, + typename X2, typename Y2, typename Z2, + typename X3, typename Y3, typename Z3> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q>::mat + ( + X1 x1, Y1 y1, Z1 z1, + X2 x2, Y2 y2, Z2 z2, + X3 x3, Y3 y3, Z3 z3 + ) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(x1, y1, z1), col_type(x2, y2, z2), col_type(x3, y3, z3)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(x1, y1, z1); + this->value[1] = col_type(x2, y2, z2); + this->value[2] = col_type(x3, y3, z3); +# endif + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q>::mat(vec<3, V1, Q> const& v1, vec<3, V2, Q> const& v2, vec<3, V3, Q> const& v3) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(v1), col_type(v2), col_type(v3)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(v1); + this->value[1] = col_type(v2); + this->value[2] = col_type(v3); +# endif + } + + // -- Matrix conversions -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q>::mat(mat<3, 3, U, P> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q>::mat(mat<2, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0), col_type(m[1], 0), col_type(0, 0, 1)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0); + this->value[1] = col_type(m[1], 0); + this->value[2] = col_type(0, 0, 1); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q>::mat(mat<4, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q>::mat(mat<2, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(0, 0, 1)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(0, 0, 1); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q>::mat(mat<3, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0), col_type(m[1], 0), col_type(m[2], 1)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0); + this->value[1] = col_type(m[1], 0); + this->value[2] = col_type(m[2], 1); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q>::mat(mat<2, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(0, 0, 1)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(0, 0, 1); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q>::mat(mat<4, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0), col_type(m[1], 0), col_type(m[2], 1)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0); + this->value[1] = col_type(m[1], 0); + this->value[2] = col_type(m[2], 1); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q>::mat(mat<3, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q>::mat(mat<4, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); +# endif + } + + // -- Accesses -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<3, 3, T, Q>::col_type & mat<3, 3, T, Q>::operator[](typename mat<3, 3, T, Q>::length_type i) GLM_NOEXCEPT + { + assert(i < this->length()); + return this->value[i]; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<3, 3, T, Q>::col_type const& mat<3, 3, T, Q>::operator[](typename mat<3, 3, T, Q>::length_type i) const GLM_NOEXCEPT + { + assert(i < this->length()); + return this->value[i]; + } + + // -- Unary updatable operators -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> & mat<3, 3, T, Q>::operator=(mat<3, 3, U, Q> const& m) + { + this->value[0] = m[0]; + this->value[1] = m[1]; + this->value[2] = m[2]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> & mat<3, 3, T, Q>::operator+=(U s) + { + this->value[0] += s; + this->value[1] += s; + this->value[2] += s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> & mat<3, 3, T, Q>::operator+=(mat<3, 3, U, Q> const& m) + { + this->value[0] += m[0]; + this->value[1] += m[1]; + this->value[2] += m[2]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> & mat<3, 3, T, Q>::operator-=(U s) + { + this->value[0] -= s; + this->value[1] -= s; + this->value[2] -= s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> & mat<3, 3, T, Q>::operator-=(mat<3, 3, U, Q> const& m) + { + this->value[0] -= m[0]; + this->value[1] -= m[1]; + this->value[2] -= m[2]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> & mat<3, 3, T, Q>::operator*=(U s) + { + this->value[0] *= s; + this->value[1] *= s; + this->value[2] *= s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> & mat<3, 3, T, Q>::operator*=(mat<3, 3, U, Q> const& m) + { + return (*this = *this * m); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> & mat<3, 3, T, Q>::operator/=(U s) + { + this->value[0] /= s; + this->value[1] /= s; + this->value[2] /= s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> & mat<3, 3, T, Q>::operator/=(mat<3, 3, U, Q> const& m) + { + return *this *= inverse(m); + } + + // -- Increment and decrement operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> & mat<3, 3, T, Q>::operator++() + { + ++this->value[0]; + ++this->value[1]; + ++this->value[2]; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> & mat<3, 3, T, Q>::operator--() + { + --this->value[0]; + --this->value[1]; + --this->value[2]; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> mat<3, 3, T, Q>::operator++(int) + { + mat<3, 3, T, Q> Result(*this); + ++*this; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> mat<3, 3, T, Q>::operator--(int) + { + mat<3, 3, T, Q> Result(*this); + --*this; + return Result; + } + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> operator+(mat<3, 3, T, Q> const& m) + { + return m; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> operator-(mat<3, 3, T, Q> const& m) + { + return mat<3, 3, T, Q>( + -m[0], + -m[1], + -m[2]); + } + + // -- Binary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> operator+(mat<3, 3, T, Q> const& m, T scalar) + { + return mat<3, 3, T, Q>( + m[0] + scalar, + m[1] + scalar, + m[2] + scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> operator+(T scalar, mat<3, 3, T, Q> const& m) + { + return mat<3, 3, T, Q>( + m[0] + scalar, + m[1] + scalar, + m[2] + scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> operator+(mat<3, 3, T, Q> const& m1, mat<3, 3, T, Q> const& m2) + { + return mat<3, 3, T, Q>( + m1[0] + m2[0], + m1[1] + m2[1], + m1[2] + m2[2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> operator-(mat<3, 3, T, Q> const& m, T scalar) + { + return mat<3, 3, T, Q>( + m[0] - scalar, + m[1] - scalar, + m[2] - scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> operator-(T scalar, mat<3, 3, T, Q> const& m) + { + return mat<3, 3, T, Q>( + scalar - m[0], + scalar - m[1], + scalar - m[2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> operator-(mat<3, 3, T, Q> const& m1, mat<3, 3, T, Q> const& m2) + { + return mat<3, 3, T, Q>( + m1[0] - m2[0], + m1[1] - m2[1], + m1[2] - m2[2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> operator*(mat<3, 3, T, Q> const& m, T scalar) + { + return mat<3, 3, T, Q>( + m[0] * scalar, + m[1] * scalar, + m[2] * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> operator*(T scalar, mat<3, 3, T, Q> const& m) + { + return mat<3, 3, T, Q>( + m[0] * scalar, + m[1] * scalar, + m[2] * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<3, 3, T, Q>::col_type operator*(mat<3, 3, T, Q> const& m, typename mat<3, 3, T, Q>::row_type const& v) + { + return typename mat<3, 3, T, Q>::col_type( + m[0][0] * v.x + m[1][0] * v.y + m[2][0] * v.z, + m[0][1] * v.x + m[1][1] * v.y + m[2][1] * v.z, + m[0][2] * v.x + m[1][2] * v.y + m[2][2] * v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<3, 3, T, Q>::row_type operator*(typename mat<3, 3, T, Q>::col_type const& v, mat<3, 3, T, Q> const& m) + { + return typename mat<3, 3, T, Q>::row_type( + m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z, + m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z, + m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> operator*(mat<3, 3, T, Q> const& m1, mat<3, 3, T, Q> const& m2) + { + T const SrcA00 = m1[0][0]; + T const SrcA01 = m1[0][1]; + T const SrcA02 = m1[0][2]; + T const SrcA10 = m1[1][0]; + T const SrcA11 = m1[1][1]; + T const SrcA12 = m1[1][2]; + T const SrcA20 = m1[2][0]; + T const SrcA21 = m1[2][1]; + T const SrcA22 = m1[2][2]; + + T const SrcB00 = m2[0][0]; + T const SrcB01 = m2[0][1]; + T const SrcB02 = m2[0][2]; + T const SrcB10 = m2[1][0]; + T const SrcB11 = m2[1][1]; + T const SrcB12 = m2[1][2]; + T const SrcB20 = m2[2][0]; + T const SrcB21 = m2[2][1]; + T const SrcB22 = m2[2][2]; + + mat<3, 3, T, Q> Result; + Result[0][0] = SrcA00 * SrcB00 + SrcA10 * SrcB01 + SrcA20 * SrcB02; + Result[0][1] = SrcA01 * SrcB00 + SrcA11 * SrcB01 + SrcA21 * SrcB02; + Result[0][2] = SrcA02 * SrcB00 + SrcA12 * SrcB01 + SrcA22 * SrcB02; + Result[1][0] = SrcA00 * SrcB10 + SrcA10 * SrcB11 + SrcA20 * SrcB12; + Result[1][1] = SrcA01 * SrcB10 + SrcA11 * SrcB11 + SrcA21 * SrcB12; + Result[1][2] = SrcA02 * SrcB10 + SrcA12 * SrcB11 + SrcA22 * SrcB12; + Result[2][0] = SrcA00 * SrcB20 + SrcA10 * SrcB21 + SrcA20 * SrcB22; + Result[2][1] = SrcA01 * SrcB20 + SrcA11 * SrcB21 + SrcA21 * SrcB22; + Result[2][2] = SrcA02 * SrcB20 + SrcA12 * SrcB21 + SrcA22 * SrcB22; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> operator*(mat<3, 3, T, Q> const& m1, mat<2, 3, T, Q> const& m2) + { + return mat<2, 3, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1] + m1[2][0] * m2[0][2], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1] + m1[2][1] * m2[0][2], + m1[0][2] * m2[0][0] + m1[1][2] * m2[0][1] + m1[2][2] * m2[0][2], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1] + m1[2][0] * m2[1][2], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1] + m1[2][1] * m2[1][2], + m1[0][2] * m2[1][0] + m1[1][2] * m2[1][1] + m1[2][2] * m2[1][2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> operator*(mat<3, 3, T, Q> const& m1, mat<4, 3, T, Q> const& m2) + { + return mat<4, 3, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1] + m1[2][0] * m2[0][2], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1] + m1[2][1] * m2[0][2], + m1[0][2] * m2[0][0] + m1[1][2] * m2[0][1] + m1[2][2] * m2[0][2], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1] + m1[2][0] * m2[1][2], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1] + m1[2][1] * m2[1][2], + m1[0][2] * m2[1][0] + m1[1][2] * m2[1][1] + m1[2][2] * m2[1][2], + m1[0][0] * m2[2][0] + m1[1][0] * m2[2][1] + m1[2][0] * m2[2][2], + m1[0][1] * m2[2][0] + m1[1][1] * m2[2][1] + m1[2][1] * m2[2][2], + m1[0][2] * m2[2][0] + m1[1][2] * m2[2][1] + m1[2][2] * m2[2][2], + m1[0][0] * m2[3][0] + m1[1][0] * m2[3][1] + m1[2][0] * m2[3][2], + m1[0][1] * m2[3][0] + m1[1][1] * m2[3][1] + m1[2][1] * m2[3][2], + m1[0][2] * m2[3][0] + m1[1][2] * m2[3][1] + m1[2][2] * m2[3][2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> operator/(mat<3, 3, T, Q> const& m, T scalar) + { + return mat<3, 3, T, Q>( + m[0] / scalar, + m[1] / scalar, + m[2] / scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> operator/(T scalar, mat<3, 3, T, Q> const& m) + { + return mat<3, 3, T, Q>( + scalar / m[0], + scalar / m[1], + scalar / m[2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<3, 3, T, Q>::col_type operator/(mat<3, 3, T, Q> const& m, typename mat<3, 3, T, Q>::row_type const& v) + { + return inverse(m) * v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<3, 3, T, Q>::row_type operator/(typename mat<3, 3, T, Q>::col_type const& v, mat<3, 3, T, Q> const& m) + { + return v * inverse(m); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> operator/(mat<3, 3, T, Q> const& m1, mat<3, 3, T, Q> const& m2) + { + mat<3, 3, T, Q> m1_copy(m1); + return m1_copy /= m2; + } + + // -- Boolean operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator==(mat<3, 3, T, Q> const& m1, mat<3, 3, T, Q> const& m2) + { + return (m1[0] == m2[0]) && (m1[1] == m2[1]) && (m1[2] == m2[2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator!=(mat<3, 3, T, Q> const& m1, mat<3, 3, T, Q> const& m2) + { + return (m1[0] != m2[0]) || (m1[1] != m2[1]) || (m1[2] != m2[2]); + } +} //namespace glm diff --git a/thirdparty/glm/glm/detail/type_mat3x4.hpp b/thirdparty/glm/glm/detail/type_mat3x4.hpp new file mode 100644 index 000000000000..e2617a32952b --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat3x4.hpp @@ -0,0 +1,166 @@ +/// @ref core +/// @file glm/detail/type_mat3x4.hpp + +#pragma once + +#include "type_vec3.hpp" +#include "type_vec4.hpp" +#include +#include + +namespace glm +{ + template + struct mat<3, 4, T, Q> + { + typedef vec<4, T, Q> col_type; + typedef vec<3, T, Q> row_type; + typedef mat<3, 4, T, Q> type; + typedef mat<4, 3, T, Q> transpose_type; + typedef T value_type; + + private: + col_type value[3]; + + public: + // -- Accesses -- + + typedef length_t length_type; + GLM_FUNC_DECL static GLM_CONSTEXPR length_type length() { return 3; } + + GLM_FUNC_DECL GLM_CONSTEXPR col_type & operator[](length_type i) GLM_NOEXCEPT; + GLM_FUNC_DECL GLM_CONSTEXPR col_type const& operator[](length_type i) const GLM_NOEXCEPT; + + // -- Constructors -- + + GLM_DEFAULTED_DEFAULT_CTOR_DECL GLM_CONSTEXPR mat() GLM_DEFAULT_CTOR; + template + GLM_FUNC_DECL GLM_CONSTEXPR mat(mat<3, 4, T, P> const& m); + + GLM_FUNC_DECL explicit GLM_CONSTEXPR mat(T scalar); + GLM_FUNC_DECL GLM_CONSTEXPR mat( + T x0, T y0, T z0, T w0, + T x1, T y1, T z1, T w1, + T x2, T y2, T z2, T w2); + GLM_FUNC_DECL GLM_CONSTEXPR mat( + col_type const& v0, + col_type const& v1, + col_type const& v2); + + // -- Conversions -- + + template< + typename X1, typename Y1, typename Z1, typename W1, + typename X2, typename Y2, typename Z2, typename W2, + typename X3, typename Y3, typename Z3, typename W3> + GLM_FUNC_DECL GLM_CONSTEXPR mat( + X1 x1, Y1 y1, Z1 z1, W1 w1, + X2 x2, Y2 y2, Z2 z2, W2 w2, + X3 x3, Y3 y3, Z3 z3, W3 w3); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat( + vec<4, V1, Q> const& v1, + vec<4, V2, Q> const& v2, + vec<4, V3, Q> const& v3); + + // -- Matrix conversions -- + + template + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 4, U, P> const& m); + + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 3, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 3, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 3, T, Q> const& x); + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> & operator=(mat<3, 4, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> & operator+=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> & operator+=(mat<3, 4, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> & operator-=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> & operator-=(mat<3, 4, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> & operator*=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> & operator/=(U s); + + // -- Increment and decrement operators -- + + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> & operator++(); + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> & operator--(); + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> operator++(int); + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> operator--(int); + }; + + // -- Unary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> operator+(mat<3, 4, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> operator-(mat<3, 4, T, Q> const& m); + + // -- Binary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> operator+(mat<3, 4, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> operator+(mat<3, 4, T, Q> const& m1, mat<3, 4, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> operator-(mat<3, 4, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> operator-(mat<3, 4, T, Q> const& m1, mat<3, 4, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> operator*(mat<3, 4, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> operator*(T scalar, mat<3, 4, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<3, 4, T, Q>::col_type operator*(mat<3, 4, T, Q> const& m, typename mat<3, 4, T, Q>::row_type const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<3, 4, T, Q>::row_type operator*(typename mat<3, 4, T, Q>::col_type const& v, mat<3, 4, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> operator*(mat<3, 4, T, Q> const& m1, mat<4, 3, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> operator*(mat<3, 4, T, Q> const& m1, mat<2, 3, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> operator*(mat<3, 4, T, Q> const& m1, mat<3, 3, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> operator/(mat<3, 4, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> operator/(T scalar, mat<3, 4, T, Q> const& m); + + // -- Boolean operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator==(mat<3, 4, T, Q> const& m1, mat<3, 4, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator!=(mat<3, 4, T, Q> const& m1, mat<3, 4, T, Q> const& m2); +}//namespace glm + +#ifndef GLM_EXTERNAL_TEMPLATE +#include "type_mat3x4.inl" +#endif diff --git a/thirdparty/glm/glm/detail/type_mat3x4.inl b/thirdparty/glm/glm/detail/type_mat3x4.inl new file mode 100644 index 000000000000..5e2eccd85d9b --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat3x4.inl @@ -0,0 +1,578 @@ +namespace glm +{ + // -- Constructors -- + +# if GLM_CONFIG_DEFAULTED_DEFAULT_CTOR == GLM_DISABLE + template + GLM_DEFAULTED_DEFAULT_CTOR_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>::mat() +# if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INITIALIZER_LIST + : value{col_type(1, 0, 0, 0), col_type(0, 1, 0, 0), col_type(0, 0, 1, 0)} +# endif + { +# if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INITIALISATION + this->value[0] = col_type(1, 0, 0, 0); + this->value[1] = col_type(0, 1, 0, 0); + this->value[2] = col_type(0, 0, 1, 0); +# endif + } +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>::mat(mat<3, 4, T, P> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = m[0]; + this->value[1] = m[1]; + this->value[2] = m[2]; +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>::mat(T s) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(s, 0, 0, 0), col_type(0, s, 0, 0), col_type(0, 0, s, 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(s, 0, 0, 0); + this->value[1] = col_type(0, s, 0, 0); + this->value[2] = col_type(0, 0, s, 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>::mat + ( + T x0, T y0, T z0, T w0, + T x1, T y1, T z1, T w1, + T x2, T y2, T z2, T w2 + ) +# if GLM_HAS_INITIALIZER_LISTS + : value{ + col_type(x0, y0, z0, w0), + col_type(x1, y1, z1, w1), + col_type(x2, y2, z2, w2)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(x0, y0, z0, w0); + this->value[1] = col_type(x1, y1, z1, w1); + this->value[2] = col_type(x2, y2, z2, w2); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>::mat(col_type const& v0, col_type const& v1, col_type const& v2) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(v0), col_type(v1), col_type(v2)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = v0; + this->value[1] = v1; + this->value[2] = v2; +# endif + } + + // -- Conversion constructors -- + + template + template< + typename X0, typename Y0, typename Z0, typename W0, + typename X1, typename Y1, typename Z1, typename W1, + typename X2, typename Y2, typename Z2, typename W2> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>::mat + ( + X0 x0, Y0 y0, Z0 z0, W0 w0, + X1 x1, Y1 y1, Z1 z1, W1 w1, + X2 x2, Y2 y2, Z2 z2, W2 w2 + ) +# if GLM_HAS_INITIALIZER_LISTS + : value{ + col_type(x0, y0, z0, w0), + col_type(x1, y1, z1, w1), + col_type(x2, y2, z2, w2)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(x0, y0, z0, w0); + this->value[1] = col_type(x1, y1, z1, w1); + this->value[2] = col_type(x2, y2, z2, w2); +# endif + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>::mat(vec<4, V1, Q> const& v0, vec<4, V2, Q> const& v1, vec<4, V3, Q> const& v2) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(v0), col_type(v1), col_type(v2)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(v0); + this->value[1] = col_type(v1); + this->value[2] = col_type(v2); +# endif + } + + // -- Matrix conversions -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>::mat(mat<3, 4, U, P> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>::mat(mat<2, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0, 0), col_type(m[1], 0, 0), col_type(0, 0, 1, 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0, 0); + this->value[1] = col_type(m[1], 0, 0); + this->value[2] = col_type(0, 0, 1, 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>::mat(mat<3, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0), col_type(m[1], 0), col_type(m[2], 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0); + this->value[1] = col_type(m[1], 0); + this->value[2] = col_type(m[2], 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>::mat(mat<4, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>::mat(mat<2, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0), col_type(m[1], 0), col_type(0, 0, 1, 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0); + this->value[1] = col_type(m[1], 0); + this->value[2] = col_type(0, 0, 1, 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>::mat(mat<3, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0, 0), col_type(m[1], 0, 0), col_type(m[2], 1, 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0, 0); + this->value[1] = col_type(m[1], 0, 0); + this->value[2] = col_type(m[2], 1, 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>::mat(mat<2, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(0, 0, 1, 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(0, 0, 1, 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>::mat(mat<4, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0, 0), col_type(m[1], 0, 0), col_type(m[2], 1, 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0, 0); + this->value[1] = col_type(m[1], 0, 0); + this->value[2] = col_type(m[2], 1, 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>::mat(mat<4, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0), col_type(m[1], 0), col_type(m[2], 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0); + this->value[1] = col_type(m[1], 0); + this->value[2] = col_type(m[2], 0); +# endif + } + + // -- Accesses -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<3, 4, T, Q>::col_type & mat<3, 4, T, Q>::operator[](typename mat<3, 4, T, Q>::length_type i) GLM_NOEXCEPT + { + assert(i < this->length()); + return this->value[i]; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<3, 4, T, Q>::col_type const& mat<3, 4, T, Q>::operator[](typename mat<3, 4, T, Q>::length_type i) const GLM_NOEXCEPT + { + assert(i < this->length()); + return this->value[i]; + } + + // -- Unary updatable operators -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>& mat<3, 4, T, Q>::operator=(mat<3, 4, U, Q> const& m) + { + this->value[0] = m[0]; + this->value[1] = m[1]; + this->value[2] = m[2]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>& mat<3, 4, T, Q>::operator+=(U s) + { + this->value[0] += s; + this->value[1] += s; + this->value[2] += s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>& mat<3, 4, T, Q>::operator+=(mat<3, 4, U, Q> const& m) + { + this->value[0] += m[0]; + this->value[1] += m[1]; + this->value[2] += m[2]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>& mat<3, 4, T, Q>::operator-=(U s) + { + this->value[0] -= s; + this->value[1] -= s; + this->value[2] -= s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>& mat<3, 4, T, Q>::operator-=(mat<3, 4, U, Q> const& m) + { + this->value[0] -= m[0]; + this->value[1] -= m[1]; + this->value[2] -= m[2]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>& mat<3, 4, T, Q>::operator*=(U s) + { + this->value[0] *= s; + this->value[1] *= s; + this->value[2] *= s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q> & mat<3, 4, T, Q>::operator/=(U s) + { + this->value[0] /= s; + this->value[1] /= s; + this->value[2] /= s; + return *this; + } + + // -- Increment and decrement operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>& mat<3, 4, T, Q>::operator++() + { + ++this->value[0]; + ++this->value[1]; + ++this->value[2]; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q>& mat<3, 4, T, Q>::operator--() + { + --this->value[0]; + --this->value[1]; + --this->value[2]; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q> mat<3, 4, T, Q>::operator++(int) + { + mat<3, 4, T, Q> Result(*this); + ++*this; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q> mat<3, 4, T, Q>::operator--(int) + { + mat<3, 4, T, Q> Result(*this); + --*this; + return Result; + } + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q> operator+(mat<3, 4, T, Q> const& m) + { + return m; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q> operator-(mat<3, 4, T, Q> const& m) + { + return mat<3, 4, T, Q>( + -m[0], + -m[1], + -m[2]); + } + + // -- Binary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q> operator+(mat<3, 4, T, Q> const& m, T scalar) + { + return mat<3, 4, T, Q>( + m[0] + scalar, + m[1] + scalar, + m[2] + scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q> operator+(mat<3, 4, T, Q> const& m1, mat<3, 4, T, Q> const& m2) + { + return mat<3, 4, T, Q>( + m1[0] + m2[0], + m1[1] + m2[1], + m1[2] + m2[2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q> operator-(mat<3, 4, T, Q> const& m, T scalar) + { + return mat<3, 4, T, Q>( + m[0] - scalar, + m[1] - scalar, + m[2] - scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q> operator-(mat<3, 4, T, Q> const& m1, mat<3, 4, T, Q> const& m2) + { + return mat<3, 4, T, Q>( + m1[0] - m2[0], + m1[1] - m2[1], + m1[2] - m2[2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q> operator*(mat<3, 4, T, Q> const& m, T scalar) + { + return mat<3, 4, T, Q>( + m[0] * scalar, + m[1] * scalar, + m[2] * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q> operator*(T scalar, mat<3, 4, T, Q> const& m) + { + return mat<3, 4, T, Q>( + m[0] * scalar, + m[1] * scalar, + m[2] * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<3, 4, T, Q>::col_type operator* + ( + mat<3, 4, T, Q> const& m, + typename mat<3, 4, T, Q>::row_type const& v + ) + { + return typename mat<3, 4, T, Q>::col_type( + m[0][0] * v.x + m[1][0] * v.y + m[2][0] * v.z, + m[0][1] * v.x + m[1][1] * v.y + m[2][1] * v.z, + m[0][2] * v.x + m[1][2] * v.y + m[2][2] * v.z, + m[0][3] * v.x + m[1][3] * v.y + m[2][3] * v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<3, 4, T, Q>::row_type operator* + ( + typename mat<3, 4, T, Q>::col_type const& v, + mat<3, 4, T, Q> const& m + ) + { + return typename mat<3, 4, T, Q>::row_type( + v.x * m[0][0] + v.y * m[0][1] + v.z * m[0][2] + v.w * m[0][3], + v.x * m[1][0] + v.y * m[1][1] + v.z * m[1][2] + v.w * m[1][3], + v.x * m[2][0] + v.y * m[2][1] + v.z * m[2][2] + v.w * m[2][3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> operator*(mat<3, 4, T, Q> const& m1, mat<4, 3, T, Q> const& m2) + { + const T SrcA00 = m1[0][0]; + const T SrcA01 = m1[0][1]; + const T SrcA02 = m1[0][2]; + const T SrcA03 = m1[0][3]; + const T SrcA10 = m1[1][0]; + const T SrcA11 = m1[1][1]; + const T SrcA12 = m1[1][2]; + const T SrcA13 = m1[1][3]; + const T SrcA20 = m1[2][0]; + const T SrcA21 = m1[2][1]; + const T SrcA22 = m1[2][2]; + const T SrcA23 = m1[2][3]; + + const T SrcB00 = m2[0][0]; + const T SrcB01 = m2[0][1]; + const T SrcB02 = m2[0][2]; + const T SrcB10 = m2[1][0]; + const T SrcB11 = m2[1][1]; + const T SrcB12 = m2[1][2]; + const T SrcB20 = m2[2][0]; + const T SrcB21 = m2[2][1]; + const T SrcB22 = m2[2][2]; + const T SrcB30 = m2[3][0]; + const T SrcB31 = m2[3][1]; + const T SrcB32 = m2[3][2]; + + mat<4, 4, T, Q> Result; + Result[0][0] = SrcA00 * SrcB00 + SrcA10 * SrcB01 + SrcA20 * SrcB02; + Result[0][1] = SrcA01 * SrcB00 + SrcA11 * SrcB01 + SrcA21 * SrcB02; + Result[0][2] = SrcA02 * SrcB00 + SrcA12 * SrcB01 + SrcA22 * SrcB02; + Result[0][3] = SrcA03 * SrcB00 + SrcA13 * SrcB01 + SrcA23 * SrcB02; + Result[1][0] = SrcA00 * SrcB10 + SrcA10 * SrcB11 + SrcA20 * SrcB12; + Result[1][1] = SrcA01 * SrcB10 + SrcA11 * SrcB11 + SrcA21 * SrcB12; + Result[1][2] = SrcA02 * SrcB10 + SrcA12 * SrcB11 + SrcA22 * SrcB12; + Result[1][3] = SrcA03 * SrcB10 + SrcA13 * SrcB11 + SrcA23 * SrcB12; + Result[2][0] = SrcA00 * SrcB20 + SrcA10 * SrcB21 + SrcA20 * SrcB22; + Result[2][1] = SrcA01 * SrcB20 + SrcA11 * SrcB21 + SrcA21 * SrcB22; + Result[2][2] = SrcA02 * SrcB20 + SrcA12 * SrcB21 + SrcA22 * SrcB22; + Result[2][3] = SrcA03 * SrcB20 + SrcA13 * SrcB21 + SrcA23 * SrcB22; + Result[3][0] = SrcA00 * SrcB30 + SrcA10 * SrcB31 + SrcA20 * SrcB32; + Result[3][1] = SrcA01 * SrcB30 + SrcA11 * SrcB31 + SrcA21 * SrcB32; + Result[3][2] = SrcA02 * SrcB30 + SrcA12 * SrcB31 + SrcA22 * SrcB32; + Result[3][3] = SrcA03 * SrcB30 + SrcA13 * SrcB31 + SrcA23 * SrcB32; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q> operator*(mat<3, 4, T, Q> const& m1, mat<2, 3, T, Q> const& m2) + { + return mat<2, 4, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1] + m1[2][0] * m2[0][2], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1] + m1[2][1] * m2[0][2], + m1[0][2] * m2[0][0] + m1[1][2] * m2[0][1] + m1[2][2] * m2[0][2], + m1[0][3] * m2[0][0] + m1[1][3] * m2[0][1] + m1[2][3] * m2[0][2], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1] + m1[2][0] * m2[1][2], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1] + m1[2][1] * m2[1][2], + m1[0][2] * m2[1][0] + m1[1][2] * m2[1][1] + m1[2][2] * m2[1][2], + m1[0][3] * m2[1][0] + m1[1][3] * m2[1][1] + m1[2][3] * m2[1][2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q> operator*(mat<3, 4, T, Q> const& m1, mat<3, 3, T, Q> const& m2) + { + return mat<3, 4, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1] + m1[2][0] * m2[0][2], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1] + m1[2][1] * m2[0][2], + m1[0][2] * m2[0][0] + m1[1][2] * m2[0][1] + m1[2][2] * m2[0][2], + m1[0][3] * m2[0][0] + m1[1][3] * m2[0][1] + m1[2][3] * m2[0][2], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1] + m1[2][0] * m2[1][2], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1] + m1[2][1] * m2[1][2], + m1[0][2] * m2[1][0] + m1[1][2] * m2[1][1] + m1[2][2] * m2[1][2], + m1[0][3] * m2[1][0] + m1[1][3] * m2[1][1] + m1[2][3] * m2[1][2], + m1[0][0] * m2[2][0] + m1[1][0] * m2[2][1] + m1[2][0] * m2[2][2], + m1[0][1] * m2[2][0] + m1[1][1] * m2[2][1] + m1[2][1] * m2[2][2], + m1[0][2] * m2[2][0] + m1[1][2] * m2[2][1] + m1[2][2] * m2[2][2], + m1[0][3] * m2[2][0] + m1[1][3] * m2[2][1] + m1[2][3] * m2[2][2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q> operator/(mat<3, 4, T, Q> const& m, T scalar) + { + return mat<3, 4, T, Q>( + m[0] / scalar, + m[1] / scalar, + m[2] / scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q> operator/(T scalar, mat<3, 4, T, Q> const& m) + { + return mat<3, 4, T, Q>( + scalar / m[0], + scalar / m[1], + scalar / m[2]); + } + + // -- Boolean operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator==(mat<3, 4, T, Q> const& m1, mat<3, 4, T, Q> const& m2) + { + return (m1[0] == m2[0]) && (m1[1] == m2[1]) && (m1[2] == m2[2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator!=(mat<3, 4, T, Q> const& m1, mat<3, 4, T, Q> const& m2) + { + return (m1[0] != m2[0]) || (m1[1] != m2[1]) || (m1[2] != m2[2]); + } +} //namespace glm diff --git a/thirdparty/glm/glm/detail/type_mat4x2.hpp b/thirdparty/glm/glm/detail/type_mat4x2.hpp new file mode 100644 index 000000000000..5eb31184c8fd --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat4x2.hpp @@ -0,0 +1,171 @@ +/// @ref core +/// @file glm/detail/type_mat4x2.hpp + +#pragma once + +#include "type_vec2.hpp" +#include "type_vec4.hpp" +#include +#include + +namespace glm +{ + template + struct mat<4, 2, T, Q> + { + typedef vec<2, T, Q> col_type; + typedef vec<4, T, Q> row_type; + typedef mat<4, 2, T, Q> type; + typedef mat<2, 4, T, Q> transpose_type; + typedef T value_type; + + private: + col_type value[4]; + + public: + // -- Accesses -- + + typedef length_t length_type; + GLM_FUNC_DECL static GLM_CONSTEXPR length_type length() { return 4; } + + GLM_FUNC_DECL GLM_CONSTEXPR col_type & operator[](length_type i) GLM_NOEXCEPT; + GLM_FUNC_DECL GLM_CONSTEXPR col_type const& operator[](length_type i) const GLM_NOEXCEPT; + + // -- Constructors -- + + GLM_DEFAULTED_DEFAULT_CTOR_DECL GLM_CONSTEXPR mat() GLM_DEFAULT_CTOR; + template + GLM_FUNC_DECL GLM_CONSTEXPR mat(mat<4, 2, T, P> const& m); + + GLM_FUNC_DECL explicit GLM_CONSTEXPR mat(T scalar); + GLM_FUNC_DECL GLM_CONSTEXPR mat( + T x0, T y0, + T x1, T y1, + T x2, T y2, + T x3, T y3); + GLM_FUNC_DECL GLM_CONSTEXPR mat( + col_type const& v0, + col_type const& v1, + col_type const& v2, + col_type const& v3); + + // -- Conversions -- + + template< + typename X0, typename Y0, + typename X1, typename Y1, + typename X2, typename Y2, + typename X3, typename Y3> + GLM_FUNC_DECL GLM_CONSTEXPR mat( + X0 x0, Y0 y0, + X1 x1, Y1 y1, + X2 x2, Y2 y2, + X3 x3, Y3 y3); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat( + vec<2, V1, Q> const& v1, + vec<2, V2, Q> const& v2, + vec<2, V3, Q> const& v3, + vec<2, V4, Q> const& v4); + + // -- Matrix conversions -- + + template + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 2, U, P> const& m); + + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 3, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 3, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 3, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 4, T, Q> const& x); + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> & operator=(mat<4, 2, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> & operator+=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> & operator+=(mat<4, 2, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> & operator-=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> & operator-=(mat<4, 2, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> & operator*=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> & operator/=(U s); + + // -- Increment and decrement operators -- + + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> & operator++ (); + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> & operator-- (); + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> operator++(int); + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> operator--(int); + }; + + // -- Unary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> operator+(mat<4, 2, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> operator-(mat<4, 2, T, Q> const& m); + + // -- Binary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> operator+(mat<4, 2, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> operator+(mat<4, 2, T, Q> const& m1, mat<4, 2, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> operator-(mat<4, 2, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> operator-(mat<4, 2, T, Q> const& m1, mat<4, 2, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> operator*(mat<4, 2, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> operator*(T scalar, mat<4, 2, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<4, 2, T, Q>::col_type operator*(mat<4, 2, T, Q> const& m, typename mat<4, 2, T, Q>::row_type const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<4, 2, T, Q>::row_type operator*(typename mat<4, 2, T, Q>::col_type const& v, mat<4, 2, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 2, T, Q> operator*(mat<4, 2, T, Q> const& m1, mat<2, 4, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 2, T, Q> operator*(mat<4, 2, T, Q> const& m1, mat<3, 4, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> operator*(mat<4, 2, T, Q> const& m1, mat<4, 4, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> operator/(mat<4, 2, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 2, T, Q> operator/(T scalar, mat<4, 2, T, Q> const& m); + + // -- Boolean operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator==(mat<4, 2, T, Q> const& m1, mat<4, 2, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator!=(mat<4, 2, T, Q> const& m1, mat<4, 2, T, Q> const& m2); +}//namespace glm + +#ifndef GLM_EXTERNAL_TEMPLATE +#include "type_mat4x2.inl" +#endif diff --git a/thirdparty/glm/glm/detail/type_mat4x2.inl b/thirdparty/glm/glm/detail/type_mat4x2.inl new file mode 100644 index 000000000000..1a4f3f168d01 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat4x2.inl @@ -0,0 +1,574 @@ +namespace glm +{ + // -- Constructors -- + +# if GLM_CONFIG_DEFAULTED_DEFAULT_CTOR == GLM_DISABLE + template + GLM_DEFAULTED_DEFAULT_CTOR_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q>::mat() +# if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INITIALIZER_LIST + : value{col_type(1, 0), col_type(0, 1), col_type(0, 0), col_type(0, 0)} +# endif + { +# if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INITIALISATION + this->value[0] = col_type(1, 0); + this->value[1] = col_type(0, 1); + this->value[2] = col_type(0, 0); + this->value[3] = col_type(0, 0); +# endif + } +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q>::mat(mat<4, 2, T, P> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2]), col_type(m[3])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = m[0]; + this->value[1] = m[1]; + this->value[2] = m[2]; + this->value[3] = m[3]; +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q>::mat(T s) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(s, 0), col_type(0, s), col_type(0, 0), col_type(0, 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(s, 0); + this->value[1] = col_type(0, s); + this->value[2] = col_type(0, 0); + this->value[3] = col_type(0, 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q>::mat + ( + T x0, T y0, + T x1, T y1, + T x2, T y2, + T x3, T y3 + ) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(x0, y0), col_type(x1, y1), col_type(x2, y2), col_type(x3, y3)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(x0, y0); + this->value[1] = col_type(x1, y1); + this->value[2] = col_type(x2, y2); + this->value[3] = col_type(x3, y3); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q>::mat(col_type const& v0, col_type const& v1, col_type const& v2, col_type const& v3) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(v0), col_type(v1), col_type(v2), col_type(v3)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = v0; + this->value[1] = v1; + this->value[2] = v2; + this->value[3] = v3; +# endif + } + + // -- Conversion constructors -- + + template + template< + typename X0, typename Y0, + typename X1, typename Y1, + typename X2, typename Y2, + typename X3, typename Y3> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q>::mat + ( + X0 x0, Y0 y0, + X1 x1, Y1 y1, + X2 x2, Y2 y2, + X3 x3, Y3 y3 + ) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(x0, y0), col_type(x1, y1), col_type(x2, y2), col_type(x3, y3)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(x0, y0); + this->value[1] = col_type(x1, y1); + this->value[2] = col_type(x2, y2); + this->value[3] = col_type(x3, y3); +# endif + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q>::mat(vec<2, V0, Q> const& v0, vec<2, V1, Q> const& v1, vec<2, V2, Q> const& v2, vec<2, V3, Q> const& v3) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(v0), col_type(v1), col_type(v2), col_type(v3)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(v0); + this->value[1] = col_type(v1); + this->value[2] = col_type(v2); + this->value[3] = col_type(v3); +# endif + } + + // -- Conversion -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q>::mat(mat<4, 2, U, P> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2]), col_type(m[3])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); + this->value[3] = col_type(m[3]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q>::mat(mat<2, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(0), col_type(0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(0); + this->value[3] = col_type(0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q>::mat(mat<3, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2]), col_type(0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); + this->value[3] = col_type(0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q>::mat(mat<4, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2]), col_type(m[3])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); + this->value[3] = col_type(m[3]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q>::mat(mat<2, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(0), col_type(0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(0); + this->value[3] = col_type(0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q>::mat(mat<3, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2]), col_type(0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); + this->value[3] = col_type(0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q>::mat(mat<2, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(0), col_type(0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(0); + this->value[3] = col_type(0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q>::mat(mat<4, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2]), col_type(m[3])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); + this->value[3] = col_type(m[3]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q>::mat(mat<3, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2]), col_type(0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); + this->value[3] = col_type(0); +# endif + } + + // -- Accesses -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<4, 2, T, Q>::col_type & mat<4, 2, T, Q>::operator[](typename mat<4, 2, T, Q>::length_type i) GLM_NOEXCEPT + { + assert(i < this->length()); + return this->value[i]; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<4, 2, T, Q>::col_type const& mat<4, 2, T, Q>::operator[](typename mat<4, 2, T, Q>::length_type i) const GLM_NOEXCEPT + { + assert(i < this->length()); + return this->value[i]; + } + + // -- Unary updatable operators -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q>& mat<4, 2, T, Q>::operator=(mat<4, 2, U, Q> const& m) + { + this->value[0] = m[0]; + this->value[1] = m[1]; + this->value[2] = m[2]; + this->value[3] = m[3]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> & mat<4, 2, T, Q>::operator+=(U s) + { + this->value[0] += s; + this->value[1] += s; + this->value[2] += s; + this->value[3] += s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> & mat<4, 2, T, Q>::operator+=(mat<4, 2, U, Q> const& m) + { + this->value[0] += m[0]; + this->value[1] += m[1]; + this->value[2] += m[2]; + this->value[3] += m[3]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> & mat<4, 2, T, Q>::operator-=(U s) + { + this->value[0] -= s; + this->value[1] -= s; + this->value[2] -= s; + this->value[3] -= s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> & mat<4, 2, T, Q>::operator-=(mat<4, 2, U, Q> const& m) + { + this->value[0] -= m[0]; + this->value[1] -= m[1]; + this->value[2] -= m[2]; + this->value[3] -= m[3]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> & mat<4, 2, T, Q>::operator*=(U s) + { + this->value[0] *= s; + this->value[1] *= s; + this->value[2] *= s; + this->value[3] *= s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> & mat<4, 2, T, Q>::operator/=(U s) + { + this->value[0] /= s; + this->value[1] /= s; + this->value[2] /= s; + this->value[3] /= s; + return *this; + } + + // -- Increment and decrement operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> & mat<4, 2, T, Q>::operator++() + { + ++this->value[0]; + ++this->value[1]; + ++this->value[2]; + ++this->value[3]; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> & mat<4, 2, T, Q>::operator--() + { + --this->value[0]; + --this->value[1]; + --this->value[2]; + --this->value[3]; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> mat<4, 2, T, Q>::operator++(int) + { + mat<4, 2, T, Q> Result(*this); + ++*this; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> mat<4, 2, T, Q>::operator--(int) + { + mat<4, 2, T, Q> Result(*this); + --*this; + return Result; + } + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> operator+(mat<4, 2, T, Q> const& m) + { + return m; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> operator-(mat<4, 2, T, Q> const& m) + { + return mat<4, 2, T, Q>( + -m[0], + -m[1], + -m[2], + -m[3]); + } + + // -- Binary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> operator+(mat<4, 2, T, Q> const& m, T scalar) + { + return mat<4, 2, T, Q>( + m[0] + scalar, + m[1] + scalar, + m[2] + scalar, + m[3] + scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> operator+(mat<4, 2, T, Q> const& m1, mat<4, 2, T, Q> const& m2) + { + return mat<4, 2, T, Q>( + m1[0] + m2[0], + m1[1] + m2[1], + m1[2] + m2[2], + m1[3] + m2[3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> operator-(mat<4, 2, T, Q> const& m, T scalar) + { + return mat<4, 2, T, Q>( + m[0] - scalar, + m[1] - scalar, + m[2] - scalar, + m[3] - scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> operator-(mat<4, 2, T, Q> const& m1, mat<4, 2, T, Q> const& m2) + { + return mat<4, 2, T, Q>( + m1[0] - m2[0], + m1[1] - m2[1], + m1[2] - m2[2], + m1[3] - m2[3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> operator*(mat<4, 2, T, Q> const& m, T scalar) + { + return mat<4, 2, T, Q>( + m[0] * scalar, + m[1] * scalar, + m[2] * scalar, + m[3] * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> operator*(T scalar, mat<4, 2, T, Q> const& m) + { + return mat<4, 2, T, Q>( + m[0] * scalar, + m[1] * scalar, + m[2] * scalar, + m[3] * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<4, 2, T, Q>::col_type operator*(mat<4, 2, T, Q> const& m, typename mat<4, 2, T, Q>::row_type const& v) + { + return typename mat<4, 2, T, Q>::col_type( + m[0][0] * v.x + m[1][0] * v.y + m[2][0] * v.z + m[3][0] * v.w, + m[0][1] * v.x + m[1][1] * v.y + m[2][1] * v.z + m[3][1] * v.w); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<4, 2, T, Q>::row_type operator*(typename mat<4, 2, T, Q>::col_type const& v, mat<4, 2, T, Q> const& m) + { + return typename mat<4, 2, T, Q>::row_type( + v.x * m[0][0] + v.y * m[0][1], + v.x * m[1][0] + v.y * m[1][1], + v.x * m[2][0] + v.y * m[2][1], + v.x * m[3][0] + v.y * m[3][1]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 2, T, Q> operator*(mat<4, 2, T, Q> const& m1, mat<2, 4, T, Q> const& m2) + { + T const SrcA00 = m1[0][0]; + T const SrcA01 = m1[0][1]; + T const SrcA10 = m1[1][0]; + T const SrcA11 = m1[1][1]; + T const SrcA20 = m1[2][0]; + T const SrcA21 = m1[2][1]; + T const SrcA30 = m1[3][0]; + T const SrcA31 = m1[3][1]; + + T const SrcB00 = m2[0][0]; + T const SrcB01 = m2[0][1]; + T const SrcB02 = m2[0][2]; + T const SrcB03 = m2[0][3]; + T const SrcB10 = m2[1][0]; + T const SrcB11 = m2[1][1]; + T const SrcB12 = m2[1][2]; + T const SrcB13 = m2[1][3]; + + mat<2, 2, T, Q> Result; + Result[0][0] = SrcA00 * SrcB00 + SrcA10 * SrcB01 + SrcA20 * SrcB02 + SrcA30 * SrcB03; + Result[0][1] = SrcA01 * SrcB00 + SrcA11 * SrcB01 + SrcA21 * SrcB02 + SrcA31 * SrcB03; + Result[1][0] = SrcA00 * SrcB10 + SrcA10 * SrcB11 + SrcA20 * SrcB12 + SrcA30 * SrcB13; + Result[1][1] = SrcA01 * SrcB10 + SrcA11 * SrcB11 + SrcA21 * SrcB12 + SrcA31 * SrcB13; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 2, T, Q> operator*(mat<4, 2, T, Q> const& m1, mat<3, 4, T, Q> const& m2) + { + return mat<3, 2, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1] + m1[2][0] * m2[0][2] + m1[3][0] * m2[0][3], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1] + m1[2][1] * m2[0][2] + m1[3][1] * m2[0][3], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1] + m1[2][0] * m2[1][2] + m1[3][0] * m2[1][3], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1] + m1[2][1] * m2[1][2] + m1[3][1] * m2[1][3], + m1[0][0] * m2[2][0] + m1[1][0] * m2[2][1] + m1[2][0] * m2[2][2] + m1[3][0] * m2[2][3], + m1[0][1] * m2[2][0] + m1[1][1] * m2[2][1] + m1[2][1] * m2[2][2] + m1[3][1] * m2[2][3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> operator*(mat<4, 2, T, Q> const& m1, mat<4, 4, T, Q> const& m2) + { + return mat<4, 2, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1] + m1[2][0] * m2[0][2] + m1[3][0] * m2[0][3], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1] + m1[2][1] * m2[0][2] + m1[3][1] * m2[0][3], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1] + m1[2][0] * m2[1][2] + m1[3][0] * m2[1][3], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1] + m1[2][1] * m2[1][2] + m1[3][1] * m2[1][3], + m1[0][0] * m2[2][0] + m1[1][0] * m2[2][1] + m1[2][0] * m2[2][2] + m1[3][0] * m2[2][3], + m1[0][1] * m2[2][0] + m1[1][1] * m2[2][1] + m1[2][1] * m2[2][2] + m1[3][1] * m2[2][3], + m1[0][0] * m2[3][0] + m1[1][0] * m2[3][1] + m1[2][0] * m2[3][2] + m1[3][0] * m2[3][3], + m1[0][1] * m2[3][0] + m1[1][1] * m2[3][1] + m1[2][1] * m2[3][2] + m1[3][1] * m2[3][3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> operator/(mat<4, 2, T, Q> const& m, T scalar) + { + return mat<4, 2, T, Q>( + m[0] / scalar, + m[1] / scalar, + m[2] / scalar, + m[3] / scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 2, T, Q> operator/(T scalar, mat<4, 2, T, Q> const& m) + { + return mat<4, 2, T, Q>( + scalar / m[0], + scalar / m[1], + scalar / m[2], + scalar / m[3]); + } + + // -- Boolean operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator==(mat<4, 2, T, Q> const& m1, mat<4, 2, T, Q> const& m2) + { + return (m1[0] == m2[0]) && (m1[1] == m2[1]) && (m1[2] == m2[2]) && (m1[3] == m2[3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator!=(mat<4, 2, T, Q> const& m1, mat<4, 2, T, Q> const& m2) + { + return (m1[0] != m2[0]) || (m1[1] != m2[1]) || (m1[2] != m2[2]) || (m1[3] != m2[3]); + } +} //namespace glm diff --git a/thirdparty/glm/glm/detail/type_mat4x3.hpp b/thirdparty/glm/glm/detail/type_mat4x3.hpp new file mode 100644 index 000000000000..9650546a6305 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat4x3.hpp @@ -0,0 +1,171 @@ +/// @ref core +/// @file glm/detail/type_mat4x3.hpp + +#pragma once + +#include "type_vec3.hpp" +#include "type_vec4.hpp" +#include +#include + +namespace glm +{ + template + struct mat<4, 3, T, Q> + { + typedef vec<3, T, Q> col_type; + typedef vec<4, T, Q> row_type; + typedef mat<4, 3, T, Q> type; + typedef mat<3, 4, T, Q> transpose_type; + typedef T value_type; + + private: + col_type value[4]; + + public: + // -- Accesses -- + + typedef length_t length_type; + GLM_FUNC_DECL static GLM_CONSTEXPR length_type length() { return 4; } + + GLM_FUNC_DECL GLM_CONSTEXPR col_type & operator[](length_type i) GLM_NOEXCEPT; + GLM_FUNC_DECL GLM_CONSTEXPR col_type const& operator[](length_type i) const GLM_NOEXCEPT; + + // -- Constructors -- + + GLM_DEFAULTED_DEFAULT_CTOR_DECL GLM_CONSTEXPR mat() GLM_DEFAULT_CTOR; + template + GLM_FUNC_DECL GLM_CONSTEXPR mat(mat<4, 3, T, P> const& m); + + GLM_FUNC_DECL explicit GLM_CONSTEXPR mat(T s); + GLM_FUNC_DECL GLM_CONSTEXPR mat( + T const& x0, T const& y0, T const& z0, + T const& x1, T const& y1, T const& z1, + T const& x2, T const& y2, T const& z2, + T const& x3, T const& y3, T const& z3); + GLM_FUNC_DECL GLM_CONSTEXPR mat( + col_type const& v0, + col_type const& v1, + col_type const& v2, + col_type const& v3); + + // -- Conversions -- + + template< + typename X1, typename Y1, typename Z1, + typename X2, typename Y2, typename Z2, + typename X3, typename Y3, typename Z3, + typename X4, typename Y4, typename Z4> + GLM_FUNC_DECL GLM_CONSTEXPR mat( + X1 const& x1, Y1 const& y1, Z1 const& z1, + X2 const& x2, Y2 const& y2, Z2 const& z2, + X3 const& x3, Y3 const& y3, Z3 const& z3, + X4 const& x4, Y4 const& y4, Z4 const& z4); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat( + vec<3, V1, Q> const& v1, + vec<3, V2, Q> const& v2, + vec<3, V3, Q> const& v3, + vec<3, V4, Q> const& v4); + + // -- Matrix conversions -- + + template + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 3, U, P> const& m); + + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 3, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 3, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 4, T, Q> const& x); + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> & operator=(mat<4, 3, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> & operator+=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> & operator+=(mat<4, 3, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> & operator-=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> & operator-=(mat<4, 3, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> & operator*=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> & operator/=(U s); + + // -- Increment and decrement operators -- + + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q>& operator++(); + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q>& operator--(); + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> operator++(int); + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> operator--(int); + }; + + // -- Unary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> operator+(mat<4, 3, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> operator-(mat<4, 3, T, Q> const& m); + + // -- Binary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> operator+(mat<4, 3, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> operator+(mat<4, 3, T, Q> const& m1, mat<4, 3, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> operator-(mat<4, 3, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> operator-(mat<4, 3, T, Q> const& m1, mat<4, 3, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> operator*(mat<4, 3, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> operator*(T scalar, mat<4, 3, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<4, 3, T, Q>::col_type operator*(mat<4, 3, T, Q> const& m, typename mat<4, 3, T, Q>::row_type const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<4, 3, T, Q>::row_type operator*(typename mat<4, 3, T, Q>::col_type const& v, mat<4, 3, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 3, T, Q> operator*(mat<4, 3, T, Q> const& m1, mat<2, 4, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 3, T, Q> operator*(mat<4, 3, T, Q> const& m1, mat<3, 4, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> operator*(mat<4, 3, T, Q> const& m1, mat<4, 4, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> operator/(mat<4, 3, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 3, T, Q> operator/(T scalar, mat<4, 3, T, Q> const& m); + + // -- Boolean operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator==(mat<4, 3, T, Q> const& m1, mat<4, 3, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator!=(mat<4, 3, T, Q> const& m1, mat<4, 3, T, Q> const& m2); +}//namespace glm + +#ifndef GLM_EXTERNAL_TEMPLATE +#include "type_mat4x3.inl" +#endif //GLM_EXTERNAL_TEMPLATE diff --git a/thirdparty/glm/glm/detail/type_mat4x3.inl b/thirdparty/glm/glm/detail/type_mat4x3.inl new file mode 100644 index 000000000000..c2fe3a44532d --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat4x3.inl @@ -0,0 +1,598 @@ +namespace glm +{ + // -- Constructors -- + +# if GLM_CONFIG_DEFAULTED_DEFAULT_CTOR == GLM_DISABLE + template + GLM_DEFAULTED_DEFAULT_CTOR_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q>::mat() +# if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INITIALIZER_LIST + : value{col_type(1, 0, 0), col_type(0, 1, 0), col_type(0, 0, 1), col_type(0, 0, 0)} +# endif + { +# if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INITIALISATION + this->value[0] = col_type(1, 0, 0); + this->value[1] = col_type(0, 1, 0); + this->value[2] = col_type(0, 0, 1); + this->value[3] = col_type(0, 0, 0); +# endif + } +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q>::mat(mat<4, 3, T, P> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2]), col_type(m[3])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = m[0]; + this->value[1] = m[1]; + this->value[2] = m[2]; + this->value[3] = m[3]; +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q>::mat(T s) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(s, 0, 0), col_type(0, s, 0), col_type(0, 0, s), col_type(0, 0, 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(s, 0, 0); + this->value[1] = col_type(0, s, 0); + this->value[2] = col_type(0, 0, s); + this->value[3] = col_type(0, 0, 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q>::mat + ( + T const& x0, T const& y0, T const& z0, + T const& x1, T const& y1, T const& z1, + T const& x2, T const& y2, T const& z2, + T const& x3, T const& y3, T const& z3 + ) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(x0, y0, z0), col_type(x1, y1, z1), col_type(x2, y2, z2), col_type(x3, y3, z3)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(x0, y0, z0); + this->value[1] = col_type(x1, y1, z1); + this->value[2] = col_type(x2, y2, z2); + this->value[3] = col_type(x3, y3, z3); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q>::mat(col_type const& v0, col_type const& v1, col_type const& v2, col_type const& v3) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(v0), col_type(v1), col_type(v2), col_type(v3)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = v0; + this->value[1] = v1; + this->value[2] = v2; + this->value[3] = v3; +# endif + } + + // -- Conversion constructors -- + + template + template< + typename X0, typename Y0, typename Z0, + typename X1, typename Y1, typename Z1, + typename X2, typename Y2, typename Z2, + typename X3, typename Y3, typename Z3> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q>::mat + ( + X0 const& x0, Y0 const& y0, Z0 const& z0, + X1 const& x1, Y1 const& y1, Z1 const& z1, + X2 const& x2, Y2 const& y2, Z2 const& z2, + X3 const& x3, Y3 const& y3, Z3 const& z3 + ) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(x0, y0, z0), col_type(x1, y1, z1), col_type(x2, y2, z2), col_type(x3, y3, z3)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(x0, y0, z0); + this->value[1] = col_type(x1, y1, z1); + this->value[2] = col_type(x2, y2, z2); + this->value[3] = col_type(x3, y3, z3); +# endif + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q>::mat(vec<3, V1, Q> const& v1, vec<3, V2, Q> const& v2, vec<3, V3, Q> const& v3, vec<3, V4, Q> const& v4) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(v1), col_type(v2), col_type(v3), col_type(v4)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(v1); + this->value[1] = col_type(v2); + this->value[2] = col_type(v3); + this->value[3] = col_type(v4); +# endif + } + + // -- Matrix conversions -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q>::mat(mat<4, 3, U, P> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2]), col_type(m[3])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); + this->value[3] = col_type(m[3]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q>::mat(mat<2, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0), col_type(m[1], 0), col_type(0, 0, 1), col_type(0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0); + this->value[1] = col_type(m[1], 0); + this->value[2] = col_type(0, 0, 1); + this->value[3] = col_type(0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q>::mat(mat<3, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2]), col_type(0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); + this->value[3] = col_type(0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q>::mat(mat<4, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2]), col_type(m[3])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); + this->value[3] = col_type(m[3]); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q>::mat(mat<2, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(0, 0, 1), col_type(0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(0, 0, 1); + this->value[3] = col_type(0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q>::mat(mat<3, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0), col_type(m[1], 0), col_type(m[2], 1), col_type(0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0); + this->value[1] = col_type(m[1], 0); + this->value[2] = col_type(m[2], 1); + this->value[3] = col_type(0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q>::mat(mat<2, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(0, 0, 1), col_type(0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(0, 0, 1); + this->value[3] = col_type(0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q>::mat(mat<4, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0), col_type(m[1], 0), col_type(m[2], 1), col_type(m[3], 0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0); + this->value[1] = col_type(m[1], 0); + this->value[2] = col_type(m[2], 1); + this->value[3] = col_type(m[3], 0); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q>::mat(mat<3, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2]), col_type(0)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); + this->value[3] = col_type(0); +# endif + } + + // -- Accesses -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<4, 3, T, Q>::col_type & mat<4, 3, T, Q>::operator[](typename mat<4, 3, T, Q>::length_type i) GLM_NOEXCEPT + { + assert(i < this->length()); + return this->value[i]; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<4, 3, T, Q>::col_type const& mat<4, 3, T, Q>::operator[](typename mat<4, 3, T, Q>::length_type i) const GLM_NOEXCEPT + { + assert(i < this->length()); + return this->value[i]; + } + + // -- Unary updatable operators -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q>& mat<4, 3, T, Q>::operator=(mat<4, 3, U, Q> const& m) + { + this->value[0] = m[0]; + this->value[1] = m[1]; + this->value[2] = m[2]; + this->value[3] = m[3]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> & mat<4, 3, T, Q>::operator+=(U s) + { + this->value[0] += s; + this->value[1] += s; + this->value[2] += s; + this->value[3] += s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> & mat<4, 3, T, Q>::operator+=(mat<4, 3, U, Q> const& m) + { + this->value[0] += m[0]; + this->value[1] += m[1]; + this->value[2] += m[2]; + this->value[3] += m[3]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> & mat<4, 3, T, Q>::operator-=(U s) + { + this->value[0] -= s; + this->value[1] -= s; + this->value[2] -= s; + this->value[3] -= s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> & mat<4, 3, T, Q>::operator-=(mat<4, 3, U, Q> const& m) + { + this->value[0] -= m[0]; + this->value[1] -= m[1]; + this->value[2] -= m[2]; + this->value[3] -= m[3]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> & mat<4, 3, T, Q>::operator*=(U s) + { + this->value[0] *= s; + this->value[1] *= s; + this->value[2] *= s; + this->value[3] *= s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> & mat<4, 3, T, Q>::operator/=(U s) + { + this->value[0] /= s; + this->value[1] /= s; + this->value[2] /= s; + this->value[3] /= s; + return *this; + } + + // -- Increment and decrement operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> & mat<4, 3, T, Q>::operator++() + { + ++this->value[0]; + ++this->value[1]; + ++this->value[2]; + ++this->value[3]; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> & mat<4, 3, T, Q>::operator--() + { + --this->value[0]; + --this->value[1]; + --this->value[2]; + --this->value[3]; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> mat<4, 3, T, Q>::operator++(int) + { + mat<4, 3, T, Q> Result(*this); + ++*this; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> mat<4, 3, T, Q>::operator--(int) + { + mat<4, 3, T, Q> Result(*this); + --*this; + return Result; + } + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> operator+(mat<4, 3, T, Q> const& m) + { + return m; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> operator-(mat<4, 3, T, Q> const& m) + { + return mat<4, 3, T, Q>( + -m[0], + -m[1], + -m[2], + -m[3]); + } + + // -- Binary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> operator+(mat<4, 3, T, Q> const& m, T scalar) + { + return mat<4, 3, T, Q>( + m[0] + scalar, + m[1] + scalar, + m[2] + scalar, + m[3] + scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> operator+(mat<4, 3, T, Q> const& m1, mat<4, 3, T, Q> const& m2) + { + return mat<4, 3, T, Q>( + m1[0] + m2[0], + m1[1] + m2[1], + m1[2] + m2[2], + m1[3] + m2[3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> operator-(mat<4, 3, T, Q> const& m, T scalar) + { + return mat<4, 3, T, Q>( + m[0] - scalar, + m[1] - scalar, + m[2] - scalar, + m[3] - scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> operator-(mat<4, 3, T, Q> const& m1, mat<4, 3, T, Q> const& m2) + { + return mat<4, 3, T, Q>( + m1[0] - m2[0], + m1[1] - m2[1], + m1[2] - m2[2], + m1[3] - m2[3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> operator*(mat<4, 3, T, Q> const& m, T scalar) + { + return mat<4, 3, T, Q>( + m[0] * scalar, + m[1] * scalar, + m[2] * scalar, + m[3] * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> operator*(T scalar, mat<4, 3, T, Q> const& m) + { + return mat<4, 3, T, Q>( + m[0] * scalar, + m[1] * scalar, + m[2] * scalar, + m[3] * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<4, 3, T, Q>::col_type operator* + ( + mat<4, 3, T, Q> const& m, + typename mat<4, 3, T, Q>::row_type const& v) + { + return typename mat<4, 3, T, Q>::col_type( + m[0][0] * v.x + m[1][0] * v.y + m[2][0] * v.z + m[3][0] * v.w, + m[0][1] * v.x + m[1][1] * v.y + m[2][1] * v.z + m[3][1] * v.w, + m[0][2] * v.x + m[1][2] * v.y + m[2][2] * v.z + m[3][2] * v.w); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<4, 3, T, Q>::row_type operator* + ( + typename mat<4, 3, T, Q>::col_type const& v, + mat<4, 3, T, Q> const& m) + { + return typename mat<4, 3, T, Q>::row_type( + v.x * m[0][0] + v.y * m[0][1] + v.z * m[0][2], + v.x * m[1][0] + v.y * m[1][1] + v.z * m[1][2], + v.x * m[2][0] + v.y * m[2][1] + v.z * m[2][2], + v.x * m[3][0] + v.y * m[3][1] + v.z * m[3][2]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 3, T, Q> operator*(mat<4, 3, T, Q> const& m1, mat<2, 4, T, Q> const& m2) + { + return mat<2, 3, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1] + m1[2][0] * m2[0][2] + m1[3][0] * m2[0][3], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1] + m1[2][1] * m2[0][2] + m1[3][1] * m2[0][3], + m1[0][2] * m2[0][0] + m1[1][2] * m2[0][1] + m1[2][2] * m2[0][2] + m1[3][2] * m2[0][3], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1] + m1[2][0] * m2[1][2] + m1[3][0] * m2[1][3], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1] + m1[2][1] * m2[1][2] + m1[3][1] * m2[1][3], + m1[0][2] * m2[1][0] + m1[1][2] * m2[1][1] + m1[2][2] * m2[1][2] + m1[3][2] * m2[1][3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 3, T, Q> operator*(mat<4, 3, T, Q> const& m1, mat<3, 4, T, Q> const& m2) + { + T const SrcA00 = m1[0][0]; + T const SrcA01 = m1[0][1]; + T const SrcA02 = m1[0][2]; + T const SrcA10 = m1[1][0]; + T const SrcA11 = m1[1][1]; + T const SrcA12 = m1[1][2]; + T const SrcA20 = m1[2][0]; + T const SrcA21 = m1[2][1]; + T const SrcA22 = m1[2][2]; + T const SrcA30 = m1[3][0]; + T const SrcA31 = m1[3][1]; + T const SrcA32 = m1[3][2]; + + T const SrcB00 = m2[0][0]; + T const SrcB01 = m2[0][1]; + T const SrcB02 = m2[0][2]; + T const SrcB03 = m2[0][3]; + T const SrcB10 = m2[1][0]; + T const SrcB11 = m2[1][1]; + T const SrcB12 = m2[1][2]; + T const SrcB13 = m2[1][3]; + T const SrcB20 = m2[2][0]; + T const SrcB21 = m2[2][1]; + T const SrcB22 = m2[2][2]; + T const SrcB23 = m2[2][3]; + + mat<3, 3, T, Q> Result; + Result[0][0] = SrcA00 * SrcB00 + SrcA10 * SrcB01 + SrcA20 * SrcB02 + SrcA30 * SrcB03; + Result[0][1] = SrcA01 * SrcB00 + SrcA11 * SrcB01 + SrcA21 * SrcB02 + SrcA31 * SrcB03; + Result[0][2] = SrcA02 * SrcB00 + SrcA12 * SrcB01 + SrcA22 * SrcB02 + SrcA32 * SrcB03; + Result[1][0] = SrcA00 * SrcB10 + SrcA10 * SrcB11 + SrcA20 * SrcB12 + SrcA30 * SrcB13; + Result[1][1] = SrcA01 * SrcB10 + SrcA11 * SrcB11 + SrcA21 * SrcB12 + SrcA31 * SrcB13; + Result[1][2] = SrcA02 * SrcB10 + SrcA12 * SrcB11 + SrcA22 * SrcB12 + SrcA32 * SrcB13; + Result[2][0] = SrcA00 * SrcB20 + SrcA10 * SrcB21 + SrcA20 * SrcB22 + SrcA30 * SrcB23; + Result[2][1] = SrcA01 * SrcB20 + SrcA11 * SrcB21 + SrcA21 * SrcB22 + SrcA31 * SrcB23; + Result[2][2] = SrcA02 * SrcB20 + SrcA12 * SrcB21 + SrcA22 * SrcB22 + SrcA32 * SrcB23; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> operator*(mat<4, 3, T, Q> const& m1, mat<4, 4, T, Q> const& m2) + { + return mat<4, 3, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1] + m1[2][0] * m2[0][2] + m1[3][0] * m2[0][3], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1] + m1[2][1] * m2[0][2] + m1[3][1] * m2[0][3], + m1[0][2] * m2[0][0] + m1[1][2] * m2[0][1] + m1[2][2] * m2[0][2] + m1[3][2] * m2[0][3], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1] + m1[2][0] * m2[1][2] + m1[3][0] * m2[1][3], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1] + m1[2][1] * m2[1][2] + m1[3][1] * m2[1][3], + m1[0][2] * m2[1][0] + m1[1][2] * m2[1][1] + m1[2][2] * m2[1][2] + m1[3][2] * m2[1][3], + m1[0][0] * m2[2][0] + m1[1][0] * m2[2][1] + m1[2][0] * m2[2][2] + m1[3][0] * m2[2][3], + m1[0][1] * m2[2][0] + m1[1][1] * m2[2][1] + m1[2][1] * m2[2][2] + m1[3][1] * m2[2][3], + m1[0][2] * m2[2][0] + m1[1][2] * m2[2][1] + m1[2][2] * m2[2][2] + m1[3][2] * m2[2][3], + m1[0][0] * m2[3][0] + m1[1][0] * m2[3][1] + m1[2][0] * m2[3][2] + m1[3][0] * m2[3][3], + m1[0][1] * m2[3][0] + m1[1][1] * m2[3][1] + m1[2][1] * m2[3][2] + m1[3][1] * m2[3][3], + m1[0][2] * m2[3][0] + m1[1][2] * m2[3][1] + m1[2][2] * m2[3][2] + m1[3][2] * m2[3][3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> operator/(mat<4, 3, T, Q> const& m, T scalar) + { + return mat<4, 3, T, Q>( + m[0] / scalar, + m[1] / scalar, + m[2] / scalar, + m[3] / scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 3, T, Q> operator/(T scalar, mat<4, 3, T, Q> const& m) + { + return mat<4, 3, T, Q>( + scalar / m[0], + scalar / m[1], + scalar / m[2], + scalar / m[3]); + } + + // -- Boolean operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator==(mat<4, 3, T, Q> const& m1, mat<4, 3, T, Q> const& m2) + { + return (m1[0] == m2[0]) && (m1[1] == m2[1]) && (m1[2] == m2[2]) && (m1[3] == m2[3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator!=(mat<4, 3, T, Q> const& m1, mat<4, 3, T, Q> const& m2) + { + return (m1[0] != m2[0]) || (m1[1] != m2[1]) || (m1[2] != m2[2]) || (m1[3] != m2[3]); + } +} //namespace glm diff --git a/thirdparty/glm/glm/detail/type_mat4x4.hpp b/thirdparty/glm/glm/detail/type_mat4x4.hpp new file mode 100644 index 000000000000..14387e2f9b33 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat4x4.hpp @@ -0,0 +1,189 @@ +/// @ref core +/// @file glm/detail/type_mat4x4.hpp + +#pragma once + +#include "type_vec4.hpp" +#include +#include + +namespace glm +{ + template + struct mat<4, 4, T, Q> + { + typedef vec<4, T, Q> col_type; + typedef vec<4, T, Q> row_type; + typedef mat<4, 4, T, Q> type; + typedef mat<4, 4, T, Q> transpose_type; + typedef T value_type; + + private: + col_type value[4]; + + public: + // -- Accesses -- + + typedef length_t length_type; + GLM_FUNC_DECL static GLM_CONSTEXPR length_type length(){return 4;} + + GLM_FUNC_DECL GLM_CONSTEXPR col_type & operator[](length_type i) GLM_NOEXCEPT; + GLM_FUNC_DECL GLM_CONSTEXPR col_type const& operator[](length_type i) const GLM_NOEXCEPT; + + // -- Constructors -- + + GLM_DEFAULTED_DEFAULT_CTOR_DECL GLM_CONSTEXPR mat() GLM_DEFAULT_CTOR; + template + GLM_FUNC_DECL GLM_CONSTEXPR mat(mat<4, 4, T, P> const& m); + + GLM_FUNC_DECL explicit GLM_CONSTEXPR mat(T s); + GLM_FUNC_DECL GLM_CONSTEXPR mat( + T const& x0, T const& y0, T const& z0, T const& w0, + T const& x1, T const& y1, T const& z1, T const& w1, + T const& x2, T const& y2, T const& z2, T const& w2, + T const& x3, T const& y3, T const& z3, T const& w3); + GLM_FUNC_DECL GLM_CONSTEXPR mat( + col_type const& v0, + col_type const& v1, + col_type const& v2, + col_type const& v3); + + // -- Conversions -- + + template< + typename X1, typename Y1, typename Z1, typename W1, + typename X2, typename Y2, typename Z2, typename W2, + typename X3, typename Y3, typename Z3, typename W3, + typename X4, typename Y4, typename Z4, typename W4> + GLM_FUNC_DECL GLM_CONSTEXPR mat( + X1 const& x1, Y1 const& y1, Z1 const& z1, W1 const& w1, + X2 const& x2, Y2 const& y2, Z2 const& z2, W2 const& w2, + X3 const& x3, Y3 const& y3, Z3 const& z3, W3 const& w3, + X4 const& x4, Y4 const& y4, Z4 const& z4, W4 const& w4); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat( + vec<4, V1, Q> const& v1, + vec<4, V2, Q> const& v2, + vec<4, V3, Q> const& v3, + vec<4, V4, Q> const& v4); + + // -- Matrix conversions -- + + template + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 4, U, P> const& m); + + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 3, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 3, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<2, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 2, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<3, 4, T, Q> const& x); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR mat(mat<4, 3, T, Q> const& x); + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> & operator=(mat<4, 4, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> & operator+=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> & operator+=(mat<4, 4, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> & operator-=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> & operator-=(mat<4, 4, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> & operator*=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> & operator*=(mat<4, 4, U, Q> const& m); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> & operator/=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> & operator/=(mat<4, 4, U, Q> const& m); + + // -- Increment and decrement operators -- + + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> & operator++(); + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> & operator--(); + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> operator++(int); + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> operator--(int); + }; + + // -- Unary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> operator+(mat<4, 4, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> operator-(mat<4, 4, T, Q> const& m); + + // -- Binary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> operator+(mat<4, 4, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> operator+(T scalar, mat<4, 4, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> operator+(mat<4, 4, T, Q> const& m1, mat<4, 4, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> operator-(mat<4, 4, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> operator-(T scalar, mat<4, 4, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> operator-(mat<4, 4, T, Q> const& m1, mat<4, 4, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> operator*(mat<4, 4, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> operator*(T scalar, mat<4, 4, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<4, 4, T, Q>::col_type operator*(mat<4, 4, T, Q> const& m, typename mat<4, 4, T, Q>::row_type const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<4, 4, T, Q>::row_type operator*(typename mat<4, 4, T, Q>::col_type const& v, mat<4, 4, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<2, 4, T, Q> operator*(mat<4, 4, T, Q> const& m1, mat<2, 4, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<3, 4, T, Q> operator*(mat<4, 4, T, Q> const& m1, mat<3, 4, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> operator*(mat<4, 4, T, Q> const& m1, mat<4, 4, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> operator/(mat<4, 4, T, Q> const& m, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> operator/(T scalar, mat<4, 4, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<4, 4, T, Q>::col_type operator/(mat<4, 4, T, Q> const& m, typename mat<4, 4, T, Q>::row_type const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR typename mat<4, 4, T, Q>::row_type operator/(typename mat<4, 4, T, Q>::col_type const& v, mat<4, 4, T, Q> const& m); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> operator/(mat<4, 4, T, Q> const& m1, mat<4, 4, T, Q> const& m2); + + // -- Boolean operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator==(mat<4, 4, T, Q> const& m1, mat<4, 4, T, Q> const& m2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator!=(mat<4, 4, T, Q> const& m1, mat<4, 4, T, Q> const& m2); +}//namespace glm + +#ifndef GLM_EXTERNAL_TEMPLATE +#include "type_mat4x4.inl" +#endif//GLM_EXTERNAL_TEMPLATE diff --git a/thirdparty/glm/glm/detail/type_mat4x4.inl b/thirdparty/glm/glm/detail/type_mat4x4.inl new file mode 100644 index 000000000000..db77673163a7 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat4x4.inl @@ -0,0 +1,706 @@ +#include "../matrix.hpp" + +namespace glm +{ + // -- Constructors -- + +# if GLM_CONFIG_DEFAULTED_DEFAULT_CTOR == GLM_DISABLE + template + GLM_DEFAULTED_DEFAULT_CTOR_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>::mat() +# if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INITIALIZER_LIST + : value{col_type(1, 0, 0, 0), col_type(0, 1, 0, 0), col_type(0, 0, 1, 0), col_type(0, 0, 0, 1)} +# endif + { +# if GLM_CONFIG_CTOR_INIT == GLM_CTOR_INITIALISATION + this->value[0] = col_type(1, 0, 0, 0); + this->value[1] = col_type(0, 1, 0, 0); + this->value[2] = col_type(0, 0, 1, 0); + this->value[3] = col_type(0, 0, 0, 1); +# endif + } +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>::mat(mat<4, 4, T, P> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2]), col_type(m[3])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = m[0]; + this->value[1] = m[1]; + this->value[2] = m[2]; + this->value[3] = m[3]; +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>::mat(T s) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(s, 0, 0, 0), col_type(0, s, 0, 0), col_type(0, 0, s, 0), col_type(0, 0, 0, s)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(s, 0, 0, 0); + this->value[1] = col_type(0, s, 0, 0); + this->value[2] = col_type(0, 0, s, 0); + this->value[3] = col_type(0, 0, 0, s); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>::mat + ( + T const& x0, T const& y0, T const& z0, T const& w0, + T const& x1, T const& y1, T const& z1, T const& w1, + T const& x2, T const& y2, T const& z2, T const& w2, + T const& x3, T const& y3, T const& z3, T const& w3 + ) +# if GLM_HAS_INITIALIZER_LISTS + : value{ + col_type(x0, y0, z0, w0), + col_type(x1, y1, z1, w1), + col_type(x2, y2, z2, w2), + col_type(x3, y3, z3, w3)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(x0, y0, z0, w0); + this->value[1] = col_type(x1, y1, z1, w1); + this->value[2] = col_type(x2, y2, z2, w2); + this->value[3] = col_type(x3, y3, z3, w3); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>::mat(col_type const& v0, col_type const& v1, col_type const& v2, col_type const& v3) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(v0), col_type(v1), col_type(v2), col_type(v3)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = v0; + this->value[1] = v1; + this->value[2] = v2; + this->value[3] = v3; +# endif + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>::mat(mat<4, 4, U, P> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2]), col_type(m[3])} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0]); + this->value[1] = col_type(m[1]); + this->value[2] = col_type(m[2]); + this->value[3] = col_type(m[3]); +# endif + } + + // -- Conversions -- + + template + template< + typename X1, typename Y1, typename Z1, typename W1, + typename X2, typename Y2, typename Z2, typename W2, + typename X3, typename Y3, typename Z3, typename W3, + typename X4, typename Y4, typename Z4, typename W4> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>::mat + ( + X1 const& x1, Y1 const& y1, Z1 const& z1, W1 const& w1, + X2 const& x2, Y2 const& y2, Z2 const& z2, W2 const& w2, + X3 const& x3, Y3 const& y3, Z3 const& z3, W3 const& w3, + X4 const& x4, Y4 const& y4, Z4 const& z4, W4 const& w4 + ) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(x1, y1, z1, w1), col_type(x2, y2, z2, w2), col_type(x3, y3, z3, w3), col_type(x4, y4, z4, w4)} +# endif + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 1st parameter type invalid."); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 2nd parameter type invalid."); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 3rd parameter type invalid."); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 4th parameter type invalid."); + + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 5th parameter type invalid."); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 6th parameter type invalid."); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 7th parameter type invalid."); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 8th parameter type invalid."); + + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 9th parameter type invalid."); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 10th parameter type invalid."); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 11th parameter type invalid."); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 12th parameter type invalid."); + + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 13th parameter type invalid."); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 14th parameter type invalid."); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 15th parameter type invalid."); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 16th parameter type invalid."); + +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(x1, y1, z1, w1); + this->value[1] = col_type(x2, y2, z2, w2); + this->value[2] = col_type(x3, y3, z3, w3); + this->value[3] = col_type(x4, y4, z4, w4); +# endif + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>::mat(vec<4, V1, Q> const& v1, vec<4, V2, Q> const& v2, vec<4, V3, Q> const& v3, vec<4, V4, Q> const& v4) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(v1), col_type(v2), col_type(v3), col_type(v4)} +# endif + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 1st parameter type invalid."); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 2nd parameter type invalid."); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 3rd parameter type invalid."); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer || GLM_CONFIG_UNRESTRICTED_GENTYPE, "*mat4x4 constructor only takes float and integer types, 4th parameter type invalid."); + +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(v1); + this->value[1] = col_type(v2); + this->value[2] = col_type(v3); + this->value[3] = col_type(v4); +# endif + } + + // -- Matrix conversions -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>::mat(mat<2, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0, 0), col_type(m[1], 0, 0), col_type(0, 0, 1, 0), col_type(0, 0, 0, 1)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0, 0); + this->value[1] = col_type(m[1], 0, 0); + this->value[2] = col_type(0, 0, 1, 0); + this->value[3] = col_type(0, 0, 0, 1); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>::mat(mat<3, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0), col_type(m[1], 0), col_type(m[2], 0), col_type(0, 0, 0, 1)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0); + this->value[1] = col_type(m[1], 0); + this->value[2] = col_type(m[2], 0); + this->value[3] = col_type(0, 0, 0, 1); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>::mat(mat<2, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0), col_type(m[1], 0), col_type(0, 0, 1, 0), col_type(0, 0, 0, 1)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0); + this->value[1] = col_type(m[1], 0); + this->value[2] = col_type(0, 0, 1, 0); + this->value[3] = col_type(0, 0, 0, 1); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>::mat(mat<3, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0, 0), col_type(m[1], 0, 0), col_type(m[2], 1, 0), col_type(0, 0, 0, 1)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0, 0); + this->value[1] = col_type(m[1], 0, 0); + this->value[2] = col_type(m[2], 1, 0); + this->value[3] = col_type(0, 0, 0, 1); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>::mat(mat<2, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(0, 0, 1, 0), col_type(0, 0, 0, 1)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = m[0]; + this->value[1] = m[1]; + this->value[2] = col_type(0, 0, 1, 0); + this->value[3] = col_type(0, 0, 0, 1); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>::mat(mat<4, 2, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0, 0), col_type(m[1], 0, 0), col_type(0, 0, 1, 0), col_type(0, 0, 0, 1)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0, 0); + this->value[1] = col_type(m[1], 0, 0); + this->value[2] = col_type(0, 0, 1, 0); + this->value[3] = col_type(0, 0, 0, 1); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>::mat(mat<3, 4, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0]), col_type(m[1]), col_type(m[2]), col_type(0, 0, 0, 1)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = m[0]; + this->value[1] = m[1]; + this->value[2] = m[2]; + this->value[3] = col_type(0, 0, 0, 1); +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>::mat(mat<4, 3, T, Q> const& m) +# if GLM_HAS_INITIALIZER_LISTS + : value{col_type(m[0], 0), col_type(m[1], 0), col_type(m[2], 0), col_type(m[3], 1)} +# endif + { +# if !GLM_HAS_INITIALIZER_LISTS + this->value[0] = col_type(m[0], 0); + this->value[1] = col_type(m[1], 0); + this->value[2] = col_type(m[2], 0); + this->value[3] = col_type(m[3], 1); +# endif + } + + // -- Accesses -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<4, 4, T, Q>::col_type & mat<4, 4, T, Q>::operator[](typename mat<4, 4, T, Q>::length_type i) GLM_NOEXCEPT + { + assert(i < this->length()); + return this->value[i]; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<4, 4, T, Q>::col_type const& mat<4, 4, T, Q>::operator[](typename mat<4, 4, T, Q>::length_type i) const GLM_NOEXCEPT + { + assert(i < this->length()); + return this->value[i]; + } + + // -- Unary arithmetic operators -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>& mat<4, 4, T, Q>::operator=(mat<4, 4, U, Q> const& m) + { + //memcpy could be faster + //memcpy(&this->value, &m.value, 16 * sizeof(valType)); + this->value[0] = m[0]; + this->value[1] = m[1]; + this->value[2] = m[2]; + this->value[3] = m[3]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>& mat<4, 4, T, Q>::operator+=(U s) + { + this->value[0] += s; + this->value[1] += s; + this->value[2] += s; + this->value[3] += s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q>& mat<4, 4, T, Q>::operator+=(mat<4, 4, U, Q> const& m) + { + this->value[0] += m[0]; + this->value[1] += m[1]; + this->value[2] += m[2]; + this->value[3] += m[3]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> & mat<4, 4, T, Q>::operator-=(U s) + { + this->value[0] -= s; + this->value[1] -= s; + this->value[2] -= s; + this->value[3] -= s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> & mat<4, 4, T, Q>::operator-=(mat<4, 4, U, Q> const& m) + { + this->value[0] -= m[0]; + this->value[1] -= m[1]; + this->value[2] -= m[2]; + this->value[3] -= m[3]; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> & mat<4, 4, T, Q>::operator*=(U s) + { + this->value[0] *= s; + this->value[1] *= s; + this->value[2] *= s; + this->value[3] *= s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> & mat<4, 4, T, Q>::operator*=(mat<4, 4, U, Q> const& m) + { + return (*this = *this * m); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> & mat<4, 4, T, Q>::operator/=(U s) + { + this->value[0] /= s; + this->value[1] /= s; + this->value[2] /= s; + this->value[3] /= s; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> & mat<4, 4, T, Q>::operator/=(mat<4, 4, U, Q> const& m) + { + return *this *= inverse(m); + } + + // -- Increment and decrement operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> & mat<4, 4, T, Q>::operator++() + { + ++this->value[0]; + ++this->value[1]; + ++this->value[2]; + ++this->value[3]; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> & mat<4, 4, T, Q>::operator--() + { + --this->value[0]; + --this->value[1]; + --this->value[2]; + --this->value[3]; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> mat<4, 4, T, Q>::operator++(int) + { + mat<4, 4, T, Q> Result(*this); + ++*this; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> mat<4, 4, T, Q>::operator--(int) + { + mat<4, 4, T, Q> Result(*this); + --*this; + return Result; + } + + // -- Unary constant operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> operator+(mat<4, 4, T, Q> const& m) + { + return m; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> operator-(mat<4, 4, T, Q> const& m) + { + return mat<4, 4, T, Q>( + -m[0], + -m[1], + -m[2], + -m[3]); + } + + // -- Binary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> operator+(mat<4, 4, T, Q> const& m, T scalar) + { + return mat<4, 4, T, Q>( + m[0] + scalar, + m[1] + scalar, + m[2] + scalar, + m[3] + scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> operator+(T scalar, mat<4, 4, T, Q> const& m) + { + return mat<4, 4, T, Q>( + m[0] + scalar, + m[1] + scalar, + m[2] + scalar, + m[3] + scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> operator+(mat<4, 4, T, Q> const& m1, mat<4, 4, T, Q> const& m2) + { + return mat<4, 4, T, Q>( + m1[0] + m2[0], + m1[1] + m2[1], + m1[2] + m2[2], + m1[3] + m2[3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> operator-(mat<4, 4, T, Q> const& m, T scalar) + { + return mat<4, 4, T, Q>( + m[0] - scalar, + m[1] - scalar, + m[2] - scalar, + m[3] - scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> operator-(T scalar, mat<4, 4, T, Q> const& m) + { + return mat<4, 4, T, Q>( + scalar - m[0], + scalar - m[1], + scalar - m[2], + scalar - m[3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> operator-(mat<4, 4, T, Q> const& m1, mat<4, 4, T, Q> const& m2) + { + return mat<4, 4, T, Q>( + m1[0] - m2[0], + m1[1] - m2[1], + m1[2] - m2[2], + m1[3] - m2[3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> operator*(mat<4, 4, T, Q> const& m, T scalar) + { + return mat<4, 4, T, Q>( + m[0] * scalar, + m[1] * scalar, + m[2] * scalar, + m[3] * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> operator*(T scalar, mat<4, 4, T, Q> const& m) + { + return mat<4, 4, T, Q>( + m[0] * scalar, + m[1] * scalar, + m[2] * scalar, + m[3] * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<4, 4, T, Q>::col_type operator* + ( + mat<4, 4, T, Q> const& m, + typename mat<4, 4, T, Q>::row_type const& v + ) + { +/* + __m128 v0 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(0, 0, 0, 0)); + __m128 v1 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(1, 1, 1, 1)); + __m128 v2 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(2, 2, 2, 2)); + __m128 v3 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 3, 3, 3)); + + __m128 m0 = _mm_mul_ps(m[0].data, v0); + __m128 m1 = _mm_mul_ps(m[1].data, v1); + __m128 a0 = _mm_add_ps(m0, m1); + + __m128 m2 = _mm_mul_ps(m[2].data, v2); + __m128 m3 = _mm_mul_ps(m[3].data, v3); + __m128 a1 = _mm_add_ps(m2, m3); + + __m128 a2 = _mm_add_ps(a0, a1); + + return typename mat<4, 4, T, Q>::col_type(a2); +*/ + + typename mat<4, 4, T, Q>::col_type const Mov0(v[0]); + typename mat<4, 4, T, Q>::col_type const Mov1(v[1]); + typename mat<4, 4, T, Q>::col_type const Mul0 = m[0] * Mov0; + typename mat<4, 4, T, Q>::col_type const Mul1 = m[1] * Mov1; + typename mat<4, 4, T, Q>::col_type const Add0 = Mul0 + Mul1; + typename mat<4, 4, T, Q>::col_type const Mov2(v[2]); + typename mat<4, 4, T, Q>::col_type const Mov3(v[3]); + typename mat<4, 4, T, Q>::col_type const Mul2 = m[2] * Mov2; + typename mat<4, 4, T, Q>::col_type const Mul3 = m[3] * Mov3; + typename mat<4, 4, T, Q>::col_type const Add1 = Mul2 + Mul3; + typename mat<4, 4, T, Q>::col_type const Add2 = Add0 + Add1; + return Add2; + +/* + return typename mat<4, 4, T, Q>::col_type( + m[0][0] * v[0] + m[1][0] * v[1] + m[2][0] * v[2] + m[3][0] * v[3], + m[0][1] * v[0] + m[1][1] * v[1] + m[2][1] * v[2] + m[3][1] * v[3], + m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2] + m[3][2] * v[3], + m[0][3] * v[0] + m[1][3] * v[1] + m[2][3] * v[2] + m[3][3] * v[3]); +*/ + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<4, 4, T, Q>::row_type operator* + ( + typename mat<4, 4, T, Q>::col_type const& v, + mat<4, 4, T, Q> const& m + ) + { + return typename mat<4, 4, T, Q>::row_type( + m[0][0] * v[0] + m[0][1] * v[1] + m[0][2] * v[2] + m[0][3] * v[3], + m[1][0] * v[0] + m[1][1] * v[1] + m[1][2] * v[2] + m[1][3] * v[3], + m[2][0] * v[0] + m[2][1] * v[1] + m[2][2] * v[2] + m[2][3] * v[3], + m[3][0] * v[0] + m[3][1] * v[1] + m[3][2] * v[2] + m[3][3] * v[3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<2, 4, T, Q> operator*(mat<4, 4, T, Q> const& m1, mat<2, 4, T, Q> const& m2) + { + return mat<2, 4, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1] + m1[2][0] * m2[0][2] + m1[3][0] * m2[0][3], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1] + m1[2][1] * m2[0][2] + m1[3][1] * m2[0][3], + m1[0][2] * m2[0][0] + m1[1][2] * m2[0][1] + m1[2][2] * m2[0][2] + m1[3][2] * m2[0][3], + m1[0][3] * m2[0][0] + m1[1][3] * m2[0][1] + m1[2][3] * m2[0][2] + m1[3][3] * m2[0][3], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1] + m1[2][0] * m2[1][2] + m1[3][0] * m2[1][3], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1] + m1[2][1] * m2[1][2] + m1[3][1] * m2[1][3], + m1[0][2] * m2[1][0] + m1[1][2] * m2[1][1] + m1[2][2] * m2[1][2] + m1[3][2] * m2[1][3], + m1[0][3] * m2[1][0] + m1[1][3] * m2[1][1] + m1[2][3] * m2[1][2] + m1[3][3] * m2[1][3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<3, 4, T, Q> operator*(mat<4, 4, T, Q> const& m1, mat<3, 4, T, Q> const& m2) + { + return mat<3, 4, T, Q>( + m1[0][0] * m2[0][0] + m1[1][0] * m2[0][1] + m1[2][0] * m2[0][2] + m1[3][0] * m2[0][3], + m1[0][1] * m2[0][0] + m1[1][1] * m2[0][1] + m1[2][1] * m2[0][2] + m1[3][1] * m2[0][3], + m1[0][2] * m2[0][0] + m1[1][2] * m2[0][1] + m1[2][2] * m2[0][2] + m1[3][2] * m2[0][3], + m1[0][3] * m2[0][0] + m1[1][3] * m2[0][1] + m1[2][3] * m2[0][2] + m1[3][3] * m2[0][3], + m1[0][0] * m2[1][0] + m1[1][0] * m2[1][1] + m1[2][0] * m2[1][2] + m1[3][0] * m2[1][3], + m1[0][1] * m2[1][0] + m1[1][1] * m2[1][1] + m1[2][1] * m2[1][2] + m1[3][1] * m2[1][3], + m1[0][2] * m2[1][0] + m1[1][2] * m2[1][1] + m1[2][2] * m2[1][2] + m1[3][2] * m2[1][3], + m1[0][3] * m2[1][0] + m1[1][3] * m2[1][1] + m1[2][3] * m2[1][2] + m1[3][3] * m2[1][3], + m1[0][0] * m2[2][0] + m1[1][0] * m2[2][1] + m1[2][0] * m2[2][2] + m1[3][0] * m2[2][3], + m1[0][1] * m2[2][0] + m1[1][1] * m2[2][1] + m1[2][1] * m2[2][2] + m1[3][1] * m2[2][3], + m1[0][2] * m2[2][0] + m1[1][2] * m2[2][1] + m1[2][2] * m2[2][2] + m1[3][2] * m2[2][3], + m1[0][3] * m2[2][0] + m1[1][3] * m2[2][1] + m1[2][3] * m2[2][2] + m1[3][3] * m2[2][3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> operator*(mat<4, 4, T, Q> const& m1, mat<4, 4, T, Q> const& m2) + { + typename mat<4, 4, T, Q>::col_type const SrcA0 = m1[0]; + typename mat<4, 4, T, Q>::col_type const SrcA1 = m1[1]; + typename mat<4, 4, T, Q>::col_type const SrcA2 = m1[2]; + typename mat<4, 4, T, Q>::col_type const SrcA3 = m1[3]; + + typename mat<4, 4, T, Q>::col_type const SrcB0 = m2[0]; + typename mat<4, 4, T, Q>::col_type const SrcB1 = m2[1]; + typename mat<4, 4, T, Q>::col_type const SrcB2 = m2[2]; + typename mat<4, 4, T, Q>::col_type const SrcB3 = m2[3]; + + mat<4, 4, T, Q> Result; + Result[0] = SrcA0 * SrcB0[0] + SrcA1 * SrcB0[1] + SrcA2 * SrcB0[2] + SrcA3 * SrcB0[3]; + Result[1] = SrcA0 * SrcB1[0] + SrcA1 * SrcB1[1] + SrcA2 * SrcB1[2] + SrcA3 * SrcB1[3]; + Result[2] = SrcA0 * SrcB2[0] + SrcA1 * SrcB2[1] + SrcA2 * SrcB2[2] + SrcA3 * SrcB2[3]; + Result[3] = SrcA0 * SrcB3[0] + SrcA1 * SrcB3[1] + SrcA2 * SrcB3[2] + SrcA3 * SrcB3[3]; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> operator/(mat<4, 4, T, Q> const& m, T scalar) + { + return mat<4, 4, T, Q>( + m[0] / scalar, + m[1] / scalar, + m[2] / scalar, + m[3] / scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> operator/(T scalar, mat<4, 4, T, Q> const& m) + { + return mat<4, 4, T, Q>( + scalar / m[0], + scalar / m[1], + scalar / m[2], + scalar / m[3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<4, 4, T, Q>::col_type operator/(mat<4, 4, T, Q> const& m, typename mat<4, 4, T, Q>::row_type const& v) + { + return inverse(m) * v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename mat<4, 4, T, Q>::row_type operator/(typename mat<4, 4, T, Q>::col_type const& v, mat<4, 4, T, Q> const& m) + { + return v * inverse(m); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> operator/(mat<4, 4, T, Q> const& m1, mat<4, 4, T, Q> const& m2) + { + mat<4, 4, T, Q> m1_copy(m1); + return m1_copy /= m2; + } + + // -- Boolean operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator==(mat<4, 4, T, Q> const& m1, mat<4, 4, T, Q> const& m2) + { + return (m1[0] == m2[0]) && (m1[1] == m2[1]) && (m1[2] == m2[2]) && (m1[3] == m2[3]); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator!=(mat<4, 4, T, Q> const& m1, mat<4, 4, T, Q> const& m2) + { + return (m1[0] != m2[0]) || (m1[1] != m2[1]) || (m1[2] != m2[2]) || (m1[3] != m2[3]); + } +}//namespace glm + +#if GLM_CONFIG_SIMD == GLM_ENABLE +# include "type_mat4x4_simd.inl" +#endif diff --git a/thirdparty/glm/glm/detail/type_mat4x4_simd.inl b/thirdparty/glm/glm/detail/type_mat4x4_simd.inl new file mode 100644 index 000000000000..fb3a16f06290 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_mat4x4_simd.inl @@ -0,0 +1,6 @@ +/// @ref core + +namespace glm +{ + +}//namespace glm diff --git a/thirdparty/glm/glm/detail/type_quat.hpp b/thirdparty/glm/glm/detail/type_quat.hpp new file mode 100644 index 000000000000..d489e0a233af --- /dev/null +++ b/thirdparty/glm/glm/detail/type_quat.hpp @@ -0,0 +1,193 @@ +/// @ref core +/// @file glm/detail/type_quat.hpp + +#pragma once + +// Dependency: +#include "../detail/type_mat3x3.hpp" +#include "../detail/type_mat4x4.hpp" +#include "../detail/type_vec3.hpp" +#include "../detail/type_vec4.hpp" +#include "../ext/vector_relational.hpp" +#include "../ext/quaternion_relational.hpp" +#include "../gtc/constants.hpp" +#include "../gtc/matrix_transform.hpp" + +namespace glm +{ + template + struct qua + { + // -- Implementation detail -- + + typedef qua type; + typedef T value_type; + + // -- Data -- + +# if GLM_SILENT_WARNINGS == GLM_ENABLE +# if GLM_COMPILER & GLM_COMPILER_GCC +# pragma GCC diagnostic push +# pragma GCC diagnostic ignored "-Wpedantic" +# elif GLM_COMPILER & GLM_COMPILER_CLANG +# pragma clang diagnostic push +# pragma clang diagnostic ignored "-Wgnu-anonymous-struct" +# pragma clang diagnostic ignored "-Wnested-anon-types" +# elif GLM_COMPILER & GLM_COMPILER_VC +# pragma warning(push) +# pragma warning(disable: 4201) // nonstandard extension used : nameless struct/union +# endif +# endif + +# if GLM_LANG & GLM_LANG_CXXMS_FLAG + union + { +# ifdef GLM_FORCE_QUAT_DATA_WXYZ + struct { T w, x, y, z; }; +# else + struct { T x, y, z, w; }; +# endif + + typename detail::storage<4, T, detail::is_aligned::value>::type data; + }; +# else +# ifdef GLM_FORCE_QUAT_DATA_WXYZ + T w, x, y, z; +# else + T x, y, z, w; +# endif +# endif + +# if GLM_SILENT_WARNINGS == GLM_ENABLE +# if GLM_COMPILER & GLM_COMPILER_CLANG +# pragma clang diagnostic pop +# elif GLM_COMPILER & GLM_COMPILER_GCC +# pragma GCC diagnostic pop +# elif GLM_COMPILER & GLM_COMPILER_VC +# pragma warning(pop) +# endif +# endif + + // -- Component accesses -- + + typedef length_t length_type; + + /// Return the count of components of a quaternion + GLM_FUNC_DECL static GLM_CONSTEXPR length_type length(){return 4;} + + GLM_FUNC_DECL GLM_CONSTEXPR T & operator[](length_type i); + GLM_FUNC_DECL GLM_CONSTEXPR T const& operator[](length_type i) const; + + // -- Implicit basic constructors -- + + GLM_DEFAULTED_DEFAULT_CTOR_DECL GLM_CONSTEXPR qua() GLM_DEFAULT_CTOR; + GLM_DEFAULTED_FUNC_DECL GLM_CONSTEXPR qua(qua const& q) GLM_DEFAULT; + template + GLM_FUNC_DECL GLM_CONSTEXPR qua(qua const& q); + + // -- Explicit basic constructors -- + + GLM_FUNC_DECL GLM_CONSTEXPR qua(T s, vec<3, T, Q> const& v); + +# ifdef GLM_FORCE_QUAT_CTOR_XYZW + GLM_FUNC_DECL GLM_CONSTEXPR qua(T x, T y, T z, T w); +# else + GLM_FUNC_DECL GLM_CONSTEXPR qua(T w, T x, T y, T z); +# endif + + GLM_FUNC_DECL static GLM_CONSTEXPR qua wxyz(T w, T x, T y, T z); + + // -- Conversion constructors -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT qua(qua const& q); + + /// Explicit conversion operators +# if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS + GLM_FUNC_DECL explicit operator mat<3, 3, T, Q>() const; + GLM_FUNC_DECL explicit operator mat<4, 4, T, Q>() const; +# endif + + /// Create a quaternion from two normalized axis + /// + /// @param u A first normalized axis + /// @param v A second normalized axis + /// @see gtc_quaternion + /// @see http://lolengine.net/blog/2013/09/18/beautiful-maths-quaternion-from-vectors + GLM_FUNC_DECL qua(vec<3, T, Q> const& u, vec<3, T, Q> const& v); + + /// Build a quaternion from euler angles (pitch, yaw, roll), in radians. + GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT qua(vec<3, T, Q> const& eulerAngles); + GLM_FUNC_DECL GLM_EXPLICIT qua(mat<3, 3, T, Q> const& q); + GLM_FUNC_DECL GLM_EXPLICIT qua(mat<4, 4, T, Q> const& q); + + // -- Unary arithmetic operators -- + + GLM_DEFAULTED_FUNC_DECL GLM_CONSTEXPR qua& operator=(qua const& q) GLM_DEFAULT; + + template + GLM_FUNC_DECL GLM_CONSTEXPR qua& operator=(qua const& q); + template + GLM_FUNC_DECL GLM_CONSTEXPR qua& operator+=(qua const& q); + template + GLM_FUNC_DECL GLM_CONSTEXPR qua& operator-=(qua const& q); + template + GLM_FUNC_DECL GLM_CONSTEXPR qua& operator*=(qua const& q); + template + GLM_FUNC_DECL GLM_CONSTEXPR qua& operator*=(U s); + template + GLM_FUNC_DECL GLM_CONSTEXPR qua& operator/=(U s); + }; + + // -- Unary bit operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR qua operator+(qua const& q); + + template + GLM_FUNC_DECL GLM_CONSTEXPR qua operator-(qua const& q); + + // -- Binary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR qua operator+(qua const& q, qua const& p); + + template + GLM_FUNC_DECL GLM_CONSTEXPR qua operator-(qua const& q, qua const& p); + + template + GLM_FUNC_DECL GLM_CONSTEXPR qua operator*(qua const& q, qua const& p); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator*(qua const& q, vec<3, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator*(vec<3, T, Q> const& v, qua const& q); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator*(qua const& q, vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator*(vec<4, T, Q> const& v, qua const& q); + + template + GLM_FUNC_DECL GLM_CONSTEXPR qua operator*(qua const& q, T const& s); + + template + GLM_FUNC_DECL GLM_CONSTEXPR qua operator*(T const& s, qua const& q); + + template + GLM_FUNC_DECL GLM_CONSTEXPR qua operator/(qua const& q, T const& s); + + // -- Boolean operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator==(qua const& q1, qua const& q2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator!=(qua const& q1, qua const& q2); +} //namespace glm + +#ifndef GLM_EXTERNAL_TEMPLATE +#include "type_quat.inl" +#endif//GLM_EXTERNAL_TEMPLATE diff --git a/thirdparty/glm/glm/detail/type_quat.inl b/thirdparty/glm/glm/detail/type_quat.inl new file mode 100644 index 000000000000..3213ea6aacc9 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_quat.inl @@ -0,0 +1,424 @@ +#include "../trigonometric.hpp" +#include "../exponential.hpp" +#include "../ext/quaternion_common.hpp" +#include "../ext/quaternion_geometric.hpp" +#include + +namespace glm{ +namespace detail +{ + template + struct genTypeTrait > + { + static const genTypeEnum GENTYPE = GENTYPE_QUAT; + }; + + template + struct compute_dot, T, Aligned> + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static T call(qua const& a, qua const& b) + { + vec<4, T, Q> tmp(a.w * b.w, a.x * b.x, a.y * b.y, a.z * b.z); + return (tmp.x + tmp.y) + (tmp.z + tmp.w); + } + }; + + template + struct compute_quat_add + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static qua call(qua const& q, qua const& p) + { + return qua::wxyz(q.w + p.w, q.x + p.x, q.y + p.y, q.z + p.z); + } + }; + + template + struct compute_quat_sub + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static qua call(qua const& q, qua const& p) + { + return qua::wxyz(q.w - p.w, q.x - p.x, q.y - p.y, q.z - p.z); + } + }; + + template + struct compute_quat_mul_scalar + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static qua call(qua const& q, T s) + { + return qua::wxyz(q.w * s, q.x * s, q.y * s, q.z * s); + } + }; + + template + struct compute_quat_div_scalar + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static qua call(qua const& q, T s) + { + return qua::wxyz(q.w / s, q.x / s, q.y / s, q.z / s); + } + }; + + template + struct compute_quat_mul_vec4 + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec<4, T, Q> call(qua const& q, vec<4, T, Q> const& v) + { + return vec<4, T, Q>(q * vec<3, T, Q>(v), v.w); + } + }; +}//namespace detail + + // -- Component accesses -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR T & qua::operator[](typename qua::length_type i) + { + assert(i >= 0 && i < this->length()); +# ifdef GLM_FORCE_QUAT_DATA_WXYZ + return (&w)[i]; +# else + return (&x)[i]; +# endif + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR T const& qua::operator[](typename qua::length_type i) const + { + assert(i >= 0 && i < this->length()); +# ifdef GLM_FORCE_QUAT_DATA_WXYZ + return (&w)[i]; +# else + return (&x)[i]; +# endif + } + + // -- Implicit basic constructors -- + +# if GLM_CONFIG_DEFAULTED_DEFAULT_CTOR == GLM_DISABLE + template + GLM_DEFAULTED_DEFAULT_CTOR_QUALIFIER GLM_CONSTEXPR qua::qua() +# if GLM_CONFIG_CTOR_INIT != GLM_CTOR_INIT_DISABLE +# ifdef GLM_FORCE_QUAT_DATA_WXYZ + : w(1), x(0), y(0), z(0) +# else + : x(0), y(0), z(0), w(1) +# endif +# endif + {} +# endif + +# if GLM_CONFIG_DEFAULTED_FUNCTIONS == GLM_DISABLE + template + GLM_DEFAULTED_FUNC_QUALIFIER GLM_CONSTEXPR qua::qua(qua const& q) +# ifdef GLM_FORCE_QUAT_DATA_WXYZ + : w(q.w), x(q.x), y(q.y), z(q.z) +# else + : x(q.x), y(q.y), z(q.z), w(q.w) +# endif + {} +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua::qua(qua const& q) +# ifdef GLM_FORCE_QUAT_DATA_WXYZ + : w(q.w), x(q.x), y(q.y), z(q.z) +# else + : x(q.x), y(q.y), z(q.z), w(q.w) +# endif + {} + + // -- Explicit basic constructors -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua::qua(T s, vec<3, T, Q> const& v) +# ifdef GLM_FORCE_QUAT_DATA_WXYZ + : w(s), x(v.x), y(v.y), z(v.z) +# else + : x(v.x), y(v.y), z(v.z), w(s) +# endif + {} + + template +# ifdef GLM_FORCE_QUAT_CTOR_XYZW + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua::qua(T _x, T _y, T _z, T _w) +# else + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua::qua(T _w, T _x, T _y, T _z) +# endif +# ifdef GLM_FORCE_QUAT_DATA_WXYZ + : w(_w), x(_x), y(_y), z(_z) +# else + : x(_x), y(_y), z(_z), w(_w) +# endif + {} + + template + GLM_CONSTEXPR qua qua::wxyz(T w, T x, T y, T z) { +# ifdef GLM_FORCE_QUAT_DATA_XYZW + return qua(x, y, z, w); +# else + return qua(w, x, y, z); +# endif + } + + // -- Conversion constructors -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua::qua(qua const& q) +# ifdef GLM_FORCE_QUAT_DATA_WXYZ + : w(static_cast(q.w)), x(static_cast(q.x)), y(static_cast(q.y)), z(static_cast(q.z)) +# else + : x(static_cast(q.x)), y(static_cast(q.y)), z(static_cast(q.z)), w(static_cast(q.w)) +# endif + {} + + //template + //GLM_FUNC_QUALIFIER qua::qua + //( + // valType const& pitch, + // valType const& yaw, + // valType const& roll + //) + //{ + // vec<3, valType> eulerAngle(pitch * valType(0.5), yaw * valType(0.5), roll * valType(0.5)); + // vec<3, valType> c = glm::cos(eulerAngle * valType(0.5)); + // vec<3, valType> s = glm::sin(eulerAngle * valType(0.5)); + // + // this->w = c.x * c.y * c.z + s.x * s.y * s.z; + // this->x = s.x * c.y * c.z - c.x * s.y * s.z; + // this->y = c.x * s.y * c.z + s.x * c.y * s.z; + // this->z = c.x * c.y * s.z - s.x * s.y * c.z; + //} + + template + GLM_FUNC_QUALIFIER qua::qua(vec<3, T, Q> const& u, vec<3, T, Q> const& v) + { + T norm_u_norm_v = sqrt(dot(u, u) * dot(v, v)); + T real_part = norm_u_norm_v + dot(u, v); + vec<3, T, Q> t; + + if(real_part < static_cast(1.e-6f) * norm_u_norm_v) + { + // If u and v are exactly opposite, rotate 180 degrees + // around an arbitrary orthogonal axis. Axis normalisation + // can happen later, when we normalise the quaternion. + real_part = static_cast(0); + t = abs(u.x) > abs(u.z) ? vec<3, T, Q>(-u.y, u.x, static_cast(0)) : vec<3, T, Q>(static_cast(0), -u.z, u.y); + } + else + { + // Otherwise, build quaternion the standard way. + t = cross(u, v); + } + + *this = normalize(qua::wxyz(real_part, t.x, t.y, t.z)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua::qua(vec<3, T, Q> const& eulerAngle) + { + vec<3, T, Q> c = glm::cos(eulerAngle * T(0.5)); + vec<3, T, Q> s = glm::sin(eulerAngle * T(0.5)); + + this->w = c.x * c.y * c.z + s.x * s.y * s.z; + this->x = s.x * c.y * c.z - c.x * s.y * s.z; + this->y = c.x * s.y * c.z + s.x * c.y * s.z; + this->z = c.x * c.y * s.z - s.x * s.y * c.z; + } + + template + GLM_FUNC_QUALIFIER qua::qua(mat<3, 3, T, Q> const& m) + { + *this = quat_cast(m); + } + + template + GLM_FUNC_QUALIFIER qua::qua(mat<4, 4, T, Q> const& m) + { + *this = quat_cast(m); + } + +# if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS + template + GLM_FUNC_QUALIFIER qua::operator mat<3, 3, T, Q>() const + { + return mat3_cast(*this); + } + + template + GLM_FUNC_QUALIFIER qua::operator mat<4, 4, T, Q>() const + { + return mat4_cast(*this); + } +# endif//GLM_HAS_EXPLICIT_CONVERSION_OPERATORS + + // -- Unary arithmetic operators -- + +# if GLM_CONFIG_DEFAULTED_FUNCTIONS == GLM_DISABLE + template + GLM_DEFAULTED_FUNC_QUALIFIER GLM_CONSTEXPR qua & qua::operator=(qua const& q) + { + this->w = q.w; + this->x = q.x; + this->y = q.y; + this->z = q.z; + return *this; + } +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua & qua::operator=(qua const& q) + { + this->w = static_cast(q.w); + this->x = static_cast(q.x); + this->y = static_cast(q.y); + this->z = static_cast(q.z); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua & qua::operator+=(qua const& q) + { + return (*this = detail::compute_quat_add::value>::call(*this, qua(q))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua & qua::operator-=(qua const& q) + { + return (*this = detail::compute_quat_sub::value>::call(*this, qua(q))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua & qua::operator*=(qua const& r) + { + qua const p(*this); + qua const q(r); + + this->w = p.w * q.w - p.x * q.x - p.y * q.y - p.z * q.z; + this->x = p.w * q.x + p.x * q.w + p.y * q.z - p.z * q.y; + this->y = p.w * q.y + p.y * q.w + p.z * q.x - p.x * q.z; + this->z = p.w * q.z + p.z * q.w + p.x * q.y - p.y * q.x; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua & qua::operator*=(U s) + { + return (*this = detail::compute_quat_mul_scalar::value>::call(*this, static_cast(s))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua & qua::operator/=(U s) + { + return (*this = detail::compute_quat_div_scalar::value>::call(*this, static_cast(s))); + } + + // -- Unary bit operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua operator+(qua const& q) + { + return q; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua operator-(qua const& q) + { + return qua::wxyz(-q.w, -q.x, -q.y, -q.z); + } + + // -- Binary operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua operator+(qua const& q, qua const& p) + { + return qua(q) += p; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua operator-(qua const& q, qua const& p) + { + return qua(q) -= p; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua operator*(qua const& q, qua const& p) + { + return qua(q) *= p; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator*(qua const& q, vec<3, T, Q> const& v) + { + vec<3, T, Q> const QuatVector(q.x, q.y, q.z); + vec<3, T, Q> const uv(glm::cross(QuatVector, v)); + vec<3, T, Q> const uuv(glm::cross(QuatVector, uv)); + + return v + ((uv * q.w) + uuv) * static_cast(2); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator*(vec<3, T, Q> const& v, qua const& q) + { + return glm::inverse(q) * v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator*(qua const& q, vec<4, T, Q> const& v) + { + return detail::compute_quat_mul_vec4::value>::call(q, v); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator*(vec<4, T, Q> const& v, qua const& q) + { + return glm::inverse(q) * v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua operator*(qua const& q, T const& s) + { + return qua::wxyz( + q.w * s, q.x * s, q.y * s, q.z * s); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua operator*(T const& s, qua const& q) + { + return q * s; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua operator/(qua const& q, T const& s) + { + return qua::wxyz( + q.w / s, q.x / s, q.y / s, q.z / s); + } + + // -- Boolean operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator==(qua const& q1, qua const& q2) + { + return q1.x == q2.x && q1.y == q2.y && q1.z == q2.z && q1.w == q2.w; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator!=(qua const& q1, qua const& q2) + { + return q1.x != q2.x || q1.y != q2.y || q1.z != q2.z || q1.w != q2.w; + } +}//namespace glm + +#if GLM_CONFIG_SIMD == GLM_ENABLE +# include "type_quat_simd.inl" +#endif + diff --git a/thirdparty/glm/glm/detail/type_quat_simd.inl b/thirdparty/glm/glm/detail/type_quat_simd.inl new file mode 100644 index 000000000000..fa6da198326c --- /dev/null +++ b/thirdparty/glm/glm/detail/type_quat_simd.inl @@ -0,0 +1,208 @@ +/// @ref core + +#if GLM_ARCH & GLM_ARCH_SSE2_BIT + +namespace glm{ +namespace detail +{ +/* + template + struct compute_quat_mul + { + static qua call(qua const& q1, qua const& q2) + { + // SSE2 STATS: 11 shuffle, 8 mul, 8 add + // SSE4 STATS: 3 shuffle, 4 mul, 4 dpps + + __m128 const mul0 = _mm_mul_ps(q1.data, _mm_shuffle_ps(q2.data, q2.data, _MM_SHUFFLE(0, 1, 2, 3))); + __m128 const mul1 = _mm_mul_ps(q1.data, _mm_shuffle_ps(q2.data, q2.data, _MM_SHUFFLE(1, 0, 3, 2))); + __m128 const mul2 = _mm_mul_ps(q1.data, _mm_shuffle_ps(q2.data, q2.data, _MM_SHUFFLE(2, 3, 0, 1))); + __m128 const mul3 = _mm_mul_ps(q1.data, q2.data); + +# if GLM_ARCH & GLM_ARCH_SSE41_BIT + __m128 const add0 = _mm_dp_ps(mul0, _mm_set_ps(1.0f, -1.0f, 1.0f, 1.0f), 0xff); + __m128 const add1 = _mm_dp_ps(mul1, _mm_set_ps(1.0f, 1.0f, 1.0f, -1.0f), 0xff); + __m128 const add2 = _mm_dp_ps(mul2, _mm_set_ps(1.0f, 1.0f, -1.0f, 1.0f), 0xff); + __m128 const add3 = _mm_dp_ps(mul3, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f), 0xff); +# else + __m128 const mul4 = _mm_mul_ps(mul0, _mm_set_ps(1.0f, -1.0f, 1.0f, 1.0f)); + __m128 const add0 = _mm_add_ps(mul0, _mm_movehl_ps(mul4, mul4)); + __m128 const add4 = _mm_add_ss(add0, _mm_shuffle_ps(add0, add0, 1)); + + __m128 const mul5 = _mm_mul_ps(mul1, _mm_set_ps(1.0f, 1.0f, 1.0f, -1.0f)); + __m128 const add1 = _mm_add_ps(mul1, _mm_movehl_ps(mul5, mul5)); + __m128 const add5 = _mm_add_ss(add1, _mm_shuffle_ps(add1, add1, 1)); + + __m128 const mul6 = _mm_mul_ps(mul2, _mm_set_ps(1.0f, 1.0f, -1.0f, 1.0f)); + __m128 const add2 = _mm_add_ps(mul6, _mm_movehl_ps(mul6, mul6)); + __m128 const add6 = _mm_add_ss(add2, _mm_shuffle_ps(add2, add2, 1)); + + __m128 const mul7 = _mm_mul_ps(mul3, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f)); + __m128 const add3 = _mm_add_ps(mul3, _mm_movehl_ps(mul7, mul7)); + __m128 const add7 = _mm_add_ss(add3, _mm_shuffle_ps(add3, add3, 1)); + #endif + + // This SIMD code is a politically correct way of doing this, but in every test I've tried it has been slower than + // the final code below. I'll keep this here for reference - maybe somebody else can do something better... + // + //__m128 xxyy = _mm_shuffle_ps(add4, add5, _MM_SHUFFLE(0, 0, 0, 0)); + //__m128 zzww = _mm_shuffle_ps(add6, add7, _MM_SHUFFLE(0, 0, 0, 0)); + // + //return _mm_shuffle_ps(xxyy, zzww, _MM_SHUFFLE(2, 0, 2, 0)); + + qua Result; + _mm_store_ss(&Result.x, add4); + _mm_store_ss(&Result.y, add5); + _mm_store_ss(&Result.z, add6); + _mm_store_ss(&Result.w, add7); + return Result; + } + }; +*/ + + template + struct compute_quat_add + { + static qua call(qua const& q, qua const& p) + { + qua Result; + Result.data = _mm_add_ps(q.data, p.data); + return Result; + } + }; + +# if GLM_ARCH & GLM_ARCH_AVX_BIT + template + struct compute_quat_add + { + static qua call(qua const& a, qua const& b) + { + qua Result; + Result.data = _mm256_add_pd(a.data, b.data); + return Result; + } + }; +# endif + + template + struct compute_quat_sub + { + static qua call(qua const& q, qua const& p) + { + qua Result; + Result.data = _mm_sub_ps(q.data, p.data); + return Result; + } + }; + +# if GLM_ARCH & GLM_ARCH_AVX_BIT + template + struct compute_quat_sub + { + static qua call(qua const& a, qua const& b) + { + qua Result; + Result.data = _mm256_sub_pd(a.data, b.data); + return Result; + } + }; +# endif + + template + struct compute_quat_mul_scalar + { + static qua call(qua const& q, float s) + { + vec<4, float, Q> Result; + Result.data = _mm_mul_ps(q.data, _mm_set_ps1(s)); + return Result; + } + }; + +# if GLM_ARCH & GLM_ARCH_AVX_BIT + template + struct compute_quat_mul_scalar + { + static qua call(qua const& q, double s) + { + qua Result; + Result.data = _mm256_mul_pd(q.data, _mm_set_ps1(s)); + return Result; + } + }; +# endif + + template + struct compute_quat_div_scalar + { + static qua call(qua const& q, float s) + { + vec<4, float, Q> Result; + Result.data = _mm_div_ps(q.data, _mm_set_ps1(s)); + return Result; + } + }; + +# if GLM_ARCH & GLM_ARCH_AVX_BIT + template + struct compute_quat_div_scalar + { + static qua call(qua const& q, double s) + { + qua Result; + Result.data = _mm256_div_pd(q.data, _mm_set_ps1(s)); + return Result; + } + }; +# endif + + template + struct compute_quat_mul_vec4 + { + static vec<4, float, Q> call(qua const& q, vec<4, float, Q> const& v) + { +# ifdef GLM_FORCE_QUAT_DATA_WXYZ + __m128 const q_wwww = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(0, 0, 0, 0)); + __m128 const q_swp0 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(0, 1, 3, 2)); + __m128 const q_swp1 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(0, 2, 1, 3)); + __m128 const v_swp0 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 0, 2, 1)); + __m128 const v_swp1 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 1, 0, 2)); + + __m128 uv = _mm_sub_ps(_mm_mul_ps(q_swp0, v_swp1), _mm_mul_ps(q_swp1, v_swp0)); + __m128 uv_swp0 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 0, 2, 1)); + __m128 uv_swp1 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 1, 0, 2)); + __m128 uuv = _mm_sub_ps(_mm_mul_ps(q_swp0, uv_swp1), _mm_mul_ps(q_swp1, uv_swp0)); + + __m128 const two = _mm_set1_ps(2.0f); + uv = _mm_mul_ps(uv, _mm_mul_ps(q_wwww, two)); + uuv = _mm_mul_ps(uuv, two); + + vec<4, float, Q> Result; + Result.data = _mm_add_ps(v.data, _mm_add_ps(uv, uuv)); + return Result; +# else + __m128 const q_wwww = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 3, 3, 3)); + __m128 const q_swp0 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 0, 2, 1)); + __m128 const q_swp1 = _mm_shuffle_ps(q.data, q.data, _MM_SHUFFLE(3, 1, 0, 2)); + __m128 const v_swp0 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 0, 2, 1)); + __m128 const v_swp1 = _mm_shuffle_ps(v.data, v.data, _MM_SHUFFLE(3, 1, 0, 2)); + + __m128 uv = _mm_sub_ps(_mm_mul_ps(q_swp0, v_swp1), _mm_mul_ps(q_swp1, v_swp0)); + __m128 uv_swp0 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 0, 2, 1)); + __m128 uv_swp1 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 1, 0, 2)); + __m128 uuv = _mm_sub_ps(_mm_mul_ps(q_swp0, uv_swp1), _mm_mul_ps(q_swp1, uv_swp0)); + + __m128 const two = _mm_set1_ps(2.0f); + uv = _mm_mul_ps(uv, _mm_mul_ps(q_wwww, two)); + uuv = _mm_mul_ps(uuv, two); + + vec<4, float, Q> Result; + Result.data = _mm_add_ps(v.data, _mm_add_ps(uv, uuv)); + return Result; +# endif + } + }; +}//namespace detail +}//namespace glm + +#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT diff --git a/thirdparty/glm/glm/detail/type_vec1.hpp b/thirdparty/glm/glm/detail/type_vec1.hpp new file mode 100644 index 000000000000..91232f9cbabe --- /dev/null +++ b/thirdparty/glm/glm/detail/type_vec1.hpp @@ -0,0 +1,308 @@ +/// @ref core +/// @file glm/detail/type_vec1.hpp + +#pragma once + +#include "qualifier.hpp" +#if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR +# include "_swizzle.hpp" +#elif GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_FUNCTION +# include "_swizzle_func.hpp" +#endif +#include + +namespace glm +{ + template + struct vec<1, T, Q> + { + // -- Implementation detail -- + + typedef T value_type; + typedef vec<1, T, Q> type; + typedef vec<1, bool, Q> bool_type; + + // -- Data -- + +# if GLM_SILENT_WARNINGS == GLM_ENABLE +# if GLM_COMPILER & GLM_COMPILER_GCC +# pragma GCC diagnostic push +# pragma GCC diagnostic ignored "-Wpedantic" +# elif GLM_COMPILER & GLM_COMPILER_CLANG +# pragma clang diagnostic push +# pragma clang diagnostic ignored "-Wgnu-anonymous-struct" +# pragma clang diagnostic ignored "-Wnested-anon-types" +# elif GLM_COMPILER & GLM_COMPILER_VC +# pragma warning(push) +# pragma warning(disable: 4201) // nonstandard extension used : nameless struct/union +# endif +# endif + +# if GLM_CONFIG_XYZW_ONLY + T x; +# elif GLM_CONFIG_ANONYMOUS_STRUCT == GLM_ENABLE + union + { + T x; + T r; + T s; + + typename detail::storage<1, T, detail::is_aligned::value>::type data; +/* +# if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR + _GLM_SWIZZLE1_2_MEMBERS(T, Q, x) + _GLM_SWIZZLE1_2_MEMBERS(T, Q, r) + _GLM_SWIZZLE1_2_MEMBERS(T, Q, s) + _GLM_SWIZZLE1_3_MEMBERS(T, Q, x) + _GLM_SWIZZLE1_3_MEMBERS(T, Q, r) + _GLM_SWIZZLE1_3_MEMBERS(T, Q, s) + _GLM_SWIZZLE1_4_MEMBERS(T, Q, x) + _GLM_SWIZZLE1_4_MEMBERS(T, Q, r) + _GLM_SWIZZLE1_4_MEMBERS(T, Q, s) +# endif +*/ + }; +# else + union {T x, r, s;}; +/* +# if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_FUNCTION + GLM_SWIZZLE_GEN_VEC_FROM_VEC1(T, Q) +# endif +*/ +# endif + +# if GLM_SILENT_WARNINGS == GLM_ENABLE +# if GLM_COMPILER & GLM_COMPILER_CLANG +# pragma clang diagnostic pop +# elif GLM_COMPILER & GLM_COMPILER_GCC +# pragma GCC diagnostic pop +# elif GLM_COMPILER & GLM_COMPILER_VC +# pragma warning(pop) +# endif +# endif + + // -- Component accesses -- + + /// Return the count of components of the vector + typedef length_t length_type; + GLM_FUNC_DECL static GLM_CONSTEXPR length_type length(){return 1;} + + GLM_FUNC_DECL GLM_CONSTEXPR T & operator[](length_type i); + GLM_FUNC_DECL GLM_CONSTEXPR T const& operator[](length_type i) const; + + // -- Implicit basic constructors -- + + GLM_DEFAULTED_DEFAULT_CTOR_DECL GLM_CONSTEXPR vec() GLM_DEFAULT_CTOR; + GLM_DEFAULTED_FUNC_DECL GLM_CONSTEXPR vec(vec const& v) GLM_DEFAULT; + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, T, P> const& v); + + // -- Explicit basic constructors -- + + GLM_FUNC_DECL GLM_CONSTEXPR explicit vec(T scalar); + + // -- Conversion vector constructors -- + + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT vec(vec<2, U, P> const& v); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT vec(vec<3, U, P> const& v); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT vec(vec<4, U, P> const& v); + + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT vec(vec<1, U, P> const& v); + + // -- Swizzle constructors -- +/* +# if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(detail::_swizzle<1, T, Q, E0, -1,-2,-3> const& that) + { + *this = that(); + } +# endif//GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR +*/ + // -- Unary arithmetic operators -- + + GLM_DEFAULTED_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator=(vec const& v) GLM_DEFAULT; + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator+=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator+=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator-=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator-=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator*=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator*=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator/=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator/=(vec<1, U, Q> const& v); + + // -- Increment and decrement operators -- + + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator++(); + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator--(); + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator++(int); + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator--(int); + + // -- Unary bit operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator%=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator%=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator&=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator&=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator|=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator|=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator^=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator^=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator<<=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator<<=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator>>=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> & operator>>=(vec<1, U, Q> const& v); + }; + + // -- Unary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator+(vec<1, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator-(vec<1, T, Q> const& v); + + // -- Binary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator+(vec<1, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator+(T scalar, vec<1, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator+(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator-(vec<1, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator-(T scalar, vec<1, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator-(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator*(vec<1, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator*(T scalar, vec<1, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator*(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator/(vec<1, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator/(T scalar, vec<1, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator/(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator%(vec<1, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator%(T scalar, vec<1, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator%(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator&(vec<1, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator&(T scalar, vec<1, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator&(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator|(vec<1, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator|(T scalar, vec<1, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator|(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator^(vec<1, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator^(T scalar, vec<1, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator^(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator<<(vec<1, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator<<(T scalar, vec<1, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator<<(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator>>(vec<1, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator>>(T scalar, vec<1, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator>>(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, T, Q> operator~(vec<1, T, Q> const& v); + + // -- Boolean operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator==(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator!=(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, bool, Q> operator&&(vec<1, bool, Q> const& v1, vec<1, bool, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<1, bool, Q> operator||(vec<1, bool, Q> const& v1, vec<1, bool, Q> const& v2); +}//namespace glm + +#ifndef GLM_EXTERNAL_TEMPLATE +#include "type_vec1.inl" +#endif//GLM_EXTERNAL_TEMPLATE diff --git a/thirdparty/glm/glm/detail/type_vec1.inl b/thirdparty/glm/glm/detail/type_vec1.inl new file mode 100644 index 000000000000..18411e7f76c5 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_vec1.inl @@ -0,0 +1,553 @@ +/// @ref core + +#include "./compute_vector_relational.hpp" + +namespace glm +{ + // -- Implicit basic constructors -- + +# if GLM_CONFIG_DEFAULTED_DEFAULT_CTOR == GLM_DISABLE + template + GLM_DEFAULTED_DEFAULT_CTOR_QUALIFIER GLM_CONSTEXPR vec<1, T, Q>::vec() +# if GLM_CONFIG_CTOR_INIT != GLM_CTOR_INIT_DISABLE + : x(0) +# endif + {} +# endif + +# if GLM_CONFIG_DEFAULTED_FUNCTIONS == GLM_DISABLE + template + GLM_DEFAULTED_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q>::vec(vec<1, T, Q> const& v) + : x(v.x) + {} +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q>::vec(vec<1, T, P> const& v) + : x(v.x) + {} + + // -- Explicit basic constructors -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q>::vec(T scalar) + : x(scalar) + {} + + // -- Conversion vector constructors -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q>::vec(vec<1, U, P> const& v) + : x(static_cast(v.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q>::vec(vec<2, U, P> const& v) + : x(static_cast(v.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q>::vec(vec<3, U, P> const& v) + : x(static_cast(v.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q>::vec(vec<4, U, P> const& v) + : x(static_cast(v.x)) + {} + + // -- Component accesses -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR T & vec<1, T, Q>::operator[](typename vec<1, T, Q>::length_type) + { + return x; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR T const& vec<1, T, Q>::operator[](typename vec<1, T, Q>::length_type) const + { + return x; + } + + // -- Unary arithmetic operators -- + +# if GLM_CONFIG_DEFAULTED_FUNCTIONS == GLM_DISABLE + template + GLM_DEFAULTED_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator=(vec<1, T, Q> const& v) + { + this->x = v.x; + return *this; + } +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator=(vec<1, U, Q> const& v) + { + this->x = static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator+=(U scalar) + { + this->x += static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator+=(vec<1, U, Q> const& v) + { + this->x += static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator-=(U scalar) + { + this->x -= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator-=(vec<1, U, Q> const& v) + { + this->x -= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator*=(U scalar) + { + this->x *= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator*=(vec<1, U, Q> const& v) + { + this->x *= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator/=(U scalar) + { + this->x /= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator/=(vec<1, U, Q> const& v) + { + this->x /= static_cast(v.x); + return *this; + } + + // -- Increment and decrement operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator++() + { + ++this->x; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator--() + { + --this->x; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> vec<1, T, Q>::operator++(int) + { + vec<1, T, Q> Result(*this); + ++*this; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> vec<1, T, Q>::operator--(int) + { + vec<1, T, Q> Result(*this); + --*this; + return Result; + } + + // -- Unary bit operators -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator%=(U scalar) + { + this->x %= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator%=(vec<1, U, Q> const& v) + { + this->x %= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator&=(U scalar) + { + this->x &= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator&=(vec<1, U, Q> const& v) + { + this->x &= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator|=(U scalar) + { + this->x |= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator|=(vec<1, U, Q> const& v) + { + this->x |= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator^=(U scalar) + { + this->x ^= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator^=(vec<1, U, Q> const& v) + { + this->x ^= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator<<=(U scalar) + { + this->x <<= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator<<=(vec<1, U, Q> const& v) + { + this->x <<= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator>>=(U scalar) + { + this->x >>= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> & vec<1, T, Q>::operator>>=(vec<1, U, Q> const& v) + { + this->x >>= static_cast(v.x); + return *this; + } + + // -- Unary constant operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator+(vec<1, T, Q> const& v) + { + return v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator-(vec<1, T, Q> const& v) + { + return vec<1, T, Q>( + -v.x); + } + + // -- Binary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator+(vec<1, T, Q> const& v, T scalar) + { + return vec<1, T, Q>( + v.x + scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator+(T scalar, vec<1, T, Q> const& v) + { + return vec<1, T, Q>( + scalar + v.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator+(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<1, T, Q>( + v1.x + v2.x); + } + + //operator- + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator-(vec<1, T, Q> const& v, T scalar) + { + return vec<1, T, Q>( + v.x - scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator-(T scalar, vec<1, T, Q> const& v) + { + return vec<1, T, Q>( + scalar - v.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator-(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<1, T, Q>( + v1.x - v2.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator*(vec<1, T, Q> const& v, T scalar) + { + return vec<1, T, Q>( + v.x * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator*(T scalar, vec<1, T, Q> const& v) + { + return vec<1, T, Q>( + scalar * v.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator*(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<1, T, Q>( + v1.x * v2.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator/(vec<1, T, Q> const& v, T scalar) + { + return vec<1, T, Q>( + v.x / scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator/(T scalar, vec<1, T, Q> const& v) + { + return vec<1, T, Q>( + scalar / v.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator/(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<1, T, Q>( + v1.x / v2.x); + } + + // -- Binary bit operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator%(vec<1, T, Q> const& v, T scalar) + { + return vec<1, T, Q>( + v.x % scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator%(T scalar, vec<1, T, Q> const& v) + { + return vec<1, T, Q>( + scalar % v.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator%(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<1, T, Q>( + v1.x % v2.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator&(vec<1, T, Q> const& v, T scalar) + { + return vec<1, T, Q>( + v.x & scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator&(T scalar, vec<1, T, Q> const& v) + { + return vec<1, T, Q>( + scalar & v.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator&(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<1, T, Q>( + v1.x & v2.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator|(vec<1, T, Q> const& v, T scalar) + { + return vec<1, T, Q>( + v.x | scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator|(T scalar, vec<1, T, Q> const& v) + { + return vec<1, T, Q>( + scalar | v.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator|(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<1, T, Q>( + v1.x | v2.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator^(vec<1, T, Q> const& v, T scalar) + { + return vec<1, T, Q>( + v.x ^ scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator^(T scalar, vec<1, T, Q> const& v) + { + return vec<1, T, Q>( + scalar ^ v.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator^(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<1, T, Q>( + v1.x ^ v2.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator<<(vec<1, T, Q> const& v, T scalar) + { + return vec<1, T, Q>( + static_cast(v.x << scalar)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator<<(T scalar, vec<1, T, Q> const& v) + { + return vec<1, T, Q>( + static_cast(scalar << v.x)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator<<(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<1, T, Q>( + static_cast(v1.x << v2.x)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator>>(vec<1, T, Q> const& v, T scalar) + { + return vec<1, T, Q>( + static_cast(v.x >> scalar)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator>>(T scalar, vec<1, T, Q> const& v) + { + return vec<1, T, Q>( + static_cast(scalar >> v.x)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator>>(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<1, T, Q>( + static_cast(v1.x >> v2.x)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, T, Q> operator~(vec<1, T, Q> const& v) + { + return vec<1, T, Q>( + ~v.x); + } + + // -- Boolean operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator==(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return detail::compute_equal::is_iec559>::call(v1.x, v2.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator!=(vec<1, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return !(v1 == v2); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, bool, Q> operator&&(vec<1, bool, Q> const& v1, vec<1, bool, Q> const& v2) + { + return vec<1, bool, Q>(v1.x && v2.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<1, bool, Q> operator||(vec<1, bool, Q> const& v1, vec<1, bool, Q> const& v2) + { + return vec<1, bool, Q>(v1.x || v2.x); + } +}//namespace glm diff --git a/thirdparty/glm/glm/detail/type_vec2.hpp b/thirdparty/glm/glm/detail/type_vec2.hpp new file mode 100644 index 000000000000..424868f555c5 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_vec2.hpp @@ -0,0 +1,402 @@ +/// @ref core +/// @file glm/detail/type_vec2.hpp + +#pragma once + +#include "qualifier.hpp" +#if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR +# include "_swizzle.hpp" +#elif GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_FUNCTION +# include "_swizzle_func.hpp" +#endif +#include + +namespace glm +{ + template + struct vec<2, T, Q> + { + // -- Implementation detail -- + + typedef T value_type; + typedef vec<2, T, Q> type; + typedef vec<2, bool, Q> bool_type; + + // -- Data -- + +# if GLM_SILENT_WARNINGS == GLM_ENABLE +# if GLM_COMPILER & GLM_COMPILER_GCC +# pragma GCC diagnostic push +# pragma GCC diagnostic ignored "-Wpedantic" +# elif GLM_COMPILER & GLM_COMPILER_CLANG +# pragma clang diagnostic push +# pragma clang diagnostic ignored "-Wgnu-anonymous-struct" +# pragma clang diagnostic ignored "-Wnested-anon-types" +# elif GLM_COMPILER & GLM_COMPILER_VC +# pragma warning(push) +# pragma warning(disable: 4201) // nonstandard extension used : nameless struct/union +# endif +# endif + +# if GLM_CONFIG_XYZW_ONLY + T x, y; +# if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_FUNCTION + GLM_SWIZZLE_GEN_VEC_FROM_VEC2_COMP(T, Q, x, y) +# endif//GLM_CONFIG_SWIZZLE +# elif GLM_CONFIG_ANONYMOUS_STRUCT == GLM_ENABLE + union + { + struct{ T x, y; }; + struct{ T r, g; }; + struct{ T s, t; }; + + typename detail::storage<2, T, detail::is_aligned::value>::type data; + +# if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR + GLM_SWIZZLE2_2_MEMBERS(T, Q, x, y) + GLM_SWIZZLE2_2_MEMBERS(T, Q, r, g) + GLM_SWIZZLE2_2_MEMBERS(T, Q, s, t) + GLM_SWIZZLE2_3_MEMBERS(T, Q, x, y) + GLM_SWIZZLE2_3_MEMBERS(T, Q, r, g) + GLM_SWIZZLE2_3_MEMBERS(T, Q, s, t) + GLM_SWIZZLE2_4_MEMBERS(T, Q, x, y) + GLM_SWIZZLE2_4_MEMBERS(T, Q, r, g) + GLM_SWIZZLE2_4_MEMBERS(T, Q, s, t) +# endif + }; +# else + union {T x, r, s;}; + union {T y, g, t;}; + +# if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_FUNCTION + GLM_SWIZZLE_GEN_VEC_FROM_VEC2(T, Q) +# endif//GLM_CONFIG_SWIZZLE +# endif + +# if GLM_SILENT_WARNINGS == GLM_ENABLE +# if GLM_COMPILER & GLM_COMPILER_CLANG +# pragma clang diagnostic pop +# elif GLM_COMPILER & GLM_COMPILER_GCC +# pragma GCC diagnostic pop +# elif GLM_COMPILER & GLM_COMPILER_VC +# pragma warning(pop) +# endif +# endif + + // -- Component accesses -- + + /// Return the count of components of the vector + typedef length_t length_type; + GLM_FUNC_DECL static GLM_CONSTEXPR length_type length(){return 2;} + + GLM_FUNC_DECL GLM_CONSTEXPR T& operator[](length_type i); + GLM_FUNC_DECL GLM_CONSTEXPR T const& operator[](length_type i) const; + + // -- Implicit basic constructors -- + + GLM_DEFAULTED_DEFAULT_CTOR_DECL GLM_CONSTEXPR vec() GLM_DEFAULT_CTOR; + GLM_DEFAULTED_FUNC_DECL GLM_CONSTEXPR vec(vec const& v) GLM_DEFAULT; + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<2, T, P> const& v); + + // -- Explicit basic constructors -- + + GLM_FUNC_DECL GLM_CONSTEXPR explicit vec(T scalar); + GLM_FUNC_DECL GLM_CONSTEXPR vec(T x, T y); + + // -- Conversion constructors -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR explicit vec(vec<1, U, P> const& v); + + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(A x, B y); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, A, Q> const& x, B y); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(A x, vec<1, B, Q> const& y); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, A, Q> const& x, vec<1, B, Q> const& y); + + // -- Conversion vector constructors -- + + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT vec(vec<3, U, P> const& v); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT vec(vec<4, U, P> const& v); + + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT vec(vec<2, U, P> const& v); + + // -- Swizzle constructors -- +# if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(detail::_swizzle<2, T, Q, E0, E1,-1,-2> const& that) + { + *this = that(); + } +# endif//GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR + + // -- Unary arithmetic operators -- + + GLM_DEFAULTED_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator=(vec const& v) GLM_DEFAULT; + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator=(vec<2, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator+=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator+=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator+=(vec<2, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator-=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator-=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator-=(vec<2, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator*=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator*=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator*=(vec<2, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator/=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator/=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator/=(vec<2, U, Q> const& v); + + // -- Increment and decrement operators -- + + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator++(); + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator--(); + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator++(int); + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator--(int); + + // -- Unary bit operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator%=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator%=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator%=(vec<2, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator&=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator&=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator&=(vec<2, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator|=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator|=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator|=(vec<2, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator^=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator^=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator^=(vec<2, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator<<=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator<<=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator<<=(vec<2, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator>>=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator>>=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> & operator>>=(vec<2, U, Q> const& v); + }; + + // -- Unary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator+(vec<2, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator-(vec<2, T, Q> const& v); + + // -- Binary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator+(vec<2, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator+(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator+(T scalar, vec<2, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator+(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator+(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator-(vec<2, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator-(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator-(T scalar, vec<2, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator-(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator-(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator*(vec<2, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator*(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator*(T scalar, vec<2, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator*(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator*(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator/(vec<2, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator/(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator/(T scalar, vec<2, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator/(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator/(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator%(vec<2, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator%(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator%(T scalar, vec<2, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator%(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator%(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator&(vec<2, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator&(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator&(T scalar, vec<2, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator&(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator&(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator|(vec<2, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator|(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator|(T scalar, vec<2, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator|(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator|(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator^(vec<2, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator^(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator^(T scalar, vec<2, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator^(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator^(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator<<(vec<2, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator<<(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator<<(T scalar, vec<2, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator<<(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator<<(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator>>(vec<2, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator>>(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator>>(T scalar, vec<2, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator>>(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator>>(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, T, Q> operator~(vec<2, T, Q> const& v); + + // -- Boolean operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator==(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator!=(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, bool, Q> operator&&(vec<2, bool, Q> const& v1, vec<2, bool, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<2, bool, Q> operator||(vec<2, bool, Q> const& v1, vec<2, bool, Q> const& v2); +}//namespace glm + +#ifndef GLM_EXTERNAL_TEMPLATE +#include "type_vec2.inl" +#endif//GLM_EXTERNAL_TEMPLATE diff --git a/thirdparty/glm/glm/detail/type_vec2.inl b/thirdparty/glm/glm/detail/type_vec2.inl new file mode 100644 index 000000000000..24850965b510 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_vec2.inl @@ -0,0 +1,915 @@ +/// @ref core + +#include "./compute_vector_relational.hpp" + +namespace glm +{ + // -- Implicit basic constructors -- + +# if GLM_CONFIG_DEFAULTED_DEFAULT_CTOR == GLM_DISABLE + template + GLM_DEFAULTED_DEFAULT_CTOR_QUALIFIER GLM_CONSTEXPR vec<2, T, Q>::vec() +# if GLM_CONFIG_CTOR_INIT != GLM_CTOR_INIT_DISABLE + : x(0), y(0) +# endif + {} +# endif + +# if GLM_CONFIG_DEFAULTED_FUNCTIONS == GLM_DISABLE + template + GLM_DEFAULTED_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q>::vec(vec<2, T, Q> const& v) + : x(v.x), y(v.y) + {} +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q>::vec(vec<2, T, P> const& v) + : x(v.x), y(v.y) + {} + + // -- Explicit basic constructors -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q>::vec(T scalar) + : x(scalar), y(scalar) + {} + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q>::vec(T _x, T _y) + : x(_x), y(_y) + {} + + // -- Conversion scalar constructors -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q>::vec(vec<1, U, P> const& v) + : x(static_cast(v.x)) + , y(static_cast(v.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q>::vec(A _x, B _y) + : x(static_cast(_x)) + , y(static_cast(_y)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q>::vec(vec<1, A, Q> const& _x, B _y) + : x(static_cast(_x.x)) + , y(static_cast(_y)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q>::vec(A _x, vec<1, B, Q> const& _y) + : x(static_cast(_x)) + , y(static_cast(_y.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q>::vec(vec<1, A, Q> const& _x, vec<1, B, Q> const& _y) + : x(static_cast(_x.x)) + , y(static_cast(_y.x)) + {} + + // -- Conversion vector constructors -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q>::vec(vec<2, U, P> const& v) + : x(static_cast(v.x)) + , y(static_cast(v.y)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q>::vec(vec<3, U, P> const& v) + : x(static_cast(v.x)) + , y(static_cast(v.y)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q>::vec(vec<4, U, P> const& v) + : x(static_cast(v.x)) + , y(static_cast(v.y)) + {} + + // -- Component accesses -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR T & vec<2, T, Q>::operator[](typename vec<2, T, Q>::length_type i) + { + assert(i >= 0 && i < this->length()); + switch(i) + { + default: + case 0: + return x; + case 1: + return y; + } + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR T const& vec<2, T, Q>::operator[](typename vec<2, T, Q>::length_type i) const + { + assert(i >= 0 && i < this->length()); + switch(i) + { + default: + case 0: + return x; + case 1: + return y; + } + } + + // -- Unary arithmetic operators -- + +# if GLM_CONFIG_DEFAULTED_FUNCTIONS == GLM_DISABLE + template + GLM_DEFAULTED_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator=(vec<2, T, Q> const& v) + { + this->x = v.x; + this->y = v.y; + return *this; + } +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator=(vec<2, U, Q> const& v) + { + this->x = static_cast(v.x); + this->y = static_cast(v.y); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator+=(U scalar) + { + this->x += static_cast(scalar); + this->y += static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator+=(vec<1, U, Q> const& v) + { + this->x += static_cast(v.x); + this->y += static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator+=(vec<2, U, Q> const& v) + { + this->x += static_cast(v.x); + this->y += static_cast(v.y); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator-=(U scalar) + { + this->x -= static_cast(scalar); + this->y -= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator-=(vec<1, U, Q> const& v) + { + this->x -= static_cast(v.x); + this->y -= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator-=(vec<2, U, Q> const& v) + { + this->x -= static_cast(v.x); + this->y -= static_cast(v.y); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator*=(U scalar) + { + this->x *= static_cast(scalar); + this->y *= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator*=(vec<1, U, Q> const& v) + { + this->x *= static_cast(v.x); + this->y *= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator*=(vec<2, U, Q> const& v) + { + this->x *= static_cast(v.x); + this->y *= static_cast(v.y); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator/=(U scalar) + { + this->x /= static_cast(scalar); + this->y /= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator/=(vec<1, U, Q> const& v) + { + this->x /= static_cast(v.x); + this->y /= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator/=(vec<2, U, Q> const& v) + { + this->x /= static_cast(v.x); + this->y /= static_cast(v.y); + return *this; + } + + // -- Increment and decrement operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator++() + { + ++this->x; + ++this->y; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator--() + { + --this->x; + --this->y; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> vec<2, T, Q>::operator++(int) + { + vec<2, T, Q> Result(*this); + ++*this; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> vec<2, T, Q>::operator--(int) + { + vec<2, T, Q> Result(*this); + --*this; + return Result; + } + + // -- Unary bit operators -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator%=(U scalar) + { + this->x %= static_cast(scalar); + this->y %= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator%=(vec<1, U, Q> const& v) + { + this->x %= static_cast(v.x); + this->y %= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator%=(vec<2, U, Q> const& v) + { + this->x %= static_cast(v.x); + this->y %= static_cast(v.y); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator&=(U scalar) + { + this->x &= static_cast(scalar); + this->y &= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator&=(vec<1, U, Q> const& v) + { + this->x &= static_cast(v.x); + this->y &= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator&=(vec<2, U, Q> const& v) + { + this->x &= static_cast(v.x); + this->y &= static_cast(v.y); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator|=(U scalar) + { + this->x |= static_cast(scalar); + this->y |= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator|=(vec<1, U, Q> const& v) + { + this->x |= static_cast(v.x); + this->y |= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator|=(vec<2, U, Q> const& v) + { + this->x |= static_cast(v.x); + this->y |= static_cast(v.y); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator^=(U scalar) + { + this->x ^= static_cast(scalar); + this->y ^= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator^=(vec<1, U, Q> const& v) + { + this->x ^= static_cast(v.x); + this->y ^= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator^=(vec<2, U, Q> const& v) + { + this->x ^= static_cast(v.x); + this->y ^= static_cast(v.y); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator<<=(U scalar) + { + this->x <<= static_cast(scalar); + this->y <<= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator<<=(vec<1, U, Q> const& v) + { + this->x <<= static_cast(v.x); + this->y <<= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator<<=(vec<2, U, Q> const& v) + { + this->x <<= static_cast(v.x); + this->y <<= static_cast(v.y); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator>>=(U scalar) + { + this->x >>= static_cast(scalar); + this->y >>= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator>>=(vec<1, U, Q> const& v) + { + this->x >>= static_cast(v.x); + this->y >>= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> & vec<2, T, Q>::operator>>=(vec<2, U, Q> const& v) + { + this->x >>= static_cast(v.x); + this->y >>= static_cast(v.y); + return *this; + } + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator+(vec<2, T, Q> const& v) + { + return v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator-(vec<2, T, Q> const& v) + { + return vec<2, T, Q>( + -v.x, + -v.y); + } + + // -- Binary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator+(vec<2, T, Q> const& v, T scalar) + { + return vec<2, T, Q>( + v.x + scalar, + v.y + scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator+(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x + v2.x, + v1.y + v2.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator+(T scalar, vec<2, T, Q> const& v) + { + return vec<2, T, Q>( + scalar + v.x, + scalar + v.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator+(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x + v2.x, + v1.x + v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator+(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x + v2.x, + v1.y + v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator-(vec<2, T, Q> const& v, T scalar) + { + return vec<2, T, Q>( + v.x - scalar, + v.y - scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator-(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x - v2.x, + v1.y - v2.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator-(T scalar, vec<2, T, Q> const& v) + { + return vec<2, T, Q>( + scalar - v.x, + scalar - v.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator-(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x - v2.x, + v1.x - v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator-(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x - v2.x, + v1.y - v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator*(vec<2, T, Q> const& v, T scalar) + { + return vec<2, T, Q>( + v.x * scalar, + v.y * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator*(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x * v2.x, + v1.y * v2.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator*(T scalar, vec<2, T, Q> const& v) + { + return vec<2, T, Q>( + scalar * v.x, + scalar * v.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator*(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x * v2.x, + v1.x * v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator*(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x * v2.x, + v1.y * v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator/(vec<2, T, Q> const& v, T scalar) + { + return vec<2, T, Q>( + v.x / scalar, + v.y / scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator/(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x / v2.x, + v1.y / v2.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator/(T scalar, vec<2, T, Q> const& v) + { + return vec<2, T, Q>( + scalar / v.x, + scalar / v.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator/(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x / v2.x, + v1.x / v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator/(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x / v2.x, + v1.y / v2.y); + } + + // -- Binary bit operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator%(vec<2, T, Q> const& v, T scalar) + { + return vec<2, T, Q>( + v.x % scalar, + v.y % scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator%(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x % v2.x, + v1.y % v2.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator%(T scalar, vec<2, T, Q> const& v) + { + return vec<2, T, Q>( + scalar % v.x, + scalar % v.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator%(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x % v2.x, + v1.x % v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator%(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x % v2.x, + v1.y % v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator&(vec<2, T, Q> const& v, T scalar) + { + return vec<2, T, Q>( + v.x & scalar, + v.y & scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator&(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x & v2.x, + v1.y & v2.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator&(T scalar, vec<2, T, Q> const& v) + { + return vec<2, T, Q>( + scalar & v.x, + scalar & v.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator&(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x & v2.x, + v1.x & v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator&(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x & v2.x, + v1.y & v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator|(vec<2, T, Q> const& v, T scalar) + { + return vec<2, T, Q>( + v.x | scalar, + v.y | scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator|(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x | v2.x, + v1.y | v2.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator|(T scalar, vec<2, T, Q> const& v) + { + return vec<2, T, Q>( + scalar | v.x, + scalar | v.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator|(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x | v2.x, + v1.x | v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator|(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x | v2.x, + v1.y | v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator^(vec<2, T, Q> const& v, T scalar) + { + return vec<2, T, Q>( + v.x ^ scalar, + v.y ^ scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator^(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x ^ v2.x, + v1.y ^ v2.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator^(T scalar, vec<2, T, Q> const& v) + { + return vec<2, T, Q>( + scalar ^ v.x, + scalar ^ v.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator^(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x ^ v2.x, + v1.x ^ v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator^(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x ^ v2.x, + v1.y ^ v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator<<(vec<2, T, Q> const& v, T scalar) + { + return vec<2, T, Q>( + v.x << scalar, + v.y << scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator<<(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x << v2.x, + v1.y << v2.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator<<(T scalar, vec<2, T, Q> const& v) + { + return vec<2, T, Q>( + scalar << v.x, + scalar << v.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator<<(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x << v2.x, + v1.x << v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator<<(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x << v2.x, + v1.y << v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator>>(vec<2, T, Q> const& v, T scalar) + { + return vec<2, T, Q>( + v.x >> scalar, + v.y >> scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator>>(vec<2, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x >> v2.x, + v1.y >> v2.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator>>(T scalar, vec<2, T, Q> const& v) + { + return vec<2, T, Q>( + scalar >> v.x, + scalar >> v.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator>>(vec<1, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x >> v2.x, + v1.x >> v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator>>(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return vec<2, T, Q>( + v1.x >> v2.x, + v1.y >> v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, T, Q> operator~(vec<2, T, Q> const& v) + { + return vec<2, T, Q>( + ~v.x, + ~v.y); + } + + // -- Boolean operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator==(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return + detail::compute_equal::is_iec559>::call(v1.x, v2.x) && + detail::compute_equal::is_iec559>::call(v1.y, v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator!=(vec<2, T, Q> const& v1, vec<2, T, Q> const& v2) + { + return !(v1 == v2); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, bool, Q> operator&&(vec<2, bool, Q> const& v1, vec<2, bool, Q> const& v2) + { + return vec<2, bool, Q>(v1.x && v2.x, v1.y && v2.y); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<2, bool, Q> operator||(vec<2, bool, Q> const& v1, vec<2, bool, Q> const& v2) + { + return vec<2, bool, Q>(v1.x || v2.x, v1.y || v2.y); + } +}//namespace glm diff --git a/thirdparty/glm/glm/detail/type_vec3.hpp b/thirdparty/glm/glm/detail/type_vec3.hpp new file mode 100644 index 000000000000..67104800cfd9 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_vec3.hpp @@ -0,0 +1,435 @@ +/// @ref core +/// @file glm/detail/type_vec3.hpp + +#pragma once + +#include "qualifier.hpp" +#if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR +# include "_swizzle.hpp" +#elif GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_FUNCTION +# include "_swizzle_func.hpp" +#endif +#include + +namespace glm +{ + template + struct vec<3, T, Q> + { + // -- Implementation detail -- + + typedef T value_type; + typedef vec<3, T, Q> type; + typedef vec<3, bool, Q> bool_type; + + // -- Data -- + +# if GLM_SILENT_WARNINGS == GLM_ENABLE +# if GLM_COMPILER & GLM_COMPILER_GCC +# pragma GCC diagnostic push +# pragma GCC diagnostic ignored "-Wpedantic" +# elif GLM_COMPILER & GLM_COMPILER_CLANG +# pragma clang diagnostic push +# pragma clang diagnostic ignored "-Wgnu-anonymous-struct" +# pragma clang diagnostic ignored "-Wnested-anon-types" +# elif GLM_COMPILER & GLM_COMPILER_VC +# pragma warning(push) +# pragma warning(disable: 4201) // nonstandard extension used : nameless struct/union +# if GLM_CONFIG_ALIGNED_GENTYPES == GLM_ENABLE +# pragma warning(disable: 4324) // structure was padded due to alignment specifier +# endif +# endif +# endif + +# if GLM_CONFIG_XYZW_ONLY + T x, y, z; +# if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_FUNCTION + GLM_SWIZZLE_GEN_VEC_FROM_VEC3_COMP(T, Q, x, y, z) +# endif//GLM_CONFIG_SWIZZLE +# elif GLM_CONFIG_ANONYMOUS_STRUCT == GLM_ENABLE + union + { + struct{ T x, y, z; }; + struct{ T r, g, b; }; + struct{ T s, t, p; }; + + typename detail::storage<3, T, detail::is_aligned::value>::type data; + +# if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR + GLM_SWIZZLE3_2_MEMBERS(T, Q, x, y, z) + GLM_SWIZZLE3_2_MEMBERS(T, Q, r, g, b) + GLM_SWIZZLE3_2_MEMBERS(T, Q, s, t, p) + GLM_SWIZZLE3_3_MEMBERS(T, Q, x, y, z) + GLM_SWIZZLE3_3_MEMBERS(T, Q, r, g, b) + GLM_SWIZZLE3_3_MEMBERS(T, Q, s, t, p) + GLM_SWIZZLE3_4_MEMBERS(T, Q, x, y, z) + GLM_SWIZZLE3_4_MEMBERS(T, Q, r, g, b) + GLM_SWIZZLE3_4_MEMBERS(T, Q, s, t, p) +# endif + }; +# else + union { T x, r, s; }; + union { T y, g, t; }; + union { T z, b, p; }; + +# if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_FUNCTION + GLM_SWIZZLE_GEN_VEC_FROM_VEC3(T, Q) +# endif//GLM_CONFIG_SWIZZLE +# endif//GLM_LANG + +# if GLM_SILENT_WARNINGS == GLM_ENABLE +# if GLM_COMPILER & GLM_COMPILER_CLANG +# pragma clang diagnostic pop +# elif GLM_COMPILER & GLM_COMPILER_GCC +# pragma GCC diagnostic pop +# elif GLM_COMPILER & GLM_COMPILER_VC +# pragma warning(pop) +# endif +# endif + + // -- Component accesses -- + + /// Return the count of components of the vector + typedef length_t length_type; + GLM_FUNC_DECL static GLM_CONSTEXPR length_type length(){return 3;} + + GLM_FUNC_DECL GLM_CONSTEXPR T & operator[](length_type i); + GLM_FUNC_DECL GLM_CONSTEXPR T const& operator[](length_type i) const; + + // -- Implicit basic constructors -- + + GLM_DEFAULTED_DEFAULT_CTOR_DECL GLM_CONSTEXPR vec() GLM_DEFAULT_CTOR; + GLM_DEFAULTED_FUNC_DECL GLM_CONSTEXPR vec(vec const& v) GLM_DEFAULT; + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<3, T, P> const& v); + + // -- Explicit basic constructors -- + + GLM_FUNC_DECL GLM_CONSTEXPR explicit vec(T scalar); + GLM_FUNC_DECL GLM_CONSTEXPR vec(T a, T b, T c); + + // -- Conversion scalar constructors -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR explicit vec(vec<1, U, P> const& v); + + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(X x, Y y, Z z); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, X, Q> const& _x, Y _y, Z _z); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(X _x, vec<1, Y, Q> const& _y, Z _z); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, X, Q> const& _x, vec<1, Y, Q> const& _y, Z _z); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(X _x, Y _y, vec<1, Z, Q> const& _z); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, X, Q> const& _x, Y _y, vec<1, Z, Q> const& _z); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(X _x, vec<1, Y, Q> const& _y, vec<1, Z, Q> const& _z); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, X, Q> const& _x, vec<1, Y, Q> const& _y, vec<1, Z, Q> const& _z); + + // -- Conversion vector constructors -- + + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<2, A, P> const& _xy, B _z); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<2, A, P> const& _xy, vec<1, B, P> const& _z); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(A _x, vec<2, B, P> const& _yz); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, A, P> const& _x, vec<2, B, P> const& _yz); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT vec(vec<4, U, P> const& v); + + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT vec(vec<3, U, P> const& v); + + // -- Swizzle constructors -- +# if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(detail::_swizzle<3, T, Q, E0, E1, E2, -1> const& that) + { + *this = that(); + } + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(detail::_swizzle<2, T, Q, E0, E1, -1, -2> const& v, T const& scalar) + { + *this = vec(v(), scalar); + } + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(T const& scalar, detail::_swizzle<2, T, Q, E0, E1, -1, -2> const& v) + { + *this = vec(scalar, v()); + } +# endif//GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR + + // -- Unary arithmetic operators -- + + GLM_DEFAULTED_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q>& operator=(vec<3, T, Q> const& v) GLM_DEFAULT; + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator=(vec<3, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator+=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator+=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator+=(vec<3, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator-=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator-=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator-=(vec<3, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator*=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator*=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator*=(vec<3, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator/=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator/=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator/=(vec<3, U, Q> const& v); + + // -- Increment and decrement operators -- + + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator++(); + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator--(); + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator++(int); + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator--(int); + + // -- Unary bit operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator%=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator%=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator%=(vec<3, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator&=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator&=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator&=(vec<3, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator|=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator|=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator|=(vec<3, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator^=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator^=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator^=(vec<3, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator<<=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator<<=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator<<=(vec<3, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator>>=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator>>=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> & operator>>=(vec<3, U, Q> const& v); + }; + + // -- Unary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator+(vec<3, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator-(vec<3, T, Q> const& v); + + // -- Binary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator+(vec<3, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator+(vec<3, T, Q> const& v, vec<1, T, Q> const& scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator+(T scalar, vec<3, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator+(vec<1, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator+(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator-(vec<3, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator-(vec<3, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator-(T scalar, vec<3, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator-(vec<1, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator-(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator*(vec<3, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator*(vec<3, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator*(T scalar, vec<3, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator*(vec<1, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator*(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator/(vec<3, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator/(vec<3, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator/(T scalar, vec<3, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator/(vec<1, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator/(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator%(vec<3, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator%(vec<3, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator%(T scalar, vec<3, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator%(vec<1, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator%(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator&(vec<3, T, Q> const& v1, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator&(vec<3, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator&(T scalar, vec<3, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator&(vec<1, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator&(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator|(vec<3, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator|(vec<3, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator|(T scalar, vec<3, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator|(vec<1, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator|(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator^(vec<3, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator^(vec<3, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator^(T scalar, vec<3, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator^(vec<1, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator^(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator<<(vec<3, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator<<(vec<3, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator<<(T scalar, vec<3, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator<<(vec<1, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator<<(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator>>(vec<3, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator>>(vec<3, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator>>(T scalar, vec<3, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator>>(vec<1, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator>>(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> operator~(vec<3, T, Q> const& v); + + // -- Boolean operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator==(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator!=(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, bool, Q> operator&&(vec<3, bool, Q> const& v1, vec<3, bool, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, bool, Q> operator||(vec<3, bool, Q> const& v1, vec<3, bool, Q> const& v2); +}//namespace glm + +#ifndef GLM_EXTERNAL_TEMPLATE +#include "type_vec3.inl" +#endif//GLM_EXTERNAL_TEMPLATE diff --git a/thirdparty/glm/glm/detail/type_vec3.inl b/thirdparty/glm/glm/detail/type_vec3.inl new file mode 100644 index 000000000000..5a258d1f9b88 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_vec3.inl @@ -0,0 +1,1070 @@ +/// @ref core + +#include "compute_vector_relational.hpp" + +namespace glm +{ + // -- Implicit basic constructors -- + +# if GLM_CONFIG_DEFAULTED_DEFAULT_CTOR == GLM_DISABLE + template + GLM_DEFAULTED_DEFAULT_CTOR_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec() +# if GLM_CONFIG_CTOR_INIT != GLM_CTOR_INIT_DISABLE + : x(0), y(0), z(0) +# endif + {} +# endif + +# if GLM_CONFIG_DEFAULTED_FUNCTIONS == GLM_DISABLE + template + GLM_DEFAULTED_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(vec<3, T, Q> const& v) + : x(v.x), y(v.y), z(v.z) + {} +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(vec<3, T, P> const& v) + : x(v.x), y(v.y), z(v.z) + {} + + // -- Explicit basic constructors -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(T scalar) + : x(scalar), y(scalar), z(scalar) + {} + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(T _x, T _y, T _z) + : x(_x), y(_y), z(_z) + {} + + // -- Conversion scalar constructors -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(vec<1, U, P> const& v) + : x(static_cast(v.x)) + , y(static_cast(v.x)) + , z(static_cast(v.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(X _x, Y _y, Z _z) + : x(static_cast(_x)) + , y(static_cast(_y)) + , z(static_cast(_z)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(vec<1, X, Q> const& _x, Y _y, Z _z) + : x(static_cast(_x.x)) + , y(static_cast(_y)) + , z(static_cast(_z)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(X _x, vec<1, Y, Q> const& _y, Z _z) + : x(static_cast(_x)) + , y(static_cast(_y.x)) + , z(static_cast(_z)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(vec<1, X, Q> const& _x, vec<1, Y, Q> const& _y, Z _z) + : x(static_cast(_x.x)) + , y(static_cast(_y.x)) + , z(static_cast(_z)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(X _x, Y _y, vec<1, Z, Q> const& _z) + : x(static_cast(_x)) + , y(static_cast(_y)) + , z(static_cast(_z.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(vec<1, X, Q> const& _x, Y _y, vec<1, Z, Q> const& _z) + : x(static_cast(_x.x)) + , y(static_cast(_y)) + , z(static_cast(_z.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(X _x, vec<1, Y, Q> const& _y, vec<1, Z, Q> const& _z) + : x(static_cast(_x)) + , y(static_cast(_y.x)) + , z(static_cast(_z.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(vec<1, X, Q> const& _x, vec<1, Y, Q> const& _y, vec<1, Z, Q> const& _z) + : x(static_cast(_x.x)) + , y(static_cast(_y.x)) + , z(static_cast(_z.x)) + {} + + // -- Conversion vector constructors -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(vec<2, A, P> const& _xy, B _z) + : x(static_cast(_xy.x)) + , y(static_cast(_xy.y)) + , z(static_cast(_z)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(vec<2, A, P> const& _xy, vec<1, B, P> const& _z) + : x(static_cast(_xy.x)) + , y(static_cast(_xy.y)) + , z(static_cast(_z.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(A _x, vec<2, B, P> const& _yz) + : x(static_cast(_x)) + , y(static_cast(_yz.x)) + , z(static_cast(_yz.y)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(vec<1, A, P> const& _x, vec<2, B, P> const& _yz) + : x(static_cast(_x.x)) + , y(static_cast(_yz.x)) + , z(static_cast(_yz.y)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(vec<3, U, P> const& v) + : x(static_cast(v.x)) + , y(static_cast(v.y)) + , z(static_cast(v.z)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>::vec(vec<4, U, P> const& v) + : x(static_cast(v.x)) + , y(static_cast(v.y)) + , z(static_cast(v.z)) + {} + + // -- Component accesses -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR T & vec<3, T, Q>::operator[](typename vec<3, T, Q>::length_type i) + { + assert(i >= 0 && i < this->length()); + switch(i) + { + default: + case 0: + return x; + case 1: + return y; + case 2: + return z; + } + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR T const& vec<3, T, Q>::operator[](typename vec<3, T, Q>::length_type i) const + { + assert(i >= 0 && i < this->length()); + switch(i) + { + default: + case 0: + return x; + case 1: + return y; + case 2: + return z; + } + } + + // -- Unary arithmetic operators -- + +# if GLM_CONFIG_DEFAULTED_FUNCTIONS == GLM_DISABLE + template + GLM_DEFAULTED_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>& vec<3, T, Q>::operator=(vec<3, T, Q> const& v) + { + this->x = v.x; + this->y = v.y; + this->z = v.z; + return *this; + } +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q>& vec<3, T, Q>::operator=(vec<3, U, Q> const& v) + { + this->x = static_cast(v.x); + this->y = static_cast(v.y); + this->z = static_cast(v.z); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator+=(U scalar) + { + this->x += static_cast(scalar); + this->y += static_cast(scalar); + this->z += static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator+=(vec<1, U, Q> const& v) + { + this->x += static_cast(v.x); + this->y += static_cast(v.x); + this->z += static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator+=(vec<3, U, Q> const& v) + { + this->x += static_cast(v.x); + this->y += static_cast(v.y); + this->z += static_cast(v.z); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator-=(U scalar) + { + this->x -= static_cast(scalar); + this->y -= static_cast(scalar); + this->z -= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator-=(vec<1, U, Q> const& v) + { + this->x -= static_cast(v.x); + this->y -= static_cast(v.x); + this->z -= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator-=(vec<3, U, Q> const& v) + { + this->x -= static_cast(v.x); + this->y -= static_cast(v.y); + this->z -= static_cast(v.z); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator*=(U scalar) + { + this->x *= static_cast(scalar); + this->y *= static_cast(scalar); + this->z *= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator*=(vec<1, U, Q> const& v) + { + this->x *= static_cast(v.x); + this->y *= static_cast(v.x); + this->z *= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator*=(vec<3, U, Q> const& v) + { + this->x *= static_cast(v.x); + this->y *= static_cast(v.y); + this->z *= static_cast(v.z); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator/=(U v) + { + this->x /= static_cast(v); + this->y /= static_cast(v); + this->z /= static_cast(v); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator/=(vec<1, U, Q> const& v) + { + this->x /= static_cast(v.x); + this->y /= static_cast(v.x); + this->z /= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator/=(vec<3, U, Q> const& v) + { + this->x /= static_cast(v.x); + this->y /= static_cast(v.y); + this->z /= static_cast(v.z); + return *this; + } + + // -- Increment and decrement operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator++() + { + ++this->x; + ++this->y; + ++this->z; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator--() + { + --this->x; + --this->y; + --this->z; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> vec<3, T, Q>::operator++(int) + { + vec<3, T, Q> Result(*this); + ++*this; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> vec<3, T, Q>::operator--(int) + { + vec<3, T, Q> Result(*this); + --*this; + return Result; + } + + // -- Unary bit operators -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator%=(U scalar) + { + this->x %= scalar; + this->y %= scalar; + this->z %= scalar; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator%=(vec<1, U, Q> const& v) + { + this->x %= v.x; + this->y %= v.x; + this->z %= v.x; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator%=(vec<3, U, Q> const& v) + { + this->x %= v.x; + this->y %= v.y; + this->z %= v.z; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator&=(U scalar) + { + this->x &= scalar; + this->y &= scalar; + this->z &= scalar; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator&=(vec<1, U, Q> const& v) + { + this->x &= v.x; + this->y &= v.x; + this->z &= v.x; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator&=(vec<3, U, Q> const& v) + { + this->x &= v.x; + this->y &= v.y; + this->z &= v.z; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator|=(U scalar) + { + this->x |= scalar; + this->y |= scalar; + this->z |= scalar; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator|=(vec<1, U, Q> const& v) + { + this->x |= v.x; + this->y |= v.x; + this->z |= v.x; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator|=(vec<3, U, Q> const& v) + { + this->x |= v.x; + this->y |= v.y; + this->z |= v.z; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator^=(U scalar) + { + this->x ^= scalar; + this->y ^= scalar; + this->z ^= scalar; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator^=(vec<1, U, Q> const& v) + { + this->x ^= v.x; + this->y ^= v.x; + this->z ^= v.x; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator^=(vec<3, U, Q> const& v) + { + this->x ^= v.x; + this->y ^= v.y; + this->z ^= v.z; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator<<=(U scalar) + { + this->x <<= scalar; + this->y <<= scalar; + this->z <<= scalar; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator<<=(vec<1, U, Q> const& v) + { + this->x <<= static_cast(v.x); + this->y <<= static_cast(v.x); + this->z <<= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator<<=(vec<3, U, Q> const& v) + { + this->x <<= static_cast(v.x); + this->y <<= static_cast(v.y); + this->z <<= static_cast(v.z); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator>>=(U scalar) + { + this->x >>= static_cast(scalar); + this->y >>= static_cast(scalar); + this->z >>= static_cast(scalar); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator>>=(vec<1, U, Q> const& v) + { + this->x >>= static_cast(v.x); + this->y >>= static_cast(v.x); + this->z >>= static_cast(v.x); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> & vec<3, T, Q>::operator>>=(vec<3, U, Q> const& v) + { + this->x >>= static_cast(v.x); + this->y >>= static_cast(v.y); + this->z >>= static_cast(v.z); + return *this; + } + + // -- Unary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator+(vec<3, T, Q> const& v) + { + return v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator-(vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + -v.x, + -v.y, + -v.z); + } + + // -- Binary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator+(vec<3, T, Q> const& v, T scalar) + { + return vec<3, T, Q>( + v.x + scalar, + v.y + scalar, + v.z + scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator+(vec<3, T, Q> const& v, vec<1, T, Q> const& scalar) + { + return vec<3, T, Q>( + v.x + scalar.x, + v.y + scalar.x, + v.z + scalar.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator+(T scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar + v.x, + scalar + v.y, + scalar + v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator+(vec<1, T, Q> const& scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar.x + v.x, + scalar.x + v.y, + scalar.x + v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator+(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2) + { + return vec<3, T, Q>( + v1.x + v2.x, + v1.y + v2.y, + v1.z + v2.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator-(vec<3, T, Q> const& v, T scalar) + { + return vec<3, T, Q>( + v.x - scalar, + v.y - scalar, + v.z - scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator-(vec<3, T, Q> const& v, vec<1, T, Q> const& scalar) + { + return vec<3, T, Q>( + v.x - scalar.x, + v.y - scalar.x, + v.z - scalar.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator-(T scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar - v.x, + scalar - v.y, + scalar - v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator-(vec<1, T, Q> const& scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar.x - v.x, + scalar.x - v.y, + scalar.x - v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator-(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2) + { + return vec<3, T, Q>( + v1.x - v2.x, + v1.y - v2.y, + v1.z - v2.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator*(vec<3, T, Q> const& v, T scalar) + { + return vec<3, T, Q>( + v.x * scalar, + v.y * scalar, + v.z * scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator*(vec<3, T, Q> const& v, vec<1, T, Q> const& scalar) + { + return vec<3, T, Q>( + v.x * scalar.x, + v.y * scalar.x, + v.z * scalar.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator*(T scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar * v.x, + scalar * v.y, + scalar * v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator*(vec<1, T, Q> const& scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar.x * v.x, + scalar.x * v.y, + scalar.x * v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator*(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2) + { + return vec<3, T, Q>( + v1.x * v2.x, + v1.y * v2.y, + v1.z * v2.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator/(vec<3, T, Q> const& v, T scalar) + { + return vec<3, T, Q>( + v.x / scalar, + v.y / scalar, + v.z / scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator/(vec<3, T, Q> const& v, vec<1, T, Q> const& scalar) + { + return vec<3, T, Q>( + v.x / scalar.x, + v.y / scalar.x, + v.z / scalar.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator/(T scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar / v.x, + scalar / v.y, + scalar / v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator/(vec<1, T, Q> const& scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar.x / v.x, + scalar.x / v.y, + scalar.x / v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator/(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2) + { + return vec<3, T, Q>( + v1.x / v2.x, + v1.y / v2.y, + v1.z / v2.z); + } + + // -- Binary bit operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator%(vec<3, T, Q> const& v, T scalar) + { + return vec<3, T, Q>( + v.x % scalar, + v.y % scalar, + v.z % scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator%(vec<3, T, Q> const& v, vec<1, T, Q> const& scalar) + { + return vec<3, T, Q>( + v.x % scalar.x, + v.y % scalar.x, + v.z % scalar.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator%(T scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar % v.x, + scalar % v.y, + scalar % v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator%(vec<1, T, Q> const& scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar.x % v.x, + scalar.x % v.y, + scalar.x % v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator%(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2) + { + return vec<3, T, Q>( + v1.x % v2.x, + v1.y % v2.y, + v1.z % v2.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator&(vec<3, T, Q> const& v, T scalar) + { + return vec<3, T, Q>( + v.x & scalar, + v.y & scalar, + v.z & scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator&(vec<3, T, Q> const& v, vec<1, T, Q> const& scalar) + { + return vec<3, T, Q>( + v.x & scalar.x, + v.y & scalar.x, + v.z & scalar.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator&(T scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar & v.x, + scalar & v.y, + scalar & v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator&(vec<1, T, Q> const& scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar.x & v.x, + scalar.x & v.y, + scalar.x & v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator&(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2) + { + return vec<3, T, Q>( + v1.x & v2.x, + v1.y & v2.y, + v1.z & v2.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator|(vec<3, T, Q> const& v, T scalar) + { + return vec<3, T, Q>( + v.x | scalar, + v.y | scalar, + v.z | scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator|(vec<3, T, Q> const& v, vec<1, T, Q> const& scalar) + { + return vec<3, T, Q>( + v.x | scalar.x, + v.y | scalar.x, + v.z | scalar.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator|(T scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar | v.x, + scalar | v.y, + scalar | v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator|(vec<1, T, Q> const& scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar.x | v.x, + scalar.x | v.y, + scalar.x | v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator|(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2) + { + return vec<3, T, Q>( + v1.x | v2.x, + v1.y | v2.y, + v1.z | v2.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator^(vec<3, T, Q> const& v, T scalar) + { + return vec<3, T, Q>( + v.x ^ scalar, + v.y ^ scalar, + v.z ^ scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator^(vec<3, T, Q> const& v, vec<1, T, Q> const& scalar) + { + return vec<3, T, Q>( + v.x ^ scalar.x, + v.y ^ scalar.x, + v.z ^ scalar.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator^(T scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar ^ v.x, + scalar ^ v.y, + scalar ^ v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator^(vec<1, T, Q> const& scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar.x ^ v.x, + scalar.x ^ v.y, + scalar.x ^ v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator^(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2) + { + return vec<3, T, Q>( + v1.x ^ v2.x, + v1.y ^ v2.y, + v1.z ^ v2.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator<<(vec<3, T, Q> const& v, T scalar) + { + return vec<3, T, Q>( + v.x << scalar, + v.y << scalar, + v.z << scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator<<(vec<3, T, Q> const& v, vec<1, T, Q> const& scalar) + { + return vec<3, T, Q>( + v.x << scalar.x, + v.y << scalar.x, + v.z << scalar.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator<<(T scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar << v.x, + scalar << v.y, + scalar << v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator<<(vec<1, T, Q> const& scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar.x << v.x, + scalar.x << v.y, + scalar.x << v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator<<(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2) + { + return vec<3, T, Q>( + v1.x << v2.x, + v1.y << v2.y, + v1.z << v2.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator>>(vec<3, T, Q> const& v, T scalar) + { + return vec<3, T, Q>( + v.x >> scalar, + v.y >> scalar, + v.z >> scalar); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator>>(vec<3, T, Q> const& v, vec<1, T, Q> const& scalar) + { + return vec<3, T, Q>( + v.x >> scalar.x, + v.y >> scalar.x, + v.z >> scalar.x); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator>>(T scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar >> v.x, + scalar >> v.y, + scalar >> v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator>>(vec<1, T, Q> const& scalar, vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + scalar.x >> v.x, + scalar.x >> v.y, + scalar.x >> v.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator>>(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2) + { + return vec<3, T, Q>( + v1.x >> v2.x, + v1.y >> v2.y, + v1.z >> v2.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> operator~(vec<3, T, Q> const& v) + { + return vec<3, T, Q>( + ~v.x, + ~v.y, + ~v.z); + } + + // -- Boolean operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator==(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2) + { + return + detail::compute_equal::is_iec559>::call(v1.x, v2.x) && + detail::compute_equal::is_iec559>::call(v1.y, v2.y) && + detail::compute_equal::is_iec559>::call(v1.z, v2.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator!=(vec<3, T, Q> const& v1, vec<3, T, Q> const& v2) + { + return !(v1 == v2); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, bool, Q> operator&&(vec<3, bool, Q> const& v1, vec<3, bool, Q> const& v2) + { + return vec<3, bool, Q>(v1.x && v2.x, v1.y && v2.y, v1.z && v2.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, bool, Q> operator||(vec<3, bool, Q> const& v1, vec<3, bool, Q> const& v2) + { + return vec<3, bool, Q>(v1.x || v2.x, v1.y || v2.y, v1.z || v2.z); + } +}//namespace glm diff --git a/thirdparty/glm/glm/detail/type_vec4.hpp b/thirdparty/glm/glm/detail/type_vec4.hpp new file mode 100644 index 000000000000..601256c37529 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_vec4.hpp @@ -0,0 +1,508 @@ +/// @ref core +/// @file glm/detail/type_vec4.hpp + +#pragma once + +#include "qualifier.hpp" +#if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR +# include "_swizzle.hpp" +#elif GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_FUNCTION +# include "_swizzle_func.hpp" +#endif +#include + +namespace glm +{ + template + struct vec<4, T, Q> + { + // -- Implementation detail -- + + typedef T value_type; + typedef vec<4, T, Q> type; + typedef vec<4, bool, Q> bool_type; + + // -- Data -- + +# if GLM_SILENT_WARNINGS == GLM_ENABLE +# if GLM_COMPILER & GLM_COMPILER_GCC +# pragma GCC diagnostic push +# pragma GCC diagnostic ignored "-Wpedantic" +# elif GLM_COMPILER & GLM_COMPILER_CLANG +# pragma clang diagnostic push +# pragma clang diagnostic ignored "-Wgnu-anonymous-struct" +# pragma clang diagnostic ignored "-Wnested-anon-types" +# elif GLM_COMPILER & GLM_COMPILER_VC +# pragma warning(push) +# pragma warning(disable: 4201) // nonstandard extension used : nameless struct/union +# endif +# endif + +# if GLM_CONFIG_XYZW_ONLY + T x, y, z, w; +# if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_FUNCTION + GLM_SWIZZLE_GEN_VEC_FROM_VEC4_COMP(T, Q, x, y, z, w) +# endif//GLM_CONFIG_SWIZZLE +# elif GLM_CONFIG_ANONYMOUS_STRUCT == GLM_ENABLE + union + { + struct { T x, y, z, w; }; + struct { T r, g, b, a; }; + struct { T s, t, p, q; }; + + typename detail::storage<4, T, detail::is_aligned::value>::type data; + +# if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR + GLM_SWIZZLE4_2_MEMBERS(T, Q, x, y, z, w) + GLM_SWIZZLE4_2_MEMBERS(T, Q, r, g, b, a) + GLM_SWIZZLE4_2_MEMBERS(T, Q, s, t, p, q) + GLM_SWIZZLE4_3_MEMBERS(T, Q, x, y, z, w) + GLM_SWIZZLE4_3_MEMBERS(T, Q, r, g, b, a) + GLM_SWIZZLE4_3_MEMBERS(T, Q, s, t, p, q) + GLM_SWIZZLE4_4_MEMBERS(T, Q, x, y, z, w) + GLM_SWIZZLE4_4_MEMBERS(T, Q, r, g, b, a) + GLM_SWIZZLE4_4_MEMBERS(T, Q, s, t, p, q) +# endif + }; +# else + union { T x, r, s; }; + union { T y, g, t; }; + union { T z, b, p; }; + union { T w, a, q; }; + +# if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_FUNCTION + GLM_SWIZZLE_GEN_VEC_FROM_VEC4(T, Q) +# endif +# endif + +# if GLM_SILENT_WARNINGS == GLM_ENABLE +# if GLM_COMPILER & GLM_COMPILER_CLANG +# pragma clang diagnostic pop +# elif GLM_COMPILER & GLM_COMPILER_GCC +# pragma GCC diagnostic pop +# elif GLM_COMPILER & GLM_COMPILER_VC +# pragma warning(pop) +# endif +# endif + + // -- Component accesses -- + + typedef length_t length_type; + + /// Return the count of components of the vector + GLM_FUNC_DECL static GLM_CONSTEXPR length_type length(){return 4;} + + GLM_FUNC_DECL GLM_CONSTEXPR T & operator[](length_type i); + GLM_FUNC_DECL GLM_CONSTEXPR T const& operator[](length_type i) const; + + // -- Implicit basic constructors -- + + GLM_DEFAULTED_DEFAULT_CTOR_DECL GLM_CONSTEXPR vec() GLM_DEFAULT_CTOR; + GLM_DEFAULTED_FUNC_DECL GLM_CONSTEXPR vec(vec<4, T, Q> const& v) GLM_DEFAULT; + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<4, T, P> const& v); + + // -- Explicit basic constructors -- + + GLM_FUNC_DECL GLM_CONSTEXPR explicit vec(T scalar); + GLM_FUNC_DECL GLM_CONSTEXPR vec(T x, T y, T z, T w); + + // -- Conversion scalar constructors -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR explicit vec(vec<1, U, P> const& v); + + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(X _x, Y _y, Z _z, W _w); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, X, Q> const& _x, Y _y, Z _z, W _w); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(X _x, vec<1, Y, Q> const& _y, Z _z, W _w); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, X, Q> const& _x, vec<1, Y, Q> const& _y, Z _z, W _w); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(X _x, Y _y, vec<1, Z, Q> const& _z, W _w); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, X, Q> const& _x, Y _y, vec<1, Z, Q> const& _z, W _w); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(X _x, vec<1, Y, Q> const& _y, vec<1, Z, Q> const& _z, W _w); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, X, Q> const& _x, vec<1, Y, Q> const& _y, vec<1, Z, Q> const& _z, W _w); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, X, Q> const& _x, Y _y, Z _z, vec<1, W, Q> const& _w); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(X _x, vec<1, Y, Q> const& _y, Z _z, vec<1, W, Q> const& _w); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, X, Q> const& _x, vec<1, Y, Q> const& _y, Z _z, vec<1, W, Q> const& _w); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(X _x, Y _y, vec<1, Z, Q> const& _z, vec<1, W, Q> const& _w); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, X, Q> const& _x, Y _y, vec<1, Z, Q> const& _z, vec<1, W, Q> const& _w); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(X _x, vec<1, Y, Q> const& _y, vec<1, Z, Q> const& _z, vec<1, W, Q> const& _w); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, X, Q> const& _x, vec<1, Y, Q> const& _y, vec<1, Z, Q> const& _z, vec<1, W, Q> const& _w); + + // -- Conversion vector constructors -- + + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<2, A, P> const& _xy, B _z, C _w); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<2, A, P> const& _xy, vec<1, B, P> const& _z, C _w); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<2, A, P> const& _xy, B _z, vec<1, C, P> const& _w); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<2, A, P> const& _xy, vec<1, B, P> const& _z, vec<1, C, P> const& _w); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(A _x, vec<2, B, P> const& _yz, C _w); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, A, P> const& _x, vec<2, B, P> const& _yz, C _w); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(A _x, vec<2, B, P> const& _yz, vec<1, C, P> const& _w); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, A, P> const& _x, vec<2, B, P> const& _yz, vec<1, C, P> const& _w); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(A _x, B _y, vec<2, C, P> const& _zw); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, A, P> const& _x, B _y, vec<2, C, P> const& _zw); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(A _x, vec<1, B, P> const& _y, vec<2, C, P> const& _zw); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, A, P> const& _x, vec<1, B, P> const& _y, vec<2, C, P> const& _zw); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<3, A, P> const& _xyz, B _w); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<3, A, P> const& _xyz, vec<1, B, P> const& _w); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(A _x, vec<3, B, P> const& _yzw); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<1, A, P> const& _x, vec<3, B, P> const& _yzw); + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(vec<2, A, P> const& _xy, vec<2, B, P> const& _zw); + + /// Explicit conversions (From section 5.4.1 Conversion and scalar constructors of GLSL 1.30.08 specification) + template + GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT vec(vec<4, U, P> const& v); + + // -- Swizzle constructors -- +# if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(detail::_swizzle<4, T, Q, E0, E1, E2, E3> const& that) + { + *this = that(); + } + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(detail::_swizzle<2, T, Q, E0, E1, -1, -2> const& v, detail::_swizzle<2, T, Q, F0, F1, -1, -2> const& u) + { + *this = vec<4, T, Q>(v(), u()); + } + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(T const& x, T const& y, detail::_swizzle<2, T, Q, E0, E1, -1, -2> const& v) + { + *this = vec<4, T, Q>(x, y, v()); + } + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(T const& x, detail::_swizzle<2, T, Q, E0, E1, -1, -2> const& v, T const& w) + { + *this = vec<4, T, Q>(x, v(), w); + } + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(detail::_swizzle<2, T, Q, E0, E1, -1, -2> const& v, T const& z, T const& w) + { + *this = vec<4, T, Q>(v(), z, w); + } + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(detail::_swizzle<3, T, Q, E0, E1, E2, -1> const& v, T const& w) + { + *this = vec<4, T, Q>(v(), w); + } + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec(T const& x, detail::_swizzle<3, T, Q, E0, E1, E2, -1> const& v) + { + *this = vec<4, T, Q>(x, v()); + } +# endif//GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR + + // -- Unary arithmetic operators -- + + GLM_DEFAULTED_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q>& operator=(vec<4, T, Q> const& v) GLM_DEFAULT; + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q>& operator=(vec<4, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q>& operator+=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q>& operator+=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q>& operator+=(vec<4, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q>& operator-=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q>& operator-=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q>& operator-=(vec<4, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q>& operator*=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q>& operator*=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q>& operator*=(vec<4, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q>& operator/=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q>& operator/=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q>& operator/=(vec<4, U, Q> const& v); + + // -- Increment and decrement operators -- + + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator++(); + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator--(); + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator++(int); + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator--(int); + + // -- Unary bit operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator%=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator%=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator%=(vec<4, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator&=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator&=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator&=(vec<4, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator|=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator|=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator|=(vec<4, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator^=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator^=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator^=(vec<4, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator<<=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator<<=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator<<=(vec<4, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator>>=(U scalar); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator>>=(vec<1, U, Q> const& v); + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> & operator>>=(vec<4, U, Q> const& v); + }; + + // -- Unary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator+(vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator-(vec<4, T, Q> const& v); + + // -- Binary operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator+(vec<4, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator+(vec<4, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator+(T scalar, vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator+(vec<1, T, Q> const& v1, vec<4, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator+(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator-(vec<4, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator-(vec<4, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator-(T scalar, vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator-(vec<1, T, Q> const& v1, vec<4, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator-(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator*(vec<4, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator*(vec<4, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator*(T scalar, vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator*(vec<1, T, Q> const& v1, vec<4, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator*(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator/(vec<4, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator/(vec<4, T, Q> const& v1, vec<1, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator/(T scalar, vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator/(vec<1, T, Q> const& v1, vec<4, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator/(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator%(vec<4, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator%(vec<4, T, Q> const& v, vec<1, T, Q> const& scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator%(T scalar, vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator%(vec<1, T, Q> const& scalar, vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator%(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator&(vec<4, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator&(vec<4, T, Q> const& v, vec<1, T, Q> const& scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator&(T scalar, vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator&(vec<1, T, Q> const& scalar, vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator&(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator|(vec<4, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator|(vec<4, T, Q> const& v, vec<1, T, Q> const& scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator|(T scalar, vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator|(vec<1, T, Q> const& scalar, vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator|(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator^(vec<4, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator^(vec<4, T, Q> const& v, vec<1, T, Q> const& scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator^(T scalar, vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator^(vec<1, T, Q> const& scalar, vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator^(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator<<(vec<4, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator<<(vec<4, T, Q> const& v, vec<1, T, Q> const& scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator<<(T scalar, vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator<<(vec<1, T, Q> const& scalar, vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator<<(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator>>(vec<4, T, Q> const& v, T scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator>>(vec<4, T, Q> const& v, vec<1, T, Q> const& scalar); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator>>(T scalar, vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator>>(vec<1, T, Q> const& scalar, vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator>>(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, T, Q> operator~(vec<4, T, Q> const& v); + + // -- Boolean operators -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator==(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR bool operator!=(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, bool, Q> operator&&(vec<4, bool, Q> const& v1, vec<4, bool, Q> const& v2); + + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, bool, Q> operator||(vec<4, bool, Q> const& v1, vec<4, bool, Q> const& v2); +}//namespace glm + +#ifndef GLM_EXTERNAL_TEMPLATE +#include "type_vec4.inl" +#endif//GLM_EXTERNAL_TEMPLATE diff --git a/thirdparty/glm/glm/detail/type_vec4.inl b/thirdparty/glm/glm/detail/type_vec4.inl new file mode 100644 index 000000000000..440de5fcb7ea --- /dev/null +++ b/thirdparty/glm/glm/detail/type_vec4.inl @@ -0,0 +1,1142 @@ +/// @ref core + +#include "compute_vector_relational.hpp" + +namespace glm{ +namespace detail +{ + template + struct compute_vec4_add + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + return vec<4, T, Q>(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w); + } + }; + + template + struct compute_vec4_sub + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + return vec<4, T, Q>(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w); + } + }; + + template + struct compute_vec4_mul + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + return vec<4, T, Q>(a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w); + } + }; + + template + struct compute_vec4_div + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + return vec<4, T, Q>(a.x / b.x, a.y / b.y, a.z / b.z, a.w / b.w); + } + }; + + template + struct compute_vec4_mod + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + return vec<4, T, Q>(a.x % b.x, a.y % b.y, a.z % b.z, a.w % b.w); + } + }; + + template + struct compute_vec4_and + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + return vec<4, T, Q>(a.x & b.x, a.y & b.y, a.z & b.z, a.w & b.w); + } + }; + + template + struct compute_vec4_or + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + return vec<4, T, Q>(a.x | b.x, a.y | b.y, a.z | b.z, a.w | b.w); + } + }; + + template + struct compute_vec4_xor + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + return vec<4, T, Q>(a.x ^ b.x, a.y ^ b.y, a.z ^ b.z, a.w ^ b.w); + } + }; + + template + struct compute_vec4_shift_left + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + return vec<4, T, Q>(a.x << b.x, a.y << b.y, a.z << b.z, a.w << b.w); + } + }; + + template + struct compute_vec4_shift_right + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + return vec<4, T, Q>(a.x >> b.x, a.y >> b.y, a.z >> b.z, a.w >> b.w); + } + }; + + template + struct compute_vec4_equal + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static bool call(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return + detail::compute_equal::is_iec559>::call(v1.x, v2.x) && + detail::compute_equal::is_iec559>::call(v1.y, v2.y) && + detail::compute_equal::is_iec559>::call(v1.z, v2.z) && + detail::compute_equal::is_iec559>::call(v1.w, v2.w); + } + }; + + template + struct compute_vec4_nequal + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static bool call(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return !compute_vec4_equal::value, sizeof(T) * 8, detail::is_aligned::value>::call(v1, v2); + } + }; + + template + struct compute_vec4_bitwise_not + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static vec<4, T, Q> call(vec<4, T, Q> const& v) + { + return vec<4, T, Q>(~v.x, ~v.y, ~v.z, ~v.w); + } + }; +}//namespace detail + + // -- Implicit basic constructors -- + +# if GLM_CONFIG_DEFAULTED_DEFAULT_CTOR == GLM_DISABLE + template + GLM_DEFAULTED_DEFAULT_CTOR_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec() +# if GLM_CONFIG_CTOR_INIT != GLM_CTOR_INIT_DISABLE + : x(0), y(0), z(0), w(0) +# endif + {} +# endif + +# if GLM_CONFIG_DEFAULTED_FUNCTIONS == GLM_DISABLE + template + GLM_DEFAULTED_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<4, T, Q> const& v) + : x(v.x), y(v.y), z(v.z), w(v.w) + {} +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<4, T, P> const& v) + : x(v.x), y(v.y), z(v.z), w(v.w) + {} + + // -- Explicit basic constructors -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(T scalar) + : x(scalar), y(scalar), z(scalar), w(scalar) + {} + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(T _x, T _y, T _z, T _w) + : x(_x), y(_y), z(_z), w(_w) + {} + + // -- Conversion scalar constructors -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<1, U, P> const& v) + : x(static_cast(v.x)) + , y(static_cast(v.x)) + , z(static_cast(v.x)) + , w(static_cast(v.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(X _x, Y _y, Z _z, W _w) + : x(static_cast(_x)) + , y(static_cast(_y)) + , z(static_cast(_z)) + , w(static_cast(_w)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<1, X, Q> const& _x, Y _y, Z _z, W _w) + : x(static_cast(_x.x)) + , y(static_cast(_y)) + , z(static_cast(_z)) + , w(static_cast(_w)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(X _x, vec<1, Y, Q> const& _y, Z _z, W _w) + : x(static_cast(_x)) + , y(static_cast(_y.x)) + , z(static_cast(_z)) + , w(static_cast(_w)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<1, X, Q> const& _x, vec<1, Y, Q> const& _y, Z _z, W _w) + : x(static_cast(_x.x)) + , y(static_cast(_y.x)) + , z(static_cast(_z)) + , w(static_cast(_w)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(X _x, Y _y, vec<1, Z, Q> const& _z, W _w) + : x(static_cast(_x)) + , y(static_cast(_y)) + , z(static_cast(_z.x)) + , w(static_cast(_w)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<1, X, Q> const& _x, Y _y, vec<1, Z, Q> const& _z, W _w) + : x(static_cast(_x.x)) + , y(static_cast(_y)) + , z(static_cast(_z.x)) + , w(static_cast(_w)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(X _x, vec<1, Y, Q> const& _y, vec<1, Z, Q> const& _z, W _w) + : x(static_cast(_x)) + , y(static_cast(_y.x)) + , z(static_cast(_z.x)) + , w(static_cast(_w)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<1, X, Q> const& _x, vec<1, Y, Q> const& _y, vec<1, Z, Q> const& _z, W _w) + : x(static_cast(_x.x)) + , y(static_cast(_y.x)) + , z(static_cast(_z.x)) + , w(static_cast(_w)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<1, X, Q> const& _x, Y _y, Z _z, vec<1, W, Q> const& _w) + : x(static_cast(_x.x)) + , y(static_cast(_y)) + , z(static_cast(_z)) + , w(static_cast(_w.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(X _x, vec<1, Y, Q> const& _y, Z _z, vec<1, W, Q> const& _w) + : x(static_cast(_x)) + , y(static_cast(_y.x)) + , z(static_cast(_z)) + , w(static_cast(_w.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<1, X, Q> const& _x, vec<1, Y, Q> const& _y, Z _z, vec<1, W, Q> const& _w) + : x(static_cast(_x.x)) + , y(static_cast(_y.x)) + , z(static_cast(_z)) + , w(static_cast(_w.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(X _x, Y _y, vec<1, Z, Q> const& _z, vec<1, W, Q> const& _w) + : x(static_cast(_x)) + , y(static_cast(_y)) + , z(static_cast(_z.x)) + , w(static_cast(_w.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<1, X, Q> const& _x, Y _y, vec<1, Z, Q> const& _z, vec<1, W, Q> const& _w) + : x(static_cast(_x.x)) + , y(static_cast(_y)) + , z(static_cast(_z.x)) + , w(static_cast(_w.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(X _x, vec<1, Y, Q> const& _y, vec<1, Z, Q> const& _z, vec<1, W, Q> const& _w) + : x(static_cast(_x)) + , y(static_cast(_y.x)) + , z(static_cast(_z.x)) + , w(static_cast(_w.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<1, X, Q> const& _x, vec<1, Y, Q> const& _y, vec<1, Z, Q> const& _z, vec<1, W, Q> const& _w) + : x(static_cast(_x.x)) + , y(static_cast(_y.x)) + , z(static_cast(_z.x)) + , w(static_cast(_w.x)) + {} + + // -- Conversion vector constructors -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<2, A, P> const& _xy, B _z, C _w) + : x(static_cast(_xy.x)) + , y(static_cast(_xy.y)) + , z(static_cast(_z)) + , w(static_cast(_w)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<2, A, P> const& _xy, vec<1, B, P> const& _z, C _w) + : x(static_cast(_xy.x)) + , y(static_cast(_xy.y)) + , z(static_cast(_z.x)) + , w(static_cast(_w)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<2, A, P> const& _xy, B _z, vec<1, C, P> const& _w) + : x(static_cast(_xy.x)) + , y(static_cast(_xy.y)) + , z(static_cast(_z)) + , w(static_cast(_w.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<2, A, P> const& _xy, vec<1, B, P> const& _z, vec<1, C, P> const& _w) + : x(static_cast(_xy.x)) + , y(static_cast(_xy.y)) + , z(static_cast(_z.x)) + , w(static_cast(_w.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(A _x, vec<2, B, P> const& _yz, C _w) + : x(static_cast(_x)) + , y(static_cast(_yz.x)) + , z(static_cast(_yz.y)) + , w(static_cast(_w)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<1, A, P> const& _x, vec<2, B, P> const& _yz, C _w) + : x(static_cast(_x.x)) + , y(static_cast(_yz.x)) + , z(static_cast(_yz.y)) + , w(static_cast(_w)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(A _x, vec<2, B, P> const& _yz, vec<1, C, P> const& _w) + : x(static_cast(_x)) + , y(static_cast(_yz.x)) + , z(static_cast(_yz.y)) + , w(static_cast(_w.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<1, A, P> const& _x, vec<2, B, P> const& _yz, vec<1, C, P> const& _w) + : x(static_cast(_x.x)) + , y(static_cast(_yz.x)) + , z(static_cast(_yz.y)) + , w(static_cast(_w.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(A _x, B _y, vec<2, C, P> const& _zw) + : x(static_cast(_x)) + , y(static_cast(_y)) + , z(static_cast(_zw.x)) + , w(static_cast(_zw.y)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<1, A, P> const& _x, B _y, vec<2, C, P> const& _zw) + : x(static_cast(_x.x)) + , y(static_cast(_y)) + , z(static_cast(_zw.x)) + , w(static_cast(_zw.y)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(A _x, vec<1, B, P> const& _y, vec<2, C, P> const& _zw) + : x(static_cast(_x)) + , y(static_cast(_y.x)) + , z(static_cast(_zw.x)) + , w(static_cast(_zw.y)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<1, A, P> const& _x, vec<1, B, P> const& _y, vec<2, C, P> const& _zw) + : x(static_cast(_x.x)) + , y(static_cast(_y.x)) + , z(static_cast(_zw.x)) + , w(static_cast(_zw.y)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<3, A, P> const& _xyz, B _w) + : x(static_cast(_xyz.x)) + , y(static_cast(_xyz.y)) + , z(static_cast(_xyz.z)) + , w(static_cast(_w)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<3, A, P> const& _xyz, vec<1, B, P> const& _w) + : x(static_cast(_xyz.x)) + , y(static_cast(_xyz.y)) + , z(static_cast(_xyz.z)) + , w(static_cast(_w.x)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(A _x, vec<3, B, P> const& _yzw) + : x(static_cast(_x)) + , y(static_cast(_yzw.x)) + , z(static_cast(_yzw.y)) + , w(static_cast(_yzw.z)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<1, A, P> const& _x, vec<3, B, P> const& _yzw) + : x(static_cast(_x.x)) + , y(static_cast(_yzw.x)) + , z(static_cast(_yzw.y)) + , w(static_cast(_yzw.z)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<2, A, P> const& _xy, vec<2, B, P> const& _zw) + : x(static_cast(_xy.x)) + , y(static_cast(_xy.y)) + , z(static_cast(_zw.x)) + , w(static_cast(_zw.y)) + {} + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>::vec(vec<4, U, P> const& v) + : x(static_cast(v.x)) + , y(static_cast(v.y)) + , z(static_cast(v.z)) + , w(static_cast(v.w)) + {} + + // -- Component accesses -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR T& vec<4, T, Q>::operator[](typename vec<4, T, Q>::length_type i) + { + assert(i >= 0 && i < this->length()); + switch(i) + { + default: + case 0: + return x; + case 1: + return y; + case 2: + return z; + case 3: + return w; + } + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR T const& vec<4, T, Q>::operator[](typename vec<4, T, Q>::length_type i) const + { + assert(i >= 0 && i < this->length()); + switch(i) + { + default: + case 0: + return x; + case 1: + return y; + case 2: + return z; + case 3: + return w; + } + } + + // -- Unary arithmetic operators -- + +# if GLM_CONFIG_DEFAULTED_FUNCTIONS == GLM_DISABLE + template + GLM_DEFAULTED_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>& vec<4, T, Q>::operator=(vec<4, T, Q> const& v) + { + this->x = v.x; + this->y = v.y; + this->z = v.z; + this->w = v.w; + return *this; + } +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q>& vec<4, T, Q>::operator=(vec<4, U, Q> const& v) + { + this->x = static_cast(v.x); + this->y = static_cast(v.y); + this->z = static_cast(v.z); + this->w = static_cast(v.w); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator+=(U scalar) + { + return (*this = detail::compute_vec4_add::value>::call(*this, vec<4, T, Q>(scalar))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator+=(vec<1, U, Q> const& v) + { + return (*this = detail::compute_vec4_add::value>::call(*this, vec<4, T, Q>(v.x))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator+=(vec<4, U, Q> const& v) + { + return (*this = detail::compute_vec4_add::value>::call(*this, vec<4, T, Q>(v))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator-=(U scalar) + { + return (*this = detail::compute_vec4_sub::value>::call(*this, vec<4, T, Q>(scalar))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator-=(vec<1, U, Q> const& v) + { + return (*this = detail::compute_vec4_sub::value>::call(*this, vec<4, T, Q>(v.x))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator-=(vec<4, U, Q> const& v) + { + return (*this = detail::compute_vec4_sub::value>::call(*this, vec<4, T, Q>(v))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator*=(U scalar) + { + return (*this = detail::compute_vec4_mul::value>::call(*this, vec<4, T, Q>(scalar))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator*=(vec<1, U, Q> const& v) + { + return (*this = detail::compute_vec4_mul::value>::call(*this, vec<4, T, Q>(v.x))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator*=(vec<4, U, Q> const& v) + { + return (*this = detail::compute_vec4_mul::value>::call(*this, vec<4, T, Q>(v))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator/=(U scalar) + { + return (*this = detail::compute_vec4_div::value>::call(*this, vec<4, T, Q>(scalar))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator/=(vec<1, U, Q> const& v) + { + return (*this = detail::compute_vec4_div::value>::call(*this, vec<4, T, Q>(v.x))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator/=(vec<4, U, Q> const& v) + { + return (*this = detail::compute_vec4_div::value>::call(*this, vec<4, T, Q>(v))); + } + + // -- Increment and decrement operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator++() + { + ++this->x; + ++this->y; + ++this->z; + ++this->w; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator--() + { + --this->x; + --this->y; + --this->z; + --this->w; + return *this; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> vec<4, T, Q>::operator++(int) + { + vec<4, T, Q> Result(*this); + ++*this; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> vec<4, T, Q>::operator--(int) + { + vec<4, T, Q> Result(*this); + --*this; + return Result; + } + + // -- Unary bit operators -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator%=(U scalar) + { + return (*this = detail::compute_vec4_mod::value>::call(*this, vec<4, T, Q>(scalar))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator%=(vec<1, U, Q> const& v) + { + return (*this = detail::compute_vec4_mod::value>::call(*this, vec<4, T, Q>(v))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator%=(vec<4, U, Q> const& v) + { + return (*this = detail::compute_vec4_mod::value>::call(*this, vec<4, T, Q>(v))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator&=(U scalar) + { + return (*this = detail::compute_vec4_and::value, sizeof(T) * 8, detail::is_aligned::value>::call(*this, vec<4, T, Q>(scalar))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator&=(vec<1, U, Q> const& v) + { + return (*this = detail::compute_vec4_and::value, sizeof(T) * 8, detail::is_aligned::value>::call(*this, vec<4, T, Q>(v))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator&=(vec<4, U, Q> const& v) + { + return (*this = detail::compute_vec4_and::value, sizeof(T) * 8, detail::is_aligned::value>::call(*this, vec<4, T, Q>(v))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator|=(U scalar) + { + return (*this = detail::compute_vec4_or::value, sizeof(T) * 8, detail::is_aligned::value>::call(*this, vec<4, T, Q>(scalar))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator|=(vec<1, U, Q> const& v) + { + return (*this = detail::compute_vec4_or::value, sizeof(T) * 8, detail::is_aligned::value>::call(*this, vec<4, T, Q>(v))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator|=(vec<4, U, Q> const& v) + { + return (*this = detail::compute_vec4_or::value, sizeof(T) * 8, detail::is_aligned::value>::call(*this, vec<4, T, Q>(v))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator^=(U scalar) + { + return (*this = detail::compute_vec4_xor::value, sizeof(T) * 8, detail::is_aligned::value>::call(*this, vec<4, T, Q>(scalar))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator^=(vec<1, U, Q> const& v) + { + return (*this = detail::compute_vec4_xor::value, sizeof(T) * 8, detail::is_aligned::value>::call(*this, vec<4, T, Q>(v))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator^=(vec<4, U, Q> const& v) + { + return (*this = detail::compute_vec4_xor::value, sizeof(T) * 8, detail::is_aligned::value>::call(*this, vec<4, T, Q>(v))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator<<=(U scalar) + { + return (*this = detail::compute_vec4_shift_left::value, sizeof(T) * 8, detail::is_aligned::value>::call(*this, vec<4, T, Q>(scalar))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator<<=(vec<1, U, Q> const& v) + { + return (*this = detail::compute_vec4_shift_left::value, sizeof(T) * 8, detail::is_aligned::value>::call(*this, vec<4, T, Q>(v))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator<<=(vec<4, U, Q> const& v) + { + return (*this = detail::compute_vec4_shift_left::value, sizeof(T) * 8, detail::is_aligned::value>::call(*this, vec<4, T, Q>(v))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator>>=(U scalar) + { + return (*this = detail::compute_vec4_shift_right::value, sizeof(T) * 8, detail::is_aligned::value>::call(*this, vec<4, T, Q>(scalar))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator>>=(vec<1, U, Q> const& v) + { + return (*this = detail::compute_vec4_shift_right::value, sizeof(T) * 8, detail::is_aligned::value>::call(*this, vec<4, T, Q>(v))); + } + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> & vec<4, T, Q>::operator>>=(vec<4, U, Q> const& v) + { + return (*this = detail::compute_vec4_shift_right::value, sizeof(T) * 8, detail::is_aligned::value>::call(*this, vec<4, T, Q>(v))); + } + + // -- Unary constant operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator+(vec<4, T, Q> const& v) + { + return v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator-(vec<4, T, Q> const& v) + { + return vec<4, T, Q>(0) -= v; + } + + // -- Binary arithmetic operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator+(vec<4, T, Q> const& v, T scalar) + { + return vec<4, T, Q>(v) += scalar; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator+(vec<4, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<4, T, Q>(v1) += v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator+(T scalar, vec<4, T, Q> const& v) + { + return vec<4, T, Q>(v) += scalar; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator+(vec<1, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v2) += v1; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator+(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v1) += v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator-(vec<4, T, Q> const& v, T scalar) + { + return vec<4, T, Q>(v) -= scalar; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator-(vec<4, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<4, T, Q>(v1) -= v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator-(T scalar, vec<4, T, Q> const& v) + { + return vec<4, T, Q>(scalar) -= v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator-(vec<1, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v1.x) -= v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator-(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v1) -= v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator*(vec<4, T, Q> const& v, T scalar) + { + return vec<4, T, Q>(v) *= scalar; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator*(vec<4, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<4, T, Q>(v1) *= v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator*(T scalar, vec<4, T, Q> const& v) + { + return vec<4, T, Q>(v) *= scalar; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator*(vec<1, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v2) *= v1; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator*(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v1) *= v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator/(vec<4, T, Q> const& v, T scalar) + { + return vec<4, T, Q>(v) /= scalar; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator/(vec<4, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<4, T, Q>(v1) /= v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator/(T scalar, vec<4, T, Q> const& v) + { + return vec<4, T, Q>(scalar) /= v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator/(vec<1, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v1.x) /= v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator/(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v1) /= v2; + } + + // -- Binary bit operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator%(vec<4, T, Q> const& v, T scalar) + { + return vec<4, T, Q>(v) %= scalar; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator%(vec<4, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<4, T, Q>(v1) %= v2.x; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator%(T scalar, vec<4, T, Q> const& v) + { + return vec<4, T, Q>(scalar) %= v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator%(vec<1, T, Q> const& scalar, vec<4, T, Q> const& v) + { + return vec<4, T, Q>(scalar.x) %= v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator%(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v1) %= v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator&(vec<4, T, Q> const& v, T scalar) + { + return vec<4, T, Q>(v) &= scalar; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator&(vec<4, T, Q> const& v, vec<1, T, Q> const& scalar) + { + return vec<4, T, Q>(v) &= scalar; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator&(T scalar, vec<4, T, Q> const& v) + { + return vec<4, T, Q>(scalar) &= v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator&(vec<1, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v1.x) &= v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator&(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v1) &= v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator|(vec<4, T, Q> const& v, T scalar) + { + return vec<4, T, Q>(v) |= scalar; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator|(vec<4, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<4, T, Q>(v1) |= v2.x; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator|(T scalar, vec<4, T, Q> const& v) + { + return vec<4, T, Q>(scalar) |= v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator|(vec<1, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v1.x) |= v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator|(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v1) |= v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator^(vec<4, T, Q> const& v, T scalar) + { + return vec<4, T, Q>(v) ^= scalar; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator^(vec<4, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<4, T, Q>(v1) ^= v2.x; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator^(T scalar, vec<4, T, Q> const& v) + { + return vec<4, T, Q>(scalar) ^= v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator^(vec<1, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v1.x) ^= v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator^(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v1) ^= v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator<<(vec<4, T, Q> const& v, T scalar) + { + return vec<4, T, Q>(v) <<= scalar; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator<<(vec<4, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<4, T, Q>(v1) <<= v2.x; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator<<(T scalar, vec<4, T, Q> const& v) + { + return vec<4, T, Q>(scalar) <<= v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator<<(vec<1, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v1.x) <<= v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator<<(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v1) <<= v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator>>(vec<4, T, Q> const& v, T scalar) + { + return vec<4, T, Q>(v) >>= scalar; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator>>(vec<4, T, Q> const& v1, vec<1, T, Q> const& v2) + { + return vec<4, T, Q>(v1) >>= v2.x; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator>>(T scalar, vec<4, T, Q> const& v) + { + return vec<4, T, Q>(scalar) >>= v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator>>(vec<1, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v1.x) >>= v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator>>(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return vec<4, T, Q>(v1) >>= v2; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, T, Q> operator~(vec<4, T, Q> const& v) + { + return detail::compute_vec4_bitwise_not::value, sizeof(T) * 8, detail::is_aligned::value>::call(v); + } + + // -- Boolean operators -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator==(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return detail::compute_vec4_equal::value, sizeof(T) * 8, detail::is_aligned::value>::call(v1, v2); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool operator!=(vec<4, T, Q> const& v1, vec<4, T, Q> const& v2) + { + return detail::compute_vec4_nequal::value, sizeof(T) * 8, detail::is_aligned::value>::call(v1, v2); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, bool, Q> operator&&(vec<4, bool, Q> const& v1, vec<4, bool, Q> const& v2) + { + return vec<4, bool, Q>(v1.x && v2.x, v1.y && v2.y, v1.z && v2.z, v1.w && v2.w); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, bool, Q> operator||(vec<4, bool, Q> const& v1, vec<4, bool, Q> const& v2) + { + return vec<4, bool, Q>(v1.x || v2.x, v1.y || v2.y, v1.z || v2.z, v1.w || v2.w); + } +}//namespace glm + +#if GLM_CONFIG_SIMD == GLM_ENABLE +# include "type_vec4_simd.inl" +#endif diff --git a/thirdparty/glm/glm/detail/type_vec4_simd.inl b/thirdparty/glm/glm/detail/type_vec4_simd.inl new file mode 100644 index 000000000000..816ef45bf0d6 --- /dev/null +++ b/thirdparty/glm/glm/detail/type_vec4_simd.inl @@ -0,0 +1,788 @@ +#if GLM_ARCH & GLM_ARCH_SSE2_BIT + +namespace glm { + namespace detail + { +# if GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR + template + struct _swizzle_base1<4, float, Q, E0, E1, E2, E3, true> : public _swizzle_base0 + { + GLM_FUNC_QUALIFIER vec<4, float, Q> operator ()() const + { + __m128 data = *reinterpret_cast<__m128 const*>(&this->_buffer); + + vec<4, float, Q> Result; +# if GLM_ARCH & GLM_ARCH_AVX_BIT + Result.data = _mm_permute_ps(data, _MM_SHUFFLE(E3, E2, E1, E0)); +# else + Result.data = _mm_shuffle_ps(data, data, _MM_SHUFFLE(E3, E2, E1, E0)); +# endif + return Result; + } + }; + + template + struct _swizzle_base1<4, int, Q, E0, E1, E2, E3, true> : public _swizzle_base0 + { + GLM_FUNC_QUALIFIER vec<4, int, Q> operator ()() const + { + __m128i data = *reinterpret_cast<__m128i const*>(&this->_buffer); + + vec<4, int, Q> Result; + Result.data = _mm_shuffle_epi32(data, _MM_SHUFFLE(E3, E2, E1, E0)); + return Result; + } + }; + + template + struct _swizzle_base1<4, uint, Q, E0, E1, E2, E3, true> : public _swizzle_base0 + { + GLM_FUNC_QUALIFIER vec<4, uint, Q> operator ()() const + { + __m128i data = *reinterpret_cast<__m128i const*>(&this->_buffer); + + vec<4, uint, Q> Result; + Result.data = _mm_shuffle_epi32(data, _MM_SHUFFLE(E3, E2, E1, E0)); + return Result; + } + }; +# endif// GLM_CONFIG_SWIZZLE == GLM_SWIZZLE_OPERATOR + + template + struct compute_vec4_add + { + static vec<4, float, Q> call(vec<4, float, Q> const& a, vec<4, float, Q> const& b) + { + vec<4, float, Q> Result; + Result.data = _mm_add_ps(a.data, b.data); + return Result; + } + }; + +# if GLM_ARCH & GLM_ARCH_AVX_BIT + template + struct compute_vec4_add + { + static vec<4, double, Q> call(vec<4, double, Q> const& a, vec<4, double, Q> const& b) + { + vec<4, double, Q> Result; + Result.data = _mm256_add_pd(a.data, b.data); + return Result; + } + }; +# endif + + template + struct compute_vec4_sub + { + static vec<4, float, Q> call(vec<4, float, Q> const& a, vec<4, float, Q> const& b) + { + vec<4, float, Q> Result; + Result.data = _mm_sub_ps(a.data, b.data); + return Result; + } + }; + +# if GLM_ARCH & GLM_ARCH_AVX_BIT + template + struct compute_vec4_sub + { + static vec<4, double, Q> call(vec<4, double, Q> const& a, vec<4, double, Q> const& b) + { + vec<4, double, Q> Result; + Result.data = _mm256_sub_pd(a.data, b.data); + return Result; + } + }; +# endif + + template + struct compute_vec4_mul + { + static vec<4, float, Q> call(vec<4, float, Q> const& a, vec<4, float, Q> const& b) + { + vec<4, float, Q> Result; + Result.data = _mm_mul_ps(a.data, b.data); + return Result; + } + }; + +# if GLM_ARCH & GLM_ARCH_AVX_BIT + template + struct compute_vec4_mul + { + static vec<4, double, Q> call(vec<4, double, Q> const& a, vec<4, double, Q> const& b) + { + vec<4, double, Q> Result; + Result.data = _mm256_mul_pd(a.data, b.data); + return Result; + } + }; +# endif + + template + struct compute_vec4_div + { + static vec<4, float, Q> call(vec<4, float, Q> const& a, vec<4, float, Q> const& b) + { + vec<4, float, Q> Result; + Result.data = _mm_div_ps(a.data, b.data); + return Result; + } + }; + +# if GLM_ARCH & GLM_ARCH_AVX_BIT + template + struct compute_vec4_div + { + static vec<4, double, Q> call(vec<4, double, Q> const& a, vec<4, double, Q> const& b) + { + vec<4, double, Q> Result; + Result.data = _mm256_div_pd(a.data, b.data); + return Result; + } + }; +# endif + + template<> + struct compute_vec4_div + { + static vec<4, float, aligned_lowp> call(vec<4, float, aligned_lowp> const& a, vec<4, float, aligned_lowp> const& b) + { + vec<4, float, aligned_lowp> Result; + Result.data = _mm_mul_ps(a.data, _mm_rcp_ps(b.data)); + return Result; + } + }; + + template + struct compute_vec4_and + { + static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + vec<4, T, Q> Result; + Result.data = _mm_and_si128(a.data, b.data); + return Result; + } + }; + +# if GLM_ARCH & GLM_ARCH_AVX2_BIT + template + struct compute_vec4_and + { + static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + vec<4, T, Q> Result; + Result.data = _mm256_and_si256(a.data, b.data); + return Result; + } + }; +# endif + + template + struct compute_vec4_or + { + static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + vec<4, T, Q> Result; + Result.data = _mm_or_si128(a.data, b.data); + return Result; + } + }; + +# if GLM_ARCH & GLM_ARCH_AVX2_BIT + template + struct compute_vec4_or + { + static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + vec<4, T, Q> Result; + Result.data = _mm256_or_si256(a.data, b.data); + return Result; + } + }; +# endif + + template + struct compute_vec4_xor + { + static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + vec<4, T, Q> Result; + Result.data = _mm_xor_si128(a.data, b.data); + return Result; + } + }; + +# if GLM_ARCH & GLM_ARCH_AVX2_BIT + template + struct compute_vec4_xor + { + static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + vec<4, T, Q> Result; + Result.data = _mm256_xor_si256(a.data, b.data); + return Result; + } + }; +# endif + + template + struct compute_vec4_shift_left + { + static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + vec<4, T, Q> Result; + Result.data = _mm_sll_epi32(a.data, b.data); + return Result; + } + }; + +# if GLM_ARCH & GLM_ARCH_AVX2_BIT + template + struct compute_vec4_shift_left + { + static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + vec<4, T, Q> Result; + Result.data = _mm256_sll_epi64(a.data, b.data); + return Result; + } + }; +# endif + + template + struct compute_vec4_shift_right + { + static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + vec<4, T, Q> Result; + Result.data = _mm_srl_epi32(a.data, b.data); + return Result; + } + }; + +# if GLM_ARCH & GLM_ARCH_AVX2_BIT + template + struct compute_vec4_shift_right + { + static vec<4, T, Q> call(vec<4, T, Q> const& a, vec<4, T, Q> const& b) + { + vec<4, T, Q> Result; + Result.data = _mm256_srl_epi64(a.data, b.data); + return Result; + } + }; +# endif + + template + struct compute_vec4_bitwise_not + { + static vec<4, T, Q> call(vec<4, T, Q> const& v) + { + vec<4, T, Q> Result; + Result.data = _mm_xor_si128(v.data, _mm_set1_epi32(-1)); + return Result; + } + }; + +# if GLM_ARCH & GLM_ARCH_AVX2_BIT + template + struct compute_vec4_bitwise_not + { + static vec<4, T, Q> call(vec<4, T, Q> const& v) + { + vec<4, T, Q> Result; + Result.data = _mm256_xor_si256(v.data, _mm_set1_epi32(-1)); + return Result; + } + }; +# endif + + template + struct compute_vec4_equal + { + static bool call(vec<4, float, Q> const& v1, vec<4, float, Q> const& v2) + { + return _mm_movemask_ps(_mm_cmpneq_ps(v1.data, v2.data)) == 0; + } + }; + +# if GLM_ARCH & GLM_ARCH_SSE41_BIT + template + struct compute_vec4_equal + { + static bool call(vec<4, int, Q> const& v1, vec<4, int, Q> const& v2) + { + //return _mm_movemask_epi8(_mm_cmpeq_epi32(v1.data, v2.data)) != 0; + __m128i neq = _mm_xor_si128(v1.data, v2.data); + return _mm_test_all_zeros(neq, neq) == 0; + } + }; +# endif + + template + struct compute_vec4_nequal + { + static bool call(vec<4, float, Q> const& v1, vec<4, float, Q> const& v2) + { + return _mm_movemask_ps(_mm_cmpneq_ps(v1.data, v2.data)) != 0; + } + }; + +# if GLM_ARCH & GLM_ARCH_SSE41_BIT + template + struct compute_vec4_nequal + { + static bool call(vec<4, int, Q> const& v1, vec<4, int, Q> const& v2) + { + //return _mm_movemask_epi8(_mm_cmpneq_epi32(v1.data, v2.data)) != 0; + __m128i neq = _mm_xor_si128(v1.data, v2.data); + return _mm_test_all_zeros(neq, neq) != 0; + } + }; +# endif + }//namespace detail + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_lowp>::vec(float _s) : + data(_mm_set1_ps(_s)) + {} + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_mediump>::vec(float _s) : + data(_mm_set1_ps(_s)) + {} + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_highp>::vec(float _s) : + data(_mm_set1_ps(_s)) + {} + +# if GLM_ARCH & GLM_ARCH_AVX_BIT + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, double, aligned_lowp>::vec(double _s) : + data(_mm256_set1_pd(_s)) + {} + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, double, aligned_mediump>::vec(double _s) : + data(_mm256_set1_pd(_s)) + {} + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, double, aligned_highp>::vec(double _s) : + data(_mm256_set1_pd(_s)) + {} +# endif + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, int, aligned_lowp>::vec(int _s) : + data(_mm_set1_epi32(_s)) + {} + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, int, aligned_mediump>::vec(int _s) : + data(_mm_set1_epi32(_s)) + {} + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, int, aligned_highp>::vec(int _s) : + data(_mm_set1_epi32(_s)) + {} + +# if GLM_ARCH & GLM_ARCH_AVX2_BIT + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, detail::int64, aligned_lowp>::vec(detail::int64 _s) : + data(_mm256_set1_epi64x(_s)) + {} + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, detail::int64, aligned_mediump>::vec(detail::int64 _s) : + data(_mm256_set1_epi64x(_s)) + {} + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, detail::int64, aligned_highp>::vec(detail::int64 _s) : + data(_mm256_set1_epi64x(_s)) + {} +# endif + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_lowp>::vec(float _x, float _y, float _z, float _w) : + data(_mm_set_ps(_w, _z, _y, _x)) + {} + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_mediump>::vec(float _x, float _y, float _z, float _w) : + data(_mm_set_ps(_w, _z, _y, _x)) + {} + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_highp>::vec(float _x, float _y, float _z, float _w) : + data(_mm_set_ps(_w, _z, _y, _x)) + {} + + template<> + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, int, aligned_lowp>::vec(int _x, int _y, int _z, int _w) : + data(_mm_set_epi32(_w, _z, _y, _x)) + {} + + template<> + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, int, aligned_mediump>::vec(int _x, int _y, int _z, int _w) : + data(_mm_set_epi32(_w, _z, _y, _x)) + {} + + template<> + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, int, aligned_highp>::vec(int _x, int _y, int _z, int _w) : + data(_mm_set_epi32(_w, _z, _y, _x)) + {} + + template<> + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_lowp>::vec(int _x, int _y, int _z, int _w) : + data(_mm_cvtepi32_ps(_mm_set_epi32(_w, _z, _y, _x))) + {} + + template<> + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_mediump>::vec(int _x, int _y, int _z, int _w) : + data(_mm_cvtepi32_ps(_mm_set_epi32(_w, _z, _y, _x))) + {} + + template<> + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_highp>::vec(int _x, int _y, int _z, int _w) : + data(_mm_cvtepi32_ps(_mm_set_epi32(_w, _z, _y, _x))) + {} +}//namespace glm + +#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT + +#if GLM_ARCH & GLM_ARCH_NEON_BIT +namespace glm { + namespace detail { + + template + struct compute_vec4_add + { + static + vec<4, float, Q> + call(vec<4, float, Q> const& a, vec<4, float, Q> const& b) + { + vec<4, float, Q> Result; + Result.data = vaddq_f32(a.data, b.data); + return Result; + } + }; + + template + struct compute_vec4_add + { + static + vec<4, uint, Q> + call(vec<4, uint, Q> const& a, vec<4, uint, Q> const& b) + { + vec<4, uint, Q> Result; + Result.data = vaddq_u32(a.data, b.data); + return Result; + } + }; + + template + struct compute_vec4_add + { + static + vec<4, int, Q> + call(vec<4, int, Q> const& a, vec<4, int, Q> const& b) + { + vec<4, int, Q> Result; + Result.data = vaddq_s32(a.data, b.data); + return Result; + } + }; + + template + struct compute_vec4_sub + { + static vec<4, float, Q> call(vec<4, float, Q> const& a, vec<4, float, Q> const& b) + { + vec<4, float, Q> Result; + Result.data = vsubq_f32(a.data, b.data); + return Result; + } + }; + + template + struct compute_vec4_sub + { + static vec<4, uint, Q> call(vec<4, uint, Q> const& a, vec<4, uint, Q> const& b) + { + vec<4, uint, Q> Result; + Result.data = vsubq_u32(a.data, b.data); + return Result; + } + }; + + template + struct compute_vec4_sub + { + static vec<4, int, Q> call(vec<4, int, Q> const& a, vec<4, int, Q> const& b) + { + vec<4, int, Q> Result; + Result.data = vsubq_s32(a.data, b.data); + return Result; + } + }; + + template + struct compute_vec4_mul + { + static vec<4, float, Q> call(vec<4, float, Q> const& a, vec<4, float, Q> const& b) + { + vec<4, float, Q> Result; + Result.data = vmulq_f32(a.data, b.data); + return Result; + } + }; + + template + struct compute_vec4_mul + { + static vec<4, uint, Q> call(vec<4, uint, Q> const& a, vec<4, uint, Q> const& b) + { + vec<4, uint, Q> Result; + Result.data = vmulq_u32(a.data, b.data); + return Result; + } + }; + + template + struct compute_vec4_mul + { + static vec<4, int, Q> call(vec<4, int, Q> const& a, vec<4, int, Q> const& b) + { + vec<4, int, Q> Result; + Result.data = vmulq_s32(a.data, b.data); + return Result; + } + }; + + template + struct compute_vec4_div + { + static vec<4, float, Q> call(vec<4, float, Q> const& a, vec<4, float, Q> const& b) + { + vec<4, float, Q> Result; +#if GLM_ARCH & GLM_ARCH_ARMV8_BIT + Result.data = vdivq_f32(a.data, b.data); +#else + /* Arm assembler reference: + * + * The Newton-Raphson iteration: x[n+1] = x[n] * (2 - d * x[n]) + * converges to (1/d) if x0 is the result of VRECPE applied to d. + * + * Note: The precision usually improves with two interactions, but more than two iterations are not helpful. */ + float32x4_t x = vrecpeq_f32(b.data); + x = vmulq_f32(vrecpsq_f32(b.data, x), x); + x = vmulq_f32(vrecpsq_f32(b.data, x), x); + Result.data = vmulq_f32(a.data, x); +#endif + return Result; + } + }; + + template + struct compute_vec4_equal + { + static bool call(vec<4, float, Q> const& v1, vec<4, float, Q> const& v2) + { + uint32x4_t cmp = vceqq_f32(v1.data, v2.data); +#if GLM_ARCH & GLM_ARCH_ARMV8_BIT + cmp = vpminq_u32(cmp, cmp); + cmp = vpminq_u32(cmp, cmp); + uint32_t r = cmp[0]; +#else + uint32x2_t cmpx2 = vpmin_u32(vget_low_u32(cmp), vget_high_u32(cmp)); + cmpx2 = vpmin_u32(cmpx2, cmpx2); + uint32_t r = cmpx2[0]; +#endif + return r == ~0u; + } + }; + + template + struct compute_vec4_equal + { + static bool call(vec<4, uint, Q> const& v1, vec<4, uint, Q> const& v2) + { + uint32x4_t cmp = vceqq_u32(v1.data, v2.data); +#if GLM_ARCH & GLM_ARCH_ARMV8_BIT + cmp = vpminq_u32(cmp, cmp); + cmp = vpminq_u32(cmp, cmp); + uint32_t r = cmp[0]; +#else + uint32x2_t cmpx2 = vpmin_u32(vget_low_u32(cmp), vget_high_u32(cmp)); + cmpx2 = vpmin_u32(cmpx2, cmpx2); + uint32_t r = cmpx2[0]; +#endif + return r == ~0u; + } + }; + + template + struct compute_vec4_equal + { + static bool call(vec<4, int, Q> const& v1, vec<4, int, Q> const& v2) + { + uint32x4_t cmp = vceqq_s32(v1.data, v2.data); +#if GLM_ARCH & GLM_ARCH_ARMV8_BIT + cmp = vpminq_u32(cmp, cmp); + cmp = vpminq_u32(cmp, cmp); + uint32_t r = cmp[0]; +#else + uint32x2_t cmpx2 = vpmin_u32(vget_low_u32(cmp), vget_high_u32(cmp)); + cmpx2 = vpmin_u32(cmpx2, cmpx2); + uint32_t r = cmpx2[0]; +#endif + return r == ~0u; + } + }; + + template + struct compute_vec4_nequal + { + static bool call(vec<4, float, Q> const& v1, vec<4, float, Q> const& v2) + { + return !compute_vec4_equal::call(v1, v2); + } + }; + + template + struct compute_vec4_nequal + { + static bool call(vec<4, uint, Q> const& v1, vec<4, uint, Q> const& v2) + { + return !compute_vec4_equal::call(v1, v2); + } + }; + + template + struct compute_vec4_nequal + { + static bool call(vec<4, int, Q> const& v1, vec<4, int, Q> const& v2) + { + return !compute_vec4_equal::call(v1, v2); + } + }; + + }//namespace detail + +#if !GLM_CONFIG_XYZW_ONLY + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_lowp>::vec(float _s) : + data(vdupq_n_f32(_s)) + {} + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_mediump>::vec(float _s) : + data(vdupq_n_f32(_s)) + {} + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_highp>::vec(float _s) : + data(vdupq_n_f32(_s)) + {} + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, int, aligned_lowp>::vec(int _s) : + data(vdupq_n_s32(_s)) + {} + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, int, aligned_mediump>::vec(int _s) : + data(vdupq_n_s32(_s)) + {} + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, int, aligned_highp>::vec(int _s) : + data(vdupq_n_s32(_s)) + {} + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, uint, aligned_lowp>::vec(uint _s) : + data(vdupq_n_u32(_s)) + {} + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, uint, aligned_mediump>::vec(uint _s) : + data(vdupq_n_u32(_s)) + {} + + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, uint, aligned_highp>::vec(uint _s) : + data(vdupq_n_u32(_s)) + {} + + template<> + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_highp>::vec(const vec<4, float, aligned_highp>& rhs) : + data(rhs.data) + {} + + template<> + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_highp>::vec(const vec<4, int, aligned_highp>& rhs) : + data(vcvtq_f32_s32(rhs.data)) + {} + + template<> + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_highp>::vec(const vec<4, uint, aligned_highp>& rhs) : + data(vcvtq_f32_u32(rhs.data)) + {} + + template<> + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_lowp>::vec(int _x, int _y, int _z, int _w) : + data(vcvtq_f32_s32(vec<4, int, aligned_lowp>(_x, _y, _z, _w).data)) + {} + + template<> + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_mediump>::vec(int _x, int _y, int _z, int _w) : + data(vcvtq_f32_s32(vec<4, int, aligned_mediump>(_x, _y, _z, _w).data)) + {} + + template<> + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_highp>::vec(int _x, int _y, int _z, int _w) : + data(vcvtq_f32_s32(vec<4, int, aligned_highp>(_x, _y, _z, _w).data)) + {} + + template<> + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_lowp>::vec(uint _x, uint _y, uint _z, uint _w) : + data(vcvtq_f32_u32(vec<4, uint, aligned_lowp>(_x, _y, _z, _w).data)) + {} + + template<> + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_mediump>::vec(uint _x, uint _y, uint _z, uint _w) : + data(vcvtq_f32_u32(vec<4, uint, aligned_mediump>(_x, _y, _z, _w).data)) + {} + + + template<> + template<> + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, float, aligned_highp>::vec(uint _x, uint _y, uint _z, uint _w) : + data(vcvtq_f32_u32(vec<4, uint, aligned_highp>(_x, _y, _z, _w).data)) + {} + +#endif +}//namespace glm + +#endif diff --git a/thirdparty/glm/glm/exponential.hpp b/thirdparty/glm/glm/exponential.hpp new file mode 100644 index 000000000000..1614f7695dbd --- /dev/null +++ b/thirdparty/glm/glm/exponential.hpp @@ -0,0 +1,110 @@ +/// @ref core +/// @file glm/exponential.hpp +/// +/// @see GLSL 4.20.8 specification, section 8.2 Exponential Functions +/// +/// @defgroup core_func_exponential Exponential functions +/// @ingroup core +/// +/// Provides GLSL exponential functions +/// +/// These all operate component-wise. The description is per component. +/// +/// Include to use these core features. + +#pragma once + +#include "detail/type_vec1.hpp" +#include "detail/type_vec2.hpp" +#include "detail/type_vec3.hpp" +#include "detail/type_vec4.hpp" +#include + +namespace glm +{ + /// @addtogroup core_func_exponential + /// @{ + + /// Returns 'base' raised to the power 'exponent'. + /// + /// @param base Floating point value. pow function is defined for input values of 'base' defined in the range (inf-, inf+) in the limit of the type qualifier. + /// @param exponent Floating point value representing the 'exponent'. + /// + /// @see GLSL pow man page + /// @see GLSL 4.20.8 specification, section 8.2 Exponential Functions + template + GLM_FUNC_DECL vec pow(vec const& base, vec const& exponent); + + /// Returns the natural exponentiation of v, i.e., e^v. + /// + /// @param v exp function is defined for input values of v defined in the range (inf-, inf+) in the limit of the type qualifier. + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Floating-point scalar types. + /// + /// @see GLSL exp man page + /// @see GLSL 4.20.8 specification, section 8.2 Exponential Functions + template + GLM_FUNC_DECL vec exp(vec const& v); + + /// Returns the natural logarithm of v, i.e., + /// returns the value y which satisfies the equation x = e^y. + /// Results are undefined if v <= 0. + /// + /// @param v log function is defined for input values of v defined in the range (0, inf+) in the limit of the type qualifier. + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Floating-point scalar types. + /// + /// @see GLSL log man page + /// @see GLSL 4.20.8 specification, section 8.2 Exponential Functions + template + GLM_FUNC_DECL vec log(vec const& v); + + /// Returns 2 raised to the v power. + /// + /// @param v exp2 function is defined for input values of v defined in the range (inf-, inf+) in the limit of the type qualifier. + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Floating-point scalar types. + /// + /// @see GLSL exp2 man page + /// @see GLSL 4.20.8 specification, section 8.2 Exponential Functions + template + GLM_FUNC_DECL vec exp2(vec const& v); + + /// Returns the base 2 log of x, i.e., returns the value y, + /// which satisfies the equation x = 2 ^ y. + /// + /// @param v log2 function is defined for input values of v defined in the range (0, inf+) in the limit of the type qualifier. + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Floating-point scalar types. + /// + /// @see GLSL log2 man page + /// @see GLSL 4.20.8 specification, section 8.2 Exponential Functions + template + GLM_FUNC_DECL vec log2(vec const& v); + + /// Returns the positive square root of v. + /// + /// @param v sqrt function is defined for input values of v defined in the range [0, inf+) in the limit of the type qualifier. + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Floating-point scalar types. + /// + /// @see GLSL sqrt man page + /// @see GLSL 4.20.8 specification, section 8.2 Exponential Functions + template + GLM_FUNC_DECL vec sqrt(vec const& v); + + /// Returns the reciprocal of the positive square root of v. + /// + /// @param v inversesqrt function is defined for input values of v defined in the range [0, inf+) in the limit of the type qualifier. + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Floating-point scalar types. + /// + /// @see GLSL inversesqrt man page + /// @see GLSL 4.20.8 specification, section 8.2 Exponential Functions + template + GLM_FUNC_DECL vec inversesqrt(vec const& v); + + /// @} +}//namespace glm + +#include "detail/func_exponential.inl" diff --git a/thirdparty/glm/glm/ext.hpp b/thirdparty/glm/glm/ext.hpp new file mode 100644 index 000000000000..164dc2a18cc4 --- /dev/null +++ b/thirdparty/glm/glm/ext.hpp @@ -0,0 +1,266 @@ +/// @file glm/ext.hpp +/// +/// @ref core (Dependence) + +#include "detail/setup.hpp" + +#pragma once + +#include "glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_MESSAGE_EXT_INCLUDED_DISPLAYED) +# define GLM_MESSAGE_EXT_INCLUDED_DISPLAYED +# pragma message("GLM: All extensions included (not recommended)") +#endif//GLM_MESSAGES + +#include "./ext/matrix_clip_space.hpp" +#include "./ext/matrix_common.hpp" + +#include "./ext/matrix_double2x2.hpp" +#include "./ext/matrix_double2x2_precision.hpp" +#include "./ext/matrix_double2x3.hpp" +#include "./ext/matrix_double2x3_precision.hpp" +#include "./ext/matrix_double2x4.hpp" +#include "./ext/matrix_double2x4_precision.hpp" +#include "./ext/matrix_double3x2.hpp" +#include "./ext/matrix_double3x2_precision.hpp" +#include "./ext/matrix_double3x3.hpp" +#include "./ext/matrix_double3x3_precision.hpp" +#include "./ext/matrix_double3x4.hpp" +#include "./ext/matrix_double3x4_precision.hpp" +#include "./ext/matrix_double4x2.hpp" +#include "./ext/matrix_double4x2_precision.hpp" +#include "./ext/matrix_double4x3.hpp" +#include "./ext/matrix_double4x3_precision.hpp" +#include "./ext/matrix_double4x4.hpp" +#include "./ext/matrix_double4x4_precision.hpp" + +#include "./ext/matrix_float2x2.hpp" +#include "./ext/matrix_float2x2_precision.hpp" +#include "./ext/matrix_float2x3.hpp" +#include "./ext/matrix_float2x3_precision.hpp" +#include "./ext/matrix_float2x4.hpp" +#include "./ext/matrix_float2x4_precision.hpp" +#include "./ext/matrix_float3x2.hpp" +#include "./ext/matrix_float3x2_precision.hpp" +#include "./ext/matrix_float3x3.hpp" +#include "./ext/matrix_float3x3_precision.hpp" +#include "./ext/matrix_float3x4.hpp" +#include "./ext/matrix_float3x4_precision.hpp" +#include "./ext/matrix_float4x2.hpp" +#include "./ext/matrix_float4x2_precision.hpp" +#include "./ext/matrix_float4x3.hpp" +#include "./ext/matrix_float4x3_precision.hpp" +#include "./ext/matrix_float4x4.hpp" +#include "./ext/matrix_float4x4_precision.hpp" + +#include "./ext/matrix_int2x2.hpp" +#include "./ext/matrix_int2x2_sized.hpp" +#include "./ext/matrix_int2x3.hpp" +#include "./ext/matrix_int2x3_sized.hpp" +#include "./ext/matrix_int2x4.hpp" +#include "./ext/matrix_int2x4_sized.hpp" +#include "./ext/matrix_int3x2.hpp" +#include "./ext/matrix_int3x2_sized.hpp" +#include "./ext/matrix_int3x3.hpp" +#include "./ext/matrix_int3x3_sized.hpp" +#include "./ext/matrix_int3x4.hpp" +#include "./ext/matrix_int3x4_sized.hpp" +#include "./ext/matrix_int4x2.hpp" +#include "./ext/matrix_int4x2_sized.hpp" +#include "./ext/matrix_int4x3.hpp" +#include "./ext/matrix_int4x3_sized.hpp" +#include "./ext/matrix_int4x4.hpp" +#include "./ext/matrix_int4x4_sized.hpp" + +#include "./ext/matrix_uint2x2.hpp" +#include "./ext/matrix_uint2x2_sized.hpp" +#include "./ext/matrix_uint2x3.hpp" +#include "./ext/matrix_uint2x3_sized.hpp" +#include "./ext/matrix_uint2x4.hpp" +#include "./ext/matrix_uint2x4_sized.hpp" +#include "./ext/matrix_uint3x2.hpp" +#include "./ext/matrix_uint3x2_sized.hpp" +#include "./ext/matrix_uint3x3.hpp" +#include "./ext/matrix_uint3x3_sized.hpp" +#include "./ext/matrix_uint3x4.hpp" +#include "./ext/matrix_uint3x4_sized.hpp" +#include "./ext/matrix_uint4x2.hpp" +#include "./ext/matrix_uint4x2_sized.hpp" +#include "./ext/matrix_uint4x3.hpp" +#include "./ext/matrix_uint4x3_sized.hpp" +#include "./ext/matrix_uint4x4.hpp" +#include "./ext/matrix_uint4x4_sized.hpp" + +#include "./ext/matrix_projection.hpp" +#include "./ext/matrix_relational.hpp" +#include "./ext/matrix_transform.hpp" + +#include "./ext/quaternion_common.hpp" +#include "./ext/quaternion_double.hpp" +#include "./ext/quaternion_double_precision.hpp" +#include "./ext/quaternion_float.hpp" +#include "./ext/quaternion_float_precision.hpp" +#include "./ext/quaternion_exponential.hpp" +#include "./ext/quaternion_geometric.hpp" +#include "./ext/quaternion_relational.hpp" +#include "./ext/quaternion_transform.hpp" +#include "./ext/quaternion_trigonometric.hpp" + +#include "./ext/scalar_common.hpp" +#include "./ext/scalar_constants.hpp" +#include "./ext/scalar_integer.hpp" +#include "./ext/scalar_packing.hpp" +#include "./ext/scalar_reciprocal.hpp" +#include "./ext/scalar_relational.hpp" +#include "./ext/scalar_ulp.hpp" + +#include "./ext/scalar_int_sized.hpp" +#include "./ext/scalar_uint_sized.hpp" + +#include "./ext/vector_common.hpp" +#include "./ext/vector_integer.hpp" +#include "./ext/vector_packing.hpp" +#include "./ext/vector_reciprocal.hpp" +#include "./ext/vector_relational.hpp" +#include "./ext/vector_ulp.hpp" + +#include "./ext/vector_bool1.hpp" +#include "./ext/vector_bool1_precision.hpp" +#include "./ext/vector_bool2.hpp" +#include "./ext/vector_bool2_precision.hpp" +#include "./ext/vector_bool3.hpp" +#include "./ext/vector_bool3_precision.hpp" +#include "./ext/vector_bool4.hpp" +#include "./ext/vector_bool4_precision.hpp" + +#include "./ext/vector_double1.hpp" +#include "./ext/vector_double1_precision.hpp" +#include "./ext/vector_double2.hpp" +#include "./ext/vector_double2_precision.hpp" +#include "./ext/vector_double3.hpp" +#include "./ext/vector_double3_precision.hpp" +#include "./ext/vector_double4.hpp" +#include "./ext/vector_double4_precision.hpp" + +#include "./ext/vector_float1.hpp" +#include "./ext/vector_float1_precision.hpp" +#include "./ext/vector_float2.hpp" +#include "./ext/vector_float2_precision.hpp" +#include "./ext/vector_float3.hpp" +#include "./ext/vector_float3_precision.hpp" +#include "./ext/vector_float4.hpp" +#include "./ext/vector_float4_precision.hpp" + +#include "./ext/vector_int1.hpp" +#include "./ext/vector_int1_sized.hpp" +#include "./ext/vector_int2.hpp" +#include "./ext/vector_int2_sized.hpp" +#include "./ext/vector_int3.hpp" +#include "./ext/vector_int3_sized.hpp" +#include "./ext/vector_int4.hpp" +#include "./ext/vector_int4_sized.hpp" + +#include "./ext/vector_uint1.hpp" +#include "./ext/vector_uint1_sized.hpp" +#include "./ext/vector_uint2.hpp" +#include "./ext/vector_uint2_sized.hpp" +#include "./ext/vector_uint3.hpp" +#include "./ext/vector_uint3_sized.hpp" +#include "./ext/vector_uint4.hpp" +#include "./ext/vector_uint4_sized.hpp" + +#include "./gtc/bitfield.hpp" +#include "./gtc/color_space.hpp" +#include "./gtc/constants.hpp" +#include "./gtc/epsilon.hpp" +#include "./gtc/integer.hpp" +#include "./gtc/matrix_access.hpp" +#include "./gtc/matrix_integer.hpp" +#include "./gtc/matrix_inverse.hpp" +#include "./gtc/matrix_transform.hpp" +#include "./gtc/noise.hpp" +#include "./gtc/packing.hpp" +#include "./gtc/quaternion.hpp" +#include "./gtc/random.hpp" +#include "./gtc/reciprocal.hpp" +#include "./gtc/round.hpp" +#include "./gtc/type_precision.hpp" +#include "./gtc/type_ptr.hpp" +#include "./gtc/ulp.hpp" +#include "./gtc/vec1.hpp" +#if GLM_CONFIG_ALIGNED_GENTYPES == GLM_ENABLE +# include "./gtc/type_aligned.hpp" +#endif + +#ifdef GLM_ENABLE_EXPERIMENTAL +#include "./gtx/associated_min_max.hpp" +#include "./gtx/bit.hpp" +#include "./gtx/closest_point.hpp" +#include "./gtx/color_encoding.hpp" +#include "./gtx/color_space.hpp" +#include "./gtx/color_space_YCoCg.hpp" +#include "./gtx/common.hpp" +#include "./gtx/compatibility.hpp" +#include "./gtx/component_wise.hpp" +#include "./gtx/dual_quaternion.hpp" +#include "./gtx/easing.hpp" +#include "./gtx/euler_angles.hpp" +#include "./gtx/extend.hpp" +#include "./gtx/extended_min_max.hpp" +#include "./gtx/fast_exponential.hpp" +#include "./gtx/fast_square_root.hpp" +#include "./gtx/fast_trigonometry.hpp" +#include "./gtx/functions.hpp" +#include "./gtx/gradient_paint.hpp" +#include "./gtx/handed_coordinate_space.hpp" + +#if __cplusplus >= 201103L +#include "./gtx/hash.hpp" +#endif + +#include "./gtx/integer.hpp" +#include "./gtx/intersect.hpp" +#include "./gtx/io.hpp" +#include "./gtx/log_base.hpp" +#include "./gtx/matrix_cross_product.hpp" +#include "./gtx/matrix_decompose.hpp" +#include "./gtx/matrix_factorisation.hpp" +#include "./gtx/matrix_interpolation.hpp" +#include "./gtx/matrix_major_storage.hpp" +#include "./gtx/matrix_operation.hpp" +#include "./gtx/matrix_query.hpp" +#include "./gtx/mixed_product.hpp" +#include "./gtx/norm.hpp" +#include "./gtx/normal.hpp" +#include "./gtx/normalize_dot.hpp" +#include "./gtx/optimum_pow.hpp" +#include "./gtx/orthonormalize.hpp" +#include "./gtx/pca.hpp" +#include "./gtx/perpendicular.hpp" +#include "./gtx/polar_coordinates.hpp" +#include "./gtx/projection.hpp" +#include "./gtx/quaternion.hpp" +#include "./gtx/raw_data.hpp" +#include "./gtx/rotate_normalized_axis.hpp" +#include "./gtx/rotate_vector.hpp" +#include "./gtx/spline.hpp" +#include "./gtx/std_based_type.hpp" +#if !((GLM_COMPILER & GLM_COMPILER_CUDA) || (GLM_COMPILER & GLM_COMPILER_HIP)) +# include "./gtx/string_cast.hpp" +#endif +#include "./gtx/transform.hpp" +#include "./gtx/transform2.hpp" +#include "./gtx/vec_swizzle.hpp" +#include "./gtx/vector_angle.hpp" +#include "./gtx/vector_query.hpp" +#include "./gtx/wrap.hpp" + +#if GLM_HAS_TEMPLATE_ALIASES +# include "./gtx/scalar_multiplication.hpp" +#endif + +#if GLM_HAS_RANGE_FOR +# include "./gtx/range.hpp" +#endif +#endif//GLM_ENABLE_EXPERIMENTAL diff --git a/thirdparty/glm/glm/ext/_matrix_vectorize.hpp b/thirdparty/glm/glm/ext/_matrix_vectorize.hpp new file mode 100644 index 000000000000..0d08117ed1d1 --- /dev/null +++ b/thirdparty/glm/glm/ext/_matrix_vectorize.hpp @@ -0,0 +1,128 @@ +#pragma once + +namespace glm { + + namespace detail { + + template class mat, length_t C, length_t R, typename Ret, typename T, qualifier Q> + struct matrix_functor_1 { + }; + + template class mat, typename Ret, typename T, qualifier Q> + struct matrix_functor_1 { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static mat<2, 2, T, Q> call(Ret (*Func)(T x), mat<2, 2, T, Q> const &x) { + return mat<2, 2, Ret, Q>( + Func(x[0][0]), Func(x[0][1]), + Func(x[1][0]), Func(x[1][1]) + ); + } + }; + + template class mat, typename Ret, typename T, qualifier Q> + struct matrix_functor_1 { + + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static mat<2, 3, T, Q> call(Ret (*Func)(T x), mat<2, 3, T, Q> const &x) { + return mat<2, 3, Ret, Q>( + Func(x[0][0]), Func(x[0][1]), Func(x[0][2]), + Func(x[1][0]), Func(x[1][1]), Func(x[1][2]) + ); + } + + }; + + template class mat, typename Ret, typename T, qualifier Q> + struct matrix_functor_1 { + + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static mat<2, 4, T, Q> call(Ret (*Func)(T x), mat<2, 4, T, Q> const &x) { + return mat<2, 4, Ret, Q>( + Func(x[0][0]), Func(x[0][1]), Func(x[0][2]), Func(x[0][3]), + Func(x[1][0]), Func(x[1][1]), Func(x[1][2]), Func(x[1][3]) + ); + } + + }; + + template class mat, typename Ret, typename T, qualifier Q> + struct matrix_functor_1 { + + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static mat<3, 2, T, Q> call(Ret (*Func)(T x), mat<3, 2, T, Q> const &x) { + return mat<3, 2, Ret, Q>( + Func(x[0][0]), Func(x[0][1]), + Func(x[1][0]), Func(x[1][1]), + Func(x[2][0]), Func(x[2][1]) + ); + } + + }; + + template class mat, typename Ret, typename T, qualifier Q> + struct matrix_functor_1 { + + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static mat<3, 3, T, Q> call(Ret (*Func)(T x), mat<3, 3, T, Q> const &x) { + return mat<3, 3, Ret, Q>( + Func(x[0][0]), Func(x[0][1]), Func(x[0][2]), + Func(x[1][0]), Func(x[1][1]), Func(x[1][2]), + Func(x[2][0]), Func(x[2][1]), Func(x[2][2]) + ); + } + + }; + + template class mat, typename Ret, typename T, qualifier Q> + struct matrix_functor_1 { + + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static mat<3, 4, T, Q> call(Ret (*Func)(T x), mat<3, 4, T, Q> const &x) { + return mat<3, 4, Ret, Q>( + Func(x[0][0]), Func(x[0][1]), Func(x[0][2]), Func(x[0][3]), + Func(x[1][0]), Func(x[1][1]), Func(x[1][2]), Func(x[1][3]), + Func(x[2][0]), Func(x[2][1]), Func(x[2][2]), Func(x[2][3]) + ); + } + + }; + + template class mat, typename Ret, typename T, qualifier Q> + struct matrix_functor_1 { + + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static mat<4, 2, T, Q> call(Ret (*Func)(T x), mat<4, 2, T, Q> const &x) { + return mat<4, 2, Ret, Q>( + Func(x[0][0]), Func(x[0][1]), + Func(x[1][0]), Func(x[1][1]), + Func(x[2][0]), Func(x[2][1]), + Func(x[3][0]), Func(x[3][1]) + ); + } + + }; + + template class mat, typename Ret, typename T, qualifier Q> + struct matrix_functor_1 { + + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static mat<4, 3, T, Q> call(Ret (*Func)(T x), mat<4, 3, T, Q> const &x) { + return mat<4, 3, Ret, Q>( + Func(x[0][0]), Func(x[0][1]), Func(x[0][2]), + Func(x[1][0]), Func(x[1][1]), Func(x[1][2]), + Func(x[2][0]), Func(x[2][1]), Func(x[2][2]), + Func(x[3][0]), Func(x[3][1]), Func(x[3][2]) + ); + } + + }; + + template class mat, typename Ret, typename T, qualifier Q> + struct matrix_functor_1 { + + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static mat<4, 4, T, Q> call(Ret (*Func)(T x), mat<4, 4, T, Q> const &x) { + return mat<4, 4, Ret, Q>( + Func(x[0][0]), Func(x[0][1]), Func(x[0][2]), Func(x[0][3]), + Func(x[1][0]), Func(x[1][1]), Func(x[1][2]), Func(x[1][3]), + Func(x[2][0]), Func(x[2][1]), Func(x[2][2]), Func(x[2][3]), + Func(x[3][0]), Func(x[3][1]), Func(x[3][2]), Func(x[3][3]) + ); + } + + }; + + } + +}// namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_clip_space.hpp b/thirdparty/glm/glm/ext/matrix_clip_space.hpp new file mode 100644 index 000000000000..43579b8eee6c --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_clip_space.hpp @@ -0,0 +1,522 @@ +/// @ref ext_matrix_clip_space +/// @file glm/ext/matrix_clip_space.hpp +/// +/// @defgroup ext_matrix_clip_space GLM_EXT_matrix_clip_space +/// @ingroup ext +/// +/// Defines functions that generate clip space transformation matrices. +/// +/// The matrices generated by this extension use standard OpenGL fixed-function +/// conventions. For example, the lookAt function generates a transform from world +/// space into the specific eye space that the projective matrix functions +/// (perspective, ortho, etc) are designed to expect. The OpenGL compatibility +/// specifications defines the particular layout of this eye space. +/// +/// Include to use the features of this extension. +/// +/// @see ext_matrix_transform +/// @see ext_matrix_projection + +#pragma once + +// Dependencies +#include "../ext/scalar_constants.hpp" +#include "../geometric.hpp" +#include "../trigonometric.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_clip_space extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_clip_space + /// @{ + + /// Creates a matrix for projecting two-dimensional coordinates onto the screen. + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top, T const& zNear, T const& zFar) + /// @see gluOrtho2D man page + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho( + T left, T right, T bottom, T top); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH_ZO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH_NO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using right-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH_ZO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using right-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH_NO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoZO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoNO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using right-handed coordinates. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using the default handedness and default near and far clip planes definition. + /// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + /// @see glOrtho man page + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a left-handed frustum matrix. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH_ZO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a left-handed frustum matrix. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH_NO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a right-handed frustum matrix. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH_ZO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a right-handed frustum matrix. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH_NO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a frustum matrix using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumZO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a frustum matrix using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumNO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a left-handed frustum matrix. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a right-handed frustum matrix. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a frustum matrix with default handedness, using the default handedness and default near and far clip planes definition. + /// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @tparam T A floating-point scalar type + /// @see glFrustum man page + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustum( + T left, T right, T bottom, T top, T near, T far); + + + /// Creates a matrix for a right-handed, symmetric perspective-view frustum. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH_ZO( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a right-handed, symmetric perspective-view frustum. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH_NO( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a left-handed, symmetric perspective-view frustum. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH_ZO( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a left-handed, symmetric perspective-view frustum. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH_NO( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a symmetric perspective-view frustum using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveZO( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a symmetric perspective-view frustum using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveNO( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a right-handed, symmetric perspective-view frustum. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a left-handed, symmetric perspective-view frustum. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a symmetric perspective-view frustum based on the default handedness and default near and far clip planes definition. + /// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @param fovy Specifies the field of view angle in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + /// @see gluPerspective man page + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspective( + T fovy, T aspect, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using right-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH_ZO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using right-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH_NO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH_ZO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH_NO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovZO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovNO( + T fov, T width, T height, T near, T far); + + /// Builds a right-handed perspective projection matrix based on a field of view. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH( + T fov, T width, T height, T near, T far); + + /// Builds a left-handed perspective projection matrix based on a field of view. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view and the default handedness and default near and far clip planes definition. + /// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFov( + T fov, T width, T height, T near, T far); + + /// Creates a matrix for a left-handed, symmetric perspective-view frustum with far plane at infinite. + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspectiveLH( + T fovy, T aspect, T near); + + /// Creates a matrix for a right-handed, symmetric perspective-view frustum with far plane at infinite. + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspectiveRH( + T fovy, T aspect, T near); + + /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite with default handedness. + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspective( + T fovy, T aspect, T near); + + /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping. + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> tweakedInfinitePerspective( + T fovy, T aspect, T near); + + /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping. + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param ep Epsilon + /// + /// @tparam T A floating-point scalar type + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> tweakedInfinitePerspective( + T fovy, T aspect, T near, T ep); + + /// @} +}//namespace glm + +#include "matrix_clip_space.inl" diff --git a/thirdparty/glm/glm/ext/matrix_clip_space.inl b/thirdparty/glm/glm/ext/matrix_clip_space.inl new file mode 100644 index 000000000000..27fb6a13f75d --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_clip_space.inl @@ -0,0 +1,595 @@ +namespace glm +{ + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top) + { + mat<4, 4, T, defaultp> Result(static_cast(1)); + Result[0][0] = static_cast(2) / (right - left); + Result[1][1] = static_cast(2) / (top - bottom); + Result[2][2] = - static_cast(1); + Result[3][0] = - (right + left) / (right - left); + Result[3][1] = - (top + bottom) / (top - bottom); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_ZO(T left, T right, T bottom, T top, T zNear, T zFar) + { + mat<4, 4, T, defaultp> Result(1); + Result[0][0] = static_cast(2) / (right - left); + Result[1][1] = static_cast(2) / (top - bottom); + Result[2][2] = static_cast(1) / (zFar - zNear); + Result[3][0] = - (right + left) / (right - left); + Result[3][1] = - (top + bottom) / (top - bottom); + Result[3][2] = - zNear / (zFar - zNear); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_NO(T left, T right, T bottom, T top, T zNear, T zFar) + { + mat<4, 4, T, defaultp> Result(1); + Result[0][0] = static_cast(2) / (right - left); + Result[1][1] = static_cast(2) / (top - bottom); + Result[2][2] = static_cast(2) / (zFar - zNear); + Result[3][0] = - (right + left) / (right - left); + Result[3][1] = - (top + bottom) / (top - bottom); + Result[3][2] = - (zFar + zNear) / (zFar - zNear); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_ZO(T left, T right, T bottom, T top, T zNear, T zFar) + { + mat<4, 4, T, defaultp> Result(1); + Result[0][0] = static_cast(2) / (right - left); + Result[1][1] = static_cast(2) / (top - bottom); + Result[2][2] = - static_cast(1) / (zFar - zNear); + Result[3][0] = - (right + left) / (right - left); + Result[3][1] = - (top + bottom) / (top - bottom); + Result[3][2] = - zNear / (zFar - zNear); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_NO(T left, T right, T bottom, T top, T zNear, T zFar) + { + mat<4, 4, T, defaultp> Result(1); + Result[0][0] = static_cast(2) / (right - left); + Result[1][1] = static_cast(2) / (top - bottom); + Result[2][2] = - static_cast(2) / (zFar - zNear); + Result[3][0] = - (right + left) / (right - left); + Result[3][1] = - (top + bottom) / (top - bottom); + Result[3][2] = - (zFar + zNear) / (zFar - zNear); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoZO(T left, T right, T bottom, T top, T zNear, T zFar) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT + return orthoLH_ZO(left, right, bottom, top, zNear, zFar); +# else + return orthoRH_ZO(left, right, bottom, top, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoNO(T left, T right, T bottom, T top, T zNear, T zFar) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT + return orthoLH_NO(left, right, bottom, top, zNear, zFar); +# else + return orthoRH_NO(left, right, bottom, top, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH(T left, T right, T bottom, T top, T zNear, T zFar) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT + return orthoLH_ZO(left, right, bottom, top, zNear, zFar); +# else + return orthoLH_NO(left, right, bottom, top, zNear, zFar); +# endif + + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH(T left, T right, T bottom, T top, T zNear, T zFar) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT + return orthoRH_ZO(left, right, bottom, top, zNear, zFar); +# else + return orthoRH_NO(left, right, bottom, top, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top, T zNear, T zFar) + { +# if GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO + return orthoLH_ZO(left, right, bottom, top, zNear, zFar); +# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO + return orthoLH_NO(left, right, bottom, top, zNear, zFar); +# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO + return orthoRH_ZO(left, right, bottom, top, zNear, zFar); +# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO + return orthoRH_NO(left, right, bottom, top, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal) + { + mat<4, 4, T, defaultp> Result(0); + Result[0][0] = (static_cast(2) * nearVal) / (right - left); + Result[1][1] = (static_cast(2) * nearVal) / (top - bottom); + Result[2][0] = -(right + left) / (right - left); + Result[2][1] = -(top + bottom) / (top - bottom); + Result[2][2] = farVal / (farVal - nearVal); + Result[2][3] = static_cast(1); + Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_NO(T left, T right, T bottom, T top, T nearVal, T farVal) + { + mat<4, 4, T, defaultp> Result(0); + Result[0][0] = (static_cast(2) * nearVal) / (right - left); + Result[1][1] = (static_cast(2) * nearVal) / (top - bottom); + Result[2][0] = -(right + left) / (right - left); + Result[2][1] = -(top + bottom) / (top - bottom); + Result[2][2] = (farVal + nearVal) / (farVal - nearVal); + Result[2][3] = static_cast(1); + Result[3][2] = - (static_cast(2) * farVal * nearVal) / (farVal - nearVal); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal) + { + mat<4, 4, T, defaultp> Result(0); + Result[0][0] = (static_cast(2) * nearVal) / (right - left); + Result[1][1] = (static_cast(2) * nearVal) / (top - bottom); + Result[2][0] = (right + left) / (right - left); + Result[2][1] = (top + bottom) / (top - bottom); + Result[2][2] = farVal / (nearVal - farVal); + Result[2][3] = static_cast(-1); + Result[3][2] = -(farVal * nearVal) / (farVal - nearVal); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_NO(T left, T right, T bottom, T top, T nearVal, T farVal) + { + mat<4, 4, T, defaultp> Result(0); + Result[0][0] = (static_cast(2) * nearVal) / (right - left); + Result[1][1] = (static_cast(2) * nearVal) / (top - bottom); + Result[2][0] = (right + left) / (right - left); + Result[2][1] = (top + bottom) / (top - bottom); + Result[2][2] = - (farVal + nearVal) / (farVal - nearVal); + Result[2][3] = static_cast(-1); + Result[3][2] = - (static_cast(2) * farVal * nearVal) / (farVal - nearVal); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumZO(T left, T right, T bottom, T top, T nearVal, T farVal) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT + return frustumLH_ZO(left, right, bottom, top, nearVal, farVal); +# else + return frustumRH_ZO(left, right, bottom, top, nearVal, farVal); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumNO(T left, T right, T bottom, T top, T nearVal, T farVal) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT + return frustumLH_NO(left, right, bottom, top, nearVal, farVal); +# else + return frustumRH_NO(left, right, bottom, top, nearVal, farVal); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH(T left, T right, T bottom, T top, T nearVal, T farVal) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT + return frustumLH_ZO(left, right, bottom, top, nearVal, farVal); +# else + return frustumLH_NO(left, right, bottom, top, nearVal, farVal); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH(T left, T right, T bottom, T top, T nearVal, T farVal) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT + return frustumRH_ZO(left, right, bottom, top, nearVal, farVal); +# else + return frustumRH_NO(left, right, bottom, top, nearVal, farVal); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustum(T left, T right, T bottom, T top, T nearVal, T farVal) + { +# if GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO + return frustumLH_ZO(left, right, bottom, top, nearVal, farVal); +# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO + return frustumLH_NO(left, right, bottom, top, nearVal, farVal); +# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO + return frustumRH_ZO(left, right, bottom, top, nearVal, farVal); +# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO + return frustumRH_NO(left, right, bottom, top, nearVal, farVal); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_ZO(T fovy, T aspect, T zNear, T zFar) + { + assert(abs(aspect - std::numeric_limits::epsilon()) > static_cast(0)); + + T const tanHalfFovy = tan(fovy / static_cast(2)); + + mat<4, 4, T, defaultp> Result(static_cast(0)); + Result[0][0] = static_cast(1) / (aspect * tanHalfFovy); + Result[1][1] = static_cast(1) / (tanHalfFovy); + Result[2][2] = zFar / (zNear - zFar); + Result[2][3] = - static_cast(1); + Result[3][2] = -(zFar * zNear) / (zFar - zNear); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_NO(T fovy, T aspect, T zNear, T zFar) + { + assert(abs(aspect - std::numeric_limits::epsilon()) > static_cast(0)); + + T const tanHalfFovy = tan(fovy / static_cast(2)); + + mat<4, 4, T, defaultp> Result(static_cast(0)); + Result[0][0] = static_cast(1) / (aspect * tanHalfFovy); + Result[1][1] = static_cast(1) / (tanHalfFovy); + Result[2][2] = - (zFar + zNear) / (zFar - zNear); + Result[2][3] = - static_cast(1); + Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_ZO(T fovy, T aspect, T zNear, T zFar) + { + assert(abs(aspect - std::numeric_limits::epsilon()) > static_cast(0)); + + T const tanHalfFovy = tan(fovy / static_cast(2)); + + mat<4, 4, T, defaultp> Result(static_cast(0)); + Result[0][0] = static_cast(1) / (aspect * tanHalfFovy); + Result[1][1] = static_cast(1) / (tanHalfFovy); + Result[2][2] = zFar / (zFar - zNear); + Result[2][3] = static_cast(1); + Result[3][2] = -(zFar * zNear) / (zFar - zNear); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_NO(T fovy, T aspect, T zNear, T zFar) + { + assert(abs(aspect - std::numeric_limits::epsilon()) > static_cast(0)); + + T const tanHalfFovy = tan(fovy / static_cast(2)); + + mat<4, 4, T, defaultp> Result(static_cast(0)); + Result[0][0] = static_cast(1) / (aspect * tanHalfFovy); + Result[1][1] = static_cast(1) / (tanHalfFovy); + Result[2][2] = (zFar + zNear) / (zFar - zNear); + Result[2][3] = static_cast(1); + Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveZO(T fovy, T aspect, T zNear, T zFar) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT + return perspectiveLH_ZO(fovy, aspect, zNear, zFar); +# else + return perspectiveRH_ZO(fovy, aspect, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveNO(T fovy, T aspect, T zNear, T zFar) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT + return perspectiveLH_NO(fovy, aspect, zNear, zFar); +# else + return perspectiveRH_NO(fovy, aspect, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT + return perspectiveLH_ZO(fovy, aspect, zNear, zFar); +# else + return perspectiveLH_NO(fovy, aspect, zNear, zFar); +# endif + + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT + return perspectiveRH_ZO(fovy, aspect, zNear, zFar); +# else + return perspectiveRH_NO(fovy, aspect, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar) + { +# if GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO + return perspectiveLH_ZO(fovy, aspect, zNear, zFar); +# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO + return perspectiveLH_NO(fovy, aspect, zNear, zFar); +# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO + return perspectiveRH_ZO(fovy, aspect, zNear, zFar); +# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO + return perspectiveRH_NO(fovy, aspect, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_ZO(T fov, T width, T height, T zNear, T zFar) + { + assert(width > static_cast(0)); + assert(height > static_cast(0)); + assert(fov > static_cast(0)); + + T const rad = fov; + T const h = glm::cos(static_cast(0.5) * rad) / glm::sin(static_cast(0.5) * rad); + T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? + + mat<4, 4, T, defaultp> Result(static_cast(0)); + Result[0][0] = w; + Result[1][1] = h; + Result[2][2] = zFar / (zNear - zFar); + Result[2][3] = - static_cast(1); + Result[3][2] = -(zFar * zNear) / (zFar - zNear); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_NO(T fov, T width, T height, T zNear, T zFar) + { + assert(width > static_cast(0)); + assert(height > static_cast(0)); + assert(fov > static_cast(0)); + + T const rad = fov; + T const h = glm::cos(static_cast(0.5) * rad) / glm::sin(static_cast(0.5) * rad); + T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? + + mat<4, 4, T, defaultp> Result(static_cast(0)); + Result[0][0] = w; + Result[1][1] = h; + Result[2][2] = - (zFar + zNear) / (zFar - zNear); + Result[2][3] = - static_cast(1); + Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_ZO(T fov, T width, T height, T zNear, T zFar) + { + assert(width > static_cast(0)); + assert(height > static_cast(0)); + assert(fov > static_cast(0)); + + T const rad = fov; + T const h = glm::cos(static_cast(0.5) * rad) / glm::sin(static_cast(0.5) * rad); + T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? + + mat<4, 4, T, defaultp> Result(static_cast(0)); + Result[0][0] = w; + Result[1][1] = h; + Result[2][2] = zFar / (zFar - zNear); + Result[2][3] = static_cast(1); + Result[3][2] = -(zFar * zNear) / (zFar - zNear); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_NO(T fov, T width, T height, T zNear, T zFar) + { + assert(width > static_cast(0)); + assert(height > static_cast(0)); + assert(fov > static_cast(0)); + + T const rad = fov; + T const h = glm::cos(static_cast(0.5) * rad) / glm::sin(static_cast(0.5) * rad); + T const w = h * height / width; ///todo max(width , Height) / min(width , Height)? + + mat<4, 4, T, defaultp> Result(static_cast(0)); + Result[0][0] = w; + Result[1][1] = h; + Result[2][2] = (zFar + zNear) / (zFar - zNear); + Result[2][3] = static_cast(1); + Result[3][2] = - (static_cast(2) * zFar * zNear) / (zFar - zNear); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovZO(T fov, T width, T height, T zNear, T zFar) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT + return perspectiveFovLH_ZO(fov, width, height, zNear, zFar); +# else + return perspectiveFovRH_ZO(fov, width, height, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovNO(T fov, T width, T height, T zNear, T zFar) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT + return perspectiveFovLH_NO(fov, width, height, zNear, zFar); +# else + return perspectiveFovRH_NO(fov, width, height, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT + return perspectiveFovLH_ZO(fov, width, height, zNear, zFar); +# else + return perspectiveFovLH_NO(fov, width, height, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT + return perspectiveFovRH_ZO(fov, width, height, zNear, zFar); +# else + return perspectiveFovRH_NO(fov, width, height, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar) + { +# if GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO + return perspectiveFovLH_ZO(fov, width, height, zNear, zFar); +# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO + return perspectiveFovLH_NO(fov, width, height, zNear, zFar); +# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO + return perspectiveFovRH_ZO(fov, width, height, zNear, zFar); +# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO + return perspectiveFovRH_NO(fov, width, height, zNear, zFar); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveRH_NO(T fovy, T aspect, T zNear) + { + T const range = tan(fovy / static_cast(2)) * zNear; + T const left = -range * aspect; + T const right = range * aspect; + T const bottom = -range; + T const top = range; + + mat<4, 4, T, defaultp> Result(static_cast(0)); + Result[0][0] = (static_cast(2) * zNear) / (right - left); + Result[1][1] = (static_cast(2) * zNear) / (top - bottom); + Result[2][2] = - static_cast(1); + Result[2][3] = - static_cast(1); + Result[3][2] = - static_cast(2) * zNear; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveRH_ZO(T fovy, T aspect, T zNear) + { + T const range = tan(fovy / static_cast(2)) * zNear; + T const left = -range * aspect; + T const right = range * aspect; + T const bottom = -range; + T const top = range; + + mat<4, 4, T, defaultp> Result(static_cast(0)); + Result[0][0] = (static_cast(2) * zNear) / (right - left); + Result[1][1] = (static_cast(2) * zNear) / (top - bottom); + Result[2][2] = - static_cast(1); + Result[2][3] = - static_cast(1); + Result[3][2] = - zNear; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveLH_NO(T fovy, T aspect, T zNear) + { + T const range = tan(fovy / static_cast(2)) * zNear; + T const left = -range * aspect; + T const right = range * aspect; + T const bottom = -range; + T const top = range; + + mat<4, 4, T, defaultp> Result(T(0)); + Result[0][0] = (static_cast(2) * zNear) / (right - left); + Result[1][1] = (static_cast(2) * zNear) / (top - bottom); + Result[2][2] = static_cast(1); + Result[2][3] = static_cast(1); + Result[3][2] = - static_cast(2) * zNear; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveLH_ZO(T fovy, T aspect, T zNear) + { + T const range = tan(fovy / static_cast(2)) * zNear; + T const left = -range * aspect; + T const right = range * aspect; + T const bottom = -range; + T const top = range; + + mat<4, 4, T, defaultp> Result(T(0)); + Result[0][0] = (static_cast(2) * zNear) / (right - left); + Result[1][1] = (static_cast(2) * zNear) / (top - bottom); + Result[2][2] = static_cast(1); + Result[2][3] = static_cast(1); + Result[3][2] = - zNear; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspective(T fovy, T aspect, T zNear) + { +# if GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO + return infinitePerspectiveLH_ZO(fovy, aspect, zNear); +# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO + return infinitePerspectiveLH_NO(fovy, aspect, zNear); +# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO + return infinitePerspectiveRH_ZO(fovy, aspect, zNear); +# elif GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO + return infinitePerspectiveRH_NO(fovy, aspect, zNear); +# endif + } + + // Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep) + { + T const range = tan(fovy / static_cast(2)) * zNear; + T const left = -range * aspect; + T const right = range * aspect; + T const bottom = -range; + T const top = range; + + mat<4, 4, T, defaultp> Result(static_cast(0)); + Result[0][0] = (static_cast(2) * zNear) / (right - left); + Result[1][1] = (static_cast(2) * zNear) / (top - bottom); + Result[2][2] = ep - static_cast(1); + Result[2][3] = static_cast(-1); + Result[3][2] = (ep - static_cast(2)) * zNear; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear) + { + return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon()); + } +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_common.hpp b/thirdparty/glm/glm/ext/matrix_common.hpp new file mode 100644 index 000000000000..6bb3d06e7ece --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_common.hpp @@ -0,0 +1,39 @@ +/// @ref ext_matrix_common +/// @file glm/ext/matrix_common.hpp +/// +/// @defgroup ext_matrix_common GLM_EXT_matrix_common +/// @ingroup ext +/// +/// Defines functions for common matrix operations. +/// +/// Include to use the features of this extension. +/// +/// @see ext_matrix_common + +#pragma once + +#include "../detail/qualifier.hpp" +#include "../detail/_fixes.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_common extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_common + /// @{ + + template + GLM_FUNC_DECL mat mix(mat const& x, mat const& y, mat const& a); + + template + GLM_FUNC_DECL mat mix(mat const& x, mat const& y, U a); + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat abs(mat const& x); + + /// @} +}//namespace glm + +#include "matrix_common.inl" diff --git a/thirdparty/glm/glm/ext/matrix_common.inl b/thirdparty/glm/glm/ext/matrix_common.inl new file mode 100644 index 000000000000..1be422202edb --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_common.inl @@ -0,0 +1,34 @@ +#include "../matrix.hpp" + +#include "_matrix_vectorize.hpp" + +namespace glm +{ + template + GLM_FUNC_QUALIFIER mat mix(mat const& x, mat const& y, U a) + { + return mat(x) * (static_cast(1) - a) + mat(y) * a; + } + + template + GLM_FUNC_QUALIFIER mat mix(mat const& x, mat const& y, mat const& a) + { + return matrixCompMult(mat(x), static_cast(1) - a) + matrixCompMult(mat(y), a); + } + + template + struct compute_abs_matrix + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static mat call(mat const& x) + { + return detail::matrix_functor_1::call(abs, x); + } + }; + + template + GLM_FUNC_DECL GLM_CONSTEXPR mat abs(mat const& x) + { + return compute_abs_matrix::value>::call(x); + } + +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_double2x2.hpp b/thirdparty/glm/glm/ext/matrix_double2x2.hpp new file mode 100644 index 000000000000..94dca54b59bd --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_double2x2.hpp @@ -0,0 +1,23 @@ +/// @ref core +/// @file glm/ext/matrix_double2x2.hpp + +#pragma once +#include "../detail/type_mat2x2.hpp" + +namespace glm +{ + /// @addtogroup core_matrix + /// @{ + + /// 2 columns of 2 components matrix of double-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<2, 2, double, defaultp> dmat2x2; + + /// 2 columns of 2 components matrix of double-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<2, 2, double, defaultp> dmat2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_double2x2_precision.hpp b/thirdparty/glm/glm/ext/matrix_double2x2_precision.hpp new file mode 100644 index 000000000000..9e2c174e43be --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_double2x2_precision.hpp @@ -0,0 +1,49 @@ +/// @ref core +/// @file glm/ext/matrix_double2x2_precision.hpp + +#pragma once +#include "../detail/type_mat2x2.hpp" + +namespace glm +{ + /// @addtogroup core_matrix_precision + /// @{ + + /// 2 columns of 2 components matrix of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 2, double, lowp> lowp_dmat2; + + /// 2 columns of 2 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 2, double, mediump> mediump_dmat2; + + /// 2 columns of 2 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 2, double, highp> highp_dmat2; + + /// 2 columns of 2 components matrix of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 2, double, lowp> lowp_dmat2x2; + + /// 2 columns of 2 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 2, double, mediump> mediump_dmat2x2; + + /// 2 columns of 2 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 2, double, highp> highp_dmat2x2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_double2x3.hpp b/thirdparty/glm/glm/ext/matrix_double2x3.hpp new file mode 100644 index 000000000000..bfef87a666c1 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_double2x3.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/matrix_double2x3.hpp + +#pragma once +#include "../detail/type_mat2x3.hpp" + +namespace glm +{ + /// @addtogroup core_matrix + /// @{ + + /// 2 columns of 3 components matrix of double-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<2, 3, double, defaultp> dmat2x3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_double2x3_precision.hpp b/thirdparty/glm/glm/ext/matrix_double2x3_precision.hpp new file mode 100644 index 000000000000..098fb6046e88 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_double2x3_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/matrix_double2x3_precision.hpp + +#pragma once +#include "../detail/type_mat2x3.hpp" + +namespace glm +{ + /// @addtogroup core_matrix_precision + /// @{ + + /// 2 columns of 3 components matrix of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 3, double, lowp> lowp_dmat2x3; + + /// 2 columns of 3 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 3, double, mediump> mediump_dmat2x3; + + /// 2 columns of 3 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 3, double, highp> highp_dmat2x3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_double2x4.hpp b/thirdparty/glm/glm/ext/matrix_double2x4.hpp new file mode 100644 index 000000000000..499284bce161 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_double2x4.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/matrix_double2x4.hpp + +#pragma once +#include "../detail/type_mat2x4.hpp" + +namespace glm +{ + /// @addtogroup core_matrix + /// @{ + + /// 2 columns of 4 components matrix of double-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<2, 4, double, defaultp> dmat2x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_double2x4_precision.hpp b/thirdparty/glm/glm/ext/matrix_double2x4_precision.hpp new file mode 100644 index 000000000000..9b61ebcee1ef --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_double2x4_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/matrix_double2x4_precision.hpp + +#pragma once +#include "../detail/type_mat2x4.hpp" + +namespace glm +{ + /// @addtogroup core_matrix_precision + /// @{ + + /// 2 columns of 4 components matrix of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 4, double, lowp> lowp_dmat2x4; + + /// 2 columns of 4 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 4, double, mediump> mediump_dmat2x4; + + /// 2 columns of 4 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 4, double, highp> highp_dmat2x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_double3x2.hpp b/thirdparty/glm/glm/ext/matrix_double3x2.hpp new file mode 100644 index 000000000000..dd23f36cdbb2 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_double3x2.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/matrix_double3x2.hpp + +#pragma once +#include "../detail/type_mat3x2.hpp" + +namespace glm +{ + /// @addtogroup core_matrix + /// @{ + + /// 3 columns of 2 components matrix of double-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<3, 2, double, defaultp> dmat3x2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_double3x2_precision.hpp b/thirdparty/glm/glm/ext/matrix_double3x2_precision.hpp new file mode 100644 index 000000000000..068d9e911721 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_double3x2_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/matrix_double3x2_precision.hpp + +#pragma once +#include "../detail/type_mat3x2.hpp" + +namespace glm +{ + /// @addtogroup core_matrix_precision + /// @{ + + /// 3 columns of 2 components matrix of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 2, double, lowp> lowp_dmat3x2; + + /// 3 columns of 2 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 2, double, mediump> mediump_dmat3x2; + + /// 3 columns of 2 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 2, double, highp> highp_dmat3x2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_double3x3.hpp b/thirdparty/glm/glm/ext/matrix_double3x3.hpp new file mode 100644 index 000000000000..53572b735626 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_double3x3.hpp @@ -0,0 +1,23 @@ +/// @ref core +/// @file glm/ext/matrix_double3x3.hpp + +#pragma once +#include "../detail/type_mat3x3.hpp" + +namespace glm +{ + /// @addtogroup core_matrix + /// @{ + + /// 3 columns of 3 components matrix of double-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<3, 3, double, defaultp> dmat3x3; + + /// 3 columns of 3 components matrix of double-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<3, 3, double, defaultp> dmat3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_double3x3_precision.hpp b/thirdparty/glm/glm/ext/matrix_double3x3_precision.hpp new file mode 100644 index 000000000000..8691e7808dc9 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_double3x3_precision.hpp @@ -0,0 +1,49 @@ +/// @ref core +/// @file glm/ext/matrix_double3x3_precision.hpp + +#pragma once +#include "../detail/type_mat3x3.hpp" + +namespace glm +{ + /// @addtogroup core_matrix_precision + /// @{ + + /// 3 columns of 3 components matrix of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 3, double, lowp> lowp_dmat3; + + /// 3 columns of 3 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 3, double, mediump> mediump_dmat3; + + /// 3 columns of 3 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 3, double, highp> highp_dmat3; + + /// 3 columns of 3 components matrix of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 3, double, lowp> lowp_dmat3x3; + + /// 3 columns of 3 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 3, double, mediump> mediump_dmat3x3; + + /// 3 columns of 3 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 3, double, highp> highp_dmat3x3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_double3x4.hpp b/thirdparty/glm/glm/ext/matrix_double3x4.hpp new file mode 100644 index 000000000000..c572d637cd2d --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_double3x4.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/matrix_double3x4.hpp + +#pragma once +#include "../detail/type_mat3x4.hpp" + +namespace glm +{ + /// @addtogroup core_matrix + /// @{ + + /// 3 columns of 4 components matrix of double-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<3, 4, double, defaultp> dmat3x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_double3x4_precision.hpp b/thirdparty/glm/glm/ext/matrix_double3x4_precision.hpp new file mode 100644 index 000000000000..f040217e748a --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_double3x4_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/matrix_double3x4_precision.hpp + +#pragma once +#include "../detail/type_mat3x4.hpp" + +namespace glm +{ + /// @addtogroup core_matrix_precision + /// @{ + + /// 3 columns of 4 components matrix of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 4, double, lowp> lowp_dmat3x4; + + /// 3 columns of 4 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 4, double, mediump> mediump_dmat3x4; + + /// 3 columns of 4 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 4, double, highp> highp_dmat3x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_double4x2.hpp b/thirdparty/glm/glm/ext/matrix_double4x2.hpp new file mode 100644 index 000000000000..9b229f471e8d --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_double4x2.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/matrix_double4x2.hpp + +#pragma once +#include "../detail/type_mat4x2.hpp" + +namespace glm +{ + /// @addtogroup core_matrix + /// @{ + + /// 4 columns of 2 components matrix of double-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<4, 2, double, defaultp> dmat4x2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_double4x2_precision.hpp b/thirdparty/glm/glm/ext/matrix_double4x2_precision.hpp new file mode 100644 index 000000000000..6ad18ba9e65e --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_double4x2_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/matrix_double4x2_precision.hpp + +#pragma once +#include "../detail/type_mat4x2.hpp" + +namespace glm +{ + /// @addtogroup core_matrix_precision + /// @{ + + /// 4 columns of 2 components matrix of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 2, double, lowp> lowp_dmat4x2; + + /// 4 columns of 2 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 2, double, mediump> mediump_dmat4x2; + + /// 4 columns of 2 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 2, double, highp> highp_dmat4x2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_double4x3.hpp b/thirdparty/glm/glm/ext/matrix_double4x3.hpp new file mode 100644 index 000000000000..dca4cf956f91 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_double4x3.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/matrix_double4x3.hpp + +#pragma once +#include "../detail/type_mat4x3.hpp" + +namespace glm +{ + /// @addtogroup core_matrix + /// @{ + + /// 4 columns of 3 components matrix of double-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<4, 3, double, defaultp> dmat4x3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_double4x3_precision.hpp b/thirdparty/glm/glm/ext/matrix_double4x3_precision.hpp new file mode 100644 index 000000000000..f7371de84942 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_double4x3_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/matrix_double4x3_precision.hpp + +#pragma once +#include "../detail/type_mat4x3.hpp" + +namespace glm +{ + /// @addtogroup core_matrix_precision + /// @{ + + /// 4 columns of 3 components matrix of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 3, double, lowp> lowp_dmat4x3; + + /// 4 columns of 3 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 3, double, mediump> mediump_dmat4x3; + + /// 4 columns of 3 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 3, double, highp> highp_dmat4x3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_double4x4.hpp b/thirdparty/glm/glm/ext/matrix_double4x4.hpp new file mode 100644 index 000000000000..81e1bf65cb5c --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_double4x4.hpp @@ -0,0 +1,23 @@ +/// @ref core +/// @file glm/ext/matrix_double4x4.hpp + +#pragma once +#include "../detail/type_mat4x4.hpp" + +namespace glm +{ + /// @addtogroup core_matrix + /// @{ + + /// 4 columns of 4 components matrix of double-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<4, 4, double, defaultp> dmat4x4; + + /// 4 columns of 4 components matrix of double-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<4, 4, double, defaultp> dmat4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_double4x4_precision.hpp b/thirdparty/glm/glm/ext/matrix_double4x4_precision.hpp new file mode 100644 index 000000000000..4c36a8486c72 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_double4x4_precision.hpp @@ -0,0 +1,49 @@ +/// @ref core +/// @file glm/ext/matrix_double4x4_precision.hpp + +#pragma once +#include "../detail/type_mat4x4.hpp" + +namespace glm +{ + /// @addtogroup core_matrix_precision + /// @{ + + /// 4 columns of 4 components matrix of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 4, double, lowp> lowp_dmat4; + + /// 4 columns of 4 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 4, double, mediump> mediump_dmat4; + + /// 4 columns of 4 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 4, double, highp> highp_dmat4; + + /// 4 columns of 4 components matrix of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 4, double, lowp> lowp_dmat4x4; + + /// 4 columns of 4 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 4, double, mediump> mediump_dmat4x4; + + /// 4 columns of 4 components matrix of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 4, double, highp> highp_dmat4x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_float2x2.hpp b/thirdparty/glm/glm/ext/matrix_float2x2.hpp new file mode 100644 index 000000000000..53df921fe216 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_float2x2.hpp @@ -0,0 +1,23 @@ +/// @ref core +/// @file glm/ext/matrix_float2x2.hpp + +#pragma once +#include "../detail/type_mat2x2.hpp" + +namespace glm +{ + /// @addtogroup core_matrix + /// @{ + + /// 2 columns of 2 components matrix of single-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<2, 2, float, defaultp> mat2x2; + + /// 2 columns of 2 components matrix of single-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<2, 2, float, defaultp> mat2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_float2x2_precision.hpp b/thirdparty/glm/glm/ext/matrix_float2x2_precision.hpp new file mode 100644 index 000000000000..898b6db71408 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_float2x2_precision.hpp @@ -0,0 +1,49 @@ +/// @ref core +/// @file glm/ext/matrix_float2x2_precision.hpp + +#pragma once +#include "../detail/type_mat2x2.hpp" + +namespace glm +{ + /// @addtogroup core_matrix_precision + /// @{ + + /// 2 columns of 2 components matrix of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 2, float, lowp> lowp_mat2; + + /// 2 columns of 2 components matrix of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 2, float, mediump> mediump_mat2; + + /// 2 columns of 2 components matrix of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 2, float, highp> highp_mat2; + + /// 2 columns of 2 components matrix of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 2, float, lowp> lowp_mat2x2; + + /// 2 columns of 2 components matrix of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 2, float, mediump> mediump_mat2x2; + + /// 2 columns of 2 components matrix of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 2, float, highp> highp_mat2x2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_float2x3.hpp b/thirdparty/glm/glm/ext/matrix_float2x3.hpp new file mode 100644 index 000000000000..6f68822dbf1e --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_float2x3.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/matrix_float2x3.hpp + +#pragma once +#include "../detail/type_mat2x3.hpp" + +namespace glm +{ + /// @addtogroup core_matrix + /// @{ + + /// 2 columns of 3 components matrix of single-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<2, 3, float, defaultp> mat2x3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_float2x3_precision.hpp b/thirdparty/glm/glm/ext/matrix_float2x3_precision.hpp new file mode 100644 index 000000000000..50c103245c3a --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_float2x3_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/matrix_float2x3_precision.hpp + +#pragma once +#include "../detail/type_mat2x3.hpp" + +namespace glm +{ + /// @addtogroup core_matrix_precision + /// @{ + + /// 2 columns of 3 components matrix of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 3, float, lowp> lowp_mat2x3; + + /// 2 columns of 3 components matrix of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 3, float, mediump> mediump_mat2x3; + + /// 2 columns of 3 components matrix of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 3, float, highp> highp_mat2x3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_float2x4.hpp b/thirdparty/glm/glm/ext/matrix_float2x4.hpp new file mode 100644 index 000000000000..30f30de3cbd4 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_float2x4.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/matrix_float2x4.hpp + +#pragma once +#include "../detail/type_mat2x4.hpp" + +namespace glm +{ + /// @addtogroup core_matrix + /// @{ + + /// 2 columns of 4 components matrix of single-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<2, 4, float, defaultp> mat2x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_float2x4_precision.hpp b/thirdparty/glm/glm/ext/matrix_float2x4_precision.hpp new file mode 100644 index 000000000000..079d63828631 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_float2x4_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/matrix_float2x4_precision.hpp + +#pragma once +#include "../detail/type_mat2x4.hpp" + +namespace glm +{ + /// @addtogroup core_matrix_precision + /// @{ + + /// 2 columns of 4 components matrix of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 4, float, lowp> lowp_mat2x4; + + /// 2 columns of 4 components matrix of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 4, float, mediump> mediump_mat2x4; + + /// 2 columns of 4 components matrix of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<2, 4, float, highp> highp_mat2x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_float3x2.hpp b/thirdparty/glm/glm/ext/matrix_float3x2.hpp new file mode 100644 index 000000000000..280d0a3e974b --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_float3x2.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/matrix_float3x2.hpp + +#pragma once +#include "../detail/type_mat3x2.hpp" + +namespace glm +{ + /// @addtogroup core_matrix + /// @{ + + /// 3 columns of 2 components matrix of single-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<3, 2, float, defaultp> mat3x2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_float3x2_precision.hpp b/thirdparty/glm/glm/ext/matrix_float3x2_precision.hpp new file mode 100644 index 000000000000..8572c2a1b20e --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_float3x2_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/matrix_float3x2_precision.hpp + +#pragma once +#include "../detail/type_mat3x2.hpp" + +namespace glm +{ + /// @addtogroup core_matrix_precision + /// @{ + + /// 3 columns of 2 components matrix of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 2, float, lowp> lowp_mat3x2; + + /// 3 columns of 2 components matrix of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 2, float, mediump> mediump_mat3x2; + + /// 3 columns of 2 components matrix of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 2, float, highp> highp_mat3x2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_float3x3.hpp b/thirdparty/glm/glm/ext/matrix_float3x3.hpp new file mode 100644 index 000000000000..177d809ff9f4 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_float3x3.hpp @@ -0,0 +1,23 @@ +/// @ref core +/// @file glm/ext/matrix_float3x3.hpp + +#pragma once +#include "../detail/type_mat3x3.hpp" + +namespace glm +{ + /// @addtogroup core_matrix + /// @{ + + /// 3 columns of 3 components matrix of single-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<3, 3, float, defaultp> mat3x3; + + /// 3 columns of 3 components matrix of single-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<3, 3, float, defaultp> mat3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_float3x3_precision.hpp b/thirdparty/glm/glm/ext/matrix_float3x3_precision.hpp new file mode 100644 index 000000000000..8a900c164200 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_float3x3_precision.hpp @@ -0,0 +1,49 @@ +/// @ref core +/// @file glm/ext/matrix_float3x3_precision.hpp + +#pragma once +#include "../detail/type_mat3x3.hpp" + +namespace glm +{ + /// @addtogroup core_matrix_precision + /// @{ + + /// 3 columns of 3 components matrix of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 3, float, lowp> lowp_mat3; + + /// 3 columns of 3 components matrix of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 3, float, mediump> mediump_mat3; + + /// 3 columns of 3 components matrix of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 3, float, highp> highp_mat3; + + /// 3 columns of 3 components matrix of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 3, float, lowp> lowp_mat3x3; + + /// 3 columns of 3 components matrix of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 3, float, mediump> mediump_mat3x3; + + /// 3 columns of 3 components matrix of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 3, float, highp> highp_mat3x3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_float3x4.hpp b/thirdparty/glm/glm/ext/matrix_float3x4.hpp new file mode 100644 index 000000000000..64b8459dcdd2 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_float3x4.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/matrix_float3x4.hpp + +#pragma once +#include "../detail/type_mat3x4.hpp" + +namespace glm +{ + /// @addtogroup core_matrix + /// @{ + + /// 3 columns of 4 components matrix of single-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<3, 4, float, defaultp> mat3x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_float3x4_precision.hpp b/thirdparty/glm/glm/ext/matrix_float3x4_precision.hpp new file mode 100644 index 000000000000..bc36bf13a1e9 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_float3x4_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/matrix_float3x4_precision.hpp + +#pragma once +#include "../detail/type_mat3x4.hpp" + +namespace glm +{ + /// @addtogroup core_matrix_precision + /// @{ + + /// 3 columns of 4 components matrix of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 4, float, lowp> lowp_mat3x4; + + /// 3 columns of 4 components matrix of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 4, float, mediump> mediump_mat3x4; + + /// 3 columns of 4 components matrix of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<3, 4, float, highp> highp_mat3x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_float4x2.hpp b/thirdparty/glm/glm/ext/matrix_float4x2.hpp new file mode 100644 index 000000000000..1ed5227bf580 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_float4x2.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/matrix_float4x2.hpp + +#pragma once +#include "../detail/type_mat4x2.hpp" + +namespace glm +{ + /// @addtogroup core_matrix + /// @{ + + /// 4 columns of 2 components matrix of single-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<4, 2, float, defaultp> mat4x2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_float4x2_precision.hpp b/thirdparty/glm/glm/ext/matrix_float4x2_precision.hpp new file mode 100644 index 000000000000..88fd069630a8 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_float4x2_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/matrix_float2x2_precision.hpp + +#pragma once +#include "../detail/type_mat2x2.hpp" + +namespace glm +{ + /// @addtogroup core_matrix_precision + /// @{ + + /// 4 columns of 2 components matrix of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 2, float, lowp> lowp_mat4x2; + + /// 4 columns of 2 components matrix of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 2, float, mediump> mediump_mat4x2; + + /// 4 columns of 2 components matrix of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 2, float, highp> highp_mat4x2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_float4x3.hpp b/thirdparty/glm/glm/ext/matrix_float4x3.hpp new file mode 100644 index 000000000000..5dbe7657043f --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_float4x3.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/matrix_float4x3.hpp + +#pragma once +#include "../detail/type_mat4x3.hpp" + +namespace glm +{ + /// @addtogroup core_matrix + /// @{ + + /// 4 columns of 3 components matrix of single-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<4, 3, float, defaultp> mat4x3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_float4x3_precision.hpp b/thirdparty/glm/glm/ext/matrix_float4x3_precision.hpp new file mode 100644 index 000000000000..846ed4fc8d9c --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_float4x3_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/matrix_float4x3_precision.hpp + +#pragma once +#include "../detail/type_mat4x3.hpp" + +namespace glm +{ + /// @addtogroup core_matrix_precision + /// @{ + + /// 4 columns of 3 components matrix of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 3, float, lowp> lowp_mat4x3; + + /// 4 columns of 3 components matrix of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 3, float, mediump> mediump_mat4x3; + + /// 4 columns of 3 components matrix of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 3, float, highp> highp_mat4x3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_float4x4.hpp b/thirdparty/glm/glm/ext/matrix_float4x4.hpp new file mode 100644 index 000000000000..5ba111de0481 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_float4x4.hpp @@ -0,0 +1,23 @@ +/// @ref core +/// @file glm/ext/matrix_float4x4.hpp + +#pragma once +#include "../detail/type_mat4x4.hpp" + +namespace glm +{ + /// @ingroup core_matrix + /// @{ + + /// 4 columns of 4 components matrix of single-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<4, 4, float, defaultp> mat4x4; + + /// 4 columns of 4 components matrix of single-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + typedef mat<4, 4, float, defaultp> mat4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_float4x4_precision.hpp b/thirdparty/glm/glm/ext/matrix_float4x4_precision.hpp new file mode 100644 index 000000000000..597149bcf90f --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_float4x4_precision.hpp @@ -0,0 +1,49 @@ +/// @ref core +/// @file glm/ext/matrix_float4x4_precision.hpp + +#pragma once +#include "../detail/type_mat4x4.hpp" + +namespace glm +{ + /// @addtogroup core_matrix_precision + /// @{ + + /// 4 columns of 4 components matrix of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 4, float, lowp> lowp_mat4; + + /// 4 columns of 4 components matrix of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 4, float, mediump> mediump_mat4; + + /// 4 columns of 4 components matrix of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 4, float, highp> highp_mat4; + + /// 4 columns of 4 components matrix of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 4, float, lowp> lowp_mat4x4; + + /// 4 columns of 4 components matrix of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 4, float, mediump> mediump_mat4x4; + + /// 4 columns of 4 components matrix of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + /// + /// @see GLSL 4.20.8 specification, section 4.1.6 Matrices + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef mat<4, 4, float, highp> highp_mat4x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_int2x2.hpp b/thirdparty/glm/glm/ext/matrix_int2x2.hpp new file mode 100644 index 000000000000..c6aa0686ae78 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_int2x2.hpp @@ -0,0 +1,38 @@ +/// @ref ext_matrix_int2x2 +/// @file glm/ext/matrix_int2x2.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_int2x2 GLM_EXT_matrix_int2x2 +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat2x2.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_int2x2 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_int2x2 + /// @{ + + /// Signed integer 2x2 matrix. + /// + /// @see ext_matrix_int2x2 + typedef mat<2, 2, int, defaultp> imat2x2; + + /// Signed integer 2x2 matrix. + /// + /// @see ext_matrix_int2x2 + typedef mat<2, 2, int, defaultp> imat2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_int2x2_sized.hpp b/thirdparty/glm/glm/ext/matrix_int2x2_sized.hpp new file mode 100644 index 000000000000..70c0c2106acd --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_int2x2_sized.hpp @@ -0,0 +1,70 @@ +/// @ref ext_matrix_int2x2_sized +/// @file glm/ext/matrix_int2x2_sized.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_int2x2_sized GLM_EXT_matrix_int2x2_sized +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat2x2.hpp" +#include "../ext/scalar_int_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_int2x2_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_int2x2_sized + /// @{ + + /// 8 bit signed integer 2x2 matrix. + /// + /// @see ext_matrix_int2x2_sized + typedef mat<2, 2, int8, defaultp> i8mat2x2; + + /// 16 bit signed integer 2x2 matrix. + /// + /// @see ext_matrix_int2x2_sized + typedef mat<2, 2, int16, defaultp> i16mat2x2; + + /// 32 bit signed integer 2x2 matrix. + /// + /// @see ext_matrix_int2x2_sized + typedef mat<2, 2, int32, defaultp> i32mat2x2; + + /// 64 bit signed integer 2x2 matrix. + /// + /// @see ext_matrix_int2x2_sized + typedef mat<2, 2, int64, defaultp> i64mat2x2; + + + /// 8 bit signed integer 2x2 matrix. + /// + /// @see ext_matrix_int2x2_sized + typedef mat<2, 2, int8, defaultp> i8mat2; + + /// 16 bit signed integer 2x2 matrix. + /// + /// @see ext_matrix_int2x2_sized + typedef mat<2, 2, int16, defaultp> i16mat2; + + /// 32 bit signed integer 2x2 matrix. + /// + /// @see ext_matrix_int2x2_sized + typedef mat<2, 2, int32, defaultp> i32mat2; + + /// 64 bit signed integer 2x2 matrix. + /// + /// @see ext_matrix_int2x2_sized + typedef mat<2, 2, int64, defaultp> i64mat2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_int2x3.hpp b/thirdparty/glm/glm/ext/matrix_int2x3.hpp new file mode 100644 index 000000000000..aee415caa6e1 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_int2x3.hpp @@ -0,0 +1,33 @@ +/// @ref ext_matrix_int2x3 +/// @file glm/ext/matrix_int2x3.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_int2x3 GLM_EXT_matrix_int2x3 +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat2x3.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_int2x3 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_int2x3 + /// @{ + + /// Signed integer 2x3 matrix. + /// + /// @see ext_matrix_int2x3 + typedef mat<2, 3, int, defaultp> imat2x3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_int2x3_sized.hpp b/thirdparty/glm/glm/ext/matrix_int2x3_sized.hpp new file mode 100644 index 000000000000..b5526fe55143 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_int2x3_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_matrix_int2x3_sized +/// @file glm/ext/matrix_int2x3_sized.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_int2x3_sized GLM_EXT_matrix_int2x3_sized +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat2x3.hpp" +#include "../ext/scalar_int_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_int2x3_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_int2x3_sized + /// @{ + + /// 8 bit signed integer 2x3 matrix. + /// + /// @see ext_matrix_int2x3_sized + typedef mat<2, 3, int8, defaultp> i8mat2x3; + + /// 16 bit signed integer 2x3 matrix. + /// + /// @see ext_matrix_int2x3_sized + typedef mat<2, 3, int16, defaultp> i16mat2x3; + + /// 32 bit signed integer 2x3 matrix. + /// + /// @see ext_matrix_int2x3_sized + typedef mat<2, 3, int32, defaultp> i32mat2x3; + + /// 64 bit signed integer 2x3 matrix. + /// + /// @see ext_matrix_int2x3_sized + typedef mat<2, 3, int64, defaultp> i64mat2x3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_int2x4.hpp b/thirdparty/glm/glm/ext/matrix_int2x4.hpp new file mode 100644 index 000000000000..4f36331d6602 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_int2x4.hpp @@ -0,0 +1,33 @@ +/// @ref ext_matrix_int2x4 +/// @file glm/ext/matrix_int2x4.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_int2x4 GLM_EXT_matrix_int2x4 +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat2x4.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_int2x4 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_int2x4 + /// @{ + + /// Signed integer 2x4 matrix. + /// + /// @see ext_matrix_int2x4 + typedef mat<2, 4, int, defaultp> imat2x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_int2x4_sized.hpp b/thirdparty/glm/glm/ext/matrix_int2x4_sized.hpp new file mode 100644 index 000000000000..a66a5e726881 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_int2x4_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_matrix_int2x4_sized +/// @file glm/ext/matrix_int2x4_sized.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_int2x4_sized GLM_EXT_matrix_int2x4_sized +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat2x4.hpp" +#include "../ext/scalar_int_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_int2x4_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_int2x4_sized + /// @{ + + /// 8 bit signed integer 2x4 matrix. + /// + /// @see ext_matrix_int2x4_sized + typedef mat<2, 4, int8, defaultp> i8mat2x4; + + /// 16 bit signed integer 2x4 matrix. + /// + /// @see ext_matrix_int2x4_sized + typedef mat<2, 4, int16, defaultp> i16mat2x4; + + /// 32 bit signed integer 2x4 matrix. + /// + /// @see ext_matrix_int2x4_sized + typedef mat<2, 4, int32, defaultp> i32mat2x4; + + /// 64 bit signed integer 2x4 matrix. + /// + /// @see ext_matrix_int2x4_sized + typedef mat<2, 4, int64, defaultp> i64mat2x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_int3x2.hpp b/thirdparty/glm/glm/ext/matrix_int3x2.hpp new file mode 100644 index 000000000000..3bd563b7de9c --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_int3x2.hpp @@ -0,0 +1,33 @@ +/// @ref ext_matrix_int3x2 +/// @file glm/ext/matrix_int3x2.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_int3x2 GLM_EXT_matrix_int3x2 +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat3x2.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_int3x2 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_int3x2 + /// @{ + + /// Signed integer 3x2 matrix. + /// + /// @see ext_matrix_int3x2 + typedef mat<3, 2, int, defaultp> imat3x2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_int3x2_sized.hpp b/thirdparty/glm/glm/ext/matrix_int3x2_sized.hpp new file mode 100644 index 000000000000..7e34c5240f40 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_int3x2_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_matrix_int3x2_sized +/// @file glm/ext/matrix_int3x2_sized.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_int3x2_sized GLM_EXT_matrix_int3x2_sized +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat3x2.hpp" +#include "../ext/scalar_int_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_int3x2_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_int3x2_sized + /// @{ + + /// 8 bit signed integer 3x2 matrix. + /// + /// @see ext_matrix_int3x2_sized + typedef mat<3, 2, int8, defaultp> i8mat3x2; + + /// 16 bit signed integer 3x2 matrix. + /// + /// @see ext_matrix_int3x2_sized + typedef mat<3, 2, int16, defaultp> i16mat3x2; + + /// 32 bit signed integer 3x2 matrix. + /// + /// @see ext_matrix_int3x2_sized + typedef mat<3, 2, int32, defaultp> i32mat3x2; + + /// 64 bit signed integer 3x2 matrix. + /// + /// @see ext_matrix_int3x2_sized + typedef mat<3, 2, int64, defaultp> i64mat3x2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_int3x3.hpp b/thirdparty/glm/glm/ext/matrix_int3x3.hpp new file mode 100644 index 000000000000..287488da0343 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_int3x3.hpp @@ -0,0 +1,38 @@ +/// @ref ext_matrix_int3x3 +/// @file glm/ext/matrix_int3x3.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_int3x3 GLM_EXT_matrix_int3x3 +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat3x3.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_int3x3 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_int3x3 + /// @{ + + /// Signed integer 3x3 matrix. + /// + /// @see ext_matrix_int3x3 + typedef mat<3, 3, int, defaultp> imat3x3; + + /// Signed integer 3x3 matrix. + /// + /// @see ext_matrix_int3x3 + typedef mat<3, 3, int, defaultp> imat3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_int3x3_sized.hpp b/thirdparty/glm/glm/ext/matrix_int3x3_sized.hpp new file mode 100644 index 000000000000..577e305aa7f7 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_int3x3_sized.hpp @@ -0,0 +1,70 @@ +/// @ref ext_matrix_int3x3_sized +/// @file glm/ext/matrix_int3x3_sized.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_int3x3_sized GLM_EXT_matrix_int3x3_sized +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat3x3.hpp" +#include "../ext/scalar_int_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_int3x3_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_int3x3_sized + /// @{ + + /// 8 bit signed integer 3x3 matrix. + /// + /// @see ext_matrix_int3x3_sized + typedef mat<3, 3, int8, defaultp> i8mat3x3; + + /// 16 bit signed integer 3x3 matrix. + /// + /// @see ext_matrix_int3x3_sized + typedef mat<3, 3, int16, defaultp> i16mat3x3; + + /// 32 bit signed integer 3x3 matrix. + /// + /// @see ext_matrix_int3x3_sized + typedef mat<3, 3, int32, defaultp> i32mat3x3; + + /// 64 bit signed integer 3x3 matrix. + /// + /// @see ext_matrix_int3x3_sized + typedef mat<3, 3, int64, defaultp> i64mat3x3; + + + /// 8 bit signed integer 3x3 matrix. + /// + /// @see ext_matrix_int3x3_sized + typedef mat<3, 3, int8, defaultp> i8mat3; + + /// 16 bit signed integer 3x3 matrix. + /// + /// @see ext_matrix_int3x3_sized + typedef mat<3, 3, int16, defaultp> i16mat3; + + /// 32 bit signed integer 3x3 matrix. + /// + /// @see ext_matrix_int3x3_sized + typedef mat<3, 3, int32, defaultp> i32mat3; + + /// 64 bit signed integer 3x3 matrix. + /// + /// @see ext_matrix_int3x3_sized + typedef mat<3, 3, int64, defaultp> i64mat3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_int3x4.hpp b/thirdparty/glm/glm/ext/matrix_int3x4.hpp new file mode 100644 index 000000000000..08e534d9c4d5 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_int3x4.hpp @@ -0,0 +1,33 @@ +/// @ref ext_matrix_int3x4 +/// @file glm/ext/matrix_int3x4.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_int3x4 GLM_EXT_matrix_int3x4 +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat3x4.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_int3x4 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_int3x4 + /// @{ + + /// Signed integer 3x4 matrix. + /// + /// @see ext_matrix_int3x4 + typedef mat<3, 4, int, defaultp> imat3x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_int3x4_sized.hpp b/thirdparty/glm/glm/ext/matrix_int3x4_sized.hpp new file mode 100644 index 000000000000..692c48c439e7 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_int3x4_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_matrix_int3x4_sized +/// @file glm/ext/matrix_int3x2_sized.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_int3x4_sized GLM_EXT_matrix_int3x4_sized +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat3x4.hpp" +#include "../ext/scalar_int_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_int3x4_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_int3x4_sized + /// @{ + + /// 8 bit signed integer 3x4 matrix. + /// + /// @see ext_matrix_int3x4_sized + typedef mat<3, 4, int8, defaultp> i8mat3x4; + + /// 16 bit signed integer 3x4 matrix. + /// + /// @see ext_matrix_int3x4_sized + typedef mat<3, 4, int16, defaultp> i16mat3x4; + + /// 32 bit signed integer 3x4 matrix. + /// + /// @see ext_matrix_int3x4_sized + typedef mat<3, 4, int32, defaultp> i32mat3x4; + + /// 64 bit signed integer 3x4 matrix. + /// + /// @see ext_matrix_int3x4_sized + typedef mat<3, 4, int64, defaultp> i64mat3x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_int4x2.hpp b/thirdparty/glm/glm/ext/matrix_int4x2.hpp new file mode 100644 index 000000000000..f756ef2804c8 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_int4x2.hpp @@ -0,0 +1,33 @@ +/// @ref ext_matrix_int4x2 +/// @file glm/ext/matrix_int4x2.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_int4x2 GLM_EXT_matrix_int4x2 +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat4x2.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_int4x2 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_int4x2 + /// @{ + + /// Signed integer 4x2 matrix. + /// + /// @see ext_matrix_int4x2 + typedef mat<4, 2, int, defaultp> imat4x2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_int4x2_sized.hpp b/thirdparty/glm/glm/ext/matrix_int4x2_sized.hpp new file mode 100644 index 000000000000..63a99d604dc5 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_int4x2_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_matrix_int4x2_sized +/// @file glm/ext/matrix_int4x2_sized.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_int4x2_sized GLM_EXT_matrix_int4x2_sized +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat4x2.hpp" +#include "../ext/scalar_int_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_int4x2_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_int4x2_sized + /// @{ + + /// 8 bit signed integer 4x2 matrix. + /// + /// @see ext_matrix_int4x2_sized + typedef mat<4, 2, int8, defaultp> i8mat4x2; + + /// 16 bit signed integer 4x2 matrix. + /// + /// @see ext_matrix_int4x2_sized + typedef mat<4, 2, int16, defaultp> i16mat4x2; + + /// 32 bit signed integer 4x2 matrix. + /// + /// @see ext_matrix_int4x2_sized + typedef mat<4, 2, int32, defaultp> i32mat4x2; + + /// 64 bit signed integer 4x2 matrix. + /// + /// @see ext_matrix_int4x2_sized + typedef mat<4, 2, int64, defaultp> i64mat4x2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_int4x3.hpp b/thirdparty/glm/glm/ext/matrix_int4x3.hpp new file mode 100644 index 000000000000..d5d97a7a37cf --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_int4x3.hpp @@ -0,0 +1,33 @@ +/// @ref ext_matrix_int4x3 +/// @file glm/ext/matrix_int4x3.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_int4x3 GLM_EXT_matrix_int4x3 +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat4x3.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_int4x3 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_int4x3 + /// @{ + + /// Signed integer 4x3 matrix. + /// + /// @see ext_matrix_int4x3 + typedef mat<4, 3, int, defaultp> imat4x3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_int4x3_sized.hpp b/thirdparty/glm/glm/ext/matrix_int4x3_sized.hpp new file mode 100644 index 000000000000..55078fadc60f --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_int4x3_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_matrix_int4x3_sized +/// @file glm/ext/matrix_int4x3_sized.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_int4x3_sized GLM_EXT_matrix_int4x3_sized +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat4x3.hpp" +#include "../ext/scalar_int_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_int4x3_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_int4x3_sized + /// @{ + + /// 8 bit signed integer 4x3 matrix. + /// + /// @see ext_matrix_int4x3_sized + typedef mat<4, 3, int8, defaultp> i8mat4x3; + + /// 16 bit signed integer 4x3 matrix. + /// + /// @see ext_matrix_int4x3_sized + typedef mat<4, 3, int16, defaultp> i16mat4x3; + + /// 32 bit signed integer 4x3 matrix. + /// + /// @see ext_matrix_int4x3_sized + typedef mat<4, 3, int32, defaultp> i32mat4x3; + + /// 64 bit signed integer 4x3 matrix. + /// + /// @see ext_matrix_int4x3_sized + typedef mat<4, 3, int64, defaultp> i64mat4x3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_int4x4.hpp b/thirdparty/glm/glm/ext/matrix_int4x4.hpp new file mode 100644 index 000000000000..e17cff17f9fb --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_int4x4.hpp @@ -0,0 +1,38 @@ +/// @ref ext_matrix_int4x4 +/// @file glm/ext/matrix_int4x4.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_int4x4 GLM_EXT_matrix_int4x4 +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat4x4.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_int4x4 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_int4x4 + /// @{ + + /// Signed integer 4x4 matrix. + /// + /// @see ext_matrix_int4x4 + typedef mat<4, 4, int, defaultp> imat4x4; + + /// Signed integer 4x4 matrix. + /// + /// @see ext_matrix_int4x4 + typedef mat<4, 4, int, defaultp> imat4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_int4x4_sized.hpp b/thirdparty/glm/glm/ext/matrix_int4x4_sized.hpp new file mode 100644 index 000000000000..4a11203eb25b --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_int4x4_sized.hpp @@ -0,0 +1,70 @@ +/// @ref ext_matrix_int4x4_sized +/// @file glm/ext/matrix_int4x4_sized.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_int4x4_sized GLM_EXT_matrix_int4x4_sized +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat4x4.hpp" +#include "../ext/scalar_int_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_int4x4_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_int4x4_sized + /// @{ + + /// 8 bit signed integer 4x4 matrix. + /// + /// @see ext_matrix_int4x4_sized + typedef mat<4, 4, int8, defaultp> i8mat4x4; + + /// 16 bit signed integer 4x4 matrix. + /// + /// @see ext_matrix_int4x4_sized + typedef mat<4, 4, int16, defaultp> i16mat4x4; + + /// 32 bit signed integer 4x4 matrix. + /// + /// @see ext_matrix_int4x4_sized + typedef mat<4, 4, int32, defaultp> i32mat4x4; + + /// 64 bit signed integer 4x4 matrix. + /// + /// @see ext_matrix_int4x4_sized + typedef mat<4, 4, int64, defaultp> i64mat4x4; + + + /// 8 bit signed integer 4x4 matrix. + /// + /// @see ext_matrix_int4x4_sized + typedef mat<4, 4, int8, defaultp> i8mat4; + + /// 16 bit signed integer 4x4 matrix. + /// + /// @see ext_matrix_int4x4_sized + typedef mat<4, 4, int16, defaultp> i16mat4; + + /// 32 bit signed integer 4x4 matrix. + /// + /// @see ext_matrix_int4x4_sized + typedef mat<4, 4, int32, defaultp> i32mat4; + + /// 64 bit signed integer 4x4 matrix. + /// + /// @see ext_matrix_int4x4_sized + typedef mat<4, 4, int64, defaultp> i64mat4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_integer.hpp b/thirdparty/glm/glm/ext/matrix_integer.hpp new file mode 100644 index 000000000000..7d7dfc5a5b08 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_integer.hpp @@ -0,0 +1,91 @@ +/// @ref ext_matrix_integer +/// @file glm/ext/matrix_integer.hpp +/// +/// @defgroup ext_matrix_integer GLM_EXT_matrix_integer +/// @ingroup ext +/// +/// Defines functions that generate common transformation matrices. +/// +/// The matrices generated by this extension use standard OpenGL fixed-function +/// conventions. For example, the lookAt function generates a transform from world +/// space into the specific eye space that the projective matrix functions +/// (perspective, ortho, etc) are designed to expect. The OpenGL compatibility +/// specifications defines the particular layout of this eye space. +/// +/// Include to use the features of this extension. +/// +/// @see ext_matrix_projection +/// @see ext_matrix_clip_space + +#pragma once + +// Dependencies +#include "../gtc/constants.hpp" +#include "../geometric.hpp" +#include "../trigonometric.hpp" +#include "../matrix.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_integer extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_integer + /// @{ + + /// Multiply matrix x by matrix y component-wise, i.e., + /// result[i][j] is the scalar product of x[i][j] and y[i][j]. + /// + /// @tparam C Integer between 1 and 4 included that qualify the number a column + /// @tparam R Integer between 1 and 4 included that qualify the number a row + /// @tparam T Floating-point or signed integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL matrixCompMult man page + /// @see GLSL 4.20.8 specification, section 8.6 Matrix Functions + template + GLM_FUNC_DECL mat matrixCompMult(mat const& x, mat const& y); + + /// Treats the first parameter c as a column vector + /// and the second parameter r as a row vector + /// and does a linear algebraic matrix multiply c * r. + /// + /// @tparam C Integer between 1 and 4 included that qualify the number a column + /// @tparam R Integer between 1 and 4 included that qualify the number a row + /// @tparam T Floating-point or signed integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL outerProduct man page + /// @see GLSL 4.20.8 specification, section 8.6 Matrix Functions + template + GLM_FUNC_DECL typename detail::outerProduct_trait::type outerProduct(vec const& c, vec const& r); + + /// Returns the transposed matrix of x + /// + /// @tparam C Integer between 1 and 4 included that qualify the number a column + /// @tparam R Integer between 1 and 4 included that qualify the number a row + /// @tparam T Floating-point or signed integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL transpose man page + /// @see GLSL 4.20.8 specification, section 8.6 Matrix Functions + template + GLM_FUNC_DECL typename mat::transpose_type transpose(mat const& x); + + /// Return the determinant of a squared matrix. + /// + /// @tparam C Integer between 1 and 4 included that qualify the number a column + /// @tparam R Integer between 1 and 4 included that qualify the number a row + /// @tparam T Floating-point or signed integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL determinant man page + /// @see GLSL 4.20.8 specification, section 8.6 Matrix Functions + template + GLM_FUNC_DECL T determinant(mat const& m); + + /// @} +}//namespace glm + +#include "matrix_integer.inl" diff --git a/thirdparty/glm/glm/ext/matrix_integer.inl b/thirdparty/glm/glm/ext/matrix_integer.inl new file mode 100644 index 000000000000..8b377ce2a8e6 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_integer.inl @@ -0,0 +1,38 @@ +namespace glm{ +namespace detail +{ + template + struct compute_matrixCompMult_type { + GLM_FUNC_QUALIFIER static mat call(mat const& x, mat const& y) + { + return detail::compute_matrixCompMult::value>::call(x, y); + } + }; + + template + struct compute_outerProduct_type { + GLM_FUNC_QUALIFIER static typename detail::outerProduct_trait::type call(vec const& c, vec const& r) + { + return detail::compute_outerProduct::call(c, r); + } + }; + + template + struct compute_transpose_type + { + GLM_FUNC_QUALIFIER static mat call(mat const& m) + { + return detail::compute_transpose::value>::call(m); + } + }; + + template + struct compute_determinant_type{ + + GLM_FUNC_QUALIFIER static T call(mat const& m) + { + return detail::compute_determinant::value>::call(m); + } + }; +}//namespace detail +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_projection.hpp b/thirdparty/glm/glm/ext/matrix_projection.hpp new file mode 100644 index 000000000000..51fd01bd8ee7 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_projection.hpp @@ -0,0 +1,149 @@ +/// @ref ext_matrix_projection +/// @file glm/ext/matrix_projection.hpp +/// +/// @defgroup ext_matrix_projection GLM_EXT_matrix_projection +/// @ingroup ext +/// +/// Functions that generate common projection transformation matrices. +/// +/// The matrices generated by this extension use standard OpenGL fixed-function +/// conventions. For example, the lookAt function generates a transform from world +/// space into the specific eye space that the projective matrix functions +/// (perspective, ortho, etc) are designed to expect. The OpenGL compatibility +/// specifications defines the particular layout of this eye space. +/// +/// Include to use the features of this extension. +/// +/// @see ext_matrix_transform +/// @see ext_matrix_clip_space + +#pragma once + +// Dependencies +#include "../gtc/constants.hpp" +#include "../geometric.hpp" +#include "../trigonometric.hpp" +#include "../matrix.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_projection extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_projection + /// @{ + + /// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param obj Specify the object coordinates. + /// @param model Specifies the current modelview matrix + /// @param proj Specifies the current projection matrix + /// @param viewport Specifies the current viewport + /// @return Return the computed window coordinates. + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. + /// @tparam U Currently supported: Floating-point types and integer types. + /// + /// @see gluProject man page + template + GLM_FUNC_DECL vec<3, T, Q> projectZO( + vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport); + + /// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param obj Specify the object coordinates. + /// @param model Specifies the current modelview matrix + /// @param proj Specifies the current projection matrix + /// @param viewport Specifies the current viewport + /// @return Return the computed window coordinates. + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. + /// @tparam U Currently supported: Floating-point types and integer types. + /// + /// @see gluProject man page + template + GLM_FUNC_DECL vec<3, T, Q> projectNO( + vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport); + + /// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates using default near and far clip planes definition. + /// To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @param obj Specify the object coordinates. + /// @param model Specifies the current modelview matrix + /// @param proj Specifies the current projection matrix + /// @param viewport Specifies the current viewport + /// @return Return the computed window coordinates. + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. + /// @tparam U Currently supported: Floating-point types and integer types. + /// + /// @see gluProject man page + template + GLM_FUNC_DECL vec<3, T, Q> project( + vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport); + + /// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param win Specify the window coordinates to be mapped. + /// @param model Specifies the modelview matrix + /// @param proj Specifies the projection matrix + /// @param viewport Specifies the viewport + /// @return Returns the computed object coordinates. + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. + /// @tparam U Currently supported: Floating-point types and integer types. + /// + /// @see gluUnProject man page + template + GLM_FUNC_DECL vec<3, T, Q> unProjectZO( + vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport); + + /// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param win Specify the window coordinates to be mapped. + /// @param model Specifies the modelview matrix + /// @param proj Specifies the projection matrix + /// @param viewport Specifies the viewport + /// @return Returns the computed object coordinates. + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. + /// @tparam U Currently supported: Floating-point types and integer types. + /// + /// @see gluUnProject man page + template + GLM_FUNC_DECL vec<3, T, Q> unProjectNO( + vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport); + + /// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates using default near and far clip planes definition. + /// To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @param win Specify the window coordinates to be mapped. + /// @param model Specifies the modelview matrix + /// @param proj Specifies the projection matrix + /// @param viewport Specifies the viewport + /// @return Returns the computed object coordinates. + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. + /// @tparam U Currently supported: Floating-point types and integer types. + /// + /// @see gluUnProject man page + template + GLM_FUNC_DECL vec<3, T, Q> unProject( + vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport); + + /// Define a picking region + /// + /// @param center Specify the center of a picking region in window coordinates. + /// @param delta Specify the width and height, respectively, of the picking region in window coordinates. + /// @param viewport Rendering viewport + /// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double. + /// @tparam U Currently supported: Floating-point types and integer types. + /// + /// @see gluPickMatrix man page + template + GLM_FUNC_DECL mat<4, 4, T, Q> pickMatrix( + vec<2, T, Q> const& center, vec<2, T, Q> const& delta, vec<4, U, Q> const& viewport); + + /// @} +}//namespace glm + +#include "matrix_projection.inl" diff --git a/thirdparty/glm/glm/ext/matrix_projection.inl b/thirdparty/glm/glm/ext/matrix_projection.inl new file mode 100644 index 000000000000..2f2c196aac5f --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_projection.inl @@ -0,0 +1,106 @@ +namespace glm +{ + template + GLM_FUNC_QUALIFIER vec<3, T, Q> projectZO(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) + { + vec<4, T, Q> tmp = vec<4, T, Q>(obj, static_cast(1)); + tmp = model * tmp; + tmp = proj * tmp; + + tmp /= tmp.w; + tmp.x = tmp.x * static_cast(0.5) + static_cast(0.5); + tmp.y = tmp.y * static_cast(0.5) + static_cast(0.5); + + tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]); + tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]); + + return vec<3, T, Q>(tmp); + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> projectNO(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) + { + vec<4, T, Q> tmp = vec<4, T, Q>(obj, static_cast(1)); + tmp = model * tmp; + tmp = proj * tmp; + + tmp /= tmp.w; + tmp = tmp * static_cast(0.5) + static_cast(0.5); + tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]); + tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]); + + return vec<3, T, Q>(tmp); + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> project(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT + return projectZO(obj, model, proj, viewport); +# else + return projectNO(obj, model, proj, viewport); +# endif + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> unProjectZO(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) + { + mat<4, 4, T, Q> Inverse = inverse(proj * model); + + vec<4, T, Q> tmp = vec<4, T, Q>(win, T(1)); + tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]); + tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]); + tmp.x = tmp.x * static_cast(2) - static_cast(1); + tmp.y = tmp.y * static_cast(2) - static_cast(1); + + vec<4, T, Q> obj = Inverse * tmp; + obj /= obj.w; + + return vec<3, T, Q>(obj); + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> unProjectNO(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) + { + mat<4, 4, T, Q> Inverse = inverse(proj * model); + + vec<4, T, Q> tmp = vec<4, T, Q>(win, T(1)); + tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]); + tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]); + tmp = tmp * static_cast(2) - static_cast(1); + + vec<4, T, Q> obj = Inverse * tmp; + obj /= obj.w; + + return vec<3, T, Q>(obj); + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> unProject(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT + return unProjectZO(win, model, proj, viewport); +# else + return unProjectNO(win, model, proj, viewport); +# endif + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> pickMatrix(vec<2, T, Q> const& center, vec<2, T, Q> const& delta, vec<4, U, Q> const& viewport) + { + assert(delta.x > static_cast(0) && delta.y > static_cast(0)); + mat<4, 4, T, Q> Result(static_cast(1)); + + if(!(delta.x > static_cast(0) && delta.y > static_cast(0))) + return Result; // Error + + vec<3, T, Q> Temp( + (static_cast(viewport[2]) - static_cast(2) * (center.x - static_cast(viewport[0]))) / delta.x, + (static_cast(viewport[3]) - static_cast(2) * (center.y - static_cast(viewport[1]))) / delta.y, + static_cast(0)); + + // Translate and scale the picked region to the entire window + Result = translate(Result, Temp); + return scale(Result, vec<3, T, Q>(static_cast(viewport[2]) / delta.x, static_cast(viewport[3]) / delta.y, static_cast(1))); + } +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_relational.hpp b/thirdparty/glm/glm/ext/matrix_relational.hpp new file mode 100644 index 000000000000..20023ad89a0c --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_relational.hpp @@ -0,0 +1,132 @@ +/// @ref ext_matrix_relational +/// @file glm/ext/matrix_relational.hpp +/// +/// @defgroup ext_matrix_relational GLM_EXT_matrix_relational +/// @ingroup ext +/// +/// Exposes comparison functions for matrix types that take a user defined epsilon values. +/// +/// Include to use the features of this extension. +/// +/// @see ext_vector_relational +/// @see ext_scalar_relational +/// @see ext_quaternion_relational + +#pragma once + +// Dependencies +#include "../detail/qualifier.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_relational extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_relational + /// @{ + + /// Perform a component-wise equal-to comparison of two matrices. + /// Return a boolean vector which components value is True if this expression is satisfied per column of the matrices. + /// + /// @tparam C Integer between 1 and 4 included that qualify the number of columns of the matrix + /// @tparam R Integer between 1 and 4 included that qualify the number of rows of the matrix + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec equal(mat const& x, mat const& y); + + /// Perform a component-wise not-equal-to comparison of two matrices. + /// Return a boolean vector which components value is True if this expression is satisfied per column of the matrices. + /// + /// @tparam C Integer between 1 and 4 included that qualify the number of columns of the matrix + /// @tparam R Integer between 1 and 4 included that qualify the number of rows of the matrix + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec notEqual(mat const& x, mat const& y); + + /// Returns the component-wise comparison of |x - y| < epsilon. + /// True if this expression is satisfied. + /// + /// @tparam C Integer between 1 and 4 included that qualify the number of columns of the matrix + /// @tparam R Integer between 1 and 4 included that qualify the number of rows of the matrix + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec equal(mat const& x, mat const& y, T epsilon); + + /// Returns the component-wise comparison of |x - y| < epsilon. + /// True if this expression is satisfied. + /// + /// @tparam C Integer between 1 and 4 included that qualify the number of columns of the matrix + /// @tparam R Integer between 1 and 4 included that qualify the number of rows of the matrix + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec equal(mat const& x, mat const& y, vec const& epsilon); + + /// Returns the component-wise comparison of |x - y| < epsilon. + /// True if this expression is not satisfied. + /// + /// @tparam C Integer between 1 and 4 included that qualify the number of columns of the matrix + /// @tparam R Integer between 1 and 4 included that qualify the number of rows of the matrix + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec notEqual(mat const& x, mat const& y, T epsilon); + + /// Returns the component-wise comparison of |x - y| >= epsilon. + /// True if this expression is not satisfied. + /// + /// @tparam C Integer between 1 and 4 included that qualify the number of columns of the matrix + /// @tparam R Integer between 1 and 4 included that qualify the number of rows of the matrix + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec notEqual(mat const& x, mat const& y, vec const& epsilon); + + /// Returns the component-wise comparison between two vectors in term of ULPs. + /// True if this expression is satisfied. + /// + /// @tparam C Integer between 1 and 4 included that qualify the number of columns of the matrix + /// @tparam R Integer between 1 and 4 included that qualify the number of rows of the matrix + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec equal(mat const& x, mat const& y, int ULPs); + + /// Returns the component-wise comparison between two vectors in term of ULPs. + /// True if this expression is satisfied. + /// + /// @tparam C Integer between 1 and 4 included that qualify the number of columns of the matrix + /// @tparam R Integer between 1 and 4 included that qualify the number of rows of the matrix + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec equal(mat const& x, mat const& y, vec const& ULPs); + + /// Returns the component-wise comparison between two vectors in term of ULPs. + /// True if this expression is not satisfied. + /// + /// @tparam C Integer between 1 and 4 included that qualify the number of columns of the matrix + /// @tparam R Integer between 1 and 4 included that qualify the number of rows of the matrix + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec notEqual(mat const& x, mat const& y, int ULPs); + + /// Returns the component-wise comparison between two vectors in term of ULPs. + /// True if this expression is not satisfied. + /// + /// @tparam C Integer between 1 and 4 included that qualify the number of columns of the matrix + /// @tparam R Integer between 1 and 4 included that qualify the number of rows of the matrix + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec notEqual(mat const& x, mat const& y, vec const& ULPs); + + /// @} +}//namespace glm + +#include "matrix_relational.inl" diff --git a/thirdparty/glm/glm/ext/matrix_relational.inl b/thirdparty/glm/glm/ext/matrix_relational.inl new file mode 100644 index 000000000000..9cd42b772b32 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_relational.inl @@ -0,0 +1,88 @@ +/// @ref ext_vector_relational +/// @file glm/ext/vector_relational.inl + +// Dependency: +#include "../ext/vector_relational.hpp" +#include "../common.hpp" + +namespace glm +{ + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec equal(mat const& a, mat const& b) + { + vec Result(true); + for(length_t i = 0; i < C; ++i) + Result[i] = all(equal(a[i], b[i])); + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec equal(mat const& a, mat const& b, T Epsilon) + { + return equal(a, b, vec(Epsilon)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec equal(mat const& a, mat const& b, vec const& Epsilon) + { + vec Result(true); + for(length_t i = 0; i < C; ++i) + Result[i] = all(equal(a[i], b[i], Epsilon[i])); + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec notEqual(mat const& a, mat const& b) + { + vec Result(true); + for(length_t i = 0; i < C; ++i) + Result[i] = any(notEqual(a[i], b[i])); + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec notEqual(mat const& a, mat const& b, T Epsilon) + { + return notEqual(a, b, vec(Epsilon)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec notEqual(mat const& a, mat const& b, vec const& Epsilon) + { + vec Result(true); + for(length_t i = 0; i < C; ++i) + Result[i] = any(notEqual(a[i], b[i], Epsilon[i])); + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec equal(mat const& a, mat const& b, int MaxULPs) + { + return equal(a, b, vec(MaxULPs)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec equal(mat const& a, mat const& b, vec const& MaxULPs) + { + vec Result(true); + for(length_t i = 0; i < C; ++i) + Result[i] = all(equal(a[i], b[i], MaxULPs[i])); + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec notEqual(mat const& a, mat const& b, int MaxULPs) + { + return notEqual(a, b, vec(MaxULPs)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec notEqual(mat const& a, mat const& b, vec const& MaxULPs) + { + vec Result(true); + for(length_t i = 0; i < C; ++i) + Result[i] = any(notEqual(a[i], b[i], MaxULPs[i])); + return Result; + } + +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_transform.hpp b/thirdparty/glm/glm/ext/matrix_transform.hpp new file mode 100644 index 000000000000..52695b8bf49d --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_transform.hpp @@ -0,0 +1,171 @@ +/// @ref ext_matrix_transform +/// @file glm/ext/matrix_transform.hpp +/// +/// @defgroup ext_matrix_transform GLM_EXT_matrix_transform +/// @ingroup ext +/// +/// Defines functions that generate common transformation matrices. +/// +/// The matrices generated by this extension use standard OpenGL fixed-function +/// conventions. For example, the lookAt function generates a transform from world +/// space into the specific eye space that the projective matrix functions +/// (perspective, ortho, etc) are designed to expect. The OpenGL compatibility +/// specifications defines the particular layout of this eye space. +/// +/// Include to use the features of this extension. +/// +/// @see ext_matrix_projection +/// @see ext_matrix_clip_space + +#pragma once + +// Dependencies +#include "../gtc/constants.hpp" +#include "../geometric.hpp" +#include "../trigonometric.hpp" +#include "../matrix.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_transform extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_transform + /// @{ + + /// Builds an identity matrix. + template + GLM_FUNC_DECL GLM_CONSTEXPR genType identity(); + + /// Builds a translation 4 * 4 matrix created from a vector of 3 components. + /// + /// @param m Input matrix multiplied by this translation matrix. + /// @param v Coordinates of a translation vector. + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + /// + /// @code + /// #include + /// #include + /// ... + /// glm::mat4 m = glm::translate(glm::mat4(1.0f), glm::vec3(1.0f)); + /// // m[0][0] == 1.0f, m[0][1] == 0.0f, m[0][2] == 0.0f, m[0][3] == 0.0f + /// // m[1][0] == 0.0f, m[1][1] == 1.0f, m[1][2] == 0.0f, m[1][3] == 0.0f + /// // m[2][0] == 0.0f, m[2][1] == 0.0f, m[2][2] == 1.0f, m[2][3] == 0.0f + /// // m[3][0] == 1.0f, m[3][1] == 1.0f, m[3][2] == 1.0f, m[3][3] == 1.0f + /// @endcode + /// + /// @see - translate(mat<4, 4, T, Q> const& m, T x, T y, T z) + /// @see - translate(vec<3, T, Q> const& v) + /// @see glTranslate man page + template + GLM_FUNC_DECL GLM_CONSTEXPR mat<4, 4, T, Q> translate( + mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v); + + /// Builds a rotation 4 * 4 matrix created from an axis vector and an angle. + /// + /// @param m Input matrix multiplied by this rotation matrix. + /// @param angle Rotation angle expressed in radians. + /// @param axis Rotation axis, recommended to be normalized. + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + /// + /// @see - rotate(mat<4, 4, T, Q> const& m, T angle, T x, T y, T z) + /// @see - rotate(T angle, vec<3, T, Q> const& v) + /// @see glRotate man page + template + GLM_FUNC_DECL mat<4, 4, T, Q> rotate( + mat<4, 4, T, Q> const& m, T angle, vec<3, T, Q> const& axis); + + /// Builds a scale 4 * 4 matrix created from 3 scalars. + /// + /// @param m Input matrix multiplied by this scale matrix. + /// @param v Ratio of scaling for each axis. + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + /// + /// @see - scale(mat<4, 4, T, Q> const& m, T x, T y, T z) + /// @see - scale(vec<3, T, Q> const& v) + /// @see glScale man page + template + GLM_FUNC_DECL mat<4, 4, T, Q> scale( + mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v); + + /// Builds a scale 4 * 4 matrix created from point referent 3 shearers. + /// + /// @param m Input matrix multiplied by this shear matrix. + /// @param p Point of shearing as reference. + /// @param l_x Ratio of matrix.x projection in YZ plane relative to the y-axis/z-axis. + /// @param l_y Ratio of matrix.y projection in XZ plane relative to the x-axis/z-axis. + /// @param l_z Ratio of matrix.z projection in XY plane relative to the x-axis/y-axis. + /// + /// as example: + /// [1 , l_xy, l_xz, -(l_xy+l_xz) * p_x] [x] T + /// [x`, y`, z`, w`] = [x`, y`, z`, w`] * [l_yx, 1 , l_yz, -(l_yx+l_yz) * p_y] [y] + /// [l_zx, l_zy, 1 , -(l_zx+l_zy) * p_z] [z] + /// [0 , 0 , 0 , 1 ] [w] + /// + /// @tparam T A floating-point shear type + /// @tparam Q A value from qualifier enum + /// + /// @see - shear(mat<4, 4, T, Q> const& m, T x, T y, T z) + /// @see - shear(vec<3, T, Q> const& p) + /// @see - shear(vec<2, T, Q> const& l_x) + /// @see - shear(vec<2, T, Q> const& l_y) + /// @see - shear(vec<2, T, Q> const& l_z) + /// @see no resource... + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> shear( + mat<4, 4, T, Q> const &m, vec<3, T, Q> const& p, vec<2, T, Q> const &l_x, vec<2, T, Q> const &l_y, vec<2, T, Q> const &l_z); + + /// Build a right handed look at view matrix. + /// + /// @param eye Position of the camera + /// @param center Position where the camera is looking at + /// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1) + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + /// + /// @see - frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) + template + GLM_FUNC_DECL mat<4, 4, T, Q> lookAtRH( + vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up); + + /// Build a left handed look at view matrix. + /// + /// @param eye Position of the camera + /// @param center Position where the camera is looking at + /// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1) + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + /// + /// @see - frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) + template + GLM_FUNC_DECL mat<4, 4, T, Q> lookAtLH( + vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up); + + /// Build a look at view matrix based on the default handedness. + /// + /// @param eye Position of the camera + /// @param center Position where the camera is looking at + /// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1) + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + /// + /// @see - frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) + /// @see gluLookAt man page + template + GLM_FUNC_DECL mat<4, 4, T, Q> lookAt( + vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up); + + /// @} +}//namespace glm + +#include "matrix_transform.inl" diff --git a/thirdparty/glm/glm/ext/matrix_transform.inl b/thirdparty/glm/glm/ext/matrix_transform.inl new file mode 100644 index 000000000000..40459bbb71bd --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_transform.inl @@ -0,0 +1,207 @@ +namespace glm +{ + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType identity() + { + return detail::init_gentype::GENTYPE>::identity(); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR mat<4, 4, T, Q> translate(mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v) + { + mat<4, 4, T, Q> Result(m); + Result[3] = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3]; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> rotate(mat<4, 4, T, Q> const& m, T angle, vec<3, T, Q> const& v) + { + T const a = angle; + T const c = cos(a); + T const s = sin(a); + + vec<3, T, Q> axis(normalize(v)); + vec<3, T, Q> temp((T(1) - c) * axis); + + mat<4, 4, T, Q> Rotate; + Rotate[0][0] = c + temp[0] * axis[0]; + Rotate[0][1] = temp[0] * axis[1] + s * axis[2]; + Rotate[0][2] = temp[0] * axis[2] - s * axis[1]; + + Rotate[1][0] = temp[1] * axis[0] - s * axis[2]; + Rotate[1][1] = c + temp[1] * axis[1]; + Rotate[1][2] = temp[1] * axis[2] + s * axis[0]; + + Rotate[2][0] = temp[2] * axis[0] + s * axis[1]; + Rotate[2][1] = temp[2] * axis[1] - s * axis[0]; + Rotate[2][2] = c + temp[2] * axis[2]; + + mat<4, 4, T, Q> Result; + Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2]; + Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2]; + Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2]; + Result[3] = m[3]; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> rotate_slow(mat<4, 4, T, Q> const& m, T angle, vec<3, T, Q> const& v) + { + T const a = angle; + T const c = cos(a); + T const s = sin(a); + mat<4, 4, T, Q> Result; + + vec<3, T, Q> axis = normalize(v); + + Result[0][0] = c + (static_cast(1) - c) * axis.x * axis.x; + Result[0][1] = (static_cast(1) - c) * axis.x * axis.y + s * axis.z; + Result[0][2] = (static_cast(1) - c) * axis.x * axis.z - s * axis.y; + Result[0][3] = static_cast(0); + + Result[1][0] = (static_cast(1) - c) * axis.y * axis.x - s * axis.z; + Result[1][1] = c + (static_cast(1) - c) * axis.y * axis.y; + Result[1][2] = (static_cast(1) - c) * axis.y * axis.z + s * axis.x; + Result[1][3] = static_cast(0); + + Result[2][0] = (static_cast(1) - c) * axis.z * axis.x + s * axis.y; + Result[2][1] = (static_cast(1) - c) * axis.z * axis.y - s * axis.x; + Result[2][2] = c + (static_cast(1) - c) * axis.z * axis.z; + Result[2][3] = static_cast(0); + + Result[3] = vec<4, T, Q>(0, 0, 0, 1); + return m * Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> scale(mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v) + { + mat<4, 4, T, Q> Result; + Result[0] = m[0] * v[0]; + Result[1] = m[1] * v[1]; + Result[2] = m[2] * v[2]; + Result[3] = m[3]; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> scale_slow(mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v) + { + mat<4, 4, T, Q> Result(T(1)); + Result[0][0] = v.x; + Result[1][1] = v.y; + Result[2][2] = v.z; + return m * Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> shear(mat<4, 4, T, Q> const &m, vec<3, T, Q> const& p, vec<2, T, Q> const &l_x, vec<2, T, Q> const &l_y, vec<2, T, Q> const &l_z) + { + T const lambda_xy = l_x[0]; + T const lambda_xz = l_x[1]; + T const lambda_yx = l_y[0]; + T const lambda_yz = l_y[1]; + T const lambda_zx = l_z[0]; + T const lambda_zy = l_z[1]; + + vec<3, T, Q> point_lambda = vec<3, T, Q>( + (lambda_xy + lambda_xz), (lambda_yx + lambda_yz), (lambda_zx + lambda_zy) + ); + + mat<4, 4, T, Q> Shear = mat<4, 4, T, Q>( + 1 , lambda_yx , lambda_zx , 0, + lambda_xy , 1 , lambda_zy , 0, + lambda_xz , lambda_yz , 1 , 0, + -point_lambda[0] * p[0], -point_lambda[1] * p[1], -point_lambda[2] * p[2], 1 + ); + + mat<4, 4, T, Q> Result; + Result[0] = Shear[0] * m[0][0] + Shear[1] * m[0][1] + Shear[2] * m[0][2] + Shear[3] * m[0][3]; + Result[1] = Shear[0] * m[1][0] + Shear[1] * m[1][1] + Shear[2] * m[1][2] + Shear[3] * m[1][3]; + Result[2] = Shear[0] * m[2][0] + Shear[1] * m[2][1] + Shear[2] * m[2][2] + Shear[3] * m[2][3]; + Result[3] = Shear[0] * m[3][0] + Shear[1] * m[3][1] + Shear[2] * m[3][2] + Shear[3] * m[3][3]; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> shear_slow(mat<4, 4, T, Q> const &m, vec<3, T, Q> const& p, vec<2, T, Q> const &l_x, vec<2, T, Q> const &l_y, vec<2, T, Q> const &l_z) + { + T const lambda_xy = static_cast(l_x[0]); + T const lambda_xz = static_cast(l_x[1]); + T const lambda_yx = static_cast(l_y[0]); + T const lambda_yz = static_cast(l_y[1]); + T const lambda_zx = static_cast(l_z[0]); + T const lambda_zy = static_cast(l_z[1]); + + vec<3, T, Q> point_lambda = vec<3, T, Q>( + static_cast(lambda_xy + lambda_xz), + static_cast(lambda_yx + lambda_yz), + static_cast(lambda_zx + lambda_zy) + ); + + mat<4, 4, T, Q> Shear = mat<4, 4, T, Q>( + 1 , lambda_yx , lambda_zx , 0, + lambda_xy , 1 , lambda_zy , 0, + lambda_xz , lambda_yz , 1 , 0, + -point_lambda[0] * p[0], -point_lambda[1] * p[1], -point_lambda[2] * p[2], 1 + ); + return m * Shear; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAtRH(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up) + { + vec<3, T, Q> const f(normalize(center - eye)); + vec<3, T, Q> const s(normalize(cross(f, up))); + vec<3, T, Q> const u(cross(s, f)); + + mat<4, 4, T, Q> Result(1); + Result[0][0] = s.x; + Result[1][0] = s.y; + Result[2][0] = s.z; + Result[0][1] = u.x; + Result[1][1] = u.y; + Result[2][1] = u.z; + Result[0][2] =-f.x; + Result[1][2] =-f.y; + Result[2][2] =-f.z; + Result[3][0] =-dot(s, eye); + Result[3][1] =-dot(u, eye); + Result[3][2] = dot(f, eye); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAtLH(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up) + { + vec<3, T, Q> const f(normalize(center - eye)); + vec<3, T, Q> const s(normalize(cross(up, f))); + vec<3, T, Q> const u(cross(f, s)); + + mat<4, 4, T, Q> Result(1); + Result[0][0] = s.x; + Result[1][0] = s.y; + Result[2][0] = s.z; + Result[0][1] = u.x; + Result[1][1] = u.y; + Result[2][1] = u.z; + Result[0][2] = f.x; + Result[1][2] = f.y; + Result[2][2] = f.z; + Result[3][0] = -dot(s, eye); + Result[3][1] = -dot(u, eye); + Result[3][2] = -dot(f, eye); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAt(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up) + { +# if (GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT) + return lookAtLH(eye, center, up); +# else + return lookAtRH(eye, center, up); +# endif + } +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_uint2x2.hpp b/thirdparty/glm/glm/ext/matrix_uint2x2.hpp new file mode 100644 index 000000000000..034771ae5225 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_uint2x2.hpp @@ -0,0 +1,38 @@ +/// @ref ext_matrix_uint2x2 +/// @file glm/ext/matrix_uint2x2.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_uint2x2 GLM_EXT_matrix_uint2x2 +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat2x2.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_uint2x2 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_uint2x2 + /// @{ + + /// Unsigned integer 2x2 matrix. + /// + /// @see ext_matrix_uint2x2 + typedef mat<2, 2, uint, defaultp> umat2x2; + + /// Unsigned integer 2x2 matrix. + /// + /// @see ext_matrix_uint2x2 + typedef mat<2, 2, uint, defaultp> umat2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_uint2x2_sized.hpp b/thirdparty/glm/glm/ext/matrix_uint2x2_sized.hpp new file mode 100644 index 000000000000..4555324d2b52 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_uint2x2_sized.hpp @@ -0,0 +1,70 @@ +/// @ref ext_matrix_uint2x2_sized +/// @file glm/ext/matrix_uint2x2_sized.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_uint2x2_sized GLM_EXT_matrix_uint2x2_sized +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat2x2.hpp" +#include "../ext/scalar_uint_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_uint2x2_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_uint2x2_sized + /// @{ + + /// 8 bit unsigned integer 2x2 matrix. + /// + /// @see ext_matrix_uint2x2_sized + typedef mat<2, 2, uint8, defaultp> u8mat2x2; + + /// 16 bit unsigned integer 2x2 matrix. + /// + /// @see ext_matrix_uint2x2_sized + typedef mat<2, 2, uint16, defaultp> u16mat2x2; + + /// 32 bit unsigned integer 2x2 matrix. + /// + /// @see ext_matrix_uint2x2_sized + typedef mat<2, 2, uint32, defaultp> u32mat2x2; + + /// 64 bit unsigned integer 2x2 matrix. + /// + /// @see ext_matrix_uint2x2_sized + typedef mat<2, 2, uint64, defaultp> u64mat2x2; + + + /// 8 bit unsigned integer 2x2 matrix. + /// + /// @see ext_matrix_uint2x2_sized + typedef mat<2, 2, uint8, defaultp> u8mat2; + + /// 16 bit unsigned integer 2x2 matrix. + /// + /// @see ext_matrix_uint2x2_sized + typedef mat<2, 2, uint16, defaultp> u16mat2; + + /// 32 bit unsigned integer 2x2 matrix. + /// + /// @see ext_matrix_uint2x2_sized + typedef mat<2, 2, uint32, defaultp> u32mat2; + + /// 64 bit unsigned integer 2x2 matrix. + /// + /// @see ext_matrix_uint2x2_sized + typedef mat<2, 2, uint64, defaultp> u64mat2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_uint2x3.hpp b/thirdparty/glm/glm/ext/matrix_uint2x3.hpp new file mode 100644 index 000000000000..f496c531a0b8 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_uint2x3.hpp @@ -0,0 +1,33 @@ +/// @ref ext_matrix_uint2x3 +/// @file glm/ext/matrix_uint2x3.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_uint2x3 GLM_EXT_matrix_uint2x3 +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat2x3.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_uint2x3 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_uint2x3 + /// @{ + + /// Unsigned integer 2x3 matrix. + /// + /// @see ext_matrix_uint2x3 + typedef mat<2, 3, uint, defaultp> umat2x3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_uint2x3_sized.hpp b/thirdparty/glm/glm/ext/matrix_uint2x3_sized.hpp new file mode 100644 index 000000000000..db7939c94658 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_uint2x3_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_matrix_uint2x3_sized +/// @file glm/ext/matrix_uint2x3_sized.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_uint2x3_sized GLM_EXT_matrix_uint2x3_sized +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat2x3.hpp" +#include "../ext/scalar_uint_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_uint2x3_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_uint2x3_sized + /// @{ + + /// 8 bit unsigned integer 2x3 matrix. + /// + /// @see ext_matrix_uint2x3_sized + typedef mat<2, 3, uint8, defaultp> u8mat2x3; + + /// 16 bit unsigned integer 2x3 matrix. + /// + /// @see ext_matrix_uint2x3_sized + typedef mat<2, 3, uint16, defaultp> u16mat2x3; + + /// 32 bit unsigned integer 2x3 matrix. + /// + /// @see ext_matrix_uint2x3_sized + typedef mat<2, 3, uint32, defaultp> u32mat2x3; + + /// 64 bit unsigned integer 2x3 matrix. + /// + /// @see ext_matrix_uint2x3_sized + typedef mat<2, 3, uint64, defaultp> u64mat2x3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_uint2x4.hpp b/thirdparty/glm/glm/ext/matrix_uint2x4.hpp new file mode 100644 index 000000000000..0f993509c23b --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_uint2x4.hpp @@ -0,0 +1,33 @@ +/// @ref ext_matrix_uint2x4 +/// @file glm/ext/matrix_uint2x4.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_uint2x4 GLM_EXT_matrix_int2x4 +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat2x4.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_uint2x4 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_uint2x4 + /// @{ + + /// Unsigned integer 2x4 matrix. + /// + /// @see ext_matrix_uint2x4 + typedef mat<2, 4, uint, defaultp> umat2x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_uint2x4_sized.hpp b/thirdparty/glm/glm/ext/matrix_uint2x4_sized.hpp new file mode 100644 index 000000000000..5c55547ff76a --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_uint2x4_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_matrix_uint2x4_sized +/// @file glm/ext/matrix_uint2x4_sized.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_uint2x4_sized GLM_EXT_matrix_uint2x4_sized +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat2x4.hpp" +#include "../ext/scalar_uint_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_uint2x4_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_uint2x4_sized + /// @{ + + /// 8 bit unsigned integer 2x4 matrix. + /// + /// @see ext_matrix_uint2x4_sized + typedef mat<2, 4, uint8, defaultp> u8mat2x4; + + /// 16 bit unsigned integer 2x4 matrix. + /// + /// @see ext_matrix_uint2x4_sized + typedef mat<2, 4, uint16, defaultp> u16mat2x4; + + /// 32 bit unsigned integer 2x4 matrix. + /// + /// @see ext_matrix_uint2x4_sized + typedef mat<2, 4, uint32, defaultp> u32mat2x4; + + /// 64 bit unsigned integer 2x4 matrix. + /// + /// @see ext_matrix_uint2x4_sized + typedef mat<2, 4, uint64, defaultp> u64mat2x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_uint3x2.hpp b/thirdparty/glm/glm/ext/matrix_uint3x2.hpp new file mode 100644 index 000000000000..55a9bed688e9 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_uint3x2.hpp @@ -0,0 +1,33 @@ +/// @ref ext_matrix_uint3x2 +/// @file glm/ext/matrix_uint3x2.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_uint3x2 GLM_EXT_matrix_uint3x2 +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat3x2.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_uint3x2 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_uint3x2 + /// @{ + + /// Unsigned integer 3x2 matrix. + /// + /// @see ext_matrix_uint3x2 + typedef mat<3, 2, uint, defaultp> umat3x2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_uint3x2_sized.hpp b/thirdparty/glm/glm/ext/matrix_uint3x2_sized.hpp new file mode 100644 index 000000000000..c81af8f968d6 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_uint3x2_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_matrix_uint3x2_sized +/// @file glm/ext/matrix_uint3x2_sized.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_uint3x2_sized GLM_EXT_matrix_uint3x2_sized +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat3x2.hpp" +#include "../ext/scalar_uint_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_uint3x2_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_uint3x2_sized + /// @{ + + /// 8 bit signed integer 3x2 matrix. + /// + /// @see ext_matrix_uint3x2_sized + typedef mat<3, 2, uint8, defaultp> u8mat3x2; + + /// 16 bit signed integer 3x2 matrix. + /// + /// @see ext_matrix_uint3x2_sized + typedef mat<3, 2, uint16, defaultp> u16mat3x2; + + /// 32 bit signed integer 3x2 matrix. + /// + /// @see ext_matrix_uint3x2_sized + typedef mat<3, 2, uint32, defaultp> u32mat3x2; + + /// 64 bit signed integer 3x2 matrix. + /// + /// @see ext_matrix_uint3x2_sized + typedef mat<3, 2, uint64, defaultp> u64mat3x2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_uint3x3.hpp b/thirdparty/glm/glm/ext/matrix_uint3x3.hpp new file mode 100644 index 000000000000..1004c0d2d541 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_uint3x3.hpp @@ -0,0 +1,38 @@ +/// @ref ext_matrix_uint3x3 +/// @file glm/ext/matrix_uint3x3.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_uint3x3 GLM_EXT_matrix_uint3x3 +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat3x3.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_uint3x3 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_uint3x3 + /// @{ + + /// Unsigned integer 3x3 matrix. + /// + /// @see ext_matrix_uint3x3 + typedef mat<3, 3, uint, defaultp> umat3x3; + + /// Unsigned integer 3x3 matrix. + /// + /// @see ext_matrix_uint3x3 + typedef mat<3, 3, uint, defaultp> umat3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_uint3x3_sized.hpp b/thirdparty/glm/glm/ext/matrix_uint3x3_sized.hpp new file mode 100644 index 000000000000..41a8be748660 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_uint3x3_sized.hpp @@ -0,0 +1,70 @@ +/// @ref ext_matrix_uint3x3_sized +/// @file glm/ext/matrix_uint3x3_sized.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_uint3x3_sized GLM_EXT_matrix_uint3x3_sized +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat3x3.hpp" +#include "../ext/scalar_uint_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_uint3x3_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_uint3x3_sized + /// @{ + + /// 8 bit unsigned integer 3x3 matrix. + /// + /// @see ext_matrix_uint3x3_sized + typedef mat<3, 3, uint8, defaultp> u8mat3x3; + + /// 16 bit unsigned integer 3x3 matrix. + /// + /// @see ext_matrix_uint3x3_sized + typedef mat<3, 3, uint16, defaultp> u16mat3x3; + + /// 32 bit unsigned integer 3x3 matrix. + /// + /// @see ext_matrix_uint3x3_sized + typedef mat<3, 3, uint32, defaultp> u32mat3x3; + + /// 64 bit unsigned integer 3x3 matrix. + /// + /// @see ext_matrix_uint3x3_sized + typedef mat<3, 3, uint64, defaultp> u64mat3x3; + + + /// 8 bit unsigned integer 3x3 matrix. + /// + /// @see ext_matrix_uint3x3_sized + typedef mat<3, 3, uint8, defaultp> u8mat3; + + /// 16 bit unsigned integer 3x3 matrix. + /// + /// @see ext_matrix_uint3x3_sized + typedef mat<3, 3, uint16, defaultp> u16mat3; + + /// 32 bit unsigned integer 3x3 matrix. + /// + /// @see ext_matrix_uint3x3_sized + typedef mat<3, 3, uint32, defaultp> u32mat3; + + /// 64 bit unsigned integer 3x3 matrix. + /// + /// @see ext_matrix_uint3x3_sized + typedef mat<3, 3, uint64, defaultp> u64mat3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_uint3x4.hpp b/thirdparty/glm/glm/ext/matrix_uint3x4.hpp new file mode 100644 index 000000000000..c6dd78c4a053 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_uint3x4.hpp @@ -0,0 +1,33 @@ +/// @ref ext_matrix_uint3x4 +/// @file glm/ext/matrix_uint3x4.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_uint3x4 GLM_EXT_matrix_uint3x4 +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat3x4.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_uint3x4 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_uint3x4 + /// @{ + + /// Signed integer 3x4 matrix. + /// + /// @see ext_matrix_uint3x4 + typedef mat<3, 4, uint, defaultp> umat3x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_uint3x4_sized.hpp b/thirdparty/glm/glm/ext/matrix_uint3x4_sized.hpp new file mode 100644 index 000000000000..2ce28ad816fc --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_uint3x4_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_matrix_uint3x4_sized +/// @file glm/ext/matrix_uint3x2_sized.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_uint3x4_sized GLM_EXT_matrix_uint3x4_sized +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat3x4.hpp" +#include "../ext/scalar_uint_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_uint3x4_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_uint3x4_sized + /// @{ + + /// 8 bit unsigned integer 3x4 matrix. + /// + /// @see ext_matrix_uint3x4_sized + typedef mat<3, 4, uint8, defaultp> u8mat3x4; + + /// 16 bit unsigned integer 3x4 matrix. + /// + /// @see ext_matrix_uint3x4_sized + typedef mat<3, 4, uint16, defaultp> u16mat3x4; + + /// 32 bit unsigned integer 3x4 matrix. + /// + /// @see ext_matrix_uint3x4_sized + typedef mat<3, 4, uint32, defaultp> u32mat3x4; + + /// 64 bit unsigned integer 3x4 matrix. + /// + /// @see ext_matrix_uint3x4_sized + typedef mat<3, 4, uint64, defaultp> u64mat3x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_uint4x2.hpp b/thirdparty/glm/glm/ext/matrix_uint4x2.hpp new file mode 100644 index 000000000000..0446f5745bde --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_uint4x2.hpp @@ -0,0 +1,33 @@ +/// @ref ext_matrix_uint4x2 +/// @file glm/ext/matrix_uint4x2.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_uint4x2 GLM_EXT_matrix_uint4x2 +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat4x2.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_uint4x2 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_uint4x2 + /// @{ + + /// Unsigned integer 4x2 matrix. + /// + /// @see ext_matrix_uint4x2 + typedef mat<4, 2, uint, defaultp> umat4x2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_uint4x2_sized.hpp b/thirdparty/glm/glm/ext/matrix_uint4x2_sized.hpp new file mode 100644 index 000000000000..57a66bf9b8b0 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_uint4x2_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_matrix_uint4x2_sized +/// @file glm/ext/matrix_uint4x2_sized.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_uint4x2_sized GLM_EXT_matrix_uint4x2_sized +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat4x2.hpp" +#include "../ext/scalar_uint_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_uint4x2_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_uint4x2_sized + /// @{ + + /// 8 bit unsigned integer 4x2 matrix. + /// + /// @see ext_matrix_uint4x2_sized + typedef mat<4, 2, uint8, defaultp> u8mat4x2; + + /// 16 bit unsigned integer 4x2 matrix. + /// + /// @see ext_matrix_uint4x2_sized + typedef mat<4, 2, uint16, defaultp> u16mat4x2; + + /// 32 bit unsigned integer 4x2 matrix. + /// + /// @see ext_matrix_uint4x2_sized + typedef mat<4, 2, uint32, defaultp> u32mat4x2; + + /// 64 bit unsigned integer 4x2 matrix. + /// + /// @see ext_matrix_uint4x2_sized + typedef mat<4, 2, uint64, defaultp> u64mat4x2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_uint4x3.hpp b/thirdparty/glm/glm/ext/matrix_uint4x3.hpp new file mode 100644 index 000000000000..54c24e4e50b1 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_uint4x3.hpp @@ -0,0 +1,33 @@ +/// @ref ext_matrix_uint4x3 +/// @file glm/ext/matrix_uint4x3.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_uint4x3 GLM_EXT_matrix_uint4x3 +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat4x3.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_uint4x3 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_uint4x3 + /// @{ + + /// Unsigned integer 4x3 matrix. + /// + /// @see ext_matrix_uint4x3 + typedef mat<4, 3, uint, defaultp> umat4x3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_uint4x3_sized.hpp b/thirdparty/glm/glm/ext/matrix_uint4x3_sized.hpp new file mode 100644 index 000000000000..2e61124d63b4 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_uint4x3_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_matrix_uint4x3_sized +/// @file glm/ext/matrix_uint4x3_sized.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_uint4x3_sized GLM_EXT_matrix_uint4x3_sized +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat4x3.hpp" +#include "../ext/scalar_uint_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_uint4x3_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_uint4x3_sized + /// @{ + + /// 8 bit unsigned integer 4x3 matrix. + /// + /// @see ext_matrix_uint4x3_sized + typedef mat<4, 3, uint8, defaultp> u8mat4x3; + + /// 16 bit unsigned integer 4x3 matrix. + /// + /// @see ext_matrix_uint4x3_sized + typedef mat<4, 3, uint16, defaultp> u16mat4x3; + + /// 32 bit unsigned integer 4x3 matrix. + /// + /// @see ext_matrix_uint4x3_sized + typedef mat<4, 3, uint32, defaultp> u32mat4x3; + + /// 64 bit unsigned integer 4x3 matrix. + /// + /// @see ext_matrix_uint4x3_sized + typedef mat<4, 3, uint64, defaultp> u64mat4x3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_uint4x4.hpp b/thirdparty/glm/glm/ext/matrix_uint4x4.hpp new file mode 100644 index 000000000000..5cc84553d936 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_uint4x4.hpp @@ -0,0 +1,38 @@ +/// @ref ext_matrix_uint4x4 +/// @file glm/ext/matrix_uint4x4.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_uint4x4 GLM_EXT_matrix_uint4x4 +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat4x4.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_uint4x4 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_uint4x4 + /// @{ + + /// Unsigned integer 4x4 matrix. + /// + /// @see ext_matrix_uint4x4 + typedef mat<4, 4, uint, defaultp> umat4x4; + + /// Unsigned integer 4x4 matrix. + /// + /// @see ext_matrix_uint4x4 + typedef mat<4, 4, uint, defaultp> umat4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/matrix_uint4x4_sized.hpp b/thirdparty/glm/glm/ext/matrix_uint4x4_sized.hpp new file mode 100644 index 000000000000..bb10bd2b77d1 --- /dev/null +++ b/thirdparty/glm/glm/ext/matrix_uint4x4_sized.hpp @@ -0,0 +1,70 @@ +/// @ref ext_matrix_uint4x4_sized +/// @file glm/ext/matrix_uint4x4_sized.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_matrix_uint4x4_sized GLM_EXT_matrix_uint4x4_sized +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat4x4.hpp" +#include "../ext/scalar_uint_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_uint4x4_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_uint4x4_sized + /// @{ + + /// 8 bit unsigned integer 4x4 matrix. + /// + /// @see ext_matrix_uint4x4_sized + typedef mat<4, 4, uint8, defaultp> u8mat4x4; + + /// 16 bit unsigned integer 4x4 matrix. + /// + /// @see ext_matrix_uint4x4_sized + typedef mat<4, 4, uint16, defaultp> u16mat4x4; + + /// 32 bit unsigned integer 4x4 matrix. + /// + /// @see ext_matrix_uint4x4_sized + typedef mat<4, 4, uint32, defaultp> u32mat4x4; + + /// 64 bit unsigned integer 4x4 matrix. + /// + /// @see ext_matrix_uint4x4_sized + typedef mat<4, 4, uint64, defaultp> u64mat4x4; + + + /// 8 bit unsigned integer 4x4 matrix. + /// + /// @see ext_matrix_uint4x4_sized + typedef mat<4, 4, uint8, defaultp> u8mat4; + + /// 16 bit unsigned integer 4x4 matrix. + /// + /// @see ext_matrix_uint4x4_sized + typedef mat<4, 4, uint16, defaultp> u16mat4; + + /// 32 bit unsigned integer 4x4 matrix. + /// + /// @see ext_matrix_uint4x4_sized + typedef mat<4, 4, uint32, defaultp> u32mat4; + + /// 64 bit unsigned integer 4x4 matrix. + /// + /// @see ext_matrix_uint4x4_sized + typedef mat<4, 4, uint64, defaultp> u64mat4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/quaternion_common.hpp b/thirdparty/glm/glm/ext/quaternion_common.hpp new file mode 100644 index 000000000000..f738692a472e --- /dev/null +++ b/thirdparty/glm/glm/ext/quaternion_common.hpp @@ -0,0 +1,135 @@ +/// @ref ext_quaternion_common +/// @file glm/ext/quaternion_common.hpp +/// +/// @defgroup ext_quaternion_common GLM_EXT_quaternion_common +/// @ingroup ext +/// +/// Provides common functions for quaternion types +/// +/// Include to use the features of this extension. +/// +/// @see ext_scalar_common +/// @see ext_vector_common +/// @see ext_quaternion_float +/// @see ext_quaternion_double +/// @see ext_quaternion_exponential +/// @see ext_quaternion_geometric +/// @see ext_quaternion_relational +/// @see ext_quaternion_trigonometric +/// @see ext_quaternion_transform + +#pragma once + +// Dependency: +#include "../ext/scalar_constants.hpp" +#include "../ext/quaternion_geometric.hpp" +#include "../common.hpp" +#include "../trigonometric.hpp" +#include "../exponential.hpp" +#include + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_quaternion_common extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_quaternion_common + /// @{ + + /// Spherical linear interpolation of two quaternions. + /// The interpolation is oriented and the rotation is performed at constant speed. + /// For short path spherical linear interpolation, use the slerp function. + /// + /// @param x A quaternion + /// @param y A quaternion + /// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + /// + /// @see - slerp(qua const& x, qua const& y, T const& a) + template + GLM_FUNC_DECL qua mix(qua const& x, qua const& y, T a); + + /// Linear interpolation of two quaternions. + /// The interpolation is oriented. + /// + /// @param x A quaternion + /// @param y A quaternion + /// @param a Interpolation factor. The interpolation is defined in the range [0, 1]. + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR qua lerp(qua const& x, qua const& y, T a); + + /// Spherical linear interpolation of two quaternions. + /// The interpolation always take the short path and the rotation is performed at constant speed. + /// + /// @param x A quaternion + /// @param y A quaternion + /// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + template + GLM_FUNC_DECL qua slerp(qua const& x, qua const& y, T a); + + /// Spherical linear interpolation of two quaternions with multiple spins over rotation axis. + /// The interpolation always take the short path when the spin count is positive and long path + /// when count is negative. Rotation is performed at constant speed. + /// + /// @param x A quaternion + /// @param y A quaternion + /// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. + /// @param k Additional spin count. If Value is negative interpolation will be on "long" path. + /// + /// @tparam T A floating-point scalar type + /// @tparam S An integer scalar type + /// @tparam Q A value from qualifier enum + template + GLM_FUNC_DECL qua slerp(qua const& x, qua const& y, T a, S k); + + /// Returns the q conjugate. + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR qua conjugate(qua const& q); + + /// Returns the q inverse. + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR qua inverse(qua const& q); + + /// Returns true if x holds a NaN (not a number) + /// representation in the underlying implementation's set of + /// floating point representations. Returns false otherwise, + /// including for implementations with no NaN + /// representations. + /// + /// /!\ When using compiler fast math, this function may fail. + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + template + GLM_FUNC_DECL vec<4, bool, Q> isnan(qua const& x); + + /// Returns true if x holds a positive infinity or negative + /// infinity representation in the underlying implementation's + /// set of floating point representations. Returns false + /// otherwise, including for implementations with no infinity + /// representations. + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + template + GLM_FUNC_DECL vec<4, bool, Q> isinf(qua const& x); + + /// @} +} //namespace glm + +#include "quaternion_common.inl" diff --git a/thirdparty/glm/glm/ext/quaternion_common.inl b/thirdparty/glm/glm/ext/quaternion_common.inl new file mode 100644 index 000000000000..ad171f9d4bdf --- /dev/null +++ b/thirdparty/glm/glm/ext/quaternion_common.inl @@ -0,0 +1,144 @@ +namespace glm +{ + template + GLM_FUNC_QUALIFIER qua mix(qua const& x, qua const& y, T a) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'mix' only accept floating-point inputs"); + + T const cosTheta = dot(x, y); + + // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator + if(cosTheta > static_cast(1) - epsilon()) + { + // Linear interpolation + return qua::wxyz( + mix(x.w, y.w, a), + mix(x.x, y.x, a), + mix(x.y, y.y, a), + mix(x.z, y.z, a)); + } + else + { + // Essential Mathematics, page 467 + T angle = acos(cosTheta); + return (sin((static_cast(1) - a) * angle) * x + sin(a * angle) * y) / sin(angle); + } + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua lerp(qua const& x, qua const& y, T a) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'lerp' only accept floating-point inputs"); + + // Lerp is only defined in [0, 1] + assert(a >= static_cast(0)); + assert(a <= static_cast(1)); + + return x * (static_cast(1) - a) + (y * a); + } + + template + GLM_FUNC_QUALIFIER qua slerp(qua const& x, qua const& y, T a) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'slerp' only accept floating-point inputs"); + + qua z = y; + + T cosTheta = dot(x, y); + + // If cosTheta < 0, the interpolation will take the long way around the sphere. + // To fix this, one quat must be negated. + if(cosTheta < static_cast(0)) + { + z = -y; + cosTheta = -cosTheta; + } + + // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator + if(cosTheta > static_cast(1) - epsilon()) + { + // Linear interpolation + return qua::wxyz( + mix(x.w, z.w, a), + mix(x.x, z.x, a), + mix(x.y, z.y, a), + mix(x.z, z.z, a)); + } + else + { + // Essential Mathematics, page 467 + T angle = acos(cosTheta); + return (sin((static_cast(1) - a) * angle) * x + sin(a * angle) * z) / sin(angle); + } + } + + template + GLM_FUNC_QUALIFIER qua slerp(qua const& x, qua const& y, T a, S k) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'slerp' only accept floating-point inputs"); + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'slerp' only accept integer for spin count"); + + qua z = y; + + T cosTheta = dot(x, y); + + // If cosTheta < 0, the interpolation will take the long way around the sphere. + // To fix this, one quat must be negated. + if (cosTheta < static_cast(0)) + { + z = -y; + cosTheta = -cosTheta; + } + + // Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator + if (cosTheta > static_cast(1) - epsilon()) + { + // Linear interpolation + return qua::wxyz( + mix(x.w, z.w, a), + mix(x.x, z.x, a), + mix(x.y, z.y, a), + mix(x.z, z.z, a)); + } + else + { + // Graphics Gems III, page 96 + T angle = acos(cosTheta); + T phi = angle + static_cast(k) * glm::pi(); + return (sin(angle - a * phi)* x + sin(a * phi) * z) / sin(angle); + } + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua conjugate(qua const& q) + { + return qua::wxyz(q.w, -q.x, -q.y, -q.z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua inverse(qua const& q) + { + return conjugate(q) / dot(q, q); + } + + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> isnan(qua const& q) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'isnan' only accept floating-point inputs"); + + return vec<4, bool, Q>(isnan(q.x), isnan(q.y), isnan(q.z), isnan(q.w)); + } + + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> isinf(qua const& q) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'isinf' only accept floating-point inputs"); + + return vec<4, bool, Q>(isinf(q.x), isinf(q.y), isinf(q.z), isinf(q.w)); + } +}//namespace glm + +#if GLM_CONFIG_SIMD == GLM_ENABLE +# include "quaternion_common_simd.inl" +#endif + diff --git a/thirdparty/glm/glm/ext/quaternion_common_simd.inl b/thirdparty/glm/glm/ext/quaternion_common_simd.inl new file mode 100644 index 000000000000..ddfc8a44f6a3 --- /dev/null +++ b/thirdparty/glm/glm/ext/quaternion_common_simd.inl @@ -0,0 +1,18 @@ +#if GLM_ARCH & GLM_ARCH_SSE2_BIT + +namespace glm{ +namespace detail +{ + template + struct compute_dot, float, true> + { + static GLM_FUNC_QUALIFIER float call(qua const& x, qua const& y) + { + return _mm_cvtss_f32(glm_vec1_dot(x.data, y.data)); + } + }; +}//namespace detail +}//namespace glm + +#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT + diff --git a/thirdparty/glm/glm/ext/quaternion_double.hpp b/thirdparty/glm/glm/ext/quaternion_double.hpp new file mode 100644 index 000000000000..63b24de4d52a --- /dev/null +++ b/thirdparty/glm/glm/ext/quaternion_double.hpp @@ -0,0 +1,39 @@ +/// @ref ext_quaternion_double +/// @file glm/ext/quaternion_double.hpp +/// +/// @defgroup ext_quaternion_double GLM_EXT_quaternion_double +/// @ingroup ext +/// +/// Exposes double-precision floating point quaternion type. +/// +/// Include to use the features of this extension. +/// +/// @see ext_quaternion_float +/// @see ext_quaternion_double_precision +/// @see ext_quaternion_common +/// @see ext_quaternion_exponential +/// @see ext_quaternion_geometric +/// @see ext_quaternion_relational +/// @see ext_quaternion_transform +/// @see ext_quaternion_trigonometric + +#pragma once + +// Dependency: +#include "../detail/type_quat.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_quaternion_double extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_quaternion_double + /// @{ + + /// Quaternion of double-precision floating-point numbers. + typedef qua dquat; + + /// @} +} //namespace glm + diff --git a/thirdparty/glm/glm/ext/quaternion_double_precision.hpp b/thirdparty/glm/glm/ext/quaternion_double_precision.hpp new file mode 100644 index 000000000000..8aa24a17752d --- /dev/null +++ b/thirdparty/glm/glm/ext/quaternion_double_precision.hpp @@ -0,0 +1,42 @@ +/// @ref ext_quaternion_double_precision +/// @file glm/ext/quaternion_double_precision.hpp +/// +/// @defgroup ext_quaternion_double_precision GLM_EXT_quaternion_double_precision +/// @ingroup ext +/// +/// Exposes double-precision floating point quaternion type with various precision in term of ULPs. +/// +/// Include to use the features of this extension. + +#pragma once + +// Dependency: +#include "../detail/type_quat.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_quaternion_double_precision extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_quaternion_double_precision + /// @{ + + /// Quaternion of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + /// + /// @see ext_quaternion_double_precision + typedef qua lowp_dquat; + + /// Quaternion of medium double-qualifier floating-point numbers using high precision arithmetic in term of ULPs. + /// + /// @see ext_quaternion_double_precision + typedef qua mediump_dquat; + + /// Quaternion of high double-qualifier floating-point numbers using high precision arithmetic in term of ULPs. + /// + /// @see ext_quaternion_double_precision + typedef qua highp_dquat; + + /// @} +} //namespace glm + diff --git a/thirdparty/glm/glm/ext/quaternion_exponential.hpp b/thirdparty/glm/glm/ext/quaternion_exponential.hpp new file mode 100644 index 000000000000..affe2979aad5 --- /dev/null +++ b/thirdparty/glm/glm/ext/quaternion_exponential.hpp @@ -0,0 +1,63 @@ +/// @ref ext_quaternion_exponential +/// @file glm/ext/quaternion_exponential.hpp +/// +/// @defgroup ext_quaternion_exponential GLM_EXT_quaternion_exponential +/// @ingroup ext +/// +/// Provides exponential functions for quaternion types +/// +/// Include to use the features of this extension. +/// +/// @see core_exponential +/// @see ext_quaternion_float +/// @see ext_quaternion_double + +#pragma once + +// Dependency: +#include "../common.hpp" +#include "../trigonometric.hpp" +#include "../geometric.hpp" +#include "../ext/scalar_constants.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_quaternion_exponential extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_quaternion_transform + /// @{ + + /// Returns a exponential of a quaternion. + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + template + GLM_FUNC_DECL qua exp(qua const& q); + + /// Returns a logarithm of a quaternion + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + template + GLM_FUNC_DECL qua log(qua const& q); + + /// Returns a quaternion raised to a power. + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + template + GLM_FUNC_DECL qua pow(qua const& q, T y); + + /// Returns the square root of a quaternion + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + template + GLM_FUNC_DECL qua sqrt(qua const& q); + + /// @} +} //namespace glm + +#include "quaternion_exponential.inl" diff --git a/thirdparty/glm/glm/ext/quaternion_exponential.inl b/thirdparty/glm/glm/ext/quaternion_exponential.inl new file mode 100644 index 000000000000..8a9d774b396a --- /dev/null +++ b/thirdparty/glm/glm/ext/quaternion_exponential.inl @@ -0,0 +1,89 @@ +#include "scalar_constants.hpp" + +namespace glm +{ + template + GLM_FUNC_QUALIFIER qua exp(qua const& q) + { + vec<3, T, Q> u(q.x, q.y, q.z); + T const Angle = glm::length(u); + if (Angle < epsilon()) + return qua(); + + vec<3, T, Q> const v(u / Angle); + return qua(cos(Angle), sin(Angle) * v); + } + + template + GLM_FUNC_QUALIFIER qua log(qua const& q) + { + vec<3, T, Q> u(q.x, q.y, q.z); + T Vec3Len = length(u); + + if (Vec3Len < epsilon()) + { + if(q.w > static_cast(0)) + return qua::wxyz(log(q.w), static_cast(0), static_cast(0), static_cast(0)); + else if(q.w < static_cast(0)) + return qua::wxyz(log(-q.w), pi(), static_cast(0), static_cast(0)); + else + return qua::wxyz(std::numeric_limits::infinity(), std::numeric_limits::infinity(), std::numeric_limits::infinity(), std::numeric_limits::infinity()); + } + else + { + T t = atan(Vec3Len, T(q.w)) / Vec3Len; + T QuatLen2 = Vec3Len * Vec3Len + q.w * q.w; + return qua::wxyz(static_cast(0.5) * log(QuatLen2), t * q.x, t * q.y, t * q.z); + } + } + + template + GLM_FUNC_QUALIFIER qua pow(qua const& x, T y) + { + //Raising to the power of 0 should yield 1 + //Needed to prevent a division by 0 error later on + if(y > -epsilon() && y < epsilon()) + return qua::wxyz(1,0,0,0); + + //To deal with non-unit quaternions + T magnitude = sqrt(x.x * x.x + x.y * x.y + x.z * x.z + x.w *x.w); + + T Angle; + if(abs(x.w / magnitude) > cos_one_over_two()) + { + //Scalar component is close to 1; using it to recover angle would lose precision + //Instead, we use the non-scalar components since sin() is accurate around 0 + + //Prevent a division by 0 error later on + T VectorMagnitude = x.x * x.x + x.y * x.y + x.z * x.z; + //Despite the compiler might say, we actually want to compare + //VectorMagnitude to 0. here; we could use denorm_int() compiling a + //project with unsafe maths optimizations might make the comparison + //always false, even when VectorMagnitude is 0. + if (VectorMagnitude < std::numeric_limits::min()) { + //Equivalent to raising a real number to a power + return qua::wxyz(pow(x.w, y), 0, 0, 0); + } + + Angle = asin(sqrt(VectorMagnitude) / magnitude); + } + else + { + //Scalar component is small, shouldn't cause loss of precision + Angle = acos(x.w / magnitude); + } + + T NewAngle = Angle * y; + T Div = sin(NewAngle) / sin(Angle); + T Mag = pow(magnitude, y - static_cast(1)); + return qua::wxyz(cos(NewAngle) * magnitude * Mag, x.x * Div * Mag, x.y * Div * Mag, x.z * Div * Mag); + } + + template + GLM_FUNC_QUALIFIER qua sqrt(qua const& x) + { + return pow(x, static_cast(0.5)); + } +}//namespace glm + + diff --git a/thirdparty/glm/glm/ext/quaternion_float.hpp b/thirdparty/glm/glm/ext/quaternion_float.hpp new file mode 100644 index 000000000000..ca42a60597f4 --- /dev/null +++ b/thirdparty/glm/glm/ext/quaternion_float.hpp @@ -0,0 +1,39 @@ +/// @ref ext_quaternion_float +/// @file glm/ext/quaternion_float.hpp +/// +/// @defgroup ext_quaternion_float GLM_EXT_quaternion_float +/// @ingroup ext +/// +/// Exposes single-precision floating point quaternion type. +/// +/// Include to use the features of this extension. +/// +/// @see ext_quaternion_double +/// @see ext_quaternion_float_precision +/// @see ext_quaternion_common +/// @see ext_quaternion_exponential +/// @see ext_quaternion_geometric +/// @see ext_quaternion_relational +/// @see ext_quaternion_transform +/// @see ext_quaternion_trigonometric + +#pragma once + +// Dependency: +#include "../detail/type_quat.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_quaternion_float extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_quaternion_float + /// @{ + + /// Quaternion of single-precision floating-point numbers. + typedef qua quat; + + /// @} +} //namespace glm + diff --git a/thirdparty/glm/glm/ext/quaternion_float_precision.hpp b/thirdparty/glm/glm/ext/quaternion_float_precision.hpp new file mode 100644 index 000000000000..f9e4f5c21d90 --- /dev/null +++ b/thirdparty/glm/glm/ext/quaternion_float_precision.hpp @@ -0,0 +1,36 @@ +/// @ref ext_quaternion_float_precision +/// @file glm/ext/quaternion_float_precision.hpp +/// +/// @defgroup ext_quaternion_float_precision GLM_EXT_quaternion_float_precision +/// @ingroup ext +/// +/// Exposes single-precision floating point quaternion type with various precision in term of ULPs. +/// +/// Include to use the features of this extension. + +#pragma once + +// Dependency: +#include "../detail/type_quat.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_quaternion_float_precision extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_quaternion_float_precision + /// @{ + + /// Quaternion of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef qua lowp_quat; + + /// Quaternion of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef qua mediump_quat; + + /// Quaternion of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef qua highp_quat; + + /// @} +} //namespace glm + diff --git a/thirdparty/glm/glm/ext/quaternion_geometric.hpp b/thirdparty/glm/glm/ext/quaternion_geometric.hpp new file mode 100644 index 000000000000..6a2403fd2818 --- /dev/null +++ b/thirdparty/glm/glm/ext/quaternion_geometric.hpp @@ -0,0 +1,70 @@ +/// @ref ext_quaternion_geometric +/// @file glm/ext/quaternion_geometric.hpp +/// +/// @defgroup ext_quaternion_geometric GLM_EXT_quaternion_geometric +/// @ingroup ext +/// +/// Provides geometric functions for quaternion types +/// +/// Include to use the features of this extension. +/// +/// @see core_func_geometric +/// @see ext_quaternion_float +/// @see ext_quaternion_double + +#pragma once + +// Dependency: +#include "../geometric.hpp" +#include "../exponential.hpp" +#include "../ext/vector_relational.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_quaternion_geometric extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_quaternion_geometric + /// @{ + + /// Returns the norm of a quaternions + /// + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see ext_quaternion_geometric + template + GLM_FUNC_DECL T length(qua const& q); + + /// Returns the normalized quaternion. + /// + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see ext_quaternion_geometric + template + GLM_FUNC_DECL qua normalize(qua const& q); + + /// Returns dot product of q1 and q2, i.e., q1[0] * q2[0] + q1[1] * q2[1] + ... + /// + /// @tparam T Floating-point scalar types. + /// @tparam Q Value from qualifier enum + /// + /// @see ext_quaternion_geometric + template + GLM_FUNC_DECL GLM_CONSTEXPR T dot(qua const& x, qua const& y); + + /// Compute a cross product. + /// + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see ext_quaternion_geometric + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua cross(qua const& q1, qua const& q2); + + /// @} +} //namespace glm + +#include "quaternion_geometric.inl" diff --git a/thirdparty/glm/glm/ext/quaternion_geometric.inl b/thirdparty/glm/glm/ext/quaternion_geometric.inl new file mode 100644 index 000000000000..88dc4d63de18 --- /dev/null +++ b/thirdparty/glm/glm/ext/quaternion_geometric.inl @@ -0,0 +1,36 @@ +namespace glm +{ + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR T dot(qua const& x, qua const& y) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'dot' accepts only floating-point inputs"); + return detail::compute_dot, T, detail::is_aligned::value>::call(x, y); + } + + template + GLM_FUNC_QUALIFIER T length(qua const& q) + { + return glm::sqrt(dot(q, q)); + } + + template + GLM_FUNC_QUALIFIER qua normalize(qua const& q) + { + T len = length(q); + if(len <= static_cast(0)) // Problem + return qua::wxyz(static_cast(1), static_cast(0), static_cast(0), static_cast(0)); + T oneOverLen = static_cast(1) / len; + return qua::wxyz(q.w * oneOverLen, q.x * oneOverLen, q.y * oneOverLen, q.z * oneOverLen); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua cross(qua const& q1, qua const& q2) + { + return qua::wxyz( + q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z, + q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y, + q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z, + q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x); + } +}//namespace glm + diff --git a/thirdparty/glm/glm/ext/quaternion_relational.hpp b/thirdparty/glm/glm/ext/quaternion_relational.hpp new file mode 100644 index 000000000000..7aa121da0a15 --- /dev/null +++ b/thirdparty/glm/glm/ext/quaternion_relational.hpp @@ -0,0 +1,62 @@ +/// @ref ext_quaternion_relational +/// @file glm/ext/quaternion_relational.hpp +/// +/// @defgroup ext_quaternion_relational GLM_EXT_quaternion_relational +/// @ingroup ext +/// +/// Exposes comparison functions for quaternion types that take a user defined epsilon values. +/// +/// Include to use the features of this extension. +/// +/// @see core_vector_relational +/// @see ext_vector_relational +/// @see ext_matrix_relational +/// @see ext_quaternion_float +/// @see ext_quaternion_double + +#pragma once + +// Dependency: +#include "../vector_relational.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_quaternion_relational extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_quaternion_relational + /// @{ + + /// Returns the component-wise comparison of result x == y. + /// + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL vec<4, bool, Q> equal(qua const& x, qua const& y); + + /// Returns the component-wise comparison of |x - y| < epsilon. + /// + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL vec<4, bool, Q> equal(qua const& x, qua const& y, T epsilon); + + /// Returns the component-wise comparison of result x != y. + /// + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL vec<4, bool, Q> notEqual(qua const& x, qua const& y); + + /// Returns the component-wise comparison of |x - y| >= epsilon. + /// + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL vec<4, bool, Q> notEqual(qua const& x, qua const& y, T epsilon); + + /// @} +} //namespace glm + +#include "quaternion_relational.inl" diff --git a/thirdparty/glm/glm/ext/quaternion_relational.inl b/thirdparty/glm/glm/ext/quaternion_relational.inl new file mode 100644 index 000000000000..b1713e95c6c5 --- /dev/null +++ b/thirdparty/glm/glm/ext/quaternion_relational.inl @@ -0,0 +1,35 @@ +namespace glm +{ + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> equal(qua const& x, qua const& y) + { + vec<4, bool, Q> Result; + for(length_t i = 0; i < x.length(); ++i) + Result[i] = x[i] == y[i]; + return Result; + } + + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> equal(qua const& x, qua const& y, T epsilon) + { + vec<4, T, Q> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w); + return lessThan(abs(v), vec<4, T, Q>(epsilon)); + } + + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> notEqual(qua const& x, qua const& y) + { + vec<4, bool, Q> Result; + for(length_t i = 0; i < x.length(); ++i) + Result[i] = x[i] != y[i]; + return Result; + } + + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> notEqual(qua const& x, qua const& y, T epsilon) + { + vec<4, T, Q> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w); + return greaterThanEqual(abs(v), vec<4, T, Q>(epsilon)); + } +}//namespace glm + diff --git a/thirdparty/glm/glm/ext/quaternion_transform.hpp b/thirdparty/glm/glm/ext/quaternion_transform.hpp new file mode 100644 index 000000000000..a9cc5c2b59ff --- /dev/null +++ b/thirdparty/glm/glm/ext/quaternion_transform.hpp @@ -0,0 +1,47 @@ +/// @ref ext_quaternion_transform +/// @file glm/ext/quaternion_transform.hpp +/// +/// @defgroup ext_quaternion_transform GLM_EXT_quaternion_transform +/// @ingroup ext +/// +/// Provides transformation functions for quaternion types +/// +/// Include to use the features of this extension. +/// +/// @see ext_quaternion_float +/// @see ext_quaternion_double +/// @see ext_quaternion_exponential +/// @see ext_quaternion_geometric +/// @see ext_quaternion_relational +/// @see ext_quaternion_trigonometric + +#pragma once + +// Dependency: +#include "../common.hpp" +#include "../trigonometric.hpp" +#include "../geometric.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_quaternion_transform extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_quaternion_transform + /// @{ + + /// Rotates a quaternion from a vector of 3 components axis and an angle. + /// + /// @param q Source orientation + /// @param angle Angle expressed in radians. + /// @param axis Axis of the rotation + /// + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL qua rotate(qua const& q, T const& angle, vec<3, T, Q> const& axis); + /// @} +} //namespace glm + +#include "quaternion_transform.inl" diff --git a/thirdparty/glm/glm/ext/quaternion_transform.inl b/thirdparty/glm/glm/ext/quaternion_transform.inl new file mode 100644 index 000000000000..7e773fbd264d --- /dev/null +++ b/thirdparty/glm/glm/ext/quaternion_transform.inl @@ -0,0 +1,24 @@ +namespace glm +{ + template + GLM_FUNC_QUALIFIER qua rotate(qua const& q, T const& angle, vec<3, T, Q> const& v) + { + vec<3, T, Q> Tmp = v; + + // Axis of rotation must be normalised + T len = glm::length(Tmp); + if(abs(len - static_cast(1)) > static_cast(0.001)) + { + T oneOverLen = static_cast(1) / len; + Tmp.x *= oneOverLen; + Tmp.y *= oneOverLen; + Tmp.z *= oneOverLen; + } + + T const AngleRad(angle); + T const Sin = sin(AngleRad * static_cast(0.5)); + + return q * qua::wxyz(cos(AngleRad * static_cast(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin); + } +}//namespace glm + diff --git a/thirdparty/glm/glm/ext/quaternion_trigonometric.hpp b/thirdparty/glm/glm/ext/quaternion_trigonometric.hpp new file mode 100644 index 000000000000..574a70479576 --- /dev/null +++ b/thirdparty/glm/glm/ext/quaternion_trigonometric.hpp @@ -0,0 +1,65 @@ +/// @ref ext_quaternion_trigonometric +/// @file glm/ext/quaternion_trigonometric.hpp +/// +/// @defgroup ext_quaternion_trigonometric GLM_EXT_quaternion_trigonometric +/// @ingroup ext +/// +/// Provides trigonometric functions for quaternion types +/// +/// Include to use the features of this extension. +/// +/// @see ext_quaternion_float +/// @see ext_quaternion_double +/// @see ext_quaternion_exponential +/// @see ext_quaternion_geometric +/// @see ext_quaternion_relational +/// @see ext_quaternion_transform + +#pragma once + +// Dependency: +#include "../trigonometric.hpp" +#include "../exponential.hpp" +#include "scalar_constants.hpp" +#include "vector_relational.hpp" +#include + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_quaternion_trigonometric extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_quaternion_trigonometric + /// @{ + + /// Returns the quaternion rotation angle. + /// + /// @param x A normalized quaternion. + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + template + GLM_FUNC_DECL T angle(qua const& x); + + /// Returns the q rotation axis. + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + template + GLM_FUNC_DECL vec<3, T, Q> axis(qua const& x); + + /// Build a quaternion from an angle and a normalized axis. + /// + /// @param angle Angle expressed in radians. + /// @param axis Axis of the quaternion, must be normalized. + /// + /// @tparam T A floating-point scalar type + /// @tparam Q A value from qualifier enum + template + GLM_FUNC_DECL qua angleAxis(T const& angle, vec<3, T, Q> const& axis); + + /// @} +} //namespace glm + +#include "quaternion_trigonometric.inl" diff --git a/thirdparty/glm/glm/ext/quaternion_trigonometric.inl b/thirdparty/glm/glm/ext/quaternion_trigonometric.inl new file mode 100644 index 000000000000..896449aa6e1f --- /dev/null +++ b/thirdparty/glm/glm/ext/quaternion_trigonometric.inl @@ -0,0 +1,37 @@ +#include "scalar_constants.hpp" + +namespace glm +{ + template + GLM_FUNC_QUALIFIER T angle(qua const& x) + { + if (abs(x.w) > cos_one_over_two()) + { + T const a = asin(sqrt(x.x * x.x + x.y * x.y + x.z * x.z)) * static_cast(2); + if(x.w < static_cast(0)) + return pi() * static_cast(2) - a; + return a; + } + + return acos(x.w) * static_cast(2); + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> axis(qua const& x) + { + T const tmp1 = static_cast(1) - x.w * x.w; + if(tmp1 <= static_cast(0)) + return vec<3, T, Q>(0, 0, 1); + T const tmp2 = static_cast(1) / sqrt(tmp1); + return vec<3, T, Q>(x.x * tmp2, x.y * tmp2, x.z * tmp2); + } + + template + GLM_FUNC_QUALIFIER qua angleAxis(T const& angle, vec<3, T, Q> const& v) + { + T const a(angle); + T const s = glm::sin(a * static_cast(0.5)); + + return qua(glm::cos(a * static_cast(0.5)), v * s); + } +}//namespace glm diff --git a/thirdparty/glm/glm/ext/scalar_common.hpp b/thirdparty/glm/glm/ext/scalar_common.hpp new file mode 100644 index 000000000000..df04b6b809a9 --- /dev/null +++ b/thirdparty/glm/glm/ext/scalar_common.hpp @@ -0,0 +1,181 @@ +/// @ref ext_scalar_common +/// @file glm/ext/scalar_common.hpp +/// +/// @defgroup ext_scalar_common GLM_EXT_scalar_common +/// @ingroup ext +/// +/// Exposes min and max functions for 3 to 4 scalar parameters. +/// +/// Include to use the features of this extension. +/// +/// @see core_func_common +/// @see ext_vector_common + +#pragma once + +// Dependency: +#include "../common.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_scalar_common extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_scalar_common + /// @{ + + /// Returns the minimum component-wise values of 3 inputs + /// + /// @tparam T A floating-point scalar type. + /// + /// @see ext_scalar_common + template + GLM_FUNC_DECL T min(T a, T b, T c); + + /// Returns the minimum component-wise values of 4 inputs + /// + /// @tparam T A floating-point scalar type. + /// + /// @see ext_scalar_common + template + GLM_FUNC_DECL T min(T a, T b, T c, T d); + + /// Returns the maximum component-wise values of 3 inputs + /// + /// @tparam T A floating-point scalar type. + /// + /// @see ext_scalar_common + template + GLM_FUNC_DECL T max(T a, T b, T c); + + /// Returns the maximum component-wise values of 4 inputs + /// + /// @tparam T A floating-point scalar type. + /// + /// @see ext_scalar_common + template + GLM_FUNC_DECL T max(T a, T b, T c, T d); + + /// Returns the minimum component-wise values of 2 inputs. If one of the two arguments is NaN, the value of the other argument is returned. + /// + /// @tparam T A floating-point scalar type. + /// + /// @see std::fmin documentation + /// @see ext_scalar_common + template + GLM_FUNC_DECL T fmin(T a, T b); + + /// Returns the minimum component-wise values of 3 inputs. If one of the two arguments is NaN, the value of the other argument is returned. + /// + /// @tparam T A floating-point scalar type. + /// + /// @see std::fmin documentation + /// @see ext_scalar_common + template + GLM_FUNC_DECL T fmin(T a, T b, T c); + + /// Returns the minimum component-wise values of 4 inputs. If one of the two arguments is NaN, the value of the other argument is returned. + /// + /// @tparam T A floating-point scalar type. + /// + /// @see std::fmin documentation + /// @see ext_scalar_common + template + GLM_FUNC_DECL T fmin(T a, T b, T c, T d); + + /// Returns the maximum component-wise values of 2 inputs. If one of the two arguments is NaN, the value of the other argument is returned. + /// + /// @tparam T A floating-point scalar type. + /// + /// @see std::fmax documentation + /// @see ext_scalar_common + template + GLM_FUNC_DECL T fmax(T a, T b); + + /// Returns the maximum component-wise values of 3 inputs. If one of the two arguments is NaN, the value of the other argument is returned. + /// + /// @tparam T A floating-point scalar type. + /// + /// @see std::fmax documentation + /// @see ext_scalar_common + template + GLM_FUNC_DECL T fmax(T a, T b, T C); + + /// Returns the maximum component-wise values of 4 inputs. If one of the two arguments is NaN, the value of the other argument is returned. + /// + /// @tparam T A floating-point scalar type. + /// + /// @see std::fmax documentation + /// @see ext_scalar_common + template + GLM_FUNC_DECL T fmax(T a, T b, T C, T D); + + /// Returns min(max(x, minVal), maxVal) for each component in x. If one of the two arguments is NaN, the value of the other argument is returned. + /// + /// @tparam genType Floating-point scalar types. + /// + /// @see ext_scalar_common + template + GLM_FUNC_DECL genType fclamp(genType x, genType minVal, genType maxVal); + + /// Simulate GL_CLAMP OpenGL wrap mode + /// + /// @tparam genType Floating-point scalar types. + /// + /// @see ext_scalar_common extension. + template + GLM_FUNC_DECL genType clamp(genType const& Texcoord); + + /// Simulate GL_REPEAT OpenGL wrap mode + /// + /// @tparam genType Floating-point scalar types. + /// + /// @see ext_scalar_common extension. + template + GLM_FUNC_DECL genType repeat(genType const& Texcoord); + + /// Simulate GL_MIRRORED_REPEAT OpenGL wrap mode + /// + /// @tparam genType Floating-point scalar types. + /// + /// @see ext_scalar_common extension. + template + GLM_FUNC_DECL genType mirrorClamp(genType const& Texcoord); + + /// Simulate GL_MIRROR_REPEAT OpenGL wrap mode + /// + /// @tparam genType Floating-point scalar types. + /// + /// @see ext_scalar_common extension. + template + GLM_FUNC_DECL genType mirrorRepeat(genType const& Texcoord); + + /// Returns a value equal to the nearest integer to x. + /// The fraction 0.5 will round in a direction chosen by the + /// implementation, presumably the direction that is fastest. + /// + /// @param x The values of the argument must be greater or equal to zero. + /// @tparam genType floating point scalar types. + /// + /// @see GLSL round man page + /// @see ext_scalar_common extension. + template + GLM_FUNC_DECL int iround(genType const& x); + + /// Returns a value equal to the nearest integer to x. + /// The fraction 0.5 will round in a direction chosen by the + /// implementation, presumably the direction that is fastest. + /// + /// @param x The values of the argument must be greater or equal to zero. + /// @tparam genType floating point scalar types. + /// + /// @see GLSL round man page + /// @see ext_scalar_common extension. + template + GLM_FUNC_DECL uint uround(genType const& x); + + /// @} +}//namespace glm + +#include "scalar_common.inl" diff --git a/thirdparty/glm/glm/ext/scalar_common.inl b/thirdparty/glm/glm/ext/scalar_common.inl new file mode 100644 index 000000000000..3d09fef0cb4f --- /dev/null +++ b/thirdparty/glm/glm/ext/scalar_common.inl @@ -0,0 +1,170 @@ +namespace glm +{ + template + GLM_FUNC_QUALIFIER T min(T a, T b, T c) + { + return glm::min(glm::min(a, b), c); + } + + template + GLM_FUNC_QUALIFIER T min(T a, T b, T c, T d) + { + return glm::min(glm::min(a, b), glm::min(c, d)); + } + + template + GLM_FUNC_QUALIFIER T max(T a, T b, T c) + { + return glm::max(glm::max(a, b), c); + } + + template + GLM_FUNC_QUALIFIER T max(T a, T b, T c, T d) + { + return glm::max(glm::max(a, b), glm::max(c, d)); + } + +# if GLM_HAS_CXX11_STL + using std::fmin; +# else + template + GLM_FUNC_QUALIFIER T fmin(T a, T b) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'fmin' only accept floating-point input"); + + if (isnan(a)) + return b; + return min(a, b); + } +# endif + + template + GLM_FUNC_QUALIFIER T fmin(T a, T b, T c) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'fmin' only accept floating-point input"); + + if (isnan(a)) + return fmin(b, c); + if (isnan(b)) + return fmin(a, c); + if (isnan(c)) + return min(a, b); + return min(a, b, c); + } + + template + GLM_FUNC_QUALIFIER T fmin(T a, T b, T c, T d) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'fmin' only accept floating-point input"); + + if (isnan(a)) + return fmin(b, c, d); + if (isnan(b)) + return min(a, fmin(c, d)); + if (isnan(c)) + return fmin(min(a, b), d); + if (isnan(d)) + return min(a, b, c); + return min(a, b, c, d); + } + + +# if GLM_HAS_CXX11_STL + using std::fmax; +# else + template + GLM_FUNC_QUALIFIER T fmax(T a, T b) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'fmax' only accept floating-point input"); + + if (isnan(a)) + return b; + return max(a, b); + } +# endif + + template + GLM_FUNC_QUALIFIER T fmax(T a, T b, T c) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'fmax' only accept floating-point input"); + + if (isnan(a)) + return fmax(b, c); + if (isnan(b)) + return fmax(a, c); + if (isnan(c)) + return max(a, b); + return max(a, b, c); + } + + template + GLM_FUNC_QUALIFIER T fmax(T a, T b, T c, T d) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'fmax' only accept floating-point input"); + + if (isnan(a)) + return fmax(b, c, d); + if (isnan(b)) + return max(a, fmax(c, d)); + if (isnan(c)) + return fmax(max(a, b), d); + if (isnan(d)) + return max(a, b, c); + return max(a, b, c, d); + } + + // fclamp + template + GLM_FUNC_QUALIFIER genType fclamp(genType x, genType minVal, genType maxVal) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'fclamp' only accept floating-point or integer inputs"); + return fmin(fmax(x, minVal), maxVal); + } + + template + GLM_FUNC_QUALIFIER genType clamp(genType const& Texcoord) + { + return glm::clamp(Texcoord, static_cast(0), static_cast(1)); + } + + template + GLM_FUNC_QUALIFIER genType repeat(genType const& Texcoord) + { + return glm::fract(Texcoord); + } + + template + GLM_FUNC_QUALIFIER genType mirrorClamp(genType const& Texcoord) + { + return glm::fract(glm::abs(Texcoord)); + } + + template + GLM_FUNC_QUALIFIER genType mirrorRepeat(genType const& Texcoord) + { + genType const Abs = glm::abs(Texcoord); + genType const Clamp = glm::mod(glm::floor(Abs), static_cast(2)); + genType const Floor = glm::floor(Abs); + genType const Rest = Abs - Floor; + genType const Mirror = Clamp + Rest; + return mix(Rest, static_cast(1) - Rest, Mirror >= static_cast(1)); + } + + template + GLM_FUNC_QUALIFIER int iround(genType const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'iround' only accept floating-point inputs"); + assert(static_cast(0.0) <= x); + + return static_cast(x + static_cast(0.5)); + } + + template + GLM_FUNC_QUALIFIER uint uround(genType const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'uround' only accept floating-point inputs"); + assert(static_cast(0.0) <= x); + + return static_cast(x + static_cast(0.5)); + } +}//namespace glm diff --git a/thirdparty/glm/glm/ext/scalar_constants.hpp b/thirdparty/glm/glm/ext/scalar_constants.hpp new file mode 100644 index 000000000000..74e210d9c09e --- /dev/null +++ b/thirdparty/glm/glm/ext/scalar_constants.hpp @@ -0,0 +1,40 @@ +/// @ref ext_scalar_constants +/// @file glm/ext/scalar_constants.hpp +/// +/// @defgroup ext_scalar_constants GLM_EXT_scalar_constants +/// @ingroup ext +/// +/// Provides a list of constants and precomputed useful values. +/// +/// Include to use the features of this extension. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_scalar_constants extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_scalar_constants + /// @{ + + /// Return the epsilon constant for floating point types. + template + GLM_FUNC_DECL GLM_CONSTEXPR genType epsilon(); + + /// Return the pi constant for floating point types. + template + GLM_FUNC_DECL GLM_CONSTEXPR genType pi(); + + /// Return the value of cos(1 / 2) for floating point types. + template + GLM_FUNC_DECL GLM_CONSTEXPR genType cos_one_over_two(); + + /// @} +} //namespace glm + +#include "scalar_constants.inl" diff --git a/thirdparty/glm/glm/ext/scalar_constants.inl b/thirdparty/glm/glm/ext/scalar_constants.inl new file mode 100644 index 000000000000..b928e5118bff --- /dev/null +++ b/thirdparty/glm/glm/ext/scalar_constants.inl @@ -0,0 +1,24 @@ +#include + +namespace glm +{ + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType epsilon() + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'epsilon' only accepts floating-point inputs"); + return std::numeric_limits::epsilon(); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType pi() + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'pi' only accepts floating-point inputs"); + return static_cast(3.14159265358979323846264338327950288); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType cos_one_over_two() + { + return genType(0.877582561890372716130286068203503191); + } +} //namespace glm diff --git a/thirdparty/glm/glm/ext/scalar_int_sized.hpp b/thirdparty/glm/glm/ext/scalar_int_sized.hpp new file mode 100644 index 000000000000..8e9c511c9cb5 --- /dev/null +++ b/thirdparty/glm/glm/ext/scalar_int_sized.hpp @@ -0,0 +1,70 @@ +/// @ref ext_scalar_int_sized +/// @file glm/ext/scalar_int_sized.hpp +/// +/// @defgroup ext_scalar_int_sized GLM_EXT_scalar_int_sized +/// @ingroup ext +/// +/// Exposes sized signed integer scalar types. +/// +/// Include to use the features of this extension. +/// +/// @see ext_scalar_uint_sized + +#pragma once + +#include "../detail/setup.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_scalar_int_sized extension included") +#endif + +namespace glm{ +namespace detail +{ +# if GLM_HAS_EXTENDED_INTEGER_TYPE + typedef std::int8_t int8; + typedef std::int16_t int16; + typedef std::int32_t int32; +# else + typedef signed char int8; + typedef signed short int16; + typedef signed int int32; +#endif// + + template<> + struct is_int + { + enum test {value = ~0}; + }; + + template<> + struct is_int + { + enum test {value = ~0}; + }; + + template<> + struct is_int + { + enum test {value = ~0}; + }; +}//namespace detail + + + /// @addtogroup ext_scalar_int_sized + /// @{ + + /// 8 bit signed integer type. + typedef detail::int8 int8; + + /// 16 bit signed integer type. + typedef detail::int16 int16; + + /// 32 bit signed integer type. + typedef detail::int32 int32; + + /// 64 bit signed integer type. + typedef detail::int64 int64; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/scalar_integer.hpp b/thirdparty/glm/glm/ext/scalar_integer.hpp new file mode 100644 index 000000000000..a2ca8a2ae37c --- /dev/null +++ b/thirdparty/glm/glm/ext/scalar_integer.hpp @@ -0,0 +1,92 @@ +/// @ref ext_scalar_integer +/// @file glm/ext/scalar_integer.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_scalar_integer GLM_EXT_scalar_integer +/// @ingroup ext +/// +/// Include to use the features of this extension. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/qualifier.hpp" +#include "../detail/_vectorize.hpp" +#include "../detail/type_float.hpp" +#include "../vector_relational.hpp" +#include "../common.hpp" +#include + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_scalar_integer extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_scalar_integer + /// @{ + + /// Return true if the value is a power of two number. + /// + /// @see ext_scalar_integer + template + GLM_FUNC_DECL bool isPowerOfTwo(genIUType v); + + /// Return the power of two number which value is just higher the input value, + /// round up to a power of two. + /// + /// @see ext_scalar_integer + template + GLM_FUNC_DECL genIUType nextPowerOfTwo(genIUType v); + + /// Return the power of two number which value is just lower the input value, + /// round down to a power of two. + /// + /// @see ext_scalar_integer + template + GLM_FUNC_DECL genIUType prevPowerOfTwo(genIUType v); + + /// Return true if the 'Value' is a multiple of 'Multiple'. + /// + /// @see ext_scalar_integer + template + GLM_FUNC_DECL bool isMultiple(genIUType v, genIUType Multiple); + + /// Higher multiple number of Source. + /// + /// @tparam genIUType Integer scalar or vector types. + /// + /// @param v Source value to which is applied the function + /// @param Multiple Must be a null or positive value + /// + /// @see ext_scalar_integer + template + GLM_FUNC_DECL genIUType nextMultiple(genIUType v, genIUType Multiple); + + /// Lower multiple number of Source. + /// + /// @tparam genIUType Integer scalar or vector types. + /// + /// @param v Source value to which is applied the function + /// @param Multiple Must be a null or positive value + /// + /// @see ext_scalar_integer + template + GLM_FUNC_DECL genIUType prevMultiple(genIUType v, genIUType Multiple); + + /// Returns the bit number of the Nth significant bit set to + /// 1 in the binary representation of value. + /// If value bitcount is less than the Nth significant bit, -1 will be returned. + /// + /// @tparam genIUType Signed or unsigned integer scalar types. + /// + /// @see ext_scalar_integer + template + GLM_FUNC_DECL int findNSB(genIUType x, int significantBitCount); + + /// @} +} //namespace glm + +#include "scalar_integer.inl" diff --git a/thirdparty/glm/glm/ext/scalar_integer.inl b/thirdparty/glm/glm/ext/scalar_integer.inl new file mode 100644 index 000000000000..d416197e8667 --- /dev/null +++ b/thirdparty/glm/glm/ext/scalar_integer.inl @@ -0,0 +1,243 @@ +#include "../integer.hpp" + +namespace glm{ +namespace detail +{ + template + struct compute_ceilShift + { + GLM_FUNC_QUALIFIER static vec call(vec const& v, T) + { + return v; + } + }; + + template + struct compute_ceilShift + { + GLM_FUNC_QUALIFIER static vec call(vec const& v, T Shift) + { + return v | (v >> Shift); + } + }; + + template + struct compute_ceilPowerOfTwo + { + GLM_FUNC_QUALIFIER static vec call(vec const& x) + { + GLM_STATIC_ASSERT(!std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'ceilPowerOfTwo' only accept integer scalar or vector inputs"); + + vec const Sign(sign(x)); + + vec v(abs(x)); + + v = v - static_cast(1); + v = v | (v >> static_cast(1)); + v = v | (v >> static_cast(2)); + v = v | (v >> static_cast(4)); + v = compute_ceilShift= 2>::call(v, 8); + v = compute_ceilShift= 4>::call(v, 16); + v = compute_ceilShift= 8>::call(v, 32); + return (v + static_cast(1)) * Sign; + } + }; + + template + struct compute_ceilPowerOfTwo + { + GLM_FUNC_QUALIFIER static vec call(vec const& x) + { + GLM_STATIC_ASSERT(!std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'ceilPowerOfTwo' only accept integer scalar or vector inputs"); + + vec v(x); + + v = v - static_cast(1); + v = v | (v >> static_cast(1)); + v = v | (v >> static_cast(2)); + v = v | (v >> static_cast(4)); + v = compute_ceilShift= 2>::call(v, 8); + v = compute_ceilShift= 4>::call(v, 16); + v = compute_ceilShift= 8>::call(v, 32); + return v + static_cast(1); + } + }; + + template + struct compute_ceilMultiple{}; + + template<> + struct compute_ceilMultiple + { + template + GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) + { + if(Source > genType(0)) + return Source + (Multiple - std::fmod(Source, Multiple)); + else + return Source + std::fmod(-Source, Multiple); + } + }; + + template<> + struct compute_ceilMultiple + { + template + GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) + { + genType Tmp = Source - genType(1); + return Tmp + (Multiple - (Tmp % Multiple)); + } + }; + + template<> + struct compute_ceilMultiple + { + template + GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) + { + assert(Multiple > genType(0)); + if(Source > genType(0)) + { + genType Tmp = Source - genType(1); + return Tmp + (Multiple - (Tmp % Multiple)); + } + else + return Source + (-Source % Multiple); + } + }; + + template + struct compute_floorMultiple{}; + + template<> + struct compute_floorMultiple + { + template + GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) + { + if(Source >= genType(0)) + return Source - std::fmod(Source, Multiple); + else + return Source - std::fmod(Source, Multiple) - Multiple; + } + }; + + template<> + struct compute_floorMultiple + { + template + GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) + { + if(Source >= genType(0)) + return Source - Source % Multiple; + else + { + genType Tmp = Source + genType(1); + return Tmp - Tmp % Multiple - Multiple; + } + } + }; + + template<> + struct compute_floorMultiple + { + template + GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) + { + if(Source >= genType(0)) + return Source - Source % Multiple; + else + { + genType Tmp = Source + genType(1); + return Tmp - Tmp % Multiple - Multiple; + } + } + }; +}//namespace detail + + template + GLM_FUNC_QUALIFIER bool isPowerOfTwo(genIUType Value) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'isPowerOfTwo' only accept integer inputs"); + + genIUType const Result = glm::abs(Value); + return !(Result & (Result - 1)); + } + + template + GLM_FUNC_QUALIFIER genIUType nextPowerOfTwo(genIUType value) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'nextPowerOfTwo' only accept integer inputs"); + + return detail::compute_ceilPowerOfTwo<1, genIUType, defaultp, std::numeric_limits::is_signed>::call(vec<1, genIUType, defaultp>(value)).x; + } + + template + GLM_FUNC_QUALIFIER genIUType prevPowerOfTwo(genIUType value) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'prevPowerOfTwo' only accept integer inputs"); + + return isPowerOfTwo(value) ? value : static_cast(static_cast(1) << static_cast(findMSB(value))); + } + + template + GLM_FUNC_QUALIFIER bool isMultiple(genIUType Value, genIUType Multiple) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'isMultiple' only accept integer inputs"); + + return isMultiple(vec<1, genIUType>(Value), vec<1, genIUType>(Multiple)).x; + } + + template + GLM_FUNC_QUALIFIER genIUType nextMultiple(genIUType Source, genIUType Multiple) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'nextMultiple' only accept integer inputs"); + + return detail::compute_ceilMultiple::is_iec559, std::numeric_limits::is_signed>::call(Source, Multiple); + } + + template + GLM_FUNC_QUALIFIER genIUType prevMultiple(genIUType Source, genIUType Multiple) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'prevMultiple' only accept integer inputs"); + + return detail::compute_floorMultiple::is_iec559, std::numeric_limits::is_signed>::call(Source, Multiple); + } + + template + GLM_FUNC_QUALIFIER int findNSB(genIUType x, int significantBitCount) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'findNSB' only accept integer inputs"); + + if(bitCount(x) < significantBitCount) + return -1; + + genIUType const One = static_cast(1); + int bitPos = 0; + + genIUType key = x; + int nBitCount = significantBitCount; + int Step = sizeof(x) * 8 / 2; + while (key > One) + { + genIUType Mask = static_cast((One << Step) - One); + genIUType currentKey = key & Mask; + int currentBitCount = bitCount(currentKey); + if (nBitCount > currentBitCount) + { + nBitCount -= currentBitCount; + bitPos += Step; + key >>= static_cast(Step); + } + else + { + key = key & Mask; + } + + Step >>= 1; + } + + return static_cast(bitPos); + } +}//namespace glm diff --git a/thirdparty/glm/glm/ext/scalar_packing.hpp b/thirdparty/glm/glm/ext/scalar_packing.hpp new file mode 100644 index 000000000000..18b85b72a404 --- /dev/null +++ b/thirdparty/glm/glm/ext/scalar_packing.hpp @@ -0,0 +1,32 @@ +/// @ref ext_scalar_packing +/// @file glm/ext/scalar_packing.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_scalar_packing GLM_EXT_scalar_packing +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// This extension provides a set of function to convert scalar values to packed +/// formats. + +#pragma once + +// Dependency: +#include "../detail/qualifier.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_scalar_packing extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_scalar_packing + /// @{ + + + /// @} +}// namespace glm + +#include "scalar_packing.inl" diff --git a/thirdparty/glm/glm/ext/scalar_packing.inl b/thirdparty/glm/glm/ext/scalar_packing.inl new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/thirdparty/glm/glm/ext/scalar_reciprocal.hpp b/thirdparty/glm/glm/ext/scalar_reciprocal.hpp new file mode 100644 index 000000000000..1c7b81dde09a --- /dev/null +++ b/thirdparty/glm/glm/ext/scalar_reciprocal.hpp @@ -0,0 +1,135 @@ +/// @ref ext_scalar_reciprocal +/// @file glm/ext/scalar_reciprocal.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_scalar_reciprocal GLM_EXT_scalar_reciprocal +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Define secant, cosecant and cotangent functions. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_scalar_reciprocal extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_scalar_reciprocal + /// @{ + + /// Secant function. + /// hypotenuse / adjacent or 1 / cos(x) + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_scalar_reciprocal + template + GLM_FUNC_DECL genType sec(genType angle); + + /// Cosecant function. + /// hypotenuse / opposite or 1 / sin(x) + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_scalar_reciprocal + template + GLM_FUNC_DECL genType csc(genType angle); + + /// Cotangent function. + /// adjacent / opposite or 1 / tan(x) + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_scalar_reciprocal + template + GLM_FUNC_DECL genType cot(genType angle); + + /// Inverse secant function. + /// + /// @return Return an angle expressed in radians. + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_scalar_reciprocal + template + GLM_FUNC_DECL genType asec(genType x); + + /// Inverse cosecant function. + /// + /// @return Return an angle expressed in radians. + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_scalar_reciprocal + template + GLM_FUNC_DECL genType acsc(genType x); + + /// Inverse cotangent function. + /// + /// @return Return an angle expressed in radians. + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_scalar_reciprocal + template + GLM_FUNC_DECL genType acot(genType x); + + /// Secant hyperbolic function. + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_scalar_reciprocal + template + GLM_FUNC_DECL genType sech(genType angle); + + /// Cosecant hyperbolic function. + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_scalar_reciprocal + template + GLM_FUNC_DECL genType csch(genType angle); + + /// Cotangent hyperbolic function. + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_scalar_reciprocal + template + GLM_FUNC_DECL genType coth(genType angle); + + /// Inverse secant hyperbolic function. + /// + /// @return Return an angle expressed in radians. + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_scalar_reciprocal + template + GLM_FUNC_DECL genType asech(genType x); + + /// Inverse cosecant hyperbolic function. + /// + /// @return Return an angle expressed in radians. + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_scalar_reciprocal + template + GLM_FUNC_DECL genType acsch(genType x); + + /// Inverse cotangent hyperbolic function. + /// + /// @return Return an angle expressed in radians. + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_scalar_reciprocal + template + GLM_FUNC_DECL genType acoth(genType x); + + /// @} +}//namespace glm + +#include "scalar_reciprocal.inl" diff --git a/thirdparty/glm/glm/ext/scalar_reciprocal.inl b/thirdparty/glm/glm/ext/scalar_reciprocal.inl new file mode 100644 index 000000000000..0cd5f87b4e48 --- /dev/null +++ b/thirdparty/glm/glm/ext/scalar_reciprocal.inl @@ -0,0 +1,107 @@ +/// @ref ext_scalar_reciprocal + +#include "../trigonometric.hpp" +#include + +namespace glm +{ + // sec + template + GLM_FUNC_QUALIFIER genType sec(genType angle) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'sec' only accept floating-point values"); + return genType(1) / glm::cos(angle); + } + + // csc + template + GLM_FUNC_QUALIFIER genType csc(genType angle) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'csc' only accept floating-point values"); + return genType(1) / glm::sin(angle); + } + + // cot + template + GLM_FUNC_QUALIFIER genType cot(genType angle) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'cot' only accept floating-point values"); + + genType const pi_over_2 = genType(3.1415926535897932384626433832795 / 2.0); + return glm::tan(pi_over_2 - angle); + } + + // asec + template + GLM_FUNC_QUALIFIER genType asec(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'asec' only accept floating-point values"); + return acos(genType(1) / x); + } + + // acsc + template + GLM_FUNC_QUALIFIER genType acsc(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'acsc' only accept floating-point values"); + return asin(genType(1) / x); + } + + // acot + template + GLM_FUNC_QUALIFIER genType acot(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'acot' only accept floating-point values"); + + genType const pi_over_2 = genType(3.1415926535897932384626433832795 / 2.0); + return pi_over_2 - atan(x); + } + + // sech + template + GLM_FUNC_QUALIFIER genType sech(genType angle) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'sech' only accept floating-point values"); + return genType(1) / glm::cosh(angle); + } + + // csch + template + GLM_FUNC_QUALIFIER genType csch(genType angle) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'csch' only accept floating-point values"); + return genType(1) / glm::sinh(angle); + } + + // coth + template + GLM_FUNC_QUALIFIER genType coth(genType angle) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'coth' only accept floating-point values"); + return glm::cosh(angle) / glm::sinh(angle); + } + + // asech + template + GLM_FUNC_QUALIFIER genType asech(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'asech' only accept floating-point values"); + return acosh(genType(1) / x); + } + + // acsch + template + GLM_FUNC_QUALIFIER genType acsch(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'acsch' only accept floating-point values"); + return asinh(genType(1) / x); + } + + // acoth + template + GLM_FUNC_QUALIFIER genType acoth(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'acoth' only accept floating-point values"); + return atanh(genType(1) / x); + } +}//namespace glm diff --git a/thirdparty/glm/glm/ext/scalar_relational.hpp b/thirdparty/glm/glm/ext/scalar_relational.hpp new file mode 100644 index 000000000000..e84df1786824 --- /dev/null +++ b/thirdparty/glm/glm/ext/scalar_relational.hpp @@ -0,0 +1,68 @@ +/// @ref ext_scalar_relational +/// @file glm/ext/scalar_relational.hpp +/// +/// @defgroup ext_scalar_relational GLM_EXT_scalar_relational +/// @ingroup ext +/// +/// Exposes comparison functions for scalar types that take a user defined epsilon values. +/// +/// Include to use the features of this extension. +/// +/// @see core_vector_relational +/// @see ext_vector_relational +/// @see ext_matrix_relational + +#pragma once + +// Dependencies +#include "../detail/qualifier.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_scalar_relational extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_scalar_relational + /// @{ + + /// Returns the component-wise comparison of |x - y| < epsilon. + /// True if this expression is satisfied. + /// + /// @tparam genType Floating-point or integer scalar types + template + GLM_FUNC_DECL GLM_CONSTEXPR bool equal(genType const& x, genType const& y, genType const& epsilon); + + /// Returns the component-wise comparison of |x - y| >= epsilon. + /// True if this expression is not satisfied. + /// + /// @tparam genType Floating-point or integer scalar types + template + GLM_FUNC_DECL GLM_CONSTEXPR bool notEqual(genType const& x, genType const& y, genType const& epsilon); + + /// Returns the component-wise comparison between two scalars in term of ULPs. + /// True if this expression is satisfied. + /// + /// @param x First operand. + /// @param y Second operand. + /// @param ULPs Maximum difference in ULPs between the two operators to consider them equal. + /// + /// @tparam genType Floating-point or integer scalar types + template + GLM_FUNC_DECL GLM_CONSTEXPR bool equal(genType const& x, genType const& y, int ULPs); + + /// Returns the component-wise comparison between two scalars in term of ULPs. + /// True if this expression is not satisfied. + /// + /// @param x First operand. + /// @param y Second operand. + /// @param ULPs Maximum difference in ULPs between the two operators to consider them not equal. + /// + /// @tparam genType Floating-point or integer scalar types + template + GLM_FUNC_DECL GLM_CONSTEXPR bool notEqual(genType const& x, genType const& y, int ULPs); + + /// @} +}//namespace glm + +#include "scalar_relational.inl" diff --git a/thirdparty/glm/glm/ext/scalar_relational.inl b/thirdparty/glm/glm/ext/scalar_relational.inl new file mode 100644 index 000000000000..c85583ef5bbd --- /dev/null +++ b/thirdparty/glm/glm/ext/scalar_relational.inl @@ -0,0 +1,40 @@ +#include "../common.hpp" +#include "../ext/scalar_int_sized.hpp" +#include "../ext/scalar_uint_sized.hpp" +#include "../detail/type_float.hpp" + +namespace glm +{ + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool equal(genType const& x, genType const& y, genType const& epsilon) + { + return abs(x - y) <= epsilon; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool notEqual(genType const& x, genType const& y, genType const& epsilon) + { + return abs(x - y) > epsilon; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool equal(genType const& x, genType const& y, int MaxULPs) + { + detail::float_t const a(x); + detail::float_t const b(y); + + // Different signs means they do not match. + if(a.negative() != b.negative()) + return false; + + // Find the difference in ULPs. + typename detail::float_t::int_type const DiffULPs = abs(a.i - b.i); + return DiffULPs <= MaxULPs; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR bool notEqual(genType const& x, genType const& y, int ULPs) + { + return !equal(x, y, ULPs); + } +}//namespace glm diff --git a/thirdparty/glm/glm/ext/scalar_uint_sized.hpp b/thirdparty/glm/glm/ext/scalar_uint_sized.hpp new file mode 100644 index 000000000000..fd5267fad7c1 --- /dev/null +++ b/thirdparty/glm/glm/ext/scalar_uint_sized.hpp @@ -0,0 +1,70 @@ +/// @ref ext_scalar_uint_sized +/// @file glm/ext/scalar_uint_sized.hpp +/// +/// @defgroup ext_scalar_uint_sized GLM_EXT_scalar_uint_sized +/// @ingroup ext +/// +/// Exposes sized unsigned integer scalar types. +/// +/// Include to use the features of this extension. +/// +/// @see ext_scalar_int_sized + +#pragma once + +#include "../detail/setup.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_scalar_uint_sized extension included") +#endif + +namespace glm{ +namespace detail +{ +# if GLM_HAS_EXTENDED_INTEGER_TYPE + typedef std::uint8_t uint8; + typedef std::uint16_t uint16; + typedef std::uint32_t uint32; +# else + typedef unsigned char uint8; + typedef unsigned short uint16; + typedef unsigned int uint32; +#endif + + template<> + struct is_int + { + enum test {value = ~0}; + }; + + template<> + struct is_int + { + enum test {value = ~0}; + }; + + template<> + struct is_int + { + enum test {value = ~0}; + }; +}//namespace detail + + + /// @addtogroup ext_scalar_uint_sized + /// @{ + + /// 8 bit unsigned integer type. + typedef detail::uint8 uint8; + + /// 16 bit unsigned integer type. + typedef detail::uint16 uint16; + + /// 32 bit unsigned integer type. + typedef detail::uint32 uint32; + + /// 64 bit unsigned integer type. + typedef detail::uint64 uint64; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/scalar_ulp.hpp b/thirdparty/glm/glm/ext/scalar_ulp.hpp new file mode 100644 index 000000000000..6344d95bf23c --- /dev/null +++ b/thirdparty/glm/glm/ext/scalar_ulp.hpp @@ -0,0 +1,77 @@ +/// @ref ext_scalar_ulp +/// @file glm/ext/scalar_ulp.hpp +/// +/// @defgroup ext_scalar_ulp GLM_EXT_scalar_ulp +/// @ingroup ext +/// +/// Allow the measurement of the accuracy of a function against a reference +/// implementation. This extension works on floating-point data and provide results +/// in ULP. +/// +/// Include to use the features of this extension. +/// +/// @see ext_vector_ulp +/// @see ext_scalar_relational + +#pragma once + +// Dependencies +#include "../ext/scalar_int_sized.hpp" +#include "../common.hpp" +#include "../detail/qualifier.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_scalar_ulp extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_scalar_ulp + /// @{ + + /// Return the next ULP value(s) after the input value(s). + /// + /// @tparam genType A floating-point scalar type. + /// + /// @see ext_scalar_ulp + template + GLM_FUNC_DECL genType nextFloat(genType x); + + /// Return the previous ULP value(s) before the input value(s). + /// + /// @tparam genType A floating-point scalar type. + /// + /// @see ext_scalar_ulp + template + GLM_FUNC_DECL genType prevFloat(genType x); + + /// Return the value(s) ULP distance after the input value(s). + /// + /// @tparam genType A floating-point scalar type. + /// + /// @see ext_scalar_ulp + template + GLM_FUNC_DECL genType nextFloat(genType x, int ULPs); + + /// Return the value(s) ULP distance before the input value(s). + /// + /// @tparam genType A floating-point scalar type. + /// + /// @see ext_scalar_ulp + template + GLM_FUNC_DECL genType prevFloat(genType x, int ULPs); + + /// Return the distance in the number of ULP between 2 single-precision floating-point scalars. + /// + /// @see ext_scalar_ulp + GLM_FUNC_DECL int floatDistance(float x, float y); + + /// Return the distance in the number of ULP between 2 double-precision floating-point scalars. + /// + /// @see ext_scalar_ulp + GLM_FUNC_DECL int64 floatDistance(double x, double y); + + /// @} +}//namespace glm + +#include "scalar_ulp.inl" diff --git a/thirdparty/glm/glm/ext/scalar_ulp.inl b/thirdparty/glm/glm/ext/scalar_ulp.inl new file mode 100644 index 000000000000..919403fd6ad3 --- /dev/null +++ b/thirdparty/glm/glm/ext/scalar_ulp.inl @@ -0,0 +1,284 @@ +/// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. +/// +/// Developed at SunPro, a Sun Microsystems, Inc. business. +/// Permission to use, copy, modify, and distribute this +/// software is freely granted, provided that this notice +/// is preserved. + +#include "../detail/type_float.hpp" +#include "../ext/scalar_constants.hpp" +#include +#include + +#if(GLM_COMPILER & GLM_COMPILER_VC) +# pragma warning(push) +# pragma warning(disable : 4127) +#endif + +typedef union +{ + float value; + /* FIXME: Assumes 32 bit int. */ + unsigned int word; +} ieee_float_shape_type; + +typedef union +{ + double value; + struct + { + int lsw; + int msw; + } parts; +} ieee_double_shape_type; + +#define GLM_EXTRACT_WORDS(ix0,ix1,d) \ + do { \ + ieee_double_shape_type ew_u; \ + ew_u.value = (d); \ + (ix0) = ew_u.parts.msw; \ + (ix1) = ew_u.parts.lsw; \ + } while (0) + +#define GLM_GET_FLOAT_WORD(i,d) \ + do { \ + ieee_float_shape_type gf_u; \ + gf_u.value = (d); \ + (i) = gf_u.word; \ + } while (0) + +#define GLM_SET_FLOAT_WORD(d,i) \ + do { \ + ieee_float_shape_type sf_u; \ + sf_u.word = (i); \ + (d) = sf_u.value; \ + } while (0) + +#define GLM_INSERT_WORDS(d,ix0,ix1) \ + do { \ + ieee_double_shape_type iw_u; \ + iw_u.parts.msw = (ix0); \ + iw_u.parts.lsw = (ix1); \ + (d) = iw_u.value; \ + } while (0) + +namespace glm{ +namespace detail +{ + GLM_FUNC_QUALIFIER float nextafterf(float x, float y) + { + volatile float t; + int hx, hy, ix, iy; + + GLM_GET_FLOAT_WORD(hx, x); + GLM_GET_FLOAT_WORD(hy, y); + ix = hx & 0x7fffffff; // |x| + iy = hy & 0x7fffffff; // |y| + + if((ix > 0x7f800000) || // x is nan + (iy > 0x7f800000)) // y is nan + return x + y; + if(abs(y - x) <= epsilon()) + return y; // x=y, return y + if(ix == 0) + { // x == 0 + GLM_SET_FLOAT_WORD(x, (hy & 0x80000000) | 1);// return +-minsubnormal + t = x * x; + if(abs(t - x) <= epsilon()) + return t; + else + return x; // raise underflow flag + } + if(hx >= 0) + { // x > 0 + if(hx > hy) // x > y, x -= ulp + hx -= 1; + else // x < y, x += ulp + hx += 1; + } + else + { // x < 0 + if(hy >= 0 || hx > hy) // x < y, x -= ulp + hx -= 1; + else // x > y, x += ulp + hx += 1; + } + hy = hx & 0x7f800000; + if(hy >= 0x7f800000) + return x + x; // overflow + if(hy < 0x00800000) // underflow + { + t = x * x; + if(abs(t - x) > epsilon()) + { // raise underflow flag + GLM_SET_FLOAT_WORD(y, hx); + return y; + } + } + GLM_SET_FLOAT_WORD(x, hx); + return x; + } + + GLM_FUNC_QUALIFIER double nextafter(double x, double y) + { + volatile double t; + int hx, hy, ix, iy; + unsigned int lx, ly; + + GLM_EXTRACT_WORDS(hx, lx, x); + GLM_EXTRACT_WORDS(hy, ly, y); + ix = hx & 0x7fffffff; // |x| + iy = hy & 0x7fffffff; // |y| + + if(((ix >= 0x7ff00000) && ((ix - 0x7ff00000) | lx) != 0) || // x is nan + ((iy >= 0x7ff00000) && ((iy - 0x7ff00000) | ly) != 0)) // y is nan + return x + y; + if(abs(y - x) <= epsilon()) + return y; // x=y, return y + if((ix | lx) == 0) + { // x == 0 + GLM_INSERT_WORDS(x, hy & 0x80000000, 1); // return +-minsubnormal + t = x * x; + if(abs(t - x) <= epsilon()) + return t; + else + return x; // raise underflow flag + } + if(hx >= 0) { // x > 0 + if(hx > hy || ((hx == hy) && (lx > ly))) { // x > y, x -= ulp + if(lx == 0) hx -= 1; + lx -= 1; + } + else { // x < y, x += ulp + lx += 1; + if(lx == 0) hx += 1; + } + } + else { // x < 0 + if(hy >= 0 || hx > hy || ((hx == hy) && (lx > ly))){// x < y, x -= ulp + if(lx == 0) hx -= 1; + lx -= 1; + } + else { // x > y, x += ulp + lx += 1; + if(lx == 0) hx += 1; + } + } + hy = hx & 0x7ff00000; + if(hy >= 0x7ff00000) + return x + x; // overflow + if(hy < 0x00100000) + { // underflow + t = x * x; + if(abs(t - x) > epsilon()) + { // raise underflow flag + GLM_INSERT_WORDS(y, hx, lx); + return y; + } + } + GLM_INSERT_WORDS(x, hx, lx); + return x; + } +}//namespace detail +}//namespace glm + +#if(GLM_COMPILER & GLM_COMPILER_VC) +# pragma warning(pop) +#endif + +namespace glm +{ + template<> + GLM_FUNC_QUALIFIER float nextFloat(float x) + { +# if GLM_HAS_CXX11_STL + return std::nextafter(x, std::numeric_limits::max()); +# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) + return detail::nextafterf(x, FLT_MAX); +# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) + return __builtin_nextafterf(x, FLT_MAX); +# else + return nextafterf(x, FLT_MAX); +# endif + } + + template<> + GLM_FUNC_QUALIFIER double nextFloat(double x) + { +# if GLM_HAS_CXX11_STL + return std::nextafter(x, std::numeric_limits::max()); +# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) + return detail::nextafter(x, std::numeric_limits::max()); +# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) + return __builtin_nextafter(x, DBL_MAX); +# else + return nextafter(x, DBL_MAX); +# endif + } + + template + GLM_FUNC_QUALIFIER T nextFloat(T x, int ULPs) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'next_float' only accept floating-point input"); + assert(ULPs >= 0); + + T temp = x; + for(int i = 0; i < ULPs; ++i) + temp = nextFloat(temp); + return temp; + } + + GLM_FUNC_QUALIFIER float prevFloat(float x) + { +# if GLM_HAS_CXX11_STL + return std::nextafter(x, std::numeric_limits::min()); +# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) + return detail::nextafterf(x, FLT_MIN); +# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) + return __builtin_nextafterf(x, FLT_MIN); +# else + return nextafterf(x, FLT_MIN); +# endif + } + + GLM_FUNC_QUALIFIER double prevFloat(double x) + { +# if GLM_HAS_CXX11_STL + return std::nextafter(x, std::numeric_limits::min()); +# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) + return _nextafter(x, DBL_MIN); +# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) + return __builtin_nextafter(x, DBL_MIN); +# else + return nextafter(x, DBL_MIN); +# endif + } + + template + GLM_FUNC_QUALIFIER T prevFloat(T x, int ULPs) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'prev_float' only accept floating-point input"); + assert(ULPs >= 0); + + T temp = x; + for(int i = 0; i < ULPs; ++i) + temp = prevFloat(temp); + return temp; + } + + GLM_FUNC_QUALIFIER int floatDistance(float x, float y) + { + detail::float_t const a(x); + detail::float_t const b(y); + + return abs(a.i - b.i); + } + + GLM_FUNC_QUALIFIER int64 floatDistance(double x, double y) + { + detail::float_t const a(x); + detail::float_t const b(y); + + return abs(a.i - b.i); + } +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_bool1.hpp b/thirdparty/glm/glm/ext/vector_bool1.hpp new file mode 100644 index 000000000000..002c3202adf0 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_bool1.hpp @@ -0,0 +1,30 @@ +/// @ref ext_vector_bool1 +/// @file glm/ext/vector_bool1.hpp +/// +/// @defgroup ext_vector_bool1 GLM_EXT_vector_bool1 +/// @ingroup ext +/// +/// Exposes bvec1 vector type. +/// +/// Include to use the features of this extension. +/// +/// @see ext_vector_bool1_precision extension. + +#pragma once + +#include "../detail/type_vec1.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_bool1 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_bool1 + /// @{ + + /// 1 components vector of boolean. + typedef vec<1, bool, defaultp> bvec1; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_bool1_precision.hpp b/thirdparty/glm/glm/ext/vector_bool1_precision.hpp new file mode 100644 index 000000000000..e62d3cfb5fd4 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_bool1_precision.hpp @@ -0,0 +1,34 @@ +/// @ref ext_vector_bool1_precision +/// @file glm/ext/vector_bool1_precision.hpp +/// +/// @defgroup ext_vector_bool1_precision GLM_EXT_vector_bool1_precision +/// @ingroup ext +/// +/// Exposes highp_bvec1, mediump_bvec1 and lowp_bvec1 types. +/// +/// Include to use the features of this extension. + +#pragma once + +#include "../detail/type_vec1.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_bool1_precision extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_bool1_precision + /// @{ + + /// 1 component vector of bool values. + typedef vec<1, bool, highp> highp_bvec1; + + /// 1 component vector of bool values. + typedef vec<1, bool, mediump> mediump_bvec1; + + /// 1 component vector of bool values. + typedef vec<1, bool, lowp> lowp_bvec1; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_bool2.hpp b/thirdparty/glm/glm/ext/vector_bool2.hpp new file mode 100644 index 000000000000..52288b75c697 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_bool2.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/vector_bool2.hpp + +#pragma once +#include "../detail/type_vec2.hpp" + +namespace glm +{ + /// @addtogroup core_vector + /// @{ + + /// 2 components vector of boolean. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + typedef vec<2, bool, defaultp> bvec2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_bool2_precision.hpp b/thirdparty/glm/glm/ext/vector_bool2_precision.hpp new file mode 100644 index 000000000000..43709332c629 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_bool2_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/vector_bool2_precision.hpp + +#pragma once +#include "../detail/type_vec2.hpp" + +namespace glm +{ + /// @addtogroup core_vector_precision + /// @{ + + /// 2 components vector of high qualifier bool numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<2, bool, highp> highp_bvec2; + + /// 2 components vector of medium qualifier bool numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<2, bool, mediump> mediump_bvec2; + + /// 2 components vector of low qualifier bool numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<2, bool, lowp> lowp_bvec2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_bool3.hpp b/thirdparty/glm/glm/ext/vector_bool3.hpp new file mode 100644 index 000000000000..90a0b7ea5ac0 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_bool3.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/vector_bool3.hpp + +#pragma once +#include "../detail/type_vec3.hpp" + +namespace glm +{ + /// @addtogroup core_vector + /// @{ + + /// 3 components vector of boolean. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + typedef vec<3, bool, defaultp> bvec3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_bool3_precision.hpp b/thirdparty/glm/glm/ext/vector_bool3_precision.hpp new file mode 100644 index 000000000000..89cd2d3207a1 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_bool3_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/vector_bool3_precision.hpp + +#pragma once +#include "../detail/type_vec3.hpp" + +namespace glm +{ + /// @addtogroup core_vector_precision + /// @{ + + /// 3 components vector of high qualifier bool numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<3, bool, highp> highp_bvec3; + + /// 3 components vector of medium qualifier bool numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<3, bool, mediump> mediump_bvec3; + + /// 3 components vector of low qualifier bool numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<3, bool, lowp> lowp_bvec3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_bool4.hpp b/thirdparty/glm/glm/ext/vector_bool4.hpp new file mode 100644 index 000000000000..18aa71bd0f49 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_bool4.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/vector_bool4.hpp + +#pragma once +#include "../detail/type_vec4.hpp" + +namespace glm +{ + /// @addtogroup core_vector + /// @{ + + /// 4 components vector of boolean. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + typedef vec<4, bool, defaultp> bvec4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_bool4_precision.hpp b/thirdparty/glm/glm/ext/vector_bool4_precision.hpp new file mode 100644 index 000000000000..79786e54206b --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_bool4_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/vector_bool4_precision.hpp + +#pragma once +#include "../detail/type_vec4.hpp" + +namespace glm +{ + /// @addtogroup core_vector_precision + /// @{ + + /// 4 components vector of high qualifier bool numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<4, bool, highp> highp_bvec4; + + /// 4 components vector of medium qualifier bool numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<4, bool, mediump> mediump_bvec4; + + /// 4 components vector of low qualifier bool numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<4, bool, lowp> lowp_bvec4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_common.hpp b/thirdparty/glm/glm/ext/vector_common.hpp new file mode 100644 index 000000000000..c0a2858cc288 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_common.hpp @@ -0,0 +1,228 @@ +/// @ref ext_vector_common +/// @file glm/ext/vector_common.hpp +/// +/// @defgroup ext_vector_common GLM_EXT_vector_common +/// @ingroup ext +/// +/// Exposes min and max functions for 3 to 4 vector parameters. +/// +/// Include to use the features of this extension. +/// +/// @see core_common +/// @see ext_scalar_common + +#pragma once + +// Dependency: +#include "../ext/scalar_common.hpp" +#include "../common.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_common extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_common + /// @{ + + /// Return the minimum component-wise values of 3 inputs + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec min(vec const& a, vec const& b, vec const& c); + + /// Return the minimum component-wise values of 4 inputs + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec min(vec const& a, vec const& b, vec const& c, vec const& d); + + /// Return the maximum component-wise values of 3 inputs + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec max(vec const& x, vec const& y, vec const& z); + + /// Return the maximum component-wise values of 4 inputs + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec max( vec const& x, vec const& y, vec const& z, vec const& w); + + /// Returns y if y < x; otherwise, it returns x. If one of the two arguments is NaN, the value of the other argument is returned. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see std::fmin documentation + template + GLM_FUNC_DECL vec fmin(vec const& x, T y); + + /// Returns y if y < x; otherwise, it returns x. If one of the two arguments is NaN, the value of the other argument is returned. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see std::fmin documentation + template + GLM_FUNC_DECL vec fmin(vec const& x, vec const& y); + + /// Returns y if y < x; otherwise, it returns x. If one of the two arguments is NaN, the value of the other argument is returned. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see std::fmin documentation + template + GLM_FUNC_DECL vec fmin(vec const& a, vec const& b, vec const& c); + + /// Returns y if y < x; otherwise, it returns x. If one of the two arguments is NaN, the value of the other argument is returned. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see std::fmin documentation + template + GLM_FUNC_DECL vec fmin(vec const& a, vec const& b, vec const& c, vec const& d); + + /// Returns y if x < y; otherwise, it returns x. If one of the two arguments is NaN, the value of the other argument is returned. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see std::fmax documentation + template + GLM_FUNC_DECL vec fmax(vec const& a, T b); + + /// Returns y if x < y; otherwise, it returns x. If one of the two arguments is NaN, the value of the other argument is returned. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see std::fmax documentation + template + GLM_FUNC_DECL vec fmax(vec const& a, vec const& b); + + /// Returns y if x < y; otherwise, it returns x. If one of the two arguments is NaN, the value of the other argument is returned. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see std::fmax documentation + template + GLM_FUNC_DECL vec fmax(vec const& a, vec const& b, vec const& c); + + /// Returns y if x < y; otherwise, it returns x. If one of the two arguments is NaN, the value of the other argument is returned. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see std::fmax documentation + template + GLM_FUNC_DECL vec fmax(vec const& a, vec const& b, vec const& c, vec const& d); + + /// Returns min(max(x, minVal), maxVal) for each component in x. If one of the two arguments is NaN, the value of the other argument is returned. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see ext_vector_common + template + GLM_FUNC_DECL vec fclamp(vec const& x, T minVal, T maxVal); + + /// Returns min(max(x, minVal), maxVal) for each component in x. If one of the two arguments is NaN, the value of the other argument is returned. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see ext_vector_common + template + GLM_FUNC_DECL vec fclamp(vec const& x, vec const& minVal, vec const& maxVal); + + /// Simulate GL_CLAMP OpenGL wrap mode + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see ext_vector_common extension. + template + GLM_FUNC_DECL vec clamp(vec const& Texcoord); + + /// Simulate GL_REPEAT OpenGL wrap mode + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see ext_vector_common extension. + template + GLM_FUNC_DECL vec repeat(vec const& Texcoord); + + /// Simulate GL_MIRRORED_REPEAT OpenGL wrap mode + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see ext_vector_common extension. + template + GLM_FUNC_DECL vec mirrorClamp(vec const& Texcoord); + + /// Simulate GL_MIRROR_REPEAT OpenGL wrap mode + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see ext_vector_common extension. + template + GLM_FUNC_DECL vec mirrorRepeat(vec const& Texcoord); + + /// Returns a value equal to the nearest integer to x. + /// The fraction 0.5 will round in a direction chosen by the + /// implementation, presumably the direction that is fastest. + /// + /// @param x The values of the argument must be greater or equal to zero. + /// @tparam T floating point scalar types. + /// + /// @see GLSL round man page + /// @see ext_vector_common extension. + template + GLM_FUNC_DECL vec iround(vec const& x); + + /// Returns a value equal to the nearest integer to x. + /// The fraction 0.5 will round in a direction chosen by the + /// implementation, presumably the direction that is fastest. + /// + /// @param x The values of the argument must be greater or equal to zero. + /// @tparam T floating point scalar types. + /// + /// @see GLSL round man page + /// @see ext_vector_common extension. + template + GLM_FUNC_DECL vec uround(vec const& x); + + /// @} +}//namespace glm + +#include "vector_common.inl" diff --git a/thirdparty/glm/glm/ext/vector_common.inl b/thirdparty/glm/glm/ext/vector_common.inl new file mode 100644 index 000000000000..67817fc554b0 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_common.inl @@ -0,0 +1,147 @@ +#include "../detail/_vectorize.hpp" + +namespace glm +{ + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec min(vec const& x, vec const& y, vec const& z) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer, "'min' only accept floating-point or integer inputs"); + return glm::min(glm::min(x, y), z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec min(vec const& x, vec const& y, vec const& z, vec const& w) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer, "'min' only accept floating-point or integer inputs"); + return glm::min(glm::min(x, y), glm::min(z, w)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec max(vec const& x, vec const& y, vec const& z) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer, "'max' only accept floating-point or integer inputs"); + return glm::max(glm::max(x, y), z); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec max(vec const& x, vec const& y, vec const& z, vec const& w) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || std::numeric_limits::is_integer, "'max' only accept floating-point or integer inputs"); + return glm::max(glm::max(x, y), glm::max(z, w)); + } + + template + GLM_FUNC_QUALIFIER vec fmin(vec const& a, T b) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'fmin' only accept floating-point inputs"); + return detail::functor2::call(fmin, a, vec(b)); + } + + template + GLM_FUNC_QUALIFIER vec fmin(vec const& a, vec const& b) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'fmin' only accept floating-point inputs"); + return detail::functor2::call(fmin, a, b); + } + + template + GLM_FUNC_QUALIFIER vec fmin(vec const& a, vec const& b, vec const& c) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'fmin' only accept floating-point inputs"); + return fmin(fmin(a, b), c); + } + + template + GLM_FUNC_QUALIFIER vec fmin(vec const& a, vec const& b, vec const& c, vec const& d) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'fmin' only accept floating-point inputs"); + return fmin(fmin(a, b), fmin(c, d)); + } + + template + GLM_FUNC_QUALIFIER vec fmax(vec const& a, T b) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'fmax' only accept floating-point inputs"); + return detail::functor2::call(fmax, a, vec(b)); + } + + template + GLM_FUNC_QUALIFIER vec fmax(vec const& a, vec const& b) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'fmax' only accept floating-point inputs"); + return detail::functor2::call(fmax, a, b); + } + + template + GLM_FUNC_QUALIFIER vec fmax(vec const& a, vec const& b, vec const& c) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'fmax' only accept floating-point inputs"); + return fmax(fmax(a, b), c); + } + + template + GLM_FUNC_QUALIFIER vec fmax(vec const& a, vec const& b, vec const& c, vec const& d) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'fmax' only accept floating-point inputs"); + return fmax(fmax(a, b), fmax(c, d)); + } + + template + GLM_FUNC_QUALIFIER vec fclamp(vec const& x, T minVal, T maxVal) + { + return fmin(fmax(x, vec(minVal)), vec(maxVal)); + } + + template + GLM_FUNC_QUALIFIER vec fclamp(vec const& x, vec const& minVal, vec const& maxVal) + { + return fmin(fmax(x, minVal), maxVal); + } + + template + GLM_FUNC_QUALIFIER vec clamp(vec const& Texcoord) + { + return glm::clamp(Texcoord, vec(0), vec(1)); + } + + template + GLM_FUNC_QUALIFIER vec repeat(vec const& Texcoord) + { + return glm::fract(Texcoord); + } + + template + GLM_FUNC_QUALIFIER vec mirrorClamp(vec const& Texcoord) + { + return glm::fract(glm::abs(Texcoord)); + } + + template + GLM_FUNC_QUALIFIER vec mirrorRepeat(vec const& Texcoord) + { + vec const Abs = glm::abs(Texcoord); + vec const Clamp = glm::mod(glm::floor(Abs), vec(2)); + vec const Floor = glm::floor(Abs); + vec const Rest = Abs - Floor; + vec const Mirror = Clamp + Rest; + return mix(Rest, vec(1) - Rest, glm::greaterThanEqual(Mirror, vec(1))); + } + + template + GLM_FUNC_QUALIFIER vec iround(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'iround' only accept floating-point inputs"); + assert(all(lessThanEqual(vec(0), x))); + + return vec(x + static_cast(0.5)); + } + + template + GLM_FUNC_QUALIFIER vec uround(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'uround' only accept floating-point inputs"); + assert(all(lessThanEqual(vec(0), x))); + + return vec(x + static_cast(0.5)); + } +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_double1.hpp b/thirdparty/glm/glm/ext/vector_double1.hpp new file mode 100644 index 000000000000..388266774d8b --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_double1.hpp @@ -0,0 +1,31 @@ +/// @ref ext_vector_double1 +/// @file glm/ext/vector_double1.hpp +/// +/// @defgroup ext_vector_double1 GLM_EXT_vector_double1 +/// @ingroup ext +/// +/// Exposes double-precision floating point vector type with one component. +/// +/// Include to use the features of this extension. +/// +/// @see ext_vector_double1_precision extension. +/// @see ext_vector_float1 extension. + +#pragma once + +#include "../detail/type_vec1.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_double1 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_double1 + /// @{ + + /// 1 components vector of double-precision floating-point numbers. + typedef vec<1, double, defaultp> dvec1; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_double1_precision.hpp b/thirdparty/glm/glm/ext/vector_double1_precision.hpp new file mode 100644 index 000000000000..1d4719595481 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_double1_precision.hpp @@ -0,0 +1,36 @@ +/// @ref ext_vector_double1_precision +/// @file glm/ext/vector_double1_precision.hpp +/// +/// @defgroup ext_vector_double1_precision GLM_EXT_vector_double1_precision +/// @ingroup ext +/// +/// Exposes highp_dvec1, mediump_dvec1 and lowp_dvec1 types. +/// +/// Include to use the features of this extension. +/// +/// @see ext_vector_double1 + +#pragma once + +#include "../detail/type_vec1.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_double1_precision extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_double1_precision + /// @{ + + /// 1 component vector of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<1, double, highp> highp_dvec1; + + /// 1 component vector of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<1, double, mediump> mediump_dvec1; + + /// 1 component vector of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<1, double, lowp> lowp_dvec1; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_double2.hpp b/thirdparty/glm/glm/ext/vector_double2.hpp new file mode 100644 index 000000000000..60e357750b67 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_double2.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/vector_double2.hpp + +#pragma once +#include "../detail/type_vec2.hpp" + +namespace glm +{ + /// @addtogroup core_vector + /// @{ + + /// 2 components vector of double-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + typedef vec<2, double, defaultp> dvec2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_double2_precision.hpp b/thirdparty/glm/glm/ext/vector_double2_precision.hpp new file mode 100644 index 000000000000..fa53940f6bbe --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_double2_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/vector_double2_precision.hpp + +#pragma once +#include "../detail/type_vec2.hpp" + +namespace glm +{ + /// @addtogroup core_vector_precision + /// @{ + + /// 2 components vector of high double-qualifier floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<2, double, highp> highp_dvec2; + + /// 2 components vector of medium double-qualifier floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<2, double, mediump> mediump_dvec2; + + /// 2 components vector of low double-qualifier floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<2, double, lowp> lowp_dvec2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_double3.hpp b/thirdparty/glm/glm/ext/vector_double3.hpp new file mode 100644 index 000000000000..6dfe4c675b5d --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_double3.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/vector_double3.hpp + +#pragma once +#include "../detail/type_vec3.hpp" + +namespace glm +{ + /// @addtogroup core_vector + /// @{ + + /// 3 components vector of double-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + typedef vec<3, double, defaultp> dvec3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_double3_precision.hpp b/thirdparty/glm/glm/ext/vector_double3_precision.hpp new file mode 100644 index 000000000000..a8cfa37a8c78 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_double3_precision.hpp @@ -0,0 +1,34 @@ +/// @ref core +/// @file glm/ext/vector_double3_precision.hpp + +#pragma once +#include "../detail/type_vec3.hpp" + +namespace glm +{ + /// @addtogroup core_vector_precision + /// @{ + + /// 3 components vector of high double-qualifier floating-point numbers. + /// There is no guarantee on the actual qualifier. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<3, double, highp> highp_dvec3; + + /// 3 components vector of medium double-qualifier floating-point numbers. + /// There is no guarantee on the actual qualifier. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<3, double, mediump> mediump_dvec3; + + /// 3 components vector of low double-qualifier floating-point numbers. + /// There is no guarantee on the actual qualifier. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<3, double, lowp> lowp_dvec3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_double4.hpp b/thirdparty/glm/glm/ext/vector_double4.hpp new file mode 100644 index 000000000000..87f225f64d4a --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_double4.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/vector_double4.hpp + +#pragma once +#include "../detail/type_vec4.hpp" + +namespace glm +{ + /// @addtogroup core_vector + /// @{ + + /// 4 components vector of double-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + typedef vec<4, double, defaultp> dvec4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_double4_precision.hpp b/thirdparty/glm/glm/ext/vector_double4_precision.hpp new file mode 100644 index 000000000000..09cafa1ebafd --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_double4_precision.hpp @@ -0,0 +1,35 @@ +/// @ref core +/// @file glm/ext/vector_double4_precision.hpp + +#pragma once +#include "../detail/setup.hpp" +#include "../detail/type_vec4.hpp" + +namespace glm +{ + /// @addtogroup core_vector_precision + /// @{ + + /// 4 components vector of high double-qualifier floating-point numbers. + /// There is no guarantee on the actual qualifier. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<4, double, highp> highp_dvec4; + + /// 4 components vector of medium double-qualifier floating-point numbers. + /// There is no guarantee on the actual qualifier. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<4, double, mediump> mediump_dvec4; + + /// 4 components vector of low double-qualifier floating-point numbers. + /// There is no guarantee on the actual qualifier. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<4, double, lowp> lowp_dvec4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_float1.hpp b/thirdparty/glm/glm/ext/vector_float1.hpp new file mode 100644 index 000000000000..28acc2c9ca59 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_float1.hpp @@ -0,0 +1,31 @@ +/// @ref ext_vector_float1 +/// @file glm/ext/vector_float1.hpp +/// +/// @defgroup ext_vector_float1 GLM_EXT_vector_float1 +/// @ingroup ext +/// +/// Exposes single-precision floating point vector type with one component. +/// +/// Include to use the features of this extension. +/// +/// @see ext_vector_float1_precision extension. +/// @see ext_vector_double1 extension. + +#pragma once + +#include "../detail/type_vec1.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_float1 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_float1 + /// @{ + + /// 1 components vector of single-precision floating-point numbers. + typedef vec<1, float, defaultp> vec1; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_float1_precision.hpp b/thirdparty/glm/glm/ext/vector_float1_precision.hpp new file mode 100644 index 000000000000..6e8dad8d17c8 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_float1_precision.hpp @@ -0,0 +1,36 @@ +/// @ref ext_vector_float1_precision +/// @file glm/ext/vector_float1_precision.hpp +/// +/// @defgroup ext_vector_float1_precision GLM_EXT_vector_float1_precision +/// @ingroup ext +/// +/// Exposes highp_vec1, mediump_vec1 and lowp_vec1 types. +/// +/// Include to use the features of this extension. +/// +/// @see ext_vector_float1 extension. + +#pragma once + +#include "../detail/type_vec1.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_float1_precision extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_float1_precision + /// @{ + + /// 1 component vector of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<1, float, highp> highp_vec1; + + /// 1 component vector of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<1, float, mediump> mediump_vec1; + + /// 1 component vector of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<1, float, lowp> lowp_vec1; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_float2.hpp b/thirdparty/glm/glm/ext/vector_float2.hpp new file mode 100644 index 000000000000..d31545dcc966 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_float2.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/vector_float2.hpp + +#pragma once +#include "../detail/type_vec2.hpp" + +namespace glm +{ + /// @addtogroup core_vector + /// @{ + + /// 2 components vector of single-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + typedef vec<2, float, defaultp> vec2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_float2_precision.hpp b/thirdparty/glm/glm/ext/vector_float2_precision.hpp new file mode 100644 index 000000000000..23c0820d0ae8 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_float2_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/vector_float2_precision.hpp + +#pragma once +#include "../detail/type_vec2.hpp" + +namespace glm +{ + /// @addtogroup core_vector_precision + /// @{ + + /// 2 components vector of high single-qualifier floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<2, float, highp> highp_vec2; + + /// 2 components vector of medium single-qualifier floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<2, float, mediump> mediump_vec2; + + /// 2 components vector of low single-qualifier floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<2, float, lowp> lowp_vec2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_float3.hpp b/thirdparty/glm/glm/ext/vector_float3.hpp new file mode 100644 index 000000000000..cd79a62004e4 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_float3.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/vector_float3.hpp + +#pragma once +#include "../detail/type_vec3.hpp" + +namespace glm +{ + /// @addtogroup core_vector + /// @{ + + /// 3 components vector of single-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + typedef vec<3, float, defaultp> vec3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_float3_precision.hpp b/thirdparty/glm/glm/ext/vector_float3_precision.hpp new file mode 100644 index 000000000000..be640b531683 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_float3_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/vector_float3_precision.hpp + +#pragma once +#include "../detail/type_vec3.hpp" + +namespace glm +{ + /// @addtogroup core_vector_precision + /// @{ + + /// 3 components vector of high single-qualifier floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<3, float, highp> highp_vec3; + + /// 3 components vector of medium single-qualifier floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<3, float, mediump> mediump_vec3; + + /// 3 components vector of low single-qualifier floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<3, float, lowp> lowp_vec3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_float4.hpp b/thirdparty/glm/glm/ext/vector_float4.hpp new file mode 100644 index 000000000000..d84adcc22fd2 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_float4.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/vector_float4.hpp + +#pragma once +#include "../detail/type_vec4.hpp" + +namespace glm +{ + /// @addtogroup core_vector + /// @{ + + /// 4 components vector of single-precision floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + typedef vec<4, float, defaultp> vec4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_float4_precision.hpp b/thirdparty/glm/glm/ext/vector_float4_precision.hpp new file mode 100644 index 000000000000..aede83882e55 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_float4_precision.hpp @@ -0,0 +1,31 @@ +/// @ref core +/// @file glm/ext/vector_float4_precision.hpp + +#pragma once +#include "../detail/type_vec4.hpp" + +namespace glm +{ + /// @addtogroup core_vector_precision + /// @{ + + /// 4 components vector of high single-qualifier floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<4, float, highp> highp_vec4; + + /// 4 components vector of medium single-qualifier floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<4, float, mediump> mediump_vec4; + + /// 4 components vector of low single-qualifier floating-point numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + /// @see GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier + typedef vec<4, float, lowp> lowp_vec4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_int1.hpp b/thirdparty/glm/glm/ext/vector_int1.hpp new file mode 100644 index 000000000000..dc8603891a99 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_int1.hpp @@ -0,0 +1,32 @@ +/// @ref ext_vector_int1 +/// @file glm/ext/vector_int1.hpp +/// +/// @defgroup ext_vector_int1 GLM_EXT_vector_int1 +/// @ingroup ext +/// +/// Exposes ivec1 vector type. +/// +/// Include to use the features of this extension. +/// +/// @see ext_vector_uint1 extension. +/// @see ext_vector_int1_precision extension. + +#pragma once + +#include "../detail/type_vec1.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_int1 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_int1 + /// @{ + + /// 1 component vector of signed integer numbers. + typedef vec<1, int, defaultp> ivec1; + + /// @} +}//namespace glm + diff --git a/thirdparty/glm/glm/ext/vector_int1_sized.hpp b/thirdparty/glm/glm/ext/vector_int1_sized.hpp new file mode 100644 index 000000000000..de0d4cf82e63 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_int1_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_vector_int1_sized +/// @file glm/ext/vector_int1_sized.hpp +/// +/// @defgroup ext_vector_int1_sized GLM_EXT_vector_int1_sized +/// @ingroup ext +/// +/// Exposes sized signed integer vector types. +/// +/// Include to use the features of this extension. +/// +/// @see ext_scalar_int_sized +/// @see ext_vector_uint1_sized + +#pragma once + +#include "../ext/vector_int1.hpp" +#include "../ext/scalar_int_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_int1_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_int1_sized + /// @{ + + /// 8 bit signed integer vector of 1 component type. + /// + /// @see ext_vector_int1_sized + typedef vec<1, int8, defaultp> i8vec1; + + /// 16 bit signed integer vector of 1 component type. + /// + /// @see ext_vector_int1_sized + typedef vec<1, int16, defaultp> i16vec1; + + /// 32 bit signed integer vector of 1 component type. + /// + /// @see ext_vector_int1_sized + typedef vec<1, int32, defaultp> i32vec1; + + /// 64 bit signed integer vector of 1 component type. + /// + /// @see ext_vector_int1_sized + typedef vec<1, int64, defaultp> i64vec1; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_int2.hpp b/thirdparty/glm/glm/ext/vector_int2.hpp new file mode 100644 index 000000000000..aef803e91b73 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_int2.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/vector_int2.hpp + +#pragma once +#include "../detail/type_vec2.hpp" + +namespace glm +{ + /// @addtogroup core_vector + /// @{ + + /// 2 components vector of signed integer numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + typedef vec<2, int, defaultp> ivec2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_int2_sized.hpp b/thirdparty/glm/glm/ext/vector_int2_sized.hpp new file mode 100644 index 000000000000..1fd57eef310d --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_int2_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_vector_int2_sized +/// @file glm/ext/vector_int2_sized.hpp +/// +/// @defgroup ext_vector_int2_sized GLM_EXT_vector_int2_sized +/// @ingroup ext +/// +/// Exposes sized signed integer vector of 2 components type. +/// +/// Include to use the features of this extension. +/// +/// @see ext_scalar_int_sized +/// @see ext_vector_uint2_sized + +#pragma once + +#include "../ext/vector_int2.hpp" +#include "../ext/scalar_int_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_int2_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_int2_sized + /// @{ + + /// 8 bit signed integer vector of 2 components type. + /// + /// @see ext_vector_int2_sized + typedef vec<2, int8, defaultp> i8vec2; + + /// 16 bit signed integer vector of 2 components type. + /// + /// @see ext_vector_int2_sized + typedef vec<2, int16, defaultp> i16vec2; + + /// 32 bit signed integer vector of 2 components type. + /// + /// @see ext_vector_int2_sized + typedef vec<2, int32, defaultp> i32vec2; + + /// 64 bit signed integer vector of 2 components type. + /// + /// @see ext_vector_int2_sized + typedef vec<2, int64, defaultp> i64vec2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_int3.hpp b/thirdparty/glm/glm/ext/vector_int3.hpp new file mode 100644 index 000000000000..4767e61e88c0 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_int3.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/vector_int3.hpp + +#pragma once +#include "../detail/type_vec3.hpp" + +namespace glm +{ + /// @addtogroup core_vector + /// @{ + + /// 3 components vector of signed integer numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + typedef vec<3, int, defaultp> ivec3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_int3_sized.hpp b/thirdparty/glm/glm/ext/vector_int3_sized.hpp new file mode 100644 index 000000000000..085a3febbffd --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_int3_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_vector_int3_sized +/// @file glm/ext/vector_int3_sized.hpp +/// +/// @defgroup ext_vector_int3_sized GLM_EXT_vector_int3_sized +/// @ingroup ext +/// +/// Exposes sized signed integer vector of 3 components type. +/// +/// Include to use the features of this extension. +/// +/// @see ext_scalar_int_sized +/// @see ext_vector_uint3_sized + +#pragma once + +#include "../ext/vector_int3.hpp" +#include "../ext/scalar_int_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_int3_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_int3_sized + /// @{ + + /// 8 bit signed integer vector of 3 components type. + /// + /// @see ext_vector_int3_sized + typedef vec<3, int8, defaultp> i8vec3; + + /// 16 bit signed integer vector of 3 components type. + /// + /// @see ext_vector_int3_sized + typedef vec<3, int16, defaultp> i16vec3; + + /// 32 bit signed integer vector of 3 components type. + /// + /// @see ext_vector_int3_sized + typedef vec<3, int32, defaultp> i32vec3; + + /// 64 bit signed integer vector of 3 components type. + /// + /// @see ext_vector_int3_sized + typedef vec<3, int64, defaultp> i64vec3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_int4.hpp b/thirdparty/glm/glm/ext/vector_int4.hpp new file mode 100644 index 000000000000..bb23adf706c2 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_int4.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/vector_int4.hpp + +#pragma once +#include "../detail/type_vec4.hpp" + +namespace glm +{ + /// @addtogroup core_vector + /// @{ + + /// 4 components vector of signed integer numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + typedef vec<4, int, defaultp> ivec4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_int4_sized.hpp b/thirdparty/glm/glm/ext/vector_int4_sized.hpp new file mode 100644 index 000000000000..c63d46540b3e --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_int4_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_vector_int4_sized +/// @file glm/ext/vector_int4_sized.hpp +/// +/// @defgroup ext_vector_int4_sized GLM_EXT_vector_int4_sized +/// @ingroup ext +/// +/// Exposes sized signed integer vector of 4 components type. +/// +/// Include to use the features of this extension. +/// +/// @see ext_scalar_int_sized +/// @see ext_vector_uint4_sized + +#pragma once + +#include "../ext/vector_int4.hpp" +#include "../ext/scalar_int_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_int4_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_int4_sized + /// @{ + + /// 8 bit signed integer vector of 4 components type. + /// + /// @see ext_vector_int4_sized + typedef vec<4, int8, defaultp> i8vec4; + + /// 16 bit signed integer vector of 4 components type. + /// + /// @see ext_vector_int4_sized + typedef vec<4, int16, defaultp> i16vec4; + + /// 32 bit signed integer vector of 4 components type. + /// + /// @see ext_vector_int4_sized + typedef vec<4, int32, defaultp> i32vec4; + + /// 64 bit signed integer vector of 4 components type. + /// + /// @see ext_vector_int4_sized + typedef vec<4, int64, defaultp> i64vec4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_integer.hpp b/thirdparty/glm/glm/ext/vector_integer.hpp new file mode 100644 index 000000000000..1304dd8d660f --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_integer.hpp @@ -0,0 +1,149 @@ +/// @ref ext_vector_integer +/// @file glm/ext/vector_integer.hpp +/// +/// @see core (dependence) +/// @see ext_vector_integer (dependence) +/// +/// @defgroup ext_vector_integer GLM_EXT_vector_integer +/// @ingroup ext +/// +/// Include to use the features of this extension. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/qualifier.hpp" +#include "../detail/_vectorize.hpp" +#include "../vector_relational.hpp" +#include "../common.hpp" +#include + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_integer extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_integer + /// @{ + + /// Return true if the value is a power of two number. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed or unsigned integer scalar types. + /// @tparam Q Value from qualifier enum + /// + /// @see ext_vector_integer + template + GLM_FUNC_DECL vec isPowerOfTwo(vec const& v); + + /// Return the power of two number which value is just higher the input value, + /// round up to a power of two. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed or unsigned integer scalar types. + /// @tparam Q Value from qualifier enum + /// + /// @see ext_vector_integer + template + GLM_FUNC_DECL vec nextPowerOfTwo(vec const& v); + + /// Return the power of two number which value is just lower the input value, + /// round down to a power of two. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed or unsigned integer scalar types. + /// @tparam Q Value from qualifier enum + /// + /// @see ext_vector_integer + template + GLM_FUNC_DECL vec prevPowerOfTwo(vec const& v); + + /// Return true if the 'Value' is a multiple of 'Multiple'. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed or unsigned integer scalar types. + /// @tparam Q Value from qualifier enum + /// + /// @see ext_vector_integer + template + GLM_FUNC_DECL vec isMultiple(vec const& v, T Multiple); + + /// Return true if the 'Value' is a multiple of 'Multiple'. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed or unsigned integer scalar types. + /// @tparam Q Value from qualifier enum + /// + /// @see ext_vector_integer + template + GLM_FUNC_DECL vec isMultiple(vec const& v, vec const& Multiple); + + /// Higher multiple number of Source. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed or unsigned integer scalar types. + /// @tparam Q Value from qualifier enum + /// + /// @param v Source values to which is applied the function + /// @param Multiple Must be a null or positive value + /// + /// @see ext_vector_integer + template + GLM_FUNC_DECL vec nextMultiple(vec const& v, T Multiple); + + /// Higher multiple number of Source. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed or unsigned integer scalar types. + /// @tparam Q Value from qualifier enum + /// + /// @param v Source values to which is applied the function + /// @param Multiple Must be a null or positive value + /// + /// @see ext_vector_integer + template + GLM_FUNC_DECL vec nextMultiple(vec const& v, vec const& Multiple); + + /// Lower multiple number of Source. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed or unsigned integer scalar types. + /// @tparam Q Value from qualifier enum + /// + /// @param v Source values to which is applied the function + /// @param Multiple Must be a null or positive value + /// + /// @see ext_vector_integer + template + GLM_FUNC_DECL vec prevMultiple(vec const& v, T Multiple); + + /// Lower multiple number of Source. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed or unsigned integer scalar types. + /// @tparam Q Value from qualifier enum + /// + /// @param v Source values to which is applied the function + /// @param Multiple Must be a null or positive value + /// + /// @see ext_vector_integer + template + GLM_FUNC_DECL vec prevMultiple(vec const& v, vec const& Multiple); + + /// Returns the bit number of the Nth significant bit set to + /// 1 in the binary representation of value. + /// If value bitcount is less than the Nth significant bit, -1 will be returned. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Signed or unsigned integer scalar types. + /// + /// @see ext_vector_integer + template + GLM_FUNC_DECL vec findNSB(vec const& Source, vec SignificantBitCount); + + /// @} +} //namespace glm + +#include "vector_integer.inl" diff --git a/thirdparty/glm/glm/ext/vector_integer.inl b/thirdparty/glm/glm/ext/vector_integer.inl new file mode 100644 index 000000000000..cefb132e237a --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_integer.inl @@ -0,0 +1,85 @@ +#include "scalar_integer.hpp" + +namespace glm +{ + template + GLM_FUNC_QUALIFIER vec isPowerOfTwo(vec const& Value) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'isPowerOfTwo' only accept integer inputs"); + + vec const Result(abs(Value)); + return equal(Result & (Result - vec(1)), vec(0)); + } + + template + GLM_FUNC_QUALIFIER vec nextPowerOfTwo(vec const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'nextPowerOfTwo' only accept integer inputs"); + + return detail::compute_ceilPowerOfTwo::is_signed>::call(v); + } + + template + GLM_FUNC_QUALIFIER vec prevPowerOfTwo(vec const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'prevPowerOfTwo' only accept integer inputs"); + + return detail::functor1::call(prevPowerOfTwo, v); + } + + template + GLM_FUNC_QUALIFIER vec isMultiple(vec const& Value, T Multiple) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'isMultiple' only accept integer inputs"); + + return equal(Value % Multiple, vec(0)); + } + + template + GLM_FUNC_QUALIFIER vec isMultiple(vec const& Value, vec const& Multiple) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'isMultiple' only accept integer inputs"); + + return equal(Value % Multiple, vec(0)); + } + + template + GLM_FUNC_QUALIFIER vec nextMultiple(vec const& Source, T Multiple) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'nextMultiple' only accept integer inputs"); + + return detail::functor2::call(nextMultiple, Source, vec(Multiple)); + } + + template + GLM_FUNC_QUALIFIER vec nextMultiple(vec const& Source, vec const& Multiple) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'nextMultiple' only accept integer inputs"); + + return detail::functor2::call(nextMultiple, Source, Multiple); + } + + template + GLM_FUNC_QUALIFIER vec prevMultiple(vec const& Source, T Multiple) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'prevMultiple' only accept integer inputs"); + + return detail::functor2::call(prevMultiple, Source, vec(Multiple)); + } + + template + GLM_FUNC_QUALIFIER vec prevMultiple(vec const& Source, vec const& Multiple) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'prevMultiple' only accept integer inputs"); + + return detail::functor2::call(prevMultiple, Source, Multiple); + } + + template + GLM_FUNC_QUALIFIER vec findNSB(vec const& Source, vec SignificantBitCount) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'findNSB' only accept integer inputs"); + + return detail::functor2_vec_int::call(findNSB, Source, SignificantBitCount); + } +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_packing.hpp b/thirdparty/glm/glm/ext/vector_packing.hpp new file mode 100644 index 000000000000..76e5d0cc6c2f --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_packing.hpp @@ -0,0 +1,32 @@ +/// @ref ext_vector_packing +/// @file glm/ext/vector_packing.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_vector_packing GLM_EXT_vector_packing +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// This extension provides a set of function to convert vectors to packed +/// formats. + +#pragma once + +// Dependency: +#include "../detail/qualifier.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_packing extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_packing + /// @{ + + + /// @} +}// namespace glm + +#include "vector_packing.inl" diff --git a/thirdparty/glm/glm/ext/vector_packing.inl b/thirdparty/glm/glm/ext/vector_packing.inl new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/thirdparty/glm/glm/ext/vector_reciprocal.hpp b/thirdparty/glm/glm/ext/vector_reciprocal.hpp new file mode 100644 index 000000000000..84d67662f26e --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_reciprocal.hpp @@ -0,0 +1,135 @@ +/// @ref ext_vector_reciprocal +/// @file glm/ext/vector_reciprocal.hpp +/// +/// @see core (dependence) +/// +/// @defgroup ext_vector_reciprocal GLM_EXT_vector_reciprocal +/// @ingroup ext +/// +/// Include to use the features of this extension. +/// +/// Define secant, cosecant and cotangent functions. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_reciprocal extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_reciprocal + /// @{ + + /// Secant function. + /// hypotenuse / adjacent or 1 / cos(x) + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_vector_reciprocal + template + GLM_FUNC_DECL genType sec(genType angle); + + /// Cosecant function. + /// hypotenuse / opposite or 1 / sin(x) + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_vector_reciprocal + template + GLM_FUNC_DECL genType csc(genType angle); + + /// Cotangent function. + /// adjacent / opposite or 1 / tan(x) + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_vector_reciprocal + template + GLM_FUNC_DECL genType cot(genType angle); + + /// Inverse secant function. + /// + /// @return Return an angle expressed in radians. + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_vector_reciprocal + template + GLM_FUNC_DECL genType asec(genType x); + + /// Inverse cosecant function. + /// + /// @return Return an angle expressed in radians. + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_vector_reciprocal + template + GLM_FUNC_DECL genType acsc(genType x); + + /// Inverse cotangent function. + /// + /// @return Return an angle expressed in radians. + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_vector_reciprocal + template + GLM_FUNC_DECL genType acot(genType x); + + /// Secant hyperbolic function. + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_vector_reciprocal + template + GLM_FUNC_DECL genType sech(genType angle); + + /// Cosecant hyperbolic function. + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_vector_reciprocal + template + GLM_FUNC_DECL genType csch(genType angle); + + /// Cotangent hyperbolic function. + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_vector_reciprocal + template + GLM_FUNC_DECL genType coth(genType angle); + + /// Inverse secant hyperbolic function. + /// + /// @return Return an angle expressed in radians. + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_vector_reciprocal + template + GLM_FUNC_DECL genType asech(genType x); + + /// Inverse cosecant hyperbolic function. + /// + /// @return Return an angle expressed in radians. + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_vector_reciprocal + template + GLM_FUNC_DECL genType acsch(genType x); + + /// Inverse cotangent hyperbolic function. + /// + /// @return Return an angle expressed in radians. + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see ext_vector_reciprocal + template + GLM_FUNC_DECL genType acoth(genType x); + + /// @} +}//namespace glm + +#include "vector_reciprocal.inl" diff --git a/thirdparty/glm/glm/ext/vector_reciprocal.inl b/thirdparty/glm/glm/ext/vector_reciprocal.inl new file mode 100644 index 000000000000..b85102a2f578 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_reciprocal.inl @@ -0,0 +1,105 @@ +/// @ref ext_vector_reciprocal + +#include "../trigonometric.hpp" +#include + +namespace glm +{ + // sec + template + GLM_FUNC_QUALIFIER vec sec(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'sec' only accept floating-point inputs"); + return static_cast(1) / detail::functor1::call(cos, x); + } + + // csc + template + GLM_FUNC_QUALIFIER vec csc(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'csc' only accept floating-point inputs"); + return static_cast(1) / detail::functor1::call(sin, x); + } + + // cot + template + GLM_FUNC_QUALIFIER vec cot(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'cot' only accept floating-point inputs"); + T const pi_over_2 = static_cast(3.1415926535897932384626433832795 / 2.0); + return detail::functor1::call(tan, pi_over_2 - x); + } + + // asec + template + GLM_FUNC_QUALIFIER vec asec(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'asec' only accept floating-point inputs"); + return detail::functor1::call(acos, static_cast(1) / x); + } + + // acsc + template + GLM_FUNC_QUALIFIER vec acsc(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'acsc' only accept floating-point inputs"); + return detail::functor1::call(asin, static_cast(1) / x); + } + + // acot + template + GLM_FUNC_QUALIFIER vec acot(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'acot' only accept floating-point inputs"); + T const pi_over_2 = static_cast(3.1415926535897932384626433832795 / 2.0); + return pi_over_2 - detail::functor1::call(atan, x); + } + + // sech + template + GLM_FUNC_QUALIFIER vec sech(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'sech' only accept floating-point inputs"); + return static_cast(1) / detail::functor1::call(cosh, x); + } + + // csch + template + GLM_FUNC_QUALIFIER vec csch(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'csch' only accept floating-point inputs"); + return static_cast(1) / detail::functor1::call(sinh, x); + } + + // coth + template + GLM_FUNC_QUALIFIER vec coth(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'coth' only accept floating-point inputs"); + return glm::cosh(x) / glm::sinh(x); + } + + // asech + template + GLM_FUNC_QUALIFIER vec asech(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'asech' only accept floating-point inputs"); + return detail::functor1::call(acosh, static_cast(1) / x); + } + + // acsch + template + GLM_FUNC_QUALIFIER vec acsch(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'acsch' only accept floating-point inputs"); + return detail::functor1::call(asinh, static_cast(1) / x); + } + + // acoth + template + GLM_FUNC_QUALIFIER vec acoth(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'acoth' only accept floating-point inputs"); + return detail::functor1::call(atanh, static_cast(1) / x); + } +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_relational.hpp b/thirdparty/glm/glm/ext/vector_relational.hpp new file mode 100644 index 000000000000..1c2367dc0231 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_relational.hpp @@ -0,0 +1,107 @@ +/// @ref ext_vector_relational +/// @file glm/ext/vector_relational.hpp +/// +/// @see core (dependence) +/// @see ext_scalar_integer (dependence) +/// +/// @defgroup ext_vector_relational GLM_EXT_vector_relational +/// @ingroup ext +/// +/// Exposes comparison functions for vector types that take a user defined epsilon values. +/// +/// Include to use the features of this extension. +/// +/// @see core_vector_relational +/// @see ext_scalar_relational +/// @see ext_matrix_relational + +#pragma once + +// Dependencies +#include "../detail/qualifier.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_relational extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_relational + /// @{ + + /// Returns the component-wise comparison of |x - y| < epsilon. + /// True if this expression is satisfied. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec equal(vec const& x, vec const& y, T epsilon); + + /// Returns the component-wise comparison of |x - y| < epsilon. + /// True if this expression is satisfied. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec equal(vec const& x, vec const& y, vec const& epsilon); + + /// Returns the component-wise comparison of |x - y| >= epsilon. + /// True if this expression is not satisfied. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec notEqual(vec const& x, vec const& y, T epsilon); + + /// Returns the component-wise comparison of |x - y| >= epsilon. + /// True if this expression is not satisfied. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec notEqual(vec const& x, vec const& y, vec const& epsilon); + + /// Returns the component-wise comparison between two vectors in term of ULPs. + /// True if this expression is satisfied. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec equal(vec const& x, vec const& y, int ULPs); + + /// Returns the component-wise comparison between two vectors in term of ULPs. + /// True if this expression is satisfied. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec equal(vec const& x, vec const& y, vec const& ULPs); + + /// Returns the component-wise comparison between two vectors in term of ULPs. + /// True if this expression is not satisfied. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec notEqual(vec const& x, vec const& y, int ULPs); + + /// Returns the component-wise comparison between two vectors in term of ULPs. + /// True if this expression is not satisfied. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + template + GLM_FUNC_DECL GLM_CONSTEXPR vec notEqual(vec const& x, vec const& y, vec const& ULPs); + + /// @} +}//namespace glm + +#include "vector_relational.inl" diff --git a/thirdparty/glm/glm/ext/vector_relational.inl b/thirdparty/glm/glm/ext/vector_relational.inl new file mode 100644 index 000000000000..7a39ab50897e --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_relational.inl @@ -0,0 +1,75 @@ +#include "../vector_relational.hpp" +#include "../common.hpp" +#include "../detail/qualifier.hpp" +#include "../detail/type_float.hpp" + +namespace glm +{ + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec equal(vec const& x, vec const& y, T Epsilon) + { + return equal(x, y, vec(Epsilon)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec equal(vec const& x, vec const& y, vec const& Epsilon) + { + return lessThanEqual(abs(x - y), Epsilon); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec notEqual(vec const& x, vec const& y, T Epsilon) + { + return notEqual(x, y, vec(Epsilon)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec notEqual(vec const& x, vec const& y, vec const& Epsilon) + { + return greaterThan(abs(x - y), Epsilon); + } + + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec equal(vec const& x, vec const& y, int MaxULPs) + { + return equal(x, y, vec(MaxULPs)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec equal(vec const& x, vec const& y, vec const& MaxULPs) + { + vec Result(false); + for(length_t i = 0; i < L; ++i) + { + detail::float_t const a(x[i]); + detail::float_t const b(y[i]); + + // Different signs means they do not match. + if(a.negative() != b.negative()) + { + // Check for equality to make sure +0==-0 + Result[i] = a.mantissa() == b.mantissa() && a.exponent() == b.exponent(); + } + else + { + // Find the difference in ULPs. + typename detail::float_t::int_type const DiffULPs = abs(a.i - b.i); + Result[i] = DiffULPs <= MaxULPs[i]; + } + } + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec notEqual(vec const& x, vec const& y, int MaxULPs) + { + return notEqual(x, y, vec(MaxULPs)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec notEqual(vec const& x, vec const& y, vec const& MaxULPs) + { + return not_(equal(x, y, MaxULPs)); + } +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_uint1.hpp b/thirdparty/glm/glm/ext/vector_uint1.hpp new file mode 100644 index 000000000000..eb8a7049761f --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_uint1.hpp @@ -0,0 +1,32 @@ +/// @ref ext_vector_uint1 +/// @file glm/ext/vector_uint1.hpp +/// +/// @defgroup ext_vector_uint1 GLM_EXT_vector_uint1 +/// @ingroup ext +/// +/// Exposes uvec1 vector type. +/// +/// Include to use the features of this extension. +/// +/// @see ext_vector_int1 extension. +/// @see ext_vector_uint1_precision extension. + +#pragma once + +#include "../detail/type_vec1.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_uint1 extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_uint1 + /// @{ + + /// 1 component vector of unsigned integer numbers. + typedef vec<1, unsigned int, defaultp> uvec1; + + /// @} +}//namespace glm + diff --git a/thirdparty/glm/glm/ext/vector_uint1_sized.hpp b/thirdparty/glm/glm/ext/vector_uint1_sized.hpp new file mode 100644 index 000000000000..2a938bbaf616 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_uint1_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_vector_uint1_sized +/// @file glm/ext/vector_uint1_sized.hpp +/// +/// @defgroup ext_vector_uint1_sized GLM_EXT_vector_uint1_sized +/// @ingroup ext +/// +/// Exposes sized unsigned integer vector types. +/// +/// Include to use the features of this extension. +/// +/// @see ext_scalar_uint_sized +/// @see ext_vector_int1_sized + +#pragma once + +#include "../ext/vector_uint1.hpp" +#include "../ext/scalar_uint_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_uint1_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_uint1_sized + /// @{ + + /// 8 bit unsigned integer vector of 1 component type. + /// + /// @see ext_vector_uint1_sized + typedef vec<1, uint8, defaultp> u8vec1; + + /// 16 bit unsigned integer vector of 1 component type. + /// + /// @see ext_vector_uint1_sized + typedef vec<1, uint16, defaultp> u16vec1; + + /// 32 bit unsigned integer vector of 1 component type. + /// + /// @see ext_vector_uint1_sized + typedef vec<1, uint32, defaultp> u32vec1; + + /// 64 bit unsigned integer vector of 1 component type. + /// + /// @see ext_vector_uint1_sized + typedef vec<1, uint64, defaultp> u64vec1; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_uint2.hpp b/thirdparty/glm/glm/ext/vector_uint2.hpp new file mode 100644 index 000000000000..03c00f5ff584 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_uint2.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/vector_uint2.hpp + +#pragma once +#include "../detail/type_vec2.hpp" + +namespace glm +{ + /// @addtogroup core_vector + /// @{ + + /// 2 components vector of unsigned integer numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + typedef vec<2, unsigned int, defaultp> uvec2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_uint2_sized.hpp b/thirdparty/glm/glm/ext/vector_uint2_sized.hpp new file mode 100644 index 000000000000..620fdc6ece39 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_uint2_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_vector_uint2_sized +/// @file glm/ext/vector_uint2_sized.hpp +/// +/// @defgroup ext_vector_uint2_sized GLM_EXT_vector_uint2_sized +/// @ingroup ext +/// +/// Exposes sized unsigned integer vector of 2 components type. +/// +/// Include to use the features of this extension. +/// +/// @see ext_scalar_uint_sized +/// @see ext_vector_int2_sized + +#pragma once + +#include "../ext/vector_uint2.hpp" +#include "../ext/scalar_uint_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_uint2_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_uint2_sized + /// @{ + + /// 8 bit unsigned integer vector of 2 components type. + /// + /// @see ext_vector_uint2_sized + typedef vec<2, uint8, defaultp> u8vec2; + + /// 16 bit unsigned integer vector of 2 components type. + /// + /// @see ext_vector_uint2_sized + typedef vec<2, uint16, defaultp> u16vec2; + + /// 32 bit unsigned integer vector of 2 components type. + /// + /// @see ext_vector_uint2_sized + typedef vec<2, uint32, defaultp> u32vec2; + + /// 64 bit unsigned integer vector of 2 components type. + /// + /// @see ext_vector_uint2_sized + typedef vec<2, uint64, defaultp> u64vec2; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_uint3.hpp b/thirdparty/glm/glm/ext/vector_uint3.hpp new file mode 100644 index 000000000000..f5b41c40882a --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_uint3.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/vector_uint3.hpp + +#pragma once +#include "../detail/type_vec3.hpp" + +namespace glm +{ + /// @addtogroup core_vector + /// @{ + + /// 3 components vector of unsigned integer numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + typedef vec<3, unsigned int, defaultp> uvec3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_uint3_sized.hpp b/thirdparty/glm/glm/ext/vector_uint3_sized.hpp new file mode 100644 index 000000000000..6f96b98e276f --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_uint3_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_vector_uint3_sized +/// @file glm/ext/vector_uint3_sized.hpp +/// +/// @defgroup ext_vector_uint3_sized GLM_EXT_vector_uint3_sized +/// @ingroup ext +/// +/// Exposes sized unsigned integer vector of 3 components type. +/// +/// Include to use the features of this extension. +/// +/// @see ext_scalar_uint_sized +/// @see ext_vector_int3_sized + +#pragma once + +#include "../ext/vector_uint3.hpp" +#include "../ext/scalar_uint_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_uint3_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_uint3_sized + /// @{ + + /// 8 bit unsigned integer vector of 3 components type. + /// + /// @see ext_vector_uint3_sized + typedef vec<3, uint8, defaultp> u8vec3; + + /// 16 bit unsigned integer vector of 3 components type. + /// + /// @see ext_vector_uint3_sized + typedef vec<3, uint16, defaultp> u16vec3; + + /// 32 bit unsigned integer vector of 3 components type. + /// + /// @see ext_vector_uint3_sized + typedef vec<3, uint32, defaultp> u32vec3; + + /// 64 bit unsigned integer vector of 3 components type. + /// + /// @see ext_vector_uint3_sized + typedef vec<3, uint64, defaultp> u64vec3; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_uint4.hpp b/thirdparty/glm/glm/ext/vector_uint4.hpp new file mode 100644 index 000000000000..32ced58a8f03 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_uint4.hpp @@ -0,0 +1,18 @@ +/// @ref core +/// @file glm/ext/vector_uint4.hpp + +#pragma once +#include "../detail/type_vec4.hpp" + +namespace glm +{ + /// @addtogroup core_vector + /// @{ + + /// 4 components vector of unsigned integer numbers. + /// + /// @see GLSL 4.20.8 specification, section 4.1.5 Vectors + typedef vec<4, unsigned int, defaultp> uvec4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_uint4_sized.hpp b/thirdparty/glm/glm/ext/vector_uint4_sized.hpp new file mode 100644 index 000000000000..da992ea2da86 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_uint4_sized.hpp @@ -0,0 +1,49 @@ +/// @ref ext_vector_uint4_sized +/// @file glm/ext/vector_uint4_sized.hpp +/// +/// @defgroup ext_vector_uint4_sized GLM_EXT_vector_uint4_sized +/// @ingroup ext +/// +/// Exposes sized unsigned integer vector of 4 components type. +/// +/// Include to use the features of this extension. +/// +/// @see ext_scalar_uint_sized +/// @see ext_vector_int4_sized + +#pragma once + +#include "../ext/vector_uint4.hpp" +#include "../ext/scalar_uint_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_uint4_sized extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_uint4_sized + /// @{ + + /// 8 bit unsigned integer vector of 4 components type. + /// + /// @see ext_vector_uint4_sized + typedef vec<4, uint8, defaultp> u8vec4; + + /// 16 bit unsigned integer vector of 4 components type. + /// + /// @see ext_vector_uint4_sized + typedef vec<4, uint16, defaultp> u16vec4; + + /// 32 bit unsigned integer vector of 4 components type. + /// + /// @see ext_vector_uint4_sized + typedef vec<4, uint32, defaultp> u32vec4; + + /// 64 bit unsigned integer vector of 4 components type. + /// + /// @see ext_vector_uint4_sized + typedef vec<4, uint64, defaultp> u64vec4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/ext/vector_ulp.hpp b/thirdparty/glm/glm/ext/vector_ulp.hpp new file mode 100644 index 000000000000..7c539bbf8866 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_ulp.hpp @@ -0,0 +1,112 @@ +/// @ref ext_vector_ulp +/// @file glm/ext/vector_ulp.hpp +/// +/// @defgroup ext_vector_ulp GLM_EXT_vector_ulp +/// @ingroup ext +/// +/// Allow the measurement of the accuracy of a function against a reference +/// implementation. This extension works on floating-point data and provide results +/// in ULP. +/// +/// Include to use the features of this extension. +/// +/// @see ext_scalar_ulp +/// @see ext_scalar_relational +/// @see ext_vector_relational + +#pragma once + +// Dependencies +#include "../ext/scalar_ulp.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_vector_ulp extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_vector_ulp + /// @{ + + /// Return the next ULP value(s) after the input value(s). + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + /// + /// @see ext_scalar_ulp + template + GLM_FUNC_DECL vec nextFloat(vec const& x); + + /// Return the value(s) ULP distance after the input value(s). + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + /// + /// @see ext_scalar_ulp + template + GLM_FUNC_DECL vec nextFloat(vec const& x, int ULPs); + + /// Return the value(s) ULP distance after the input value(s). + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + /// + /// @see ext_scalar_ulp + template + GLM_FUNC_DECL vec nextFloat(vec const& x, vec const& ULPs); + + /// Return the previous ULP value(s) before the input value(s). + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + /// + /// @see ext_scalar_ulp + template + GLM_FUNC_DECL vec prevFloat(vec const& x); + + /// Return the value(s) ULP distance before the input value(s). + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + /// + /// @see ext_scalar_ulp + template + GLM_FUNC_DECL vec prevFloat(vec const& x, int ULPs); + + /// Return the value(s) ULP distance before the input value(s). + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + /// + /// @see ext_scalar_ulp + template + GLM_FUNC_DECL vec prevFloat(vec const& x, vec const& ULPs); + + /// Return the distance in the number of ULP between 2 single-precision floating-point scalars. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam Q Value from qualifier enum + /// + /// @see ext_scalar_ulp + template + GLM_FUNC_DECL vec floatDistance(vec const& x, vec const& y); + + /// Return the distance in the number of ULP between 2 double-precision floating-point scalars. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam Q Value from qualifier enum + /// + /// @see ext_scalar_ulp + template + GLM_FUNC_DECL vec floatDistance(vec const& x, vec const& y); + + /// @} +}//namespace glm + +#include "vector_ulp.inl" diff --git a/thirdparty/glm/glm/ext/vector_ulp.inl b/thirdparty/glm/glm/ext/vector_ulp.inl new file mode 100644 index 000000000000..91565ce51074 --- /dev/null +++ b/thirdparty/glm/glm/ext/vector_ulp.inl @@ -0,0 +1,74 @@ +namespace glm +{ + template + GLM_FUNC_QUALIFIER vec nextFloat(vec const& x) + { + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = nextFloat(x[i]); + return Result; + } + + template + GLM_FUNC_QUALIFIER vec nextFloat(vec const& x, int ULPs) + { + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = nextFloat(x[i], ULPs); + return Result; + } + + template + GLM_FUNC_QUALIFIER vec nextFloat(vec const& x, vec const& ULPs) + { + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = nextFloat(x[i], ULPs[i]); + return Result; + } + + template + GLM_FUNC_QUALIFIER vec prevFloat(vec const& x) + { + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = prevFloat(x[i]); + return Result; + } + + template + GLM_FUNC_QUALIFIER vec prevFloat(vec const& x, int ULPs) + { + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = prevFloat(x[i], ULPs); + return Result; + } + + template + GLM_FUNC_QUALIFIER vec prevFloat(vec const& x, vec const& ULPs) + { + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = prevFloat(x[i], ULPs[i]); + return Result; + } + + template + GLM_FUNC_QUALIFIER vec floatDistance(vec const& x, vec const& y) + { + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = floatDistance(x[i], y[i]); + return Result; + } + + template + GLM_FUNC_QUALIFIER vec floatDistance(vec const& x, vec const& y) + { + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = floatDistance(x[i], y[i]); + return Result; + } +}//namespace glm diff --git a/thirdparty/glm/glm/fwd.hpp b/thirdparty/glm/glm/fwd.hpp new file mode 100644 index 000000000000..9c2e5eafa4ea --- /dev/null +++ b/thirdparty/glm/glm/fwd.hpp @@ -0,0 +1,1233 @@ +#pragma once + +#include "detail/qualifier.hpp" + +namespace glm +{ +#if GLM_HAS_EXTENDED_INTEGER_TYPE + typedef std::int8_t int8; + typedef std::int16_t int16; + typedef std::int32_t int32; + typedef std::int64_t int64; + + typedef std::uint8_t uint8; + typedef std::uint16_t uint16; + typedef std::uint32_t uint32; + typedef std::uint64_t uint64; +#else + typedef signed char int8; + typedef signed short int16; + typedef signed int int32; + typedef detail::int64 int64; + + typedef unsigned char uint8; + typedef unsigned short uint16; + typedef unsigned int uint32; + typedef detail::uint64 uint64; +#endif + + // Scalar int + + typedef int8 lowp_i8; + typedef int8 mediump_i8; + typedef int8 highp_i8; + typedef int8 i8; + + typedef int8 lowp_int8; + typedef int8 mediump_int8; + typedef int8 highp_int8; + + typedef int8 lowp_int8_t; + typedef int8 mediump_int8_t; + typedef int8 highp_int8_t; + typedef int8 int8_t; + + typedef int16 lowp_i16; + typedef int16 mediump_i16; + typedef int16 highp_i16; + typedef int16 i16; + + typedef int16 lowp_int16; + typedef int16 mediump_int16; + typedef int16 highp_int16; + + typedef int16 lowp_int16_t; + typedef int16 mediump_int16_t; + typedef int16 highp_int16_t; + typedef int16 int16_t; + + typedef int32 lowp_i32; + typedef int32 mediump_i32; + typedef int32 highp_i32; + typedef int32 i32; + + typedef int32 lowp_int32; + typedef int32 mediump_int32; + typedef int32 highp_int32; + + typedef int32 lowp_int32_t; + typedef int32 mediump_int32_t; + typedef int32 highp_int32_t; + typedef int32 int32_t; + + typedef int64 lowp_i64; + typedef int64 mediump_i64; + typedef int64 highp_i64; + typedef int64 i64; + + typedef int64 lowp_int64; + typedef int64 mediump_int64; + typedef int64 highp_int64; + + typedef int64 lowp_int64_t; + typedef int64 mediump_int64_t; + typedef int64 highp_int64_t; + typedef int64 int64_t; + + // Scalar uint + + typedef unsigned int uint; + + typedef uint8 lowp_u8; + typedef uint8 mediump_u8; + typedef uint8 highp_u8; + typedef uint8 u8; + + typedef uint8 lowp_uint8; + typedef uint8 mediump_uint8; + typedef uint8 highp_uint8; + + typedef uint8 lowp_uint8_t; + typedef uint8 mediump_uint8_t; + typedef uint8 highp_uint8_t; + typedef uint8 uint8_t; + + typedef uint16 lowp_u16; + typedef uint16 mediump_u16; + typedef uint16 highp_u16; + typedef uint16 u16; + + typedef uint16 lowp_uint16; + typedef uint16 mediump_uint16; + typedef uint16 highp_uint16; + + typedef uint16 lowp_uint16_t; + typedef uint16 mediump_uint16_t; + typedef uint16 highp_uint16_t; + typedef uint16 uint16_t; + + typedef uint32 lowp_u32; + typedef uint32 mediump_u32; + typedef uint32 highp_u32; + typedef uint32 u32; + + typedef uint32 lowp_uint32; + typedef uint32 mediump_uint32; + typedef uint32 highp_uint32; + + typedef uint32 lowp_uint32_t; + typedef uint32 mediump_uint32_t; + typedef uint32 highp_uint32_t; + typedef uint32 uint32_t; + + typedef uint64 lowp_u64; + typedef uint64 mediump_u64; + typedef uint64 highp_u64; + typedef uint64 u64; + + typedef uint64 lowp_uint64; + typedef uint64 mediump_uint64; + typedef uint64 highp_uint64; + + typedef uint64 lowp_uint64_t; + typedef uint64 mediump_uint64_t; + typedef uint64 highp_uint64_t; + typedef uint64 uint64_t; + + // Scalar float + + typedef float lowp_f32; + typedef float mediump_f32; + typedef float highp_f32; + typedef float f32; + + typedef float lowp_float32; + typedef float mediump_float32; + typedef float highp_float32; + typedef float float32; + + typedef float lowp_float32_t; + typedef float mediump_float32_t; + typedef float highp_float32_t; + typedef float float32_t; + + + typedef double lowp_f64; + typedef double mediump_f64; + typedef double highp_f64; + typedef double f64; + + typedef double lowp_float64; + typedef double mediump_float64; + typedef double highp_float64; + typedef double float64; + + typedef double lowp_float64_t; + typedef double mediump_float64_t; + typedef double highp_float64_t; + typedef double float64_t; + + // Vector bool + + typedef vec<1, bool, lowp> lowp_bvec1; + typedef vec<2, bool, lowp> lowp_bvec2; + typedef vec<3, bool, lowp> lowp_bvec3; + typedef vec<4, bool, lowp> lowp_bvec4; + + typedef vec<1, bool, mediump> mediump_bvec1; + typedef vec<2, bool, mediump> mediump_bvec2; + typedef vec<3, bool, mediump> mediump_bvec3; + typedef vec<4, bool, mediump> mediump_bvec4; + + typedef vec<1, bool, highp> highp_bvec1; + typedef vec<2, bool, highp> highp_bvec2; + typedef vec<3, bool, highp> highp_bvec3; + typedef vec<4, bool, highp> highp_bvec4; + + typedef vec<1, bool, defaultp> bvec1; + typedef vec<2, bool, defaultp> bvec2; + typedef vec<3, bool, defaultp> bvec3; + typedef vec<4, bool, defaultp> bvec4; + + // Vector int + + typedef vec<1, int, lowp> lowp_ivec1; + typedef vec<2, int, lowp> lowp_ivec2; + typedef vec<3, int, lowp> lowp_ivec3; + typedef vec<4, int, lowp> lowp_ivec4; + + typedef vec<1, int, mediump> mediump_ivec1; + typedef vec<2, int, mediump> mediump_ivec2; + typedef vec<3, int, mediump> mediump_ivec3; + typedef vec<4, int, mediump> mediump_ivec4; + + typedef vec<1, int, highp> highp_ivec1; + typedef vec<2, int, highp> highp_ivec2; + typedef vec<3, int, highp> highp_ivec3; + typedef vec<4, int, highp> highp_ivec4; + + typedef vec<1, int, defaultp> ivec1; + typedef vec<2, int, defaultp> ivec2; + typedef vec<3, int, defaultp> ivec3; + typedef vec<4, int, defaultp> ivec4; + + typedef vec<1, i8, lowp> lowp_i8vec1; + typedef vec<2, i8, lowp> lowp_i8vec2; + typedef vec<3, i8, lowp> lowp_i8vec3; + typedef vec<4, i8, lowp> lowp_i8vec4; + + typedef vec<1, i8, mediump> mediump_i8vec1; + typedef vec<2, i8, mediump> mediump_i8vec2; + typedef vec<3, i8, mediump> mediump_i8vec3; + typedef vec<4, i8, mediump> mediump_i8vec4; + + typedef vec<1, i8, highp> highp_i8vec1; + typedef vec<2, i8, highp> highp_i8vec2; + typedef vec<3, i8, highp> highp_i8vec3; + typedef vec<4, i8, highp> highp_i8vec4; + + typedef vec<1, i8, defaultp> i8vec1; + typedef vec<2, i8, defaultp> i8vec2; + typedef vec<3, i8, defaultp> i8vec3; + typedef vec<4, i8, defaultp> i8vec4; + + typedef vec<1, i16, lowp> lowp_i16vec1; + typedef vec<2, i16, lowp> lowp_i16vec2; + typedef vec<3, i16, lowp> lowp_i16vec3; + typedef vec<4, i16, lowp> lowp_i16vec4; + + typedef vec<1, i16, mediump> mediump_i16vec1; + typedef vec<2, i16, mediump> mediump_i16vec2; + typedef vec<3, i16, mediump> mediump_i16vec3; + typedef vec<4, i16, mediump> mediump_i16vec4; + + typedef vec<1, i16, highp> highp_i16vec1; + typedef vec<2, i16, highp> highp_i16vec2; + typedef vec<3, i16, highp> highp_i16vec3; + typedef vec<4, i16, highp> highp_i16vec4; + + typedef vec<1, i16, defaultp> i16vec1; + typedef vec<2, i16, defaultp> i16vec2; + typedef vec<3, i16, defaultp> i16vec3; + typedef vec<4, i16, defaultp> i16vec4; + + typedef vec<1, i32, lowp> lowp_i32vec1; + typedef vec<2, i32, lowp> lowp_i32vec2; + typedef vec<3, i32, lowp> lowp_i32vec3; + typedef vec<4, i32, lowp> lowp_i32vec4; + + typedef vec<1, i32, mediump> mediump_i32vec1; + typedef vec<2, i32, mediump> mediump_i32vec2; + typedef vec<3, i32, mediump> mediump_i32vec3; + typedef vec<4, i32, mediump> mediump_i32vec4; + + typedef vec<1, i32, highp> highp_i32vec1; + typedef vec<2, i32, highp> highp_i32vec2; + typedef vec<3, i32, highp> highp_i32vec3; + typedef vec<4, i32, highp> highp_i32vec4; + + typedef vec<1, i32, defaultp> i32vec1; + typedef vec<2, i32, defaultp> i32vec2; + typedef vec<3, i32, defaultp> i32vec3; + typedef vec<4, i32, defaultp> i32vec4; + + typedef vec<1, i64, lowp> lowp_i64vec1; + typedef vec<2, i64, lowp> lowp_i64vec2; + typedef vec<3, i64, lowp> lowp_i64vec3; + typedef vec<4, i64, lowp> lowp_i64vec4; + + typedef vec<1, i64, mediump> mediump_i64vec1; + typedef vec<2, i64, mediump> mediump_i64vec2; + typedef vec<3, i64, mediump> mediump_i64vec3; + typedef vec<4, i64, mediump> mediump_i64vec4; + + typedef vec<1, i64, highp> highp_i64vec1; + typedef vec<2, i64, highp> highp_i64vec2; + typedef vec<3, i64, highp> highp_i64vec3; + typedef vec<4, i64, highp> highp_i64vec4; + + typedef vec<1, i64, defaultp> i64vec1; + typedef vec<2, i64, defaultp> i64vec2; + typedef vec<3, i64, defaultp> i64vec3; + typedef vec<4, i64, defaultp> i64vec4; + + // Vector uint + + typedef vec<1, uint, lowp> lowp_uvec1; + typedef vec<2, uint, lowp> lowp_uvec2; + typedef vec<3, uint, lowp> lowp_uvec3; + typedef vec<4, uint, lowp> lowp_uvec4; + + typedef vec<1, uint, mediump> mediump_uvec1; + typedef vec<2, uint, mediump> mediump_uvec2; + typedef vec<3, uint, mediump> mediump_uvec3; + typedef vec<4, uint, mediump> mediump_uvec4; + + typedef vec<1, uint, highp> highp_uvec1; + typedef vec<2, uint, highp> highp_uvec2; + typedef vec<3, uint, highp> highp_uvec3; + typedef vec<4, uint, highp> highp_uvec4; + + typedef vec<1, uint, defaultp> uvec1; + typedef vec<2, uint, defaultp> uvec2; + typedef vec<3, uint, defaultp> uvec3; + typedef vec<4, uint, defaultp> uvec4; + + typedef vec<1, u8, lowp> lowp_u8vec1; + typedef vec<2, u8, lowp> lowp_u8vec2; + typedef vec<3, u8, lowp> lowp_u8vec3; + typedef vec<4, u8, lowp> lowp_u8vec4; + + typedef vec<1, u8, mediump> mediump_u8vec1; + typedef vec<2, u8, mediump> mediump_u8vec2; + typedef vec<3, u8, mediump> mediump_u8vec3; + typedef vec<4, u8, mediump> mediump_u8vec4; + + typedef vec<1, u8, highp> highp_u8vec1; + typedef vec<2, u8, highp> highp_u8vec2; + typedef vec<3, u8, highp> highp_u8vec3; + typedef vec<4, u8, highp> highp_u8vec4; + + typedef vec<1, u8, defaultp> u8vec1; + typedef vec<2, u8, defaultp> u8vec2; + typedef vec<3, u8, defaultp> u8vec3; + typedef vec<4, u8, defaultp> u8vec4; + + typedef vec<1, u16, lowp> lowp_u16vec1; + typedef vec<2, u16, lowp> lowp_u16vec2; + typedef vec<3, u16, lowp> lowp_u16vec3; + typedef vec<4, u16, lowp> lowp_u16vec4; + + typedef vec<1, u16, mediump> mediump_u16vec1; + typedef vec<2, u16, mediump> mediump_u16vec2; + typedef vec<3, u16, mediump> mediump_u16vec3; + typedef vec<4, u16, mediump> mediump_u16vec4; + + typedef vec<1, u16, highp> highp_u16vec1; + typedef vec<2, u16, highp> highp_u16vec2; + typedef vec<3, u16, highp> highp_u16vec3; + typedef vec<4, u16, highp> highp_u16vec4; + + typedef vec<1, u16, defaultp> u16vec1; + typedef vec<2, u16, defaultp> u16vec2; + typedef vec<3, u16, defaultp> u16vec3; + typedef vec<4, u16, defaultp> u16vec4; + + typedef vec<1, u32, lowp> lowp_u32vec1; + typedef vec<2, u32, lowp> lowp_u32vec2; + typedef vec<3, u32, lowp> lowp_u32vec3; + typedef vec<4, u32, lowp> lowp_u32vec4; + + typedef vec<1, u32, mediump> mediump_u32vec1; + typedef vec<2, u32, mediump> mediump_u32vec2; + typedef vec<3, u32, mediump> mediump_u32vec3; + typedef vec<4, u32, mediump> mediump_u32vec4; + + typedef vec<1, u32, highp> highp_u32vec1; + typedef vec<2, u32, highp> highp_u32vec2; + typedef vec<3, u32, highp> highp_u32vec3; + typedef vec<4, u32, highp> highp_u32vec4; + + typedef vec<1, u32, defaultp> u32vec1; + typedef vec<2, u32, defaultp> u32vec2; + typedef vec<3, u32, defaultp> u32vec3; + typedef vec<4, u32, defaultp> u32vec4; + + typedef vec<1, u64, lowp> lowp_u64vec1; + typedef vec<2, u64, lowp> lowp_u64vec2; + typedef vec<3, u64, lowp> lowp_u64vec3; + typedef vec<4, u64, lowp> lowp_u64vec4; + + typedef vec<1, u64, mediump> mediump_u64vec1; + typedef vec<2, u64, mediump> mediump_u64vec2; + typedef vec<3, u64, mediump> mediump_u64vec3; + typedef vec<4, u64, mediump> mediump_u64vec4; + + typedef vec<1, u64, highp> highp_u64vec1; + typedef vec<2, u64, highp> highp_u64vec2; + typedef vec<3, u64, highp> highp_u64vec3; + typedef vec<4, u64, highp> highp_u64vec4; + + typedef vec<1, u64, defaultp> u64vec1; + typedef vec<2, u64, defaultp> u64vec2; + typedef vec<3, u64, defaultp> u64vec3; + typedef vec<4, u64, defaultp> u64vec4; + + // Vector float + + typedef vec<1, float, lowp> lowp_vec1; + typedef vec<2, float, lowp> lowp_vec2; + typedef vec<3, float, lowp> lowp_vec3; + typedef vec<4, float, lowp> lowp_vec4; + + typedef vec<1, float, mediump> mediump_vec1; + typedef vec<2, float, mediump> mediump_vec2; + typedef vec<3, float, mediump> mediump_vec3; + typedef vec<4, float, mediump> mediump_vec4; + + typedef vec<1, float, highp> highp_vec1; + typedef vec<2, float, highp> highp_vec2; + typedef vec<3, float, highp> highp_vec3; + typedef vec<4, float, highp> highp_vec4; + + typedef vec<1, float, defaultp> vec1; + typedef vec<2, float, defaultp> vec2; + typedef vec<3, float, defaultp> vec3; + typedef vec<4, float, defaultp> vec4; + + typedef vec<1, float, lowp> lowp_fvec1; + typedef vec<2, float, lowp> lowp_fvec2; + typedef vec<3, float, lowp> lowp_fvec3; + typedef vec<4, float, lowp> lowp_fvec4; + + typedef vec<1, float, mediump> mediump_fvec1; + typedef vec<2, float, mediump> mediump_fvec2; + typedef vec<3, float, mediump> mediump_fvec3; + typedef vec<4, float, mediump> mediump_fvec4; + + typedef vec<1, float, highp> highp_fvec1; + typedef vec<2, float, highp> highp_fvec2; + typedef vec<3, float, highp> highp_fvec3; + typedef vec<4, float, highp> highp_fvec4; + + typedef vec<1, f32, defaultp> fvec1; + typedef vec<2, f32, defaultp> fvec2; + typedef vec<3, f32, defaultp> fvec3; + typedef vec<4, f32, defaultp> fvec4; + + typedef vec<1, f32, lowp> lowp_f32vec1; + typedef vec<2, f32, lowp> lowp_f32vec2; + typedef vec<3, f32, lowp> lowp_f32vec3; + typedef vec<4, f32, lowp> lowp_f32vec4; + + typedef vec<1, f32, mediump> mediump_f32vec1; + typedef vec<2, f32, mediump> mediump_f32vec2; + typedef vec<3, f32, mediump> mediump_f32vec3; + typedef vec<4, f32, mediump> mediump_f32vec4; + + typedef vec<1, f32, highp> highp_f32vec1; + typedef vec<2, f32, highp> highp_f32vec2; + typedef vec<3, f32, highp> highp_f32vec3; + typedef vec<4, f32, highp> highp_f32vec4; + + typedef vec<1, f32, defaultp> f32vec1; + typedef vec<2, f32, defaultp> f32vec2; + typedef vec<3, f32, defaultp> f32vec3; + typedef vec<4, f32, defaultp> f32vec4; + + typedef vec<1, f64, lowp> lowp_dvec1; + typedef vec<2, f64, lowp> lowp_dvec2; + typedef vec<3, f64, lowp> lowp_dvec3; + typedef vec<4, f64, lowp> lowp_dvec4; + + typedef vec<1, f64, mediump> mediump_dvec1; + typedef vec<2, f64, mediump> mediump_dvec2; + typedef vec<3, f64, mediump> mediump_dvec3; + typedef vec<4, f64, mediump> mediump_dvec4; + + typedef vec<1, f64, highp> highp_dvec1; + typedef vec<2, f64, highp> highp_dvec2; + typedef vec<3, f64, highp> highp_dvec3; + typedef vec<4, f64, highp> highp_dvec4; + + typedef vec<1, f64, defaultp> dvec1; + typedef vec<2, f64, defaultp> dvec2; + typedef vec<3, f64, defaultp> dvec3; + typedef vec<4, f64, defaultp> dvec4; + + typedef vec<1, f64, lowp> lowp_f64vec1; + typedef vec<2, f64, lowp> lowp_f64vec2; + typedef vec<3, f64, lowp> lowp_f64vec3; + typedef vec<4, f64, lowp> lowp_f64vec4; + + typedef vec<1, f64, mediump> mediump_f64vec1; + typedef vec<2, f64, mediump> mediump_f64vec2; + typedef vec<3, f64, mediump> mediump_f64vec3; + typedef vec<4, f64, mediump> mediump_f64vec4; + + typedef vec<1, f64, highp> highp_f64vec1; + typedef vec<2, f64, highp> highp_f64vec2; + typedef vec<3, f64, highp> highp_f64vec3; + typedef vec<4, f64, highp> highp_f64vec4; + + typedef vec<1, f64, defaultp> f64vec1; + typedef vec<2, f64, defaultp> f64vec2; + typedef vec<3, f64, defaultp> f64vec3; + typedef vec<4, f64, defaultp> f64vec4; + + // Matrix NxN + + typedef mat<2, 2, f32, lowp> lowp_mat2; + typedef mat<3, 3, f32, lowp> lowp_mat3; + typedef mat<4, 4, f32, lowp> lowp_mat4; + + typedef mat<2, 2, f32, mediump> mediump_mat2; + typedef mat<3, 3, f32, mediump> mediump_mat3; + typedef mat<4, 4, f32, mediump> mediump_mat4; + + typedef mat<2, 2, f32, highp> highp_mat2; + typedef mat<3, 3, f32, highp> highp_mat3; + typedef mat<4, 4, f32, highp> highp_mat4; + + typedef mat<2, 2, f32, defaultp> mat2; + typedef mat<3, 3, f32, defaultp> mat3; + typedef mat<4, 4, f32, defaultp> mat4; + + typedef mat<2, 2, f32, lowp> lowp_fmat2; + typedef mat<3, 3, f32, lowp> lowp_fmat3; + typedef mat<4, 4, f32, lowp> lowp_fmat4; + + typedef mat<2, 2, f32, mediump> mediump_fmat2; + typedef mat<3, 3, f32, mediump> mediump_fmat3; + typedef mat<4, 4, f32, mediump> mediump_fmat4; + + typedef mat<2, 2, f32, highp> highp_fmat2; + typedef mat<3, 3, f32, highp> highp_fmat3; + typedef mat<4, 4, f32, highp> highp_fmat4; + + typedef mat<2, 2, f32, defaultp> fmat2; + typedef mat<3, 3, f32, defaultp> fmat3; + typedef mat<4, 4, f32, defaultp> fmat4; + + typedef mat<2, 2, f32, lowp> lowp_f32mat2; + typedef mat<3, 3, f32, lowp> lowp_f32mat3; + typedef mat<4, 4, f32, lowp> lowp_f32mat4; + + typedef mat<2, 2, f32, mediump> mediump_f32mat2; + typedef mat<3, 3, f32, mediump> mediump_f32mat3; + typedef mat<4, 4, f32, mediump> mediump_f32mat4; + + typedef mat<2, 2, f32, highp> highp_f32mat2; + typedef mat<3, 3, f32, highp> highp_f32mat3; + typedef mat<4, 4, f32, highp> highp_f32mat4; + + typedef mat<2, 2, f32, defaultp> f32mat2; + typedef mat<3, 3, f32, defaultp> f32mat3; + typedef mat<4, 4, f32, defaultp> f32mat4; + + typedef mat<2, 2, f64, lowp> lowp_dmat2; + typedef mat<3, 3, f64, lowp> lowp_dmat3; + typedef mat<4, 4, f64, lowp> lowp_dmat4; + + typedef mat<2, 2, f64, mediump> mediump_dmat2; + typedef mat<3, 3, f64, mediump> mediump_dmat3; + typedef mat<4, 4, f64, mediump> mediump_dmat4; + + typedef mat<2, 2, f64, highp> highp_dmat2; + typedef mat<3, 3, f64, highp> highp_dmat3; + typedef mat<4, 4, f64, highp> highp_dmat4; + + typedef mat<2, 2, f64, defaultp> dmat2; + typedef mat<3, 3, f64, defaultp> dmat3; + typedef mat<4, 4, f64, defaultp> dmat4; + + typedef mat<2, 2, f64, lowp> lowp_f64mat2; + typedef mat<3, 3, f64, lowp> lowp_f64mat3; + typedef mat<4, 4, f64, lowp> lowp_f64mat4; + + typedef mat<2, 2, f64, mediump> mediump_f64mat2; + typedef mat<3, 3, f64, mediump> mediump_f64mat3; + typedef mat<4, 4, f64, mediump> mediump_f64mat4; + + typedef mat<2, 2, f64, highp> highp_f64mat2; + typedef mat<3, 3, f64, highp> highp_f64mat3; + typedef mat<4, 4, f64, highp> highp_f64mat4; + + typedef mat<2, 2, f64, defaultp> f64mat2; + typedef mat<3, 3, f64, defaultp> f64mat3; + typedef mat<4, 4, f64, defaultp> f64mat4; + + // Matrix MxN + + typedef mat<2, 2, f32, lowp> lowp_mat2x2; + typedef mat<2, 3, f32, lowp> lowp_mat2x3; + typedef mat<2, 4, f32, lowp> lowp_mat2x4; + typedef mat<3, 2, f32, lowp> lowp_mat3x2; + typedef mat<3, 3, f32, lowp> lowp_mat3x3; + typedef mat<3, 4, f32, lowp> lowp_mat3x4; + typedef mat<4, 2, f32, lowp> lowp_mat4x2; + typedef mat<4, 3, f32, lowp> lowp_mat4x3; + typedef mat<4, 4, f32, lowp> lowp_mat4x4; + + typedef mat<2, 2, f32, mediump> mediump_mat2x2; + typedef mat<2, 3, f32, mediump> mediump_mat2x3; + typedef mat<2, 4, f32, mediump> mediump_mat2x4; + typedef mat<3, 2, f32, mediump> mediump_mat3x2; + typedef mat<3, 3, f32, mediump> mediump_mat3x3; + typedef mat<3, 4, f32, mediump> mediump_mat3x4; + typedef mat<4, 2, f32, mediump> mediump_mat4x2; + typedef mat<4, 3, f32, mediump> mediump_mat4x3; + typedef mat<4, 4, f32, mediump> mediump_mat4x4; + + typedef mat<2, 2, f32, highp> highp_mat2x2; + typedef mat<2, 3, f32, highp> highp_mat2x3; + typedef mat<2, 4, f32, highp> highp_mat2x4; + typedef mat<3, 2, f32, highp> highp_mat3x2; + typedef mat<3, 3, f32, highp> highp_mat3x3; + typedef mat<3, 4, f32, highp> highp_mat3x4; + typedef mat<4, 2, f32, highp> highp_mat4x2; + typedef mat<4, 3, f32, highp> highp_mat4x3; + typedef mat<4, 4, f32, highp> highp_mat4x4; + + typedef mat<2, 2, f32, defaultp> mat2x2; + typedef mat<2, 3, f32, defaultp> mat2x3; + typedef mat<2, 4, f32, defaultp> mat2x4; + typedef mat<3, 2, f32, defaultp> mat3x2; + typedef mat<3, 3, f32, defaultp> mat3x3; + typedef mat<3, 4, f32, defaultp> mat3x4; + typedef mat<4, 2, f32, defaultp> mat4x2; + typedef mat<4, 3, f32, defaultp> mat4x3; + typedef mat<4, 4, f32, defaultp> mat4x4; + + typedef mat<2, 2, f32, lowp> lowp_fmat2x2; + typedef mat<2, 3, f32, lowp> lowp_fmat2x3; + typedef mat<2, 4, f32, lowp> lowp_fmat2x4; + typedef mat<3, 2, f32, lowp> lowp_fmat3x2; + typedef mat<3, 3, f32, lowp> lowp_fmat3x3; + typedef mat<3, 4, f32, lowp> lowp_fmat3x4; + typedef mat<4, 2, f32, lowp> lowp_fmat4x2; + typedef mat<4, 3, f32, lowp> lowp_fmat4x3; + typedef mat<4, 4, f32, lowp> lowp_fmat4x4; + + typedef mat<2, 2, f32, mediump> mediump_fmat2x2; + typedef mat<2, 3, f32, mediump> mediump_fmat2x3; + typedef mat<2, 4, f32, mediump> mediump_fmat2x4; + typedef mat<3, 2, f32, mediump> mediump_fmat3x2; + typedef mat<3, 3, f32, mediump> mediump_fmat3x3; + typedef mat<3, 4, f32, mediump> mediump_fmat3x4; + typedef mat<4, 2, f32, mediump> mediump_fmat4x2; + typedef mat<4, 3, f32, mediump> mediump_fmat4x3; + typedef mat<4, 4, f32, mediump> mediump_fmat4x4; + + typedef mat<2, 2, f32, highp> highp_fmat2x2; + typedef mat<2, 3, f32, highp> highp_fmat2x3; + typedef mat<2, 4, f32, highp> highp_fmat2x4; + typedef mat<3, 2, f32, highp> highp_fmat3x2; + typedef mat<3, 3, f32, highp> highp_fmat3x3; + typedef mat<3, 4, f32, highp> highp_fmat3x4; + typedef mat<4, 2, f32, highp> highp_fmat4x2; + typedef mat<4, 3, f32, highp> highp_fmat4x3; + typedef mat<4, 4, f32, highp> highp_fmat4x4; + + typedef mat<2, 2, f32, defaultp> fmat2x2; + typedef mat<2, 3, f32, defaultp> fmat2x3; + typedef mat<2, 4, f32, defaultp> fmat2x4; + typedef mat<3, 2, f32, defaultp> fmat3x2; + typedef mat<3, 3, f32, defaultp> fmat3x3; + typedef mat<3, 4, f32, defaultp> fmat3x4; + typedef mat<4, 2, f32, defaultp> fmat4x2; + typedef mat<4, 3, f32, defaultp> fmat4x3; + typedef mat<4, 4, f32, defaultp> fmat4x4; + + typedef mat<2, 2, f32, lowp> lowp_f32mat2x2; + typedef mat<2, 3, f32, lowp> lowp_f32mat2x3; + typedef mat<2, 4, f32, lowp> lowp_f32mat2x4; + typedef mat<3, 2, f32, lowp> lowp_f32mat3x2; + typedef mat<3, 3, f32, lowp> lowp_f32mat3x3; + typedef mat<3, 4, f32, lowp> lowp_f32mat3x4; + typedef mat<4, 2, f32, lowp> lowp_f32mat4x2; + typedef mat<4, 3, f32, lowp> lowp_f32mat4x3; + typedef mat<4, 4, f32, lowp> lowp_f32mat4x4; + + typedef mat<2, 2, f32, mediump> mediump_f32mat2x2; + typedef mat<2, 3, f32, mediump> mediump_f32mat2x3; + typedef mat<2, 4, f32, mediump> mediump_f32mat2x4; + typedef mat<3, 2, f32, mediump> mediump_f32mat3x2; + typedef mat<3, 3, f32, mediump> mediump_f32mat3x3; + typedef mat<3, 4, f32, mediump> mediump_f32mat3x4; + typedef mat<4, 2, f32, mediump> mediump_f32mat4x2; + typedef mat<4, 3, f32, mediump> mediump_f32mat4x3; + typedef mat<4, 4, f32, mediump> mediump_f32mat4x4; + + typedef mat<2, 2, f32, highp> highp_f32mat2x2; + typedef mat<2, 3, f32, highp> highp_f32mat2x3; + typedef mat<2, 4, f32, highp> highp_f32mat2x4; + typedef mat<3, 2, f32, highp> highp_f32mat3x2; + typedef mat<3, 3, f32, highp> highp_f32mat3x3; + typedef mat<3, 4, f32, highp> highp_f32mat3x4; + typedef mat<4, 2, f32, highp> highp_f32mat4x2; + typedef mat<4, 3, f32, highp> highp_f32mat4x3; + typedef mat<4, 4, f32, highp> highp_f32mat4x4; + + typedef mat<2, 2, f32, defaultp> f32mat2x2; + typedef mat<2, 3, f32, defaultp> f32mat2x3; + typedef mat<2, 4, f32, defaultp> f32mat2x4; + typedef mat<3, 2, f32, defaultp> f32mat3x2; + typedef mat<3, 3, f32, defaultp> f32mat3x3; + typedef mat<3, 4, f32, defaultp> f32mat3x4; + typedef mat<4, 2, f32, defaultp> f32mat4x2; + typedef mat<4, 3, f32, defaultp> f32mat4x3; + typedef mat<4, 4, f32, defaultp> f32mat4x4; + + typedef mat<2, 2, double, lowp> lowp_dmat2x2; + typedef mat<2, 3, double, lowp> lowp_dmat2x3; + typedef mat<2, 4, double, lowp> lowp_dmat2x4; + typedef mat<3, 2, double, lowp> lowp_dmat3x2; + typedef mat<3, 3, double, lowp> lowp_dmat3x3; + typedef mat<3, 4, double, lowp> lowp_dmat3x4; + typedef mat<4, 2, double, lowp> lowp_dmat4x2; + typedef mat<4, 3, double, lowp> lowp_dmat4x3; + typedef mat<4, 4, double, lowp> lowp_dmat4x4; + + typedef mat<2, 2, double, mediump> mediump_dmat2x2; + typedef mat<2, 3, double, mediump> mediump_dmat2x3; + typedef mat<2, 4, double, mediump> mediump_dmat2x4; + typedef mat<3, 2, double, mediump> mediump_dmat3x2; + typedef mat<3, 3, double, mediump> mediump_dmat3x3; + typedef mat<3, 4, double, mediump> mediump_dmat3x4; + typedef mat<4, 2, double, mediump> mediump_dmat4x2; + typedef mat<4, 3, double, mediump> mediump_dmat4x3; + typedef mat<4, 4, double, mediump> mediump_dmat4x4; + + typedef mat<2, 2, double, highp> highp_dmat2x2; + typedef mat<2, 3, double, highp> highp_dmat2x3; + typedef mat<2, 4, double, highp> highp_dmat2x4; + typedef mat<3, 2, double, highp> highp_dmat3x2; + typedef mat<3, 3, double, highp> highp_dmat3x3; + typedef mat<3, 4, double, highp> highp_dmat3x4; + typedef mat<4, 2, double, highp> highp_dmat4x2; + typedef mat<4, 3, double, highp> highp_dmat4x3; + typedef mat<4, 4, double, highp> highp_dmat4x4; + + typedef mat<2, 2, double, defaultp> dmat2x2; + typedef mat<2, 3, double, defaultp> dmat2x3; + typedef mat<2, 4, double, defaultp> dmat2x4; + typedef mat<3, 2, double, defaultp> dmat3x2; + typedef mat<3, 3, double, defaultp> dmat3x3; + typedef mat<3, 4, double, defaultp> dmat3x4; + typedef mat<4, 2, double, defaultp> dmat4x2; + typedef mat<4, 3, double, defaultp> dmat4x3; + typedef mat<4, 4, double, defaultp> dmat4x4; + + typedef mat<2, 2, f64, lowp> lowp_f64mat2x2; + typedef mat<2, 3, f64, lowp> lowp_f64mat2x3; + typedef mat<2, 4, f64, lowp> lowp_f64mat2x4; + typedef mat<3, 2, f64, lowp> lowp_f64mat3x2; + typedef mat<3, 3, f64, lowp> lowp_f64mat3x3; + typedef mat<3, 4, f64, lowp> lowp_f64mat3x4; + typedef mat<4, 2, f64, lowp> lowp_f64mat4x2; + typedef mat<4, 3, f64, lowp> lowp_f64mat4x3; + typedef mat<4, 4, f64, lowp> lowp_f64mat4x4; + + typedef mat<2, 2, f64, mediump> mediump_f64mat2x2; + typedef mat<2, 3, f64, mediump> mediump_f64mat2x3; + typedef mat<2, 4, f64, mediump> mediump_f64mat2x4; + typedef mat<3, 2, f64, mediump> mediump_f64mat3x2; + typedef mat<3, 3, f64, mediump> mediump_f64mat3x3; + typedef mat<3, 4, f64, mediump> mediump_f64mat3x4; + typedef mat<4, 2, f64, mediump> mediump_f64mat4x2; + typedef mat<4, 3, f64, mediump> mediump_f64mat4x3; + typedef mat<4, 4, f64, mediump> mediump_f64mat4x4; + + typedef mat<2, 2, f64, highp> highp_f64mat2x2; + typedef mat<2, 3, f64, highp> highp_f64mat2x3; + typedef mat<2, 4, f64, highp> highp_f64mat2x4; + typedef mat<3, 2, f64, highp> highp_f64mat3x2; + typedef mat<3, 3, f64, highp> highp_f64mat3x3; + typedef mat<3, 4, f64, highp> highp_f64mat3x4; + typedef mat<4, 2, f64, highp> highp_f64mat4x2; + typedef mat<4, 3, f64, highp> highp_f64mat4x3; + typedef mat<4, 4, f64, highp> highp_f64mat4x4; + + typedef mat<2, 2, f64, defaultp> f64mat2x2; + typedef mat<2, 3, f64, defaultp> f64mat2x3; + typedef mat<2, 4, f64, defaultp> f64mat2x4; + typedef mat<3, 2, f64, defaultp> f64mat3x2; + typedef mat<3, 3, f64, defaultp> f64mat3x3; + typedef mat<3, 4, f64, defaultp> f64mat3x4; + typedef mat<4, 2, f64, defaultp> f64mat4x2; + typedef mat<4, 3, f64, defaultp> f64mat4x3; + typedef mat<4, 4, f64, defaultp> f64mat4x4; + + // Signed integer matrix MxN + + typedef mat<2, 2, int, lowp> lowp_imat2x2; + typedef mat<2, 3, int, lowp> lowp_imat2x3; + typedef mat<2, 4, int, lowp> lowp_imat2x4; + typedef mat<3, 2, int, lowp> lowp_imat3x2; + typedef mat<3, 3, int, lowp> lowp_imat3x3; + typedef mat<3, 4, int, lowp> lowp_imat3x4; + typedef mat<4, 2, int, lowp> lowp_imat4x2; + typedef mat<4, 3, int, lowp> lowp_imat4x3; + typedef mat<4, 4, int, lowp> lowp_imat4x4; + + typedef mat<2, 2, int, mediump> mediump_imat2x2; + typedef mat<2, 3, int, mediump> mediump_imat2x3; + typedef mat<2, 4, int, mediump> mediump_imat2x4; + typedef mat<3, 2, int, mediump> mediump_imat3x2; + typedef mat<3, 3, int, mediump> mediump_imat3x3; + typedef mat<3, 4, int, mediump> mediump_imat3x4; + typedef mat<4, 2, int, mediump> mediump_imat4x2; + typedef mat<4, 3, int, mediump> mediump_imat4x3; + typedef mat<4, 4, int, mediump> mediump_imat4x4; + + typedef mat<2, 2, int, highp> highp_imat2x2; + typedef mat<2, 3, int, highp> highp_imat2x3; + typedef mat<2, 4, int, highp> highp_imat2x4; + typedef mat<3, 2, int, highp> highp_imat3x2; + typedef mat<3, 3, int, highp> highp_imat3x3; + typedef mat<3, 4, int, highp> highp_imat3x4; + typedef mat<4, 2, int, highp> highp_imat4x2; + typedef mat<4, 3, int, highp> highp_imat4x3; + typedef mat<4, 4, int, highp> highp_imat4x4; + + typedef mat<2, 2, int, defaultp> imat2x2; + typedef mat<2, 3, int, defaultp> imat2x3; + typedef mat<2, 4, int, defaultp> imat2x4; + typedef mat<3, 2, int, defaultp> imat3x2; + typedef mat<3, 3, int, defaultp> imat3x3; + typedef mat<3, 4, int, defaultp> imat3x4; + typedef mat<4, 2, int, defaultp> imat4x2; + typedef mat<4, 3, int, defaultp> imat4x3; + typedef mat<4, 4, int, defaultp> imat4x4; + + + typedef mat<2, 2, int8, lowp> lowp_i8mat2x2; + typedef mat<2, 3, int8, lowp> lowp_i8mat2x3; + typedef mat<2, 4, int8, lowp> lowp_i8mat2x4; + typedef mat<3, 2, int8, lowp> lowp_i8mat3x2; + typedef mat<3, 3, int8, lowp> lowp_i8mat3x3; + typedef mat<3, 4, int8, lowp> lowp_i8mat3x4; + typedef mat<4, 2, int8, lowp> lowp_i8mat4x2; + typedef mat<4, 3, int8, lowp> lowp_i8mat4x3; + typedef mat<4, 4, int8, lowp> lowp_i8mat4x4; + + typedef mat<2, 2, int8, mediump> mediump_i8mat2x2; + typedef mat<2, 3, int8, mediump> mediump_i8mat2x3; + typedef mat<2, 4, int8, mediump> mediump_i8mat2x4; + typedef mat<3, 2, int8, mediump> mediump_i8mat3x2; + typedef mat<3, 3, int8, mediump> mediump_i8mat3x3; + typedef mat<3, 4, int8, mediump> mediump_i8mat3x4; + typedef mat<4, 2, int8, mediump> mediump_i8mat4x2; + typedef mat<4, 3, int8, mediump> mediump_i8mat4x3; + typedef mat<4, 4, int8, mediump> mediump_i8mat4x4; + + typedef mat<2, 2, int8, highp> highp_i8mat2x2; + typedef mat<2, 3, int8, highp> highp_i8mat2x3; + typedef mat<2, 4, int8, highp> highp_i8mat2x4; + typedef mat<3, 2, int8, highp> highp_i8mat3x2; + typedef mat<3, 3, int8, highp> highp_i8mat3x3; + typedef mat<3, 4, int8, highp> highp_i8mat3x4; + typedef mat<4, 2, int8, highp> highp_i8mat4x2; + typedef mat<4, 3, int8, highp> highp_i8mat4x3; + typedef mat<4, 4, int8, highp> highp_i8mat4x4; + + typedef mat<2, 2, int8, defaultp> i8mat2x2; + typedef mat<2, 3, int8, defaultp> i8mat2x3; + typedef mat<2, 4, int8, defaultp> i8mat2x4; + typedef mat<3, 2, int8, defaultp> i8mat3x2; + typedef mat<3, 3, int8, defaultp> i8mat3x3; + typedef mat<3, 4, int8, defaultp> i8mat3x4; + typedef mat<4, 2, int8, defaultp> i8mat4x2; + typedef mat<4, 3, int8, defaultp> i8mat4x3; + typedef mat<4, 4, int8, defaultp> i8mat4x4; + + + typedef mat<2, 2, int16, lowp> lowp_i16mat2x2; + typedef mat<2, 3, int16, lowp> lowp_i16mat2x3; + typedef mat<2, 4, int16, lowp> lowp_i16mat2x4; + typedef mat<3, 2, int16, lowp> lowp_i16mat3x2; + typedef mat<3, 3, int16, lowp> lowp_i16mat3x3; + typedef mat<3, 4, int16, lowp> lowp_i16mat3x4; + typedef mat<4, 2, int16, lowp> lowp_i16mat4x2; + typedef mat<4, 3, int16, lowp> lowp_i16mat4x3; + typedef mat<4, 4, int16, lowp> lowp_i16mat4x4; + + typedef mat<2, 2, int16, mediump> mediump_i16mat2x2; + typedef mat<2, 3, int16, mediump> mediump_i16mat2x3; + typedef mat<2, 4, int16, mediump> mediump_i16mat2x4; + typedef mat<3, 2, int16, mediump> mediump_i16mat3x2; + typedef mat<3, 3, int16, mediump> mediump_i16mat3x3; + typedef mat<3, 4, int16, mediump> mediump_i16mat3x4; + typedef mat<4, 2, int16, mediump> mediump_i16mat4x2; + typedef mat<4, 3, int16, mediump> mediump_i16mat4x3; + typedef mat<4, 4, int16, mediump> mediump_i16mat4x4; + + typedef mat<2, 2, int16, highp> highp_i16mat2x2; + typedef mat<2, 3, int16, highp> highp_i16mat2x3; + typedef mat<2, 4, int16, highp> highp_i16mat2x4; + typedef mat<3, 2, int16, highp> highp_i16mat3x2; + typedef mat<3, 3, int16, highp> highp_i16mat3x3; + typedef mat<3, 4, int16, highp> highp_i16mat3x4; + typedef mat<4, 2, int16, highp> highp_i16mat4x2; + typedef mat<4, 3, int16, highp> highp_i16mat4x3; + typedef mat<4, 4, int16, highp> highp_i16mat4x4; + + typedef mat<2, 2, int16, defaultp> i16mat2x2; + typedef mat<2, 3, int16, defaultp> i16mat2x3; + typedef mat<2, 4, int16, defaultp> i16mat2x4; + typedef mat<3, 2, int16, defaultp> i16mat3x2; + typedef mat<3, 3, int16, defaultp> i16mat3x3; + typedef mat<3, 4, int16, defaultp> i16mat3x4; + typedef mat<4, 2, int16, defaultp> i16mat4x2; + typedef mat<4, 3, int16, defaultp> i16mat4x3; + typedef mat<4, 4, int16, defaultp> i16mat4x4; + + + typedef mat<2, 2, int32, lowp> lowp_i32mat2x2; + typedef mat<2, 3, int32, lowp> lowp_i32mat2x3; + typedef mat<2, 4, int32, lowp> lowp_i32mat2x4; + typedef mat<3, 2, int32, lowp> lowp_i32mat3x2; + typedef mat<3, 3, int32, lowp> lowp_i32mat3x3; + typedef mat<3, 4, int32, lowp> lowp_i32mat3x4; + typedef mat<4, 2, int32, lowp> lowp_i32mat4x2; + typedef mat<4, 3, int32, lowp> lowp_i32mat4x3; + typedef mat<4, 4, int32, lowp> lowp_i32mat4x4; + + typedef mat<2, 2, int32, mediump> mediump_i32mat2x2; + typedef mat<2, 3, int32, mediump> mediump_i32mat2x3; + typedef mat<2, 4, int32, mediump> mediump_i32mat2x4; + typedef mat<3, 2, int32, mediump> mediump_i32mat3x2; + typedef mat<3, 3, int32, mediump> mediump_i32mat3x3; + typedef mat<3, 4, int32, mediump> mediump_i32mat3x4; + typedef mat<4, 2, int32, mediump> mediump_i32mat4x2; + typedef mat<4, 3, int32, mediump> mediump_i32mat4x3; + typedef mat<4, 4, int32, mediump> mediump_i32mat4x4; + + typedef mat<2, 2, int32, highp> highp_i32mat2x2; + typedef mat<2, 3, int32, highp> highp_i32mat2x3; + typedef mat<2, 4, int32, highp> highp_i32mat2x4; + typedef mat<3, 2, int32, highp> highp_i32mat3x2; + typedef mat<3, 3, int32, highp> highp_i32mat3x3; + typedef mat<3, 4, int32, highp> highp_i32mat3x4; + typedef mat<4, 2, int32, highp> highp_i32mat4x2; + typedef mat<4, 3, int32, highp> highp_i32mat4x3; + typedef mat<4, 4, int32, highp> highp_i32mat4x4; + + typedef mat<2, 2, int32, defaultp> i32mat2x2; + typedef mat<2, 3, int32, defaultp> i32mat2x3; + typedef mat<2, 4, int32, defaultp> i32mat2x4; + typedef mat<3, 2, int32, defaultp> i32mat3x2; + typedef mat<3, 3, int32, defaultp> i32mat3x3; + typedef mat<3, 4, int32, defaultp> i32mat3x4; + typedef mat<4, 2, int32, defaultp> i32mat4x2; + typedef mat<4, 3, int32, defaultp> i32mat4x3; + typedef mat<4, 4, int32, defaultp> i32mat4x4; + + + typedef mat<2, 2, int64, lowp> lowp_i64mat2x2; + typedef mat<2, 3, int64, lowp> lowp_i64mat2x3; + typedef mat<2, 4, int64, lowp> lowp_i64mat2x4; + typedef mat<3, 2, int64, lowp> lowp_i64mat3x2; + typedef mat<3, 3, int64, lowp> lowp_i64mat3x3; + typedef mat<3, 4, int64, lowp> lowp_i64mat3x4; + typedef mat<4, 2, int64, lowp> lowp_i64mat4x2; + typedef mat<4, 3, int64, lowp> lowp_i64mat4x3; + typedef mat<4, 4, int64, lowp> lowp_i64mat4x4; + + typedef mat<2, 2, int64, mediump> mediump_i64mat2x2; + typedef mat<2, 3, int64, mediump> mediump_i64mat2x3; + typedef mat<2, 4, int64, mediump> mediump_i64mat2x4; + typedef mat<3, 2, int64, mediump> mediump_i64mat3x2; + typedef mat<3, 3, int64, mediump> mediump_i64mat3x3; + typedef mat<3, 4, int64, mediump> mediump_i64mat3x4; + typedef mat<4, 2, int64, mediump> mediump_i64mat4x2; + typedef mat<4, 3, int64, mediump> mediump_i64mat4x3; + typedef mat<4, 4, int64, mediump> mediump_i64mat4x4; + + typedef mat<2, 2, int64, highp> highp_i64mat2x2; + typedef mat<2, 3, int64, highp> highp_i64mat2x3; + typedef mat<2, 4, int64, highp> highp_i64mat2x4; + typedef mat<3, 2, int64, highp> highp_i64mat3x2; + typedef mat<3, 3, int64, highp> highp_i64mat3x3; + typedef mat<3, 4, int64, highp> highp_i64mat3x4; + typedef mat<4, 2, int64, highp> highp_i64mat4x2; + typedef mat<4, 3, int64, highp> highp_i64mat4x3; + typedef mat<4, 4, int64, highp> highp_i64mat4x4; + + typedef mat<2, 2, int64, defaultp> i64mat2x2; + typedef mat<2, 3, int64, defaultp> i64mat2x3; + typedef mat<2, 4, int64, defaultp> i64mat2x4; + typedef mat<3, 2, int64, defaultp> i64mat3x2; + typedef mat<3, 3, int64, defaultp> i64mat3x3; + typedef mat<3, 4, int64, defaultp> i64mat3x4; + typedef mat<4, 2, int64, defaultp> i64mat4x2; + typedef mat<4, 3, int64, defaultp> i64mat4x3; + typedef mat<4, 4, int64, defaultp> i64mat4x4; + + + // Unsigned integer matrix MxN + + typedef mat<2, 2, uint, lowp> lowp_umat2x2; + typedef mat<2, 3, uint, lowp> lowp_umat2x3; + typedef mat<2, 4, uint, lowp> lowp_umat2x4; + typedef mat<3, 2, uint, lowp> lowp_umat3x2; + typedef mat<3, 3, uint, lowp> lowp_umat3x3; + typedef mat<3, 4, uint, lowp> lowp_umat3x4; + typedef mat<4, 2, uint, lowp> lowp_umat4x2; + typedef mat<4, 3, uint, lowp> lowp_umat4x3; + typedef mat<4, 4, uint, lowp> lowp_umat4x4; + + typedef mat<2, 2, uint, mediump> mediump_umat2x2; + typedef mat<2, 3, uint, mediump> mediump_umat2x3; + typedef mat<2, 4, uint, mediump> mediump_umat2x4; + typedef mat<3, 2, uint, mediump> mediump_umat3x2; + typedef mat<3, 3, uint, mediump> mediump_umat3x3; + typedef mat<3, 4, uint, mediump> mediump_umat3x4; + typedef mat<4, 2, uint, mediump> mediump_umat4x2; + typedef mat<4, 3, uint, mediump> mediump_umat4x3; + typedef mat<4, 4, uint, mediump> mediump_umat4x4; + + typedef mat<2, 2, uint, highp> highp_umat2x2; + typedef mat<2, 3, uint, highp> highp_umat2x3; + typedef mat<2, 4, uint, highp> highp_umat2x4; + typedef mat<3, 2, uint, highp> highp_umat3x2; + typedef mat<3, 3, uint, highp> highp_umat3x3; + typedef mat<3, 4, uint, highp> highp_umat3x4; + typedef mat<4, 2, uint, highp> highp_umat4x2; + typedef mat<4, 3, uint, highp> highp_umat4x3; + typedef mat<4, 4, uint, highp> highp_umat4x4; + + typedef mat<2, 2, uint, defaultp> umat2x2; + typedef mat<2, 3, uint, defaultp> umat2x3; + typedef mat<2, 4, uint, defaultp> umat2x4; + typedef mat<3, 2, uint, defaultp> umat3x2; + typedef mat<3, 3, uint, defaultp> umat3x3; + typedef mat<3, 4, uint, defaultp> umat3x4; + typedef mat<4, 2, uint, defaultp> umat4x2; + typedef mat<4, 3, uint, defaultp> umat4x3; + typedef mat<4, 4, uint, defaultp> umat4x4; + + + typedef mat<2, 2, uint8, lowp> lowp_u8mat2x2; + typedef mat<2, 3, uint8, lowp> lowp_u8mat2x3; + typedef mat<2, 4, uint8, lowp> lowp_u8mat2x4; + typedef mat<3, 2, uint8, lowp> lowp_u8mat3x2; + typedef mat<3, 3, uint8, lowp> lowp_u8mat3x3; + typedef mat<3, 4, uint8, lowp> lowp_u8mat3x4; + typedef mat<4, 2, uint8, lowp> lowp_u8mat4x2; + typedef mat<4, 3, uint8, lowp> lowp_u8mat4x3; + typedef mat<4, 4, uint8, lowp> lowp_u8mat4x4; + + typedef mat<2, 2, uint8, mediump> mediump_u8mat2x2; + typedef mat<2, 3, uint8, mediump> mediump_u8mat2x3; + typedef mat<2, 4, uint8, mediump> mediump_u8mat2x4; + typedef mat<3, 2, uint8, mediump> mediump_u8mat3x2; + typedef mat<3, 3, uint8, mediump> mediump_u8mat3x3; + typedef mat<3, 4, uint8, mediump> mediump_u8mat3x4; + typedef mat<4, 2, uint8, mediump> mediump_u8mat4x2; + typedef mat<4, 3, uint8, mediump> mediump_u8mat4x3; + typedef mat<4, 4, uint8, mediump> mediump_u8mat4x4; + + typedef mat<2, 2, uint8, highp> highp_u8mat2x2; + typedef mat<2, 3, uint8, highp> highp_u8mat2x3; + typedef mat<2, 4, uint8, highp> highp_u8mat2x4; + typedef mat<3, 2, uint8, highp> highp_u8mat3x2; + typedef mat<3, 3, uint8, highp> highp_u8mat3x3; + typedef mat<3, 4, uint8, highp> highp_u8mat3x4; + typedef mat<4, 2, uint8, highp> highp_u8mat4x2; + typedef mat<4, 3, uint8, highp> highp_u8mat4x3; + typedef mat<4, 4, uint8, highp> highp_u8mat4x4; + + typedef mat<2, 2, uint8, defaultp> u8mat2x2; + typedef mat<2, 3, uint8, defaultp> u8mat2x3; + typedef mat<2, 4, uint8, defaultp> u8mat2x4; + typedef mat<3, 2, uint8, defaultp> u8mat3x2; + typedef mat<3, 3, uint8, defaultp> u8mat3x3; + typedef mat<3, 4, uint8, defaultp> u8mat3x4; + typedef mat<4, 2, uint8, defaultp> u8mat4x2; + typedef mat<4, 3, uint8, defaultp> u8mat4x3; + typedef mat<4, 4, uint8, defaultp> u8mat4x4; + + + typedef mat<2, 2, uint16, lowp> lowp_u16mat2x2; + typedef mat<2, 3, uint16, lowp> lowp_u16mat2x3; + typedef mat<2, 4, uint16, lowp> lowp_u16mat2x4; + typedef mat<3, 2, uint16, lowp> lowp_u16mat3x2; + typedef mat<3, 3, uint16, lowp> lowp_u16mat3x3; + typedef mat<3, 4, uint16, lowp> lowp_u16mat3x4; + typedef mat<4, 2, uint16, lowp> lowp_u16mat4x2; + typedef mat<4, 3, uint16, lowp> lowp_u16mat4x3; + typedef mat<4, 4, uint16, lowp> lowp_u16mat4x4; + + typedef mat<2, 2, uint16, mediump> mediump_u16mat2x2; + typedef mat<2, 3, uint16, mediump> mediump_u16mat2x3; + typedef mat<2, 4, uint16, mediump> mediump_u16mat2x4; + typedef mat<3, 2, uint16, mediump> mediump_u16mat3x2; + typedef mat<3, 3, uint16, mediump> mediump_u16mat3x3; + typedef mat<3, 4, uint16, mediump> mediump_u16mat3x4; + typedef mat<4, 2, uint16, mediump> mediump_u16mat4x2; + typedef mat<4, 3, uint16, mediump> mediump_u16mat4x3; + typedef mat<4, 4, uint16, mediump> mediump_u16mat4x4; + + typedef mat<2, 2, uint16, highp> highp_u16mat2x2; + typedef mat<2, 3, uint16, highp> highp_u16mat2x3; + typedef mat<2, 4, uint16, highp> highp_u16mat2x4; + typedef mat<3, 2, uint16, highp> highp_u16mat3x2; + typedef mat<3, 3, uint16, highp> highp_u16mat3x3; + typedef mat<3, 4, uint16, highp> highp_u16mat3x4; + typedef mat<4, 2, uint16, highp> highp_u16mat4x2; + typedef mat<4, 3, uint16, highp> highp_u16mat4x3; + typedef mat<4, 4, uint16, highp> highp_u16mat4x4; + + typedef mat<2, 2, uint16, defaultp> u16mat2x2; + typedef mat<2, 3, uint16, defaultp> u16mat2x3; + typedef mat<2, 4, uint16, defaultp> u16mat2x4; + typedef mat<3, 2, uint16, defaultp> u16mat3x2; + typedef mat<3, 3, uint16, defaultp> u16mat3x3; + typedef mat<3, 4, uint16, defaultp> u16mat3x4; + typedef mat<4, 2, uint16, defaultp> u16mat4x2; + typedef mat<4, 3, uint16, defaultp> u16mat4x3; + typedef mat<4, 4, uint16, defaultp> u16mat4x4; + + + typedef mat<2, 2, uint32, lowp> lowp_u32mat2x2; + typedef mat<2, 3, uint32, lowp> lowp_u32mat2x3; + typedef mat<2, 4, uint32, lowp> lowp_u32mat2x4; + typedef mat<3, 2, uint32, lowp> lowp_u32mat3x2; + typedef mat<3, 3, uint32, lowp> lowp_u32mat3x3; + typedef mat<3, 4, uint32, lowp> lowp_u32mat3x4; + typedef mat<4, 2, uint32, lowp> lowp_u32mat4x2; + typedef mat<4, 3, uint32, lowp> lowp_u32mat4x3; + typedef mat<4, 4, uint32, lowp> lowp_u32mat4x4; + + typedef mat<2, 2, uint32, mediump> mediump_u32mat2x2; + typedef mat<2, 3, uint32, mediump> mediump_u32mat2x3; + typedef mat<2, 4, uint32, mediump> mediump_u32mat2x4; + typedef mat<3, 2, uint32, mediump> mediump_u32mat3x2; + typedef mat<3, 3, uint32, mediump> mediump_u32mat3x3; + typedef mat<3, 4, uint32, mediump> mediump_u32mat3x4; + typedef mat<4, 2, uint32, mediump> mediump_u32mat4x2; + typedef mat<4, 3, uint32, mediump> mediump_u32mat4x3; + typedef mat<4, 4, uint32, mediump> mediump_u32mat4x4; + + typedef mat<2, 2, uint32, highp> highp_u32mat2x2; + typedef mat<2, 3, uint32, highp> highp_u32mat2x3; + typedef mat<2, 4, uint32, highp> highp_u32mat2x4; + typedef mat<3, 2, uint32, highp> highp_u32mat3x2; + typedef mat<3, 3, uint32, highp> highp_u32mat3x3; + typedef mat<3, 4, uint32, highp> highp_u32mat3x4; + typedef mat<4, 2, uint32, highp> highp_u32mat4x2; + typedef mat<4, 3, uint32, highp> highp_u32mat4x3; + typedef mat<4, 4, uint32, highp> highp_u32mat4x4; + + typedef mat<2, 2, uint32, defaultp> u32mat2x2; + typedef mat<2, 3, uint32, defaultp> u32mat2x3; + typedef mat<2, 4, uint32, defaultp> u32mat2x4; + typedef mat<3, 2, uint32, defaultp> u32mat3x2; + typedef mat<3, 3, uint32, defaultp> u32mat3x3; + typedef mat<3, 4, uint32, defaultp> u32mat3x4; + typedef mat<4, 2, uint32, defaultp> u32mat4x2; + typedef mat<4, 3, uint32, defaultp> u32mat4x3; + typedef mat<4, 4, uint32, defaultp> u32mat4x4; + + + typedef mat<2, 2, uint64, lowp> lowp_u64mat2x2; + typedef mat<2, 3, uint64, lowp> lowp_u64mat2x3; + typedef mat<2, 4, uint64, lowp> lowp_u64mat2x4; + typedef mat<3, 2, uint64, lowp> lowp_u64mat3x2; + typedef mat<3, 3, uint64, lowp> lowp_u64mat3x3; + typedef mat<3, 4, uint64, lowp> lowp_u64mat3x4; + typedef mat<4, 2, uint64, lowp> lowp_u64mat4x2; + typedef mat<4, 3, uint64, lowp> lowp_u64mat4x3; + typedef mat<4, 4, uint64, lowp> lowp_u64mat4x4; + + typedef mat<2, 2, uint64, mediump> mediump_u64mat2x2; + typedef mat<2, 3, uint64, mediump> mediump_u64mat2x3; + typedef mat<2, 4, uint64, mediump> mediump_u64mat2x4; + typedef mat<3, 2, uint64, mediump> mediump_u64mat3x2; + typedef mat<3, 3, uint64, mediump> mediump_u64mat3x3; + typedef mat<3, 4, uint64, mediump> mediump_u64mat3x4; + typedef mat<4, 2, uint64, mediump> mediump_u64mat4x2; + typedef mat<4, 3, uint64, mediump> mediump_u64mat4x3; + typedef mat<4, 4, uint64, mediump> mediump_u64mat4x4; + + typedef mat<2, 2, uint64, highp> highp_u64mat2x2; + typedef mat<2, 3, uint64, highp> highp_u64mat2x3; + typedef mat<2, 4, uint64, highp> highp_u64mat2x4; + typedef mat<3, 2, uint64, highp> highp_u64mat3x2; + typedef mat<3, 3, uint64, highp> highp_u64mat3x3; + typedef mat<3, 4, uint64, highp> highp_u64mat3x4; + typedef mat<4, 2, uint64, highp> highp_u64mat4x2; + typedef mat<4, 3, uint64, highp> highp_u64mat4x3; + typedef mat<4, 4, uint64, highp> highp_u64mat4x4; + + typedef mat<2, 2, uint64, defaultp> u64mat2x2; + typedef mat<2, 3, uint64, defaultp> u64mat2x3; + typedef mat<2, 4, uint64, defaultp> u64mat2x4; + typedef mat<3, 2, uint64, defaultp> u64mat3x2; + typedef mat<3, 3, uint64, defaultp> u64mat3x3; + typedef mat<3, 4, uint64, defaultp> u64mat3x4; + typedef mat<4, 2, uint64, defaultp> u64mat4x2; + typedef mat<4, 3, uint64, defaultp> u64mat4x3; + typedef mat<4, 4, uint64, defaultp> u64mat4x4; + + // Quaternion + + typedef qua lowp_quat; + typedef qua mediump_quat; + typedef qua highp_quat; + typedef qua quat; + + typedef qua lowp_fquat; + typedef qua mediump_fquat; + typedef qua highp_fquat; + typedef qua fquat; + + typedef qua lowp_f32quat; + typedef qua mediump_f32quat; + typedef qua highp_f32quat; + typedef qua f32quat; + + typedef qua lowp_dquat; + typedef qua mediump_dquat; + typedef qua highp_dquat; + typedef qua dquat; + + typedef qua lowp_f64quat; + typedef qua mediump_f64quat; + typedef qua highp_f64quat; + typedef qua f64quat; +}//namespace glm + + diff --git a/thirdparty/glm/glm/geometric.hpp b/thirdparty/glm/glm/geometric.hpp new file mode 100644 index 000000000000..ac857e69d4cf --- /dev/null +++ b/thirdparty/glm/glm/geometric.hpp @@ -0,0 +1,116 @@ +/// @ref core +/// @file glm/geometric.hpp +/// +/// @see GLSL 4.20.8 specification, section 8.5 Geometric Functions +/// +/// @defgroup core_func_geometric Geometric functions +/// @ingroup core +/// +/// These operate on vectors as vectors, not component-wise. +/// +/// Include to use these core features. + +#pragma once + +#include "detail/type_vec3.hpp" + +namespace glm +{ + /// @addtogroup core_func_geometric + /// @{ + + /// Returns the length of x, i.e., sqrt(x * x). + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Floating-point scalar types. + /// + /// @see GLSL length man page + /// @see GLSL 4.20.8 specification, section 8.5 Geometric Functions + template + GLM_FUNC_DECL T length(vec const& x); + + /// Returns the distance between p0 and p1, i.e., length(p0 - p1). + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Floating-point scalar types. + /// + /// @see GLSL distance man page + /// @see GLSL 4.20.8 specification, section 8.5 Geometric Functions + template + GLM_FUNC_DECL T distance(vec const& p0, vec const& p1); + + /// Returns the dot product of x and y, i.e., result = x * y. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Floating-point scalar types. + /// + /// @see GLSL dot man page + /// @see GLSL 4.20.8 specification, section 8.5 Geometric Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR T dot(vec const& x, vec const& y); + + /// Returns the cross product of x and y. + /// + /// @tparam T Floating-point scalar types. + /// + /// @see GLSL cross man page + /// @see GLSL 4.20.8 specification, section 8.5 Geometric Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> cross(vec<3, T, Q> const& x, vec<3, T, Q> const& y); + + /// Returns a vector in the same direction as x but with length of 1. + /// According to issue 10 GLSL 1.10 specification, if length(x) == 0 then result is undefined and generate an error. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Floating-point scalar types. + /// + /// @see GLSL normalize man page + /// @see GLSL 4.20.8 specification, section 8.5 Geometric Functions + template + GLM_FUNC_DECL vec normalize(vec const& x); + + /// If dot(Nref, I) < 0.0, return N, otherwise, return -N. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Floating-point scalar types. + /// + /// @see GLSL faceforward man page + /// @see GLSL 4.20.8 specification, section 8.5 Geometric Functions + template + GLM_FUNC_DECL vec faceforward( + vec const& N, + vec const& I, + vec const& Nref); + + /// For the incident vector I and surface orientation N, + /// returns the reflection direction : result = I - 2.0 * dot(N, I) * N. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Floating-point scalar types. + /// + /// @see GLSL reflect man page + /// @see GLSL 4.20.8 specification, section 8.5 Geometric Functions + template + GLM_FUNC_DECL vec reflect( + vec const& I, + vec const& N); + + /// For the incident vector I and surface normal N, + /// and the ratio of indices of refraction eta, + /// return the refraction vector. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Floating-point scalar types. + /// + /// @see GLSL refract man page + /// @see GLSL 4.20.8 specification, section 8.5 Geometric Functions + template + GLM_FUNC_DECL vec refract( + vec const& I, + vec const& N, + T eta); + + /// @} +}//namespace glm + +#include "detail/func_geometric.inl" diff --git a/thirdparty/glm/glm/glm.cppm b/thirdparty/glm/glm/glm.cppm new file mode 100644 index 000000000000..85e946e0f83c --- /dev/null +++ b/thirdparty/glm/glm/glm.cppm @@ -0,0 +1,2675 @@ +module; + +// #define GLM_GTC_INLINE_NAMESPACE to inline glm::gtc into glm +// #define GLM_EXT_INLINE_NAMESPACE to inline glm::ext into glm +// #define GLM_GTX_INLINE_NAMESPACE to inline glm::gtx into glm + +#include +#include + +export module glm; + +export namespace glm { + // Base types + using glm::qualifier; + using glm::precision; + using glm::vec; + using glm::mat; + using glm::qua; +# if GLM_HAS_TEMPLATE_ALIASES + using glm::tvec1; + using glm::tvec2; + using glm::tvec3; + using glm::tvec4; + using glm::tmat2x2; + using glm::tmat2x3; + using glm::tmat2x4; + using glm::tmat3x2; + using glm::tmat3x3; + using glm::tmat3x4; + using glm::tmat4x2; + using glm::tmat4x3; + using glm::tmat4x4; + using glm::tquat; +# endif + + using glm::int8; + using glm::int16; + using glm::int32; + using glm::int64; + using glm::uint8; + using glm::uint16; + using glm::uint32; + using glm::uint64; + using glm::lowp_i8; + using glm::mediump_i8; + using glm::highp_i8; + using glm::i8; + using glm::lowp_int8; + using glm::mediump_int8; + using glm::highp_int8; + using glm::lowp_int8_t; + using glm::mediump_int8_t; + using glm::highp_int8_t; + using glm::int8_t; + using glm::lowp_i16; + using glm::mediump_i16; + using glm::highp_i16; + using glm::i16; + using glm::lowp_int16; + using glm::mediump_int16; + using glm::highp_int16; + using glm::lowp_int16_t; + using glm::mediump_int16_t; + using glm::highp_int16_t; + using glm::int16_t; + using glm::lowp_i32; + using glm::mediump_i32; + using glm::highp_i32; + using glm::i32; + using glm::lowp_int32; + using glm::mediump_int32; + using glm::highp_int32; + using glm::lowp_int32_t; + using glm::mediump_int32_t; + using glm::highp_int32_t; + using glm::int32_t; + using glm::lowp_i64; + using glm::mediump_i64; + using glm::highp_i64; + using glm::i64; + using glm::lowp_int64; + using glm::mediump_int64; + using glm::highp_int64; + using glm::lowp_int64_t; + using glm::mediump_int64_t; + using glm::highp_int64_t; + using glm::int64_t; + using glm::uint; + using glm::lowp_u8; + using glm::mediump_u8; + using glm::highp_u8; + using glm::u8; + using glm::lowp_uint8; + using glm::mediump_uint8; + using glm::highp_uint8; + using glm::lowp_uint8_t; + using glm::mediump_uint8_t; + using glm::highp_uint8_t; + using glm::uint8_t; + using glm::lowp_u16; + using glm::mediump_u16; + using glm::highp_u16; + using glm::u16; + using glm::lowp_uint16; + using glm::mediump_uint16; + using glm::highp_uint16; + using glm::lowp_uint16_t; + using glm::mediump_uint16_t; + using glm::highp_uint16_t; + using glm::uint16_t; + using glm::lowp_u32; + using glm::mediump_u32; + using glm::highp_u32; + using glm::u32; + using glm::lowp_uint32; + using glm::mediump_uint32; + using glm::highp_uint32; + using glm::lowp_uint32_t; + using glm::mediump_uint32_t; + using glm::highp_uint32_t; + using glm::uint32_t; + using glm::lowp_u64; + using glm::mediump_u64; + using glm::highp_u64; + using glm::u64; + using glm::lowp_uint64; + using glm::mediump_uint64; + using glm::highp_uint64; + using glm::lowp_uint64_t; + using glm::mediump_uint64_t; + using glm::highp_uint64_t; + using glm::uint64_t; + using glm::lowp_f32; + using glm::mediump_f32; + using glm::highp_f32; + using glm::f32; + using glm::lowp_float32; + using glm::mediump_float32; + using glm::highp_float32; + using glm::float32; + using glm::lowp_float32_t; + using glm::mediump_float32_t; + using glm::highp_float32_t; + using glm::float32_t; + using glm::lowp_f64; + using glm::mediump_f64; + using glm::highp_f64; + using glm::f64; + using glm::lowp_float64; + using glm::mediump_float64; + using glm::highp_float64; + using glm::float64; + using glm::lowp_float64_t; + using glm::mediump_float64_t; + using glm::highp_float64_t; + using glm::float64_t; + using glm::lowp_bvec1; + using glm::lowp_bvec2; + using glm::lowp_bvec3; + using glm::lowp_bvec4; + using glm::mediump_bvec1; + using glm::mediump_bvec2; + using glm::mediump_bvec3; + using glm::mediump_bvec4; + using glm::highp_bvec1; + using glm::highp_bvec2; + using glm::highp_bvec3; + using glm::highp_bvec4; + using glm::bvec1; + using glm::bvec2; + using glm::bvec3; + using glm::bvec4; + using glm::lowp_ivec1; + using glm::lowp_ivec2; + using glm::lowp_ivec3; + using glm::lowp_ivec4; + using glm::mediump_ivec1; + using glm::mediump_ivec2; + using glm::mediump_ivec3; + using glm::mediump_ivec4; + using glm::highp_ivec1; + using glm::highp_ivec2; + using glm::highp_ivec3; + using glm::highp_ivec4; + using glm::ivec1; + using glm::ivec2; + using glm::ivec3; + using glm::ivec4; + using glm::lowp_i8vec1; + using glm::lowp_i8vec2; + using glm::lowp_i8vec3; + using glm::lowp_i8vec4; + using glm::mediump_i8vec1; + using glm::mediump_i8vec2; + using glm::mediump_i8vec3; + using glm::mediump_i8vec4; + using glm::highp_i8vec1; + using glm::highp_i8vec2; + using glm::highp_i8vec3; + using glm::highp_i8vec4; + using glm::i8vec1; + using glm::i8vec2; + using glm::i8vec3; + using glm::i8vec4; + using glm::lowp_i16vec1; + using glm::lowp_i16vec2; + using glm::lowp_i16vec3; + using glm::lowp_i16vec4; + using glm::mediump_i16vec1; + using glm::mediump_i16vec2; + using glm::mediump_i16vec3; + using glm::mediump_i16vec4; + using glm::highp_i16vec1; + using glm::highp_i16vec2; + using glm::highp_i16vec3; + using glm::highp_i16vec4; + using glm::i16vec1; + using glm::i16vec2; + using glm::i16vec3; + using glm::i16vec4; + using glm::lowp_i32vec1; + using glm::lowp_i32vec2; + using glm::lowp_i32vec3; + using glm::lowp_i32vec4; + using glm::mediump_i32vec1; + using glm::mediump_i32vec2; + using glm::mediump_i32vec3; + using glm::mediump_i32vec4; + using glm::highp_i32vec1; + using glm::highp_i32vec2; + using glm::highp_i32vec3; + using glm::highp_i32vec4; + using glm::i32vec1; + using glm::i32vec2; + using glm::i32vec3; + using glm::i32vec4; + using glm::lowp_i64vec1; + using glm::lowp_i64vec2; + using glm::lowp_i64vec3; + using glm::lowp_i64vec4; + using glm::mediump_i64vec1; + using glm::mediump_i64vec2; + using glm::mediump_i64vec3; + using glm::mediump_i64vec4; + using glm::highp_i64vec1; + using glm::highp_i64vec2; + using glm::highp_i64vec3; + using glm::highp_i64vec4; + using glm::i64vec1; + using glm::i64vec2; + using glm::i64vec3; + using glm::i64vec4; + using glm::lowp_uvec1; + using glm::lowp_uvec2; + using glm::lowp_uvec3; + using glm::lowp_uvec4; + using glm::mediump_uvec1; + using glm::mediump_uvec2; + using glm::mediump_uvec3; + using glm::mediump_uvec4; + using glm::highp_uvec1; + using glm::highp_uvec2; + using glm::highp_uvec3; + using glm::highp_uvec4; + using glm::uvec1; + using glm::uvec2; + using glm::uvec3; + using glm::uvec4; + using glm::lowp_u8vec1; + using glm::lowp_u8vec2; + using glm::lowp_u8vec3; + using glm::lowp_u8vec4; + using glm::mediump_u8vec1; + using glm::mediump_u8vec2; + using glm::mediump_u8vec3; + using glm::mediump_u8vec4; + using glm::highp_u8vec1; + using glm::highp_u8vec2; + using glm::highp_u8vec3; + using glm::highp_u8vec4; + using glm::u8vec1; + using glm::u8vec2; + using glm::u8vec3; + using glm::u8vec4; + using glm::lowp_u16vec1; + using glm::lowp_u16vec2; + using glm::lowp_u16vec3; + using glm::lowp_u16vec4; + using glm::mediump_u16vec1; + using glm::mediump_u16vec2; + using glm::mediump_u16vec3; + using glm::mediump_u16vec4; + using glm::highp_u16vec1; + using glm::highp_u16vec2; + using glm::highp_u16vec3; + using glm::highp_u16vec4; + using glm::u16vec1; + using glm::u16vec2; + using glm::u16vec3; + using glm::u16vec4; + using glm::lowp_u32vec1; + using glm::lowp_u32vec2; + using glm::lowp_u32vec3; + using glm::lowp_u32vec4; + using glm::mediump_u32vec1; + using glm::mediump_u32vec2; + using glm::mediump_u32vec3; + using glm::mediump_u32vec4; + using glm::highp_u32vec1; + using glm::highp_u32vec2; + using glm::highp_u32vec3; + using glm::highp_u32vec4; + using glm::u32vec1; + using glm::u32vec2; + using glm::u32vec3; + using glm::u32vec4; + using glm::lowp_u64vec1; + using glm::lowp_u64vec2; + using glm::lowp_u64vec3; + using glm::lowp_u64vec4; + using glm::mediump_u64vec1; + using glm::mediump_u64vec2; + using glm::mediump_u64vec3; + using glm::mediump_u64vec4; + using glm::highp_u64vec1; + using glm::highp_u64vec2; + using glm::highp_u64vec3; + using glm::highp_u64vec4; + using glm::u64vec1; + using glm::u64vec2; + using glm::u64vec3; + using glm::u64vec4; + using glm::lowp_vec1; + using glm::lowp_vec2; + using glm::lowp_vec3; + using glm::lowp_vec4; + using glm::mediump_vec1; + using glm::mediump_vec2; + using glm::mediump_vec3; + using glm::mediump_vec4; + using glm::highp_vec1; + using glm::highp_vec2; + using glm::highp_vec3; + using glm::highp_vec4; + using glm::vec1; + using glm::vec2; + using glm::vec3; + using glm::vec4; + using glm::lowp_fvec1; + using glm::lowp_fvec2; + using glm::lowp_fvec3; + using glm::lowp_fvec4; + using glm::mediump_fvec1; + using glm::mediump_fvec2; + using glm::mediump_fvec3; + using glm::mediump_fvec4; + using glm::highp_fvec1; + using glm::highp_fvec2; + using glm::highp_fvec3; + using glm::highp_fvec4; + using glm::fvec1; + using glm::fvec2; + using glm::fvec3; + using glm::fvec4; + using glm::lowp_f32vec1; + using glm::lowp_f32vec2; + using glm::lowp_f32vec3; + using glm::lowp_f32vec4; + using glm::mediump_f32vec1; + using glm::mediump_f32vec2; + using glm::mediump_f32vec3; + using glm::mediump_f32vec4; + using glm::highp_f32vec1; + using glm::highp_f32vec2; + using glm::highp_f32vec3; + using glm::highp_f32vec4; + using glm::f32vec1; + using glm::f32vec2; + using glm::f32vec3; + using glm::f32vec4; + using glm::lowp_dvec1; + using glm::lowp_dvec2; + using glm::lowp_dvec3; + using glm::lowp_dvec4; + using glm::mediump_dvec1; + using glm::mediump_dvec2; + using glm::mediump_dvec3; + using glm::mediump_dvec4; + using glm::highp_dvec1; + using glm::highp_dvec2; + using glm::highp_dvec3; + using glm::highp_dvec4; + using glm::dvec1; + using glm::dvec2; + using glm::dvec3; + using glm::dvec4; + using glm::lowp_f64vec1; + using glm::lowp_f64vec2; + using glm::lowp_f64vec3; + using glm::lowp_f64vec4; + using glm::mediump_f64vec1; + using glm::mediump_f64vec2; + using glm::mediump_f64vec3; + using glm::mediump_f64vec4; + using glm::highp_f64vec1; + using glm::highp_f64vec2; + using glm::highp_f64vec3; + using glm::highp_f64vec4; + using glm::f64vec1; + using glm::f64vec2; + using glm::f64vec3; + using glm::f64vec4; + using glm::lowp_mat2; + using glm::lowp_mat3; + using glm::lowp_mat4; + using glm::mediump_mat2; + using glm::mediump_mat3; + using glm::mediump_mat4; + using glm::highp_mat2; + using glm::highp_mat3; + using glm::highp_mat4; + using glm::mat2; + using glm::mat3; + using glm::mat4; + using glm::lowp_fmat2; + using glm::lowp_fmat3; + using glm::lowp_fmat4; + using glm::mediump_fmat2; + using glm::mediump_fmat3; + using glm::mediump_fmat4; + using glm::highp_fmat2; + using glm::highp_fmat3; + using glm::highp_fmat4; + using glm::fmat2; + using glm::fmat3; + using glm::fmat4; + using glm::lowp_f32mat2; + using glm::lowp_f32mat3; + using glm::lowp_f32mat4; + using glm::mediump_f32mat2; + using glm::mediump_f32mat3; + using glm::mediump_f32mat4; + using glm::highp_f32mat2; + using glm::highp_f32mat3; + using glm::highp_f32mat4; + using glm::f32mat2; + using glm::f32mat3; + using glm::f32mat4; + using glm::lowp_dmat2; + using glm::lowp_dmat3; + using glm::lowp_dmat4; + using glm::mediump_dmat2; + using glm::mediump_dmat3; + using glm::mediump_dmat4; + using glm::highp_dmat2; + using glm::highp_dmat3; + using glm::highp_dmat4; + using glm::dmat2; + using glm::dmat3; + using glm::dmat4; + using glm::lowp_f64mat2; + using glm::lowp_f64mat3; + using glm::lowp_f64mat4; + using glm::mediump_f64mat2; + using glm::mediump_f64mat3; + using glm::mediump_f64mat4; + using glm::highp_f64mat2; + using glm::highp_f64mat3; + using glm::highp_f64mat4; + using glm::f64mat2; + using glm::f64mat3; + using glm::f64mat4; + using glm::lowp_mat2x2; + using glm::lowp_mat2x3; + using glm::lowp_mat2x4; + using glm::lowp_mat3x2; + using glm::lowp_mat3x3; + using glm::lowp_mat3x4; + using glm::lowp_mat4x2; + using glm::lowp_mat4x3; + using glm::lowp_mat4x4; + using glm::mediump_mat2x2; + using glm::mediump_mat2x3; + using glm::mediump_mat2x4; + using glm::mediump_mat3x2; + using glm::mediump_mat3x3; + using glm::mediump_mat3x4; + using glm::mediump_mat4x2; + using glm::mediump_mat4x3; + using glm::mediump_mat4x4; + using glm::highp_mat2x2; + using glm::highp_mat2x3; + using glm::highp_mat2x4; + using glm::highp_mat3x2; + using glm::highp_mat3x3; + using glm::highp_mat3x4; + using glm::highp_mat4x2; + using glm::highp_mat4x3; + using glm::highp_mat4x4; + using glm::mat2x2; + using glm::mat2x3; + using glm::mat2x4; + using glm::mat3x2; + using glm::mat3x3; + using glm::mat3x4; + using glm::mat4x2; + using glm::mat4x3; + using glm::mat4x4; + using glm::lowp_fmat2x2; + using glm::lowp_fmat2x3; + using glm::lowp_fmat2x4; + using glm::lowp_fmat3x2; + using glm::lowp_fmat3x3; + using glm::lowp_fmat3x4; + using glm::lowp_fmat4x2; + using glm::lowp_fmat4x3; + using glm::lowp_fmat4x4; + using glm::mediump_fmat2x2; + using glm::mediump_fmat2x3; + using glm::mediump_fmat2x4; + using glm::mediump_fmat3x2; + using glm::mediump_fmat3x3; + using glm::mediump_fmat3x4; + using glm::mediump_fmat4x2; + using glm::mediump_fmat4x3; + using glm::mediump_fmat4x4; + using glm::highp_fmat2x2; + using glm::highp_fmat2x3; + using glm::highp_fmat2x4; + using glm::highp_fmat3x2; + using glm::highp_fmat3x3; + using glm::highp_fmat3x4; + using glm::highp_fmat4x2; + using glm::highp_fmat4x3; + using glm::highp_fmat4x4; + using glm::fmat2x2; + using glm::fmat2x3; + using glm::fmat2x4; + using glm::fmat3x2; + using glm::fmat3x3; + using glm::fmat3x4; + using glm::fmat4x2; + using glm::fmat4x3; + using glm::fmat4x4; + using glm::lowp_f32mat2x2; + using glm::lowp_f32mat2x3; + using glm::lowp_f32mat2x4; + using glm::lowp_f32mat3x2; + using glm::lowp_f32mat3x3; + using glm::lowp_f32mat3x4; + using glm::lowp_f32mat4x2; + using glm::lowp_f32mat4x3; + using glm::lowp_f32mat4x4; + + using glm::mediump_f32mat2x2; + using glm::mediump_f32mat2x3; + using glm::mediump_f32mat2x4; + using glm::mediump_f32mat3x2; + using glm::mediump_f32mat3x3; + using glm::mediump_f32mat3x4; + using glm::mediump_f32mat4x2; + using glm::mediump_f32mat4x3; + using glm::mediump_f32mat4x4; + using glm::highp_f32mat2x2; + using glm::highp_f32mat2x3; + using glm::highp_f32mat2x4; + using glm::highp_f32mat3x2; + using glm::highp_f32mat3x3; + using glm::highp_f32mat3x4; + using glm::highp_f32mat4x2; + using glm::highp_f32mat4x3; + using glm::highp_f32mat4x4; + using glm::f32mat2x2; + using glm::f32mat2x3; + using glm::f32mat2x4; + using glm::f32mat3x2; + using glm::f32mat3x3; + using glm::f32mat3x4; + using glm::f32mat4x2; + using glm::f32mat4x3; + using glm::f32mat4x4; + using glm::lowp_dmat2x2; + using glm::lowp_dmat2x3; + using glm::lowp_dmat2x4; + using glm::lowp_dmat3x2; + using glm::lowp_dmat3x3; + using glm::lowp_dmat3x4; + using glm::lowp_dmat4x2; + using glm::lowp_dmat4x3; + using glm::lowp_dmat4x4; + using glm::mediump_dmat2x2; + using glm::mediump_dmat2x3; + using glm::mediump_dmat2x4; + using glm::mediump_dmat3x2; + using glm::mediump_dmat3x3; + using glm::mediump_dmat3x4; + using glm::mediump_dmat4x2; + using glm::mediump_dmat4x3; + using glm::mediump_dmat4x4; + using glm::highp_dmat2x2; + using glm::highp_dmat2x3; + using glm::highp_dmat2x4; + using glm::highp_dmat3x2; + using glm::highp_dmat3x3; + using glm::highp_dmat3x4; + using glm::highp_dmat4x2; + using glm::highp_dmat4x3; + using glm::highp_dmat4x4; + using glm::dmat2x2; + using glm::dmat2x3; + using glm::dmat2x4; + using glm::dmat3x2; + using glm::dmat3x3; + using glm::dmat3x4; + using glm::dmat4x2; + using glm::dmat4x3; + using glm::dmat4x4; + using glm::lowp_f64mat2x2; + using glm::lowp_f64mat2x3; + using glm::lowp_f64mat2x4; + using glm::lowp_f64mat3x2; + using glm::lowp_f64mat3x3; + using glm::lowp_f64mat3x4; + using glm::lowp_f64mat4x2; + using glm::lowp_f64mat4x3; + using glm::lowp_f64mat4x4; + using glm::mediump_f64mat2x2; + using glm::mediump_f64mat2x3; + using glm::mediump_f64mat2x4; + using glm::mediump_f64mat3x2; + using glm::mediump_f64mat3x3; + using glm::mediump_f64mat3x4; + using glm::mediump_f64mat4x2; + using glm::mediump_f64mat4x3; + using glm::mediump_f64mat4x4; + using glm::highp_f64mat2x2; + using glm::highp_f64mat2x3; + using glm::highp_f64mat2x4; + using glm::highp_f64mat3x2; + using glm::highp_f64mat3x3; + using glm::highp_f64mat3x4; + using glm::highp_f64mat4x2; + using glm::highp_f64mat4x3; + using glm::highp_f64mat4x4; + using glm::f64mat2x2; + using glm::f64mat2x3; + using glm::f64mat2x4; + using glm::f64mat3x2; + using glm::f64mat3x3; + using glm::f64mat3x4; + using glm::f64mat4x2; + using glm::f64mat4x3; + using glm::f64mat4x4; + using glm::lowp_imat2x2; + using glm::lowp_imat2x3; + using glm::lowp_imat2x4; + using glm::lowp_imat3x2; + using glm::lowp_imat3x3; + using glm::lowp_imat3x4; + using glm::lowp_imat4x2; + using glm::lowp_imat4x3; + using glm::lowp_imat4x4; + using glm::mediump_imat2x2; + using glm::mediump_imat2x3; + using glm::mediump_imat2x4; + using glm::mediump_imat3x2; + using glm::mediump_imat3x3; + using glm::mediump_imat3x4; + using glm::mediump_imat4x2; + using glm::mediump_imat4x3; + using glm::mediump_imat4x4; + using glm::highp_imat2x2; + using glm::highp_imat2x3; + using glm::highp_imat2x4; + using glm::highp_imat3x2; + using glm::highp_imat3x3; + using glm::highp_imat3x4; + using glm::highp_imat4x2; + using glm::highp_imat4x3; + using glm::highp_imat4x4; + using glm::imat2x2; + using glm::imat2x3; + using glm::imat2x4; + using glm::imat3x2; + using glm::imat3x3; + using glm::imat3x4; + using glm::imat4x2; + using glm::imat4x3; + using glm::imat4x4; + using glm::lowp_i8mat2x2; + using glm::lowp_i8mat2x3; + using glm::lowp_i8mat2x4; + using glm::lowp_i8mat3x2; + using glm::lowp_i8mat3x3; + using glm::lowp_i8mat3x4; + using glm::lowp_i8mat4x2; + using glm::lowp_i8mat4x3; + using glm::lowp_i8mat4x4; + using glm::mediump_i8mat2x2; + using glm::mediump_i8mat2x3; + using glm::mediump_i8mat2x4; + using glm::mediump_i8mat3x2; + using glm::mediump_i8mat3x3; + using glm::mediump_i8mat3x4; + using glm::mediump_i8mat4x2; + using glm::mediump_i8mat4x3; + using glm::mediump_i8mat4x4; + using glm::highp_i8mat2x2; + using glm::highp_i8mat2x3; + using glm::highp_i8mat2x4; + using glm::highp_i8mat3x2; + using glm::highp_i8mat3x3; + using glm::highp_i8mat3x4; + using glm::highp_i8mat4x2; + using glm::highp_i8mat4x3; + using glm::highp_i8mat4x4; + using glm::i8mat2x2; + using glm::i8mat2x3; + using glm::i8mat2x4; + using glm::i8mat3x2; + using glm::i8mat3x3; + using glm::i8mat3x4; + using glm::i8mat4x2; + using glm::i8mat4x3; + using glm::i8mat4x4; + using glm::lowp_i16mat2x2; + using glm::lowp_i16mat2x3; + using glm::lowp_i16mat2x4; + using glm::lowp_i16mat3x2; + using glm::lowp_i16mat3x3; + using glm::lowp_i16mat3x4; + using glm::lowp_i16mat4x2; + using glm::lowp_i16mat4x3; + using glm::lowp_i16mat4x4; + using glm::mediump_i16mat2x2; + using glm::mediump_i16mat2x3; + using glm::mediump_i16mat2x4; + using glm::mediump_i16mat3x2; + using glm::mediump_i16mat3x3; + using glm::mediump_i16mat3x4; + using glm::mediump_i16mat4x2; + using glm::mediump_i16mat4x3; + using glm::mediump_i16mat4x4; + using glm::highp_i16mat2x2; + using glm::highp_i16mat2x3; + using glm::highp_i16mat2x4; + using glm::highp_i16mat3x2; + using glm::highp_i16mat3x3; + using glm::highp_i16mat3x4; + using glm::highp_i16mat4x2; + using glm::highp_i16mat4x3; + using glm::highp_i16mat4x4; + using glm::i16mat2x2; + using glm::i16mat2x3; + using glm::i16mat2x4; + using glm::i16mat3x2; + using glm::i16mat3x3; + using glm::i16mat3x4; + using glm::i16mat4x2; + using glm::i16mat4x3; + using glm::i16mat4x4; + using glm::lowp_i32mat2x2; + using glm::lowp_i32mat2x3; + using glm::lowp_i32mat2x4; + using glm::lowp_i32mat3x2; + using glm::lowp_i32mat3x3; + using glm::lowp_i32mat3x4; + using glm::lowp_i32mat4x2; + using glm::lowp_i32mat4x3; + using glm::lowp_i32mat4x4; + using glm::mediump_i32mat2x2; + using glm::mediump_i32mat2x3; + using glm::mediump_i32mat2x4; + using glm::mediump_i32mat3x2; + using glm::mediump_i32mat3x3; + using glm::mediump_i32mat3x4; + using glm::mediump_i32mat4x2; + using glm::mediump_i32mat4x3; + using glm::mediump_i32mat4x4; + using glm::highp_i32mat2x2; + using glm::highp_i32mat2x3; + using glm::highp_i32mat2x4; + using glm::highp_i32mat3x2; + using glm::highp_i32mat3x3; + using glm::highp_i32mat3x4; + using glm::highp_i32mat4x2; + using glm::highp_i32mat4x3; + using glm::highp_i32mat4x4; + using glm::i32mat2x2; + using glm::i32mat2x3; + using glm::i32mat2x4; + using glm::i32mat3x2; + using glm::i32mat3x3; + using glm::i32mat3x4; + using glm::i32mat4x2; + using glm::i32mat4x3; + using glm::i32mat4x4; + using glm::lowp_i64mat2x2; + using glm::lowp_i64mat2x3; + using glm::lowp_i64mat2x4; + using glm::lowp_i64mat3x2; + using glm::lowp_i64mat3x3; + using glm::lowp_i64mat3x4; + using glm::lowp_i64mat4x2; + using glm::lowp_i64mat4x3; + using glm::lowp_i64mat4x4; + using glm::mediump_i64mat2x2; + using glm::mediump_i64mat2x3; + using glm::mediump_i64mat2x4; + using glm::mediump_i64mat3x2; + using glm::mediump_i64mat3x3; + using glm::mediump_i64mat3x4; + using glm::mediump_i64mat4x2; + using glm::mediump_i64mat4x3; + using glm::mediump_i64mat4x4; + using glm::highp_i64mat2x2; + using glm::highp_i64mat2x3; + using glm::highp_i64mat2x4; + using glm::highp_i64mat3x2; + using glm::highp_i64mat3x3; + using glm::highp_i64mat3x4; + using glm::highp_i64mat4x2; + using glm::highp_i64mat4x3; + using glm::highp_i64mat4x4; + using glm::i64mat2x2; + using glm::i64mat2x3; + using glm::i64mat2x4; + using glm::i64mat3x2; + using glm::i64mat3x3; + using glm::i64mat3x4; + using glm::i64mat4x2; + using glm::i64mat4x3; + using glm::i64mat4x4; + using glm::lowp_umat2x2; + using glm::lowp_umat2x3; + using glm::lowp_umat2x4; + using glm::lowp_umat3x2; + using glm::lowp_umat3x3; + using glm::lowp_umat3x4; + using glm::lowp_umat4x2; + using glm::lowp_umat4x3; + using glm::lowp_umat4x4; + using glm::mediump_umat2x2; + using glm::mediump_umat2x3; + using glm::mediump_umat2x4; + using glm::mediump_umat3x2; + using glm::mediump_umat3x3; + using glm::mediump_umat3x4; + using glm::mediump_umat4x2; + using glm::mediump_umat4x3; + using glm::mediump_umat4x4; + using glm::highp_umat2x2; + using glm::highp_umat2x3; + using glm::highp_umat2x4; + using glm::highp_umat3x2; + using glm::highp_umat3x3; + using glm::highp_umat3x4; + using glm::highp_umat4x2; + using glm::highp_umat4x3; + using glm::highp_umat4x4; + using glm::umat2x2; + using glm::umat2x3; + using glm::umat2x4; + using glm::umat3x2; + using glm::umat3x3; + using glm::umat3x4; + using glm::umat4x2; + using glm::umat4x3; + using glm::umat4x4; + using glm::lowp_u8mat2x2; + using glm::lowp_u8mat2x3; + using glm::lowp_u8mat2x4; + using glm::lowp_u8mat3x2; + using glm::lowp_u8mat3x3; + using glm::lowp_u8mat3x4; + using glm::lowp_u8mat4x2; + using glm::lowp_u8mat4x3; + using glm::lowp_u8mat4x4; + using glm::mediump_u8mat2x2; + using glm::mediump_u8mat2x3; + using glm::mediump_u8mat2x4; + using glm::mediump_u8mat3x2; + using glm::mediump_u8mat3x3; + using glm::mediump_u8mat3x4; + using glm::mediump_u8mat4x2; + using glm::mediump_u8mat4x3; + using glm::mediump_u8mat4x4; + using glm::highp_u8mat2x2; + using glm::highp_u8mat2x3; + using glm::highp_u8mat2x4; + using glm::highp_u8mat3x2; + using glm::highp_u8mat3x3; + using glm::highp_u8mat3x4; + using glm::highp_u8mat4x2; + using glm::highp_u8mat4x3; + using glm::highp_u8mat4x4; + using glm::u8mat2x2; + using glm::u8mat2x3; + using glm::u8mat2x4; + using glm::u8mat3x2; + using glm::u8mat3x3; + using glm::u8mat3x4; + using glm::u8mat4x2; + using glm::u8mat4x3; + using glm::u8mat4x4; + using glm::lowp_u16mat2x2; + using glm::lowp_u16mat2x3; + using glm::lowp_u16mat2x4; + using glm::lowp_u16mat3x2; + using glm::lowp_u16mat3x3; + using glm::lowp_u16mat3x4; + using glm::lowp_u16mat4x2; + using glm::lowp_u16mat4x3; + using glm::lowp_u16mat4x4; + using glm::mediump_u16mat2x2; + using glm::mediump_u16mat2x3; + using glm::mediump_u16mat2x4; + using glm::mediump_u16mat3x2; + using glm::mediump_u16mat3x3; + using glm::mediump_u16mat3x4; + using glm::mediump_u16mat4x2; + using glm::mediump_u16mat4x3; + using glm::mediump_u16mat4x4; + using glm::highp_u16mat2x2; + using glm::highp_u16mat2x3; + using glm::highp_u16mat2x4; + using glm::highp_u16mat3x2; + using glm::highp_u16mat3x3; + using glm::highp_u16mat3x4; + using glm::highp_u16mat4x2; + using glm::highp_u16mat4x3; + using glm::highp_u16mat4x4; + using glm::u16mat2x2; + using glm::u16mat2x3; + using glm::u16mat2x4; + using glm::u16mat3x2; + using glm::u16mat3x3; + using glm::u16mat3x4; + using glm::u16mat4x2; + using glm::u16mat4x3; + using glm::u16mat4x4; + using glm::lowp_u32mat2x2; + using glm::lowp_u32mat2x3; + using glm::lowp_u32mat2x4; + using glm::lowp_u32mat3x2; + using glm::lowp_u32mat3x3; + using glm::lowp_u32mat3x4; + using glm::lowp_u32mat4x2; + using glm::lowp_u32mat4x3; + using glm::lowp_u32mat4x4; + using glm::mediump_u32mat2x2; + using glm::mediump_u32mat2x3; + using glm::mediump_u32mat2x4; + using glm::mediump_u32mat3x2; + using glm::mediump_u32mat3x3; + using glm::mediump_u32mat3x4; + using glm::mediump_u32mat4x2; + using glm::mediump_u32mat4x3; + using glm::mediump_u32mat4x4; + using glm::highp_u32mat2x2; + using glm::highp_u32mat2x3; + using glm::highp_u32mat2x4; + using glm::highp_u32mat3x2; + using glm::highp_u32mat3x3; + using glm::highp_u32mat3x4; + using glm::highp_u32mat4x2; + using glm::highp_u32mat4x3; + using glm::highp_u32mat4x4; + using glm::u32mat2x2; + using glm::u32mat2x3; + using glm::u32mat2x4; + using glm::u32mat3x2; + using glm::u32mat3x3; + using glm::u32mat3x4; + using glm::u32mat4x2; + using glm::u32mat4x3; + using glm::u32mat4x4; + using glm::lowp_u64mat2x2; + using glm::lowp_u64mat2x3; + using glm::lowp_u64mat2x4; + using glm::lowp_u64mat3x2; + using glm::lowp_u64mat3x3; + using glm::lowp_u64mat3x4; + using glm::lowp_u64mat4x2; + using glm::lowp_u64mat4x3; + using glm::lowp_u64mat4x4; + using glm::mediump_u64mat2x2; + using glm::mediump_u64mat2x3; + using glm::mediump_u64mat2x4; + using glm::mediump_u64mat3x2; + using glm::mediump_u64mat3x3; + using glm::mediump_u64mat3x4; + using glm::mediump_u64mat4x2; + using glm::mediump_u64mat4x3; + using glm::mediump_u64mat4x4; + using glm::highp_u64mat2x2; + using glm::highp_u64mat2x3; + using glm::highp_u64mat2x4; + using glm::highp_u64mat3x2; + using glm::highp_u64mat3x3; + using glm::highp_u64mat3x4; + using glm::highp_u64mat4x2; + using glm::highp_u64mat4x3; + using glm::highp_u64mat4x4; + using glm::u64mat2x2; + using glm::u64mat2x3; + using glm::u64mat2x4; + using glm::u64mat3x2; + using glm::u64mat3x3; + using glm::u64mat3x4; + using glm::u64mat4x2; + using glm::u64mat4x3; + using glm::u64mat4x4; + using glm::lowp_quat; + using glm::mediump_quat; + using glm::highp_quat; + using glm::quat; + using glm::lowp_fquat; + using glm::mediump_fquat; + using glm::highp_fquat; + using glm::fquat; + using glm::lowp_f32quat; + using glm::mediump_f32quat; + using glm::highp_f32quat; + using glm::f32quat; + using glm::lowp_dquat; + using glm::mediump_dquat; + using glm::highp_dquat; + using glm::dquat; + using glm::lowp_f64quat; + using glm::mediump_f64quat; + using glm::highp_f64quat; + using glm::f64quat; + + // Operators + using glm::operator+; + using glm::operator-; + using glm::operator*; + using glm::operator/; + using glm::operator%; + using glm::operator^; + using glm::operator&; + using glm::operator|; + using glm::operator~; + using glm::operator<<; + using glm::operator>>; + using glm::operator==; + using glm::operator!=; + using glm::operator&&; + using glm::operator||; + + // Core functions + using glm::abs; + using glm::acos; + using glm::acosh; + using glm::all; + using glm::any; + using glm::asin; + using glm::asinh; + using glm::atan; + using glm::atanh; + using glm::bitCount; + using glm::bitfieldExtract; + using glm::bitfieldInsert; + using glm::bitfieldReverse; + using glm::ceil; + using glm::clamp; + using glm::cos; + using glm::cosh; + using glm::cross; + using glm::degrees; + using glm::determinant; + using glm::distance; + using glm::dot; + using glm::equal; + using glm::exp; + using glm::exp2; + using glm::faceforward; + using glm::findLSB; + using glm::findMSB; + using glm::floatBitsToInt; + using glm::floatBitsToUint; + using glm::floor; + using glm::fma; + using glm::fract; + using glm::frexp; + using glm::greaterThan; + using glm::greaterThanEqual; + using glm::imulExtended; + using glm::intBitsToFloat; + using glm::inverse; + using glm::inversesqrt; + using glm::isinf; + using glm::isnan; + using glm::ldexp; + using glm::length; + using glm::lessThan; + using glm::lessThanEqual; + using glm::log; + using glm::log2; + using glm::matrixCompMult; + using glm::max; + using glm::min; + using glm::mix; + using glm::mod; + using glm::modf; + using glm::normalize; + using glm::notEqual; + using glm::not_; + using glm::outerProduct; + using glm::packDouble2x32; + using glm::packHalf2x16; + using glm::packSnorm2x16; + using glm::packSnorm4x8; + using glm::packUnorm2x16; + using glm::packUnorm4x8; + using glm::pow; + using glm::radians; + using glm::reflect; + using glm::refract; + using glm::round; + using glm::roundEven; + using glm::sign; + using glm::sin; + using glm::sinh; + using glm::smoothstep; + using glm::sqrt; + using glm::step; + using glm::tan; + using glm::tanh; + using glm::transpose; + using glm::trunc; + using glm::uaddCarry; + using glm::uintBitsToFloat; + using glm::umulExtended; + using glm::unpackDouble2x32; + using glm::unpackHalf2x16; + using glm::unpackSnorm2x16; + using glm::unpackSnorm4x8; + using glm::unpackUnorm2x16; + using glm::unpackUnorm4x8; + using glm::usubBorrow; + +# ifdef GLM_GTC_INLINE_NAMESPACE + inline +# endif + namespace gtc { +# if GLM_CONFIG_ALIGNED_GENTYPES == GLM_ENABLE + using glm::aligned_highp_vec1; + using glm::aligned_mediump_vec1; + using glm::aligned_lowp_vec1; + using glm::aligned_highp_dvec1; + using glm::aligned_mediump_dvec1; + using glm::aligned_lowp_dvec1; + using glm::aligned_highp_ivec1; + using glm::aligned_mediump_ivec1; + using glm::aligned_lowp_ivec1; + using glm::aligned_highp_uvec1; + using glm::aligned_mediump_uvec1; + using glm::aligned_lowp_uvec1; + using glm::aligned_highp_bvec1; + using glm::aligned_mediump_bvec1; + using glm::aligned_lowp_bvec1; + using glm::packed_highp_vec1; + using glm::packed_mediump_vec1; + using glm::packed_lowp_vec1; + using glm::packed_highp_dvec1; + using glm::packed_mediump_dvec1; + using glm::packed_lowp_dvec1; + using glm::packed_highp_ivec1; + using glm::packed_mediump_ivec1; + using glm::packed_lowp_ivec1; + using glm::packed_highp_uvec1; + using glm::packed_mediump_uvec1; + using glm::packed_lowp_uvec1; + using glm::packed_highp_bvec1; + using glm::packed_mediump_bvec1; + using glm::packed_lowp_bvec1; + using glm::aligned_highp_vec2; + using glm::aligned_mediump_vec2; + using glm::aligned_lowp_vec2; + using glm::aligned_highp_dvec2; + using glm::aligned_mediump_dvec2; + using glm::aligned_lowp_dvec2; + using glm::aligned_highp_ivec2; + using glm::aligned_mediump_ivec2; + using glm::aligned_lowp_ivec2; + using glm::aligned_highp_uvec2; + using glm::aligned_mediump_uvec2; + using glm::aligned_lowp_uvec2; + using glm::aligned_highp_bvec2; + using glm::aligned_mediump_bvec2; + using glm::aligned_lowp_bvec2; + using glm::packed_highp_vec2; + using glm::packed_mediump_vec2; + using glm::packed_lowp_vec2; + using glm::packed_highp_dvec2; + using glm::packed_mediump_dvec2; + using glm::packed_lowp_dvec2; + using glm::packed_highp_ivec2; + using glm::packed_mediump_ivec2; + using glm::packed_lowp_ivec2; + using glm::packed_highp_uvec2; + using glm::packed_mediump_uvec2; + using glm::packed_lowp_uvec2; + using glm::packed_highp_bvec2; + using glm::packed_mediump_bvec2; + using glm::packed_lowp_bvec2; + using glm::aligned_highp_vec3; + using glm::aligned_mediump_vec3; + using glm::aligned_lowp_vec3; + using glm::aligned_highp_dvec3; + using glm::aligned_mediump_dvec3; + using glm::aligned_lowp_dvec3; + using glm::aligned_highp_ivec3; + using glm::aligned_mediump_ivec3; + using glm::aligned_lowp_ivec3; + using glm::aligned_highp_uvec3; + using glm::aligned_mediump_uvec3; + using glm::aligned_lowp_uvec3; + using glm::aligned_highp_bvec3; + using glm::aligned_mediump_bvec3; + using glm::aligned_lowp_bvec3; + using glm::packed_highp_vec3; + using glm::packed_mediump_vec3; + using glm::packed_lowp_vec3; + using glm::packed_highp_dvec3; + using glm::packed_mediump_dvec3; + using glm::packed_lowp_dvec3; + using glm::packed_highp_ivec3; + using glm::packed_mediump_ivec3; + using glm::packed_lowp_ivec3; + using glm::packed_highp_uvec3; + using glm::packed_mediump_uvec3; + using glm::packed_lowp_uvec3; + using glm::packed_highp_bvec3; + using glm::packed_mediump_bvec3; + using glm::packed_lowp_bvec3; + using glm::aligned_highp_vec4; + using glm::aligned_mediump_vec4; + using glm::aligned_lowp_vec4; + using glm::aligned_highp_dvec4; + using glm::aligned_mediump_dvec4; + using glm::aligned_lowp_dvec4; + using glm::aligned_highp_ivec4; + using glm::aligned_mediump_ivec4; + using glm::aligned_lowp_ivec4; + using glm::aligned_highp_uvec4; + using glm::aligned_mediump_uvec4; + using glm::aligned_lowp_uvec4; + using glm::aligned_highp_bvec4; + using glm::aligned_mediump_bvec4; + using glm::aligned_lowp_bvec4; + using glm::packed_highp_vec4; + using glm::packed_mediump_vec4; + using glm::packed_lowp_vec4; + using glm::packed_highp_dvec4; + using glm::packed_mediump_dvec4; + using glm::packed_lowp_dvec4; + using glm::packed_highp_ivec4; + using glm::packed_mediump_ivec4; + using glm::packed_lowp_ivec4; + using glm::packed_highp_uvec4; + using glm::packed_mediump_uvec4; + using glm::packed_lowp_uvec4; + using glm::packed_highp_bvec4; + using glm::packed_mediump_bvec4; + using glm::packed_lowp_bvec4; + using glm::aligned_highp_mat2; + using glm::aligned_mediump_mat2; + using glm::aligned_lowp_mat2; + using glm::aligned_highp_dmat2; + using glm::aligned_mediump_dmat2; + using glm::aligned_lowp_dmat2; + using glm::packed_highp_mat2; + using glm::packed_mediump_mat2; + using glm::packed_lowp_mat2; + using glm::packed_highp_dmat2; + using glm::packed_mediump_dmat2; + using glm::packed_lowp_dmat2; + using glm::aligned_highp_mat3; + using glm::aligned_mediump_mat3; + using glm::aligned_lowp_mat3; + using glm::aligned_highp_dmat3; + using glm::aligned_mediump_dmat3; + using glm::aligned_lowp_dmat3; + using glm::packed_highp_mat3; + using glm::packed_mediump_mat3; + using glm::packed_lowp_mat3; + using glm::packed_highp_dmat3; + using glm::packed_mediump_dmat3; + using glm::packed_lowp_dmat3; + using glm::aligned_highp_mat4; + using glm::aligned_mediump_mat4; + using glm::aligned_lowp_mat4; + using glm::aligned_highp_dmat4; + using glm::aligned_mediump_dmat4; + using glm::aligned_lowp_dmat4; + using glm::packed_highp_mat4; + using glm::packed_mediump_mat4; + using glm::packed_lowp_mat4; + using glm::packed_highp_dmat4; + using glm::packed_mediump_dmat4; + using glm::packed_lowp_dmat4; + using glm::aligned_highp_mat2x2; + using glm::aligned_mediump_mat2x2; + using glm::aligned_lowp_mat2x2; + using glm::aligned_highp_dmat2x2; + using glm::aligned_mediump_dmat2x2; + using glm::aligned_lowp_dmat2x2; + using glm::packed_highp_mat2x2; + using glm::packed_mediump_mat2x2; + using glm::packed_lowp_mat2x2; + using glm::packed_highp_dmat2x2; + using glm::packed_mediump_dmat2x2; + using glm::packed_lowp_dmat2x2; + using glm::aligned_highp_mat2x3; + using glm::aligned_mediump_mat2x3; + using glm::aligned_lowp_mat2x3; + using glm::aligned_highp_dmat2x3; + using glm::aligned_mediump_dmat2x3; + using glm::aligned_lowp_dmat2x3; + using glm::packed_highp_mat2x3; + using glm::packed_mediump_mat2x3; + using glm::packed_lowp_mat2x3; + using glm::packed_highp_dmat2x3; + using glm::packed_mediump_dmat2x3; + using glm::packed_lowp_dmat2x3; + using glm::aligned_highp_mat2x4; + using glm::aligned_mediump_mat2x4; + using glm::aligned_lowp_mat2x4; + using glm::aligned_highp_dmat2x4; + using glm::aligned_mediump_dmat2x4; + using glm::aligned_lowp_dmat2x4; + using glm::packed_highp_mat2x4; + using glm::packed_mediump_mat2x4; + using glm::packed_lowp_mat2x4; + using glm::packed_highp_dmat2x4; + using glm::packed_mediump_dmat2x4; + using glm::packed_lowp_dmat2x4; + using glm::aligned_highp_mat3x2; + using glm::aligned_mediump_mat3x2; + using glm::aligned_lowp_mat3x2; + using glm::aligned_highp_dmat3x2; + using glm::aligned_mediump_dmat3x2; + using glm::aligned_lowp_dmat3x2; + using glm::packed_highp_mat3x2; + using glm::packed_mediump_mat3x2; + using glm::packed_lowp_mat3x2; + using glm::packed_highp_dmat3x2; + using glm::packed_mediump_dmat3x2; + using glm::packed_lowp_dmat3x2; + using glm::aligned_highp_mat3x3; + using glm::aligned_mediump_mat3x3; + using glm::aligned_lowp_mat3x3; + using glm::aligned_highp_dmat3x3; + using glm::aligned_mediump_dmat3x3; + using glm::aligned_lowp_dmat3x3; + using glm::packed_highp_mat3x3; + using glm::packed_mediump_mat3x3; + using glm::packed_lowp_mat3x3; + using glm::packed_highp_dmat3x3; + using glm::packed_mediump_dmat3x3; + using glm::packed_lowp_dmat3x3; + using glm::aligned_highp_mat3x4; + using glm::aligned_mediump_mat3x4; + using glm::aligned_lowp_mat3x4; + using glm::aligned_highp_dmat3x4; + using glm::aligned_mediump_dmat3x4; + using glm::aligned_lowp_dmat3x4; + using glm::packed_highp_mat3x4; + using glm::packed_mediump_mat3x4; + using glm::packed_lowp_mat3x4; + using glm::packed_highp_dmat3x4; + using glm::packed_mediump_dmat3x4; + using glm::packed_lowp_dmat3x4; + using glm::aligned_highp_mat4x2; + using glm::aligned_mediump_mat4x2; + using glm::aligned_lowp_mat4x2; + using glm::aligned_highp_dmat4x2; + using glm::aligned_mediump_dmat4x2; + using glm::aligned_lowp_dmat4x2; + using glm::packed_highp_mat4x2; + using glm::packed_mediump_mat4x2; + using glm::packed_lowp_mat4x2; + using glm::packed_highp_dmat4x2; + using glm::packed_mediump_dmat4x2; + using glm::packed_lowp_dmat4x2; + using glm::aligned_highp_mat4x3; + using glm::aligned_mediump_mat4x3; + using glm::aligned_lowp_mat4x3; + using glm::aligned_highp_dmat4x3; + using glm::aligned_mediump_dmat4x3; + using glm::aligned_lowp_dmat4x3; + using glm::packed_highp_mat4x3; + using glm::packed_mediump_mat4x3; + using glm::packed_lowp_mat4x3; + using glm::packed_highp_dmat4x3; + using glm::packed_mediump_dmat4x3; + using glm::packed_lowp_dmat4x3; + using glm::aligned_highp_mat4x4; + using glm::aligned_mediump_mat4x4; + using glm::aligned_lowp_mat4x4; + using glm::aligned_highp_dmat4x4; + using glm::aligned_mediump_dmat4x4; + using glm::aligned_lowp_dmat4x4; + using glm::packed_highp_mat4x4; + using glm::packed_mediump_mat4x4; + using glm::packed_lowp_mat4x4; + using glm::packed_highp_dmat4x4; + using glm::packed_mediump_dmat4x4; + using glm::packed_lowp_dmat4x4; +# if(defined(GLM_PRECISION_LOWP_FLOAT)) + using glm::aligned_vec1; + using glm::aligned_vec2; + using glm::aligned_vec3; + using glm::aligned_vec4; + using glm::packed_vec1; + using glm::packed_vec2; + using glm::packed_vec3; + using glm::packed_vec4; + using glm::aligned_mat2; + using glm::aligned_mat3; + using glm::aligned_mat4; + using glm::packed_mat2; + using glm::packed_mat3; + using glm::packed_mat4; + using glm::aligned_mat2x2; + using glm::aligned_mat2x3; + using glm::aligned_mat2x4; + using glm::aligned_mat3x2; + using glm::aligned_mat3x3; + using glm::aligned_mat3x4; + using glm::aligned_mat4x2; + using glm::aligned_mat4x3; + using glm::aligned_mat4x4; + using glm::packed_mat2x2; + using glm::packed_mat2x3; + using glm::packed_mat2x4; + using glm::packed_mat3x2; + using glm::packed_mat3x3; + using glm::packed_mat3x4; + using glm::packed_mat4x2; + using glm::packed_mat4x3; + using glm::packed_mat4x4; +# elif(defined(GLM_PRECISION_MEDIUMP_FLOAT)) + using glm::aligned_vec1; + using glm::aligned_vec2; + using glm::aligned_vec3; + using glm::aligned_vec4; + using glm::packed_vec1; + using glm::packed_vec2; + using glm::packed_vec3; + using glm::packed_vec4; + using glm::aligned_mat2; + using glm::aligned_mat3; + using glm::aligned_mat4; + using glm::packed_mat2; + using glm::packed_mat3; + using glm::packed_mat4; + using glm::aligned_mat2x2; + using glm::aligned_mat2x3; + using glm::aligned_mat2x4; + using glm::aligned_mat3x2; + using glm::aligned_mat3x3; + using glm::aligned_mat3x4; + using glm::aligned_mat4x2; + using glm::aligned_mat4x3; + using glm::aligned_mat4x4; + using glm::packed_mat2x2; + using glm::packed_mat2x3; + using glm::packed_mat2x4; + using glm::packed_mat3x2; + using glm::packed_mat3x3; + using glm::packed_mat3x4; + using glm::packed_mat4x2; + using glm::packed_mat4x3; + using glm::packed_mat4x4; +# else //defined(GLM_PRECISION_HIGHP_FLOAT) + using glm::aligned_vec1; + using glm::aligned_vec2; + using glm::aligned_vec3; + using glm::aligned_vec4; + using glm::packed_vec1; + using glm::packed_vec2; + using glm::packed_vec3; + using glm::packed_vec4; + using glm::aligned_mat2; + using glm::aligned_mat3; + using glm::aligned_mat4; + using glm::packed_mat2; + using glm::packed_mat3; + using glm::packed_mat4; + using glm::aligned_mat2x2; + using glm::aligned_mat2x3; + using glm::aligned_mat2x4; + using glm::aligned_mat3x2; + using glm::aligned_mat3x3; + using glm::aligned_mat3x4; + using glm::aligned_mat4x2; + using glm::aligned_mat4x3; + using glm::aligned_mat4x4; + using glm::packed_mat2x2; + using glm::packed_mat2x3; + using glm::packed_mat2x4; + using glm::packed_mat3x2; + using glm::packed_mat3x3; + using glm::packed_mat3x4; + using glm::packed_mat4x2; + using glm::packed_mat4x3; + using glm::packed_mat4x4; +# endif//GLM_PRECISION +# if(defined(GLM_PRECISION_LOWP_DOUBLE)) + using glm::aligned_dvec1; + using glm::aligned_dvec2; + using glm::aligned_dvec3; + using glm::aligned_dvec4; + using glm::packed_dvec1; + using glm::packed_dvec2; + using glm::packed_dvec3; + using glm::packed_dvec4; + using glm::aligned_dmat2; + using glm::aligned_dmat3; + using glm::aligned_dmat4; + using glm::packed_dmat2; + using glm::packed_dmat3; + using glm::packed_dmat4; + using glm::aligned_dmat2x2; + using glm::aligned_dmat2x3; + using glm::aligned_dmat2x4; + using glm::aligned_dmat3x2; + using glm::aligned_dmat3x3; + using glm::aligned_dmat3x4; + using glm::aligned_dmat4x2; + using glm::aligned_dmat4x3; + using glm::aligned_dmat4x4; + using glm::packed_dmat2x2; + using glm::packed_dmat2x3; + using glm::packed_dmat2x4; + using glm::packed_dmat3x2; + using glm::packed_dmat3x3; + using glm::packed_dmat3x4; + using glm::packed_dmat4x2; + using glm::packed_dmat4x3; + using glm::packed_dmat4x4; +# elif(defined(GLM_PRECISION_MEDIUMP_DOUBLE)) + using glm::aligned_dvec1; + using glm::aligned_dvec2; + using glm::aligned_dvec3; + using glm::aligned_dvec4; + using glm::packed_dvec1; + using glm::packed_dvec2; + using glm::packed_dvec3; + using glm::packed_dvec4; + using glm::aligned_dmat2; + using glm::aligned_dmat3; + using glm::aligned_dmat4; + using glm::packed_dmat2; + using glm::packed_dmat3; + using glm::packed_dmat4; + using glm::aligned_dmat2x2; + using glm::aligned_dmat2x3; + using glm::aligned_dmat2x4; + using glm::aligned_dmat3x2; + using glm::aligned_dmat3x3; + using glm::aligned_dmat3x4; + using glm::aligned_dmat4x2; + using glm::aligned_dmat4x3; + using glm::aligned_dmat4x4; + using glm::packed_dmat2x2; + using glm::packed_dmat2x3; + using glm::packed_dmat2x4; + using glm::packed_dmat3x2; + using glm::packed_dmat3x3; + using glm::packed_dmat3x4; + using glm::packed_dmat4x2; + using glm::packed_dmat4x3; + using glm::packed_dmat4x4; +# else //defined(GLM_PRECISION_HIGHP_DOUBLE) + using glm::aligned_dvec1; + using glm::aligned_dvec2; + using glm::aligned_dvec3; + using glm::aligned_dvec4; + using glm::packed_dvec1; + using glm::packed_dvec2; + using glm::packed_dvec3; + using glm::packed_dvec4; + using glm::aligned_dmat2; + using glm::aligned_dmat3; + using glm::aligned_dmat4; + using glm::packed_dmat2; + using glm::packed_dmat3; + using glm::packed_dmat4; + using glm::aligned_dmat2x2; + using glm::aligned_dmat2x3; + using glm::aligned_dmat2x4; + using glm::aligned_dmat3x2; + using glm::aligned_dmat3x3; + using glm::aligned_dmat3x4; + using glm::aligned_dmat4x2; + using glm::aligned_dmat4x3; + using glm::aligned_dmat4x4; + using glm::packed_dmat2x2; + using glm::packed_dmat2x3; + using glm::packed_dmat2x4; + using glm::packed_dmat3x2; + using glm::packed_dmat3x3; + using glm::packed_dmat3x4; + using glm::packed_dmat4x2; + using glm::packed_dmat4x3; + using glm::packed_dmat4x4; +# endif//GLM_PRECISION +# if(defined(GLM_PRECISION_LOWP_INT)) + using glm::aligned_ivec1; + using glm::aligned_ivec2; + using glm::aligned_ivec3; + using glm::aligned_ivec4; +# elif(defined(GLM_PRECISION_MEDIUMP_INT)) + using glm::aligned_ivec1; + using glm::aligned_ivec2; + using glm::aligned_ivec3; + using glm::aligned_ivec4; +# else //defined(GLM_PRECISION_HIGHP_INT) + using glm::aligned_ivec1; + using glm::aligned_ivec2; + using glm::aligned_ivec3; + using glm::aligned_ivec4; + using glm::packed_ivec1; + using glm::packed_ivec2; + using glm::packed_ivec3; + using glm::packed_ivec4; +# endif//GLM_PRECISION +# if(defined(GLM_PRECISION_LOWP_UINT)) + using glm::aligned_uvec1; + using glm::aligned_uvec2; + using glm::aligned_uvec3; + using glm::aligned_uvec4; +# elif(defined(GLM_PRECISION_MEDIUMP_UINT)) + using glm::aligned_uvec1; + using glm::aligned_uvec2; + using glm::aligned_uvec3; + using glm::aligned_uvec4; +# else //defined(GLM_PRECISION_HIGHP_UINT) + using glm::aligned_uvec1; + using glm::aligned_uvec2; + using glm::aligned_uvec3; + using glm::aligned_uvec4; + using glm::packed_uvec1; + using glm::packed_uvec2; + using glm::packed_uvec3; + using glm::packed_uvec4; +# endif//GLM_PRECISION +# if(defined(GLM_PRECISION_LOWP_BOOL)) + using glm::aligned_bvec1; + using glm::aligned_bvec2; + using glm::aligned_bvec3; + using glm::aligned_bvec4; +# elif(defined(GLM_PRECISION_MEDIUMP_BOOL)) + using glm::aligned_bvec1; + using glm::aligned_bvec2; + using glm::aligned_bvec3; + using glm::aligned_bvec4; +# else //defined(GLM_PRECISION_HIGHP_BOOL) + using glm::aligned_bvec1; + using glm::aligned_bvec2; + using glm::aligned_bvec3; + using glm::aligned_bvec4; + using glm::packed_bvec1; + using glm::packed_bvec2; + using glm::packed_bvec3; + using glm::packed_bvec4; +# endif//GLM_PRECISION +# endif + + + using glm::abs; + using glm::acos; + using glm::acosh; + using glm::acot; + using glm::acoth; + using glm::acsc; + using glm::acsch; + using glm::affineInverse; + using glm::all; + using glm::angle; + using glm::angleAxis; + using glm::any; + using glm::asec; + using glm::asech; + using glm::asin; + using glm::asinh; + using glm::atan; + using glm::atanh; + using glm::axis; + using glm::ballRand; + using glm::bitCount; + using glm::bitfieldDeinterleave; + using glm::bitfieldExtract; + using glm::bitfieldFillOne; + using glm::bitfieldFillZero; + using glm::bitfieldInsert; + using glm::bitfieldInterleave; + using glm::bitfieldReverse; + using glm::bitfieldRotateLeft; + using glm::bitfieldRotateRight; + using glm::ceil; + using glm::ceilMultiple; + using glm::ceilPowerOfTwo; + using glm::circularRand; + using glm::clamp; + using glm::column; + using glm::conjugate; + using glm::convertLinearToSRGB; + using glm::convertSRGBToLinear; + using glm::cos; + using glm::cos_one_over_two; + using glm::cosh; + using glm::cot; + using glm::coth; + using glm::cross; + using glm::csc; + using glm::csch; + using glm::degrees; + using glm::determinant; + using glm::diskRand; + using glm::distance; + using glm::dot; + using glm::e; + using glm::epsilon; + using glm::epsilonEqual; + using glm::epsilonNotEqual; + using glm::equal; + using glm::euler; + using glm::eulerAngles; + using glm::exp; + using glm::exp2; + using glm::faceforward; + using glm::fclamp; + using glm::findLSB; + using glm::findMSB; + using glm::floatBitsToInt; + using glm::floatBitsToUint; + using glm::float_distance; + using glm::floor; + using glm::floorMultiple; + using glm::floorPowerOfTwo; + using glm::fma; + using glm::fmax; + using glm::fmin; + using glm::four_over_pi; + using glm::fract; + using glm::frexp; + using glm::frustum; + using glm::frustumLH; + using glm::frustumLH_NO; + using glm::frustumLH_ZO; + using glm::frustumNO; + using glm::frustumRH; + using glm::frustumRH_NO; + using glm::frustumRH_ZO; + using glm::frustumZO; + using glm::gaussRand; + using glm::golden_ratio; + using glm::greaterThan; + using glm::greaterThanEqual; + using glm::half_pi; + using glm::identity; + using glm::imulExtended; + using glm::infinitePerspective; + using glm::infinitePerspectiveLH; + using glm::infinitePerspectiveRH; + using glm::intBitsToFloat; + using glm::inverse; + using glm::inverseTranspose; + using glm::inversesqrt; + using glm::iround; + using glm::isinf; + using glm::isnan; + using glm::ldexp; + using glm::length; + using glm::lerp; + using glm::lessThan; + using glm::lessThanEqual; + using glm::linearRand; + using glm::ln_ln_two; + using glm::ln_ten; + using glm::ln_two; + using glm::log; + using glm::log2; + using glm::lookAt; + using glm::lookAtLH; + using glm::lookAtRH; + using glm::make_mat2; + using glm::make_mat2x2; + using glm::make_mat2x3; + using glm::make_mat2x4; + using glm::make_mat3; + using glm::make_mat3x2; + using glm::make_mat3x3; + using glm::make_mat3x4; + using glm::make_mat4; + using glm::make_mat4x2; + using glm::make_mat4x3; + using glm::make_mat4x4; + using glm::make_quat; + using glm::make_vec1; + using glm::make_vec2; + using glm::make_vec3; + using glm::make_vec4; + using glm::mask; + using glm::mat3_cast; + using glm::mat4_cast; + using glm::matrixCompMult; + using glm::max; + using glm::min; + using glm::mirrorClamp; + using glm::mirrorRepeat; + using glm::mix; + using glm::mod; + using glm::modf; + using glm::next_float; + using glm::normalize; + using glm::notEqual; + using glm::not_; + using glm::one; + using glm::one_over_pi; + using glm::one_over_root_two; + using glm::one_over_two_pi; + using glm::ortho; + using glm::orthoLH; + using glm::orthoLH_NO; + using glm::orthoLH_ZO; + using glm::orthoNO; + using glm::orthoRH; + using glm::orthoRH_NO; + using glm::orthoRH_ZO; + using glm::orthoZO; + using glm::outerProduct; + using glm::packF2x11_1x10; + using glm::packF3x9_E1x5; + using glm::packHalf; + using glm::packHalf1x16; + using glm::packHalf4x16; + using glm::packI3x10_1x2; + using glm::packInt2x16; + using glm::packInt2x32; + using glm::packInt2x8; + using glm::packInt4x16; + using glm::packInt4x8; + using glm::packRGBM; + using glm::packSnorm; + using glm::packSnorm1x16; + using glm::packSnorm1x8; + using glm::packSnorm2x8; + using glm::packSnorm3x10_1x2; + using glm::packSnorm4x16; + using glm::packU3x10_1x2; + using glm::packUint2x16; + using glm::packUint2x32; + using glm::packUint2x8; + using glm::packUint4x16; + using glm::packUint4x8; + using glm::packUnorm; + using glm::packUnorm1x16; + using glm::packUnorm1x5_1x6_1x5; + using glm::packUnorm1x8; + using glm::packUnorm2x3_1x2; + using glm::packUnorm2x4; + using glm::packUnorm2x8; + using glm::packUnorm3x10_1x2; + using glm::packUnorm3x5_1x1; + using glm::packUnorm4x16; + using glm::packUnorm4x4; + using glm::perlin; + using glm::perspective; + using glm::perspectiveFov; + using glm::perspectiveFovLH; + using glm::perspectiveFovLH_NO; + using glm::perspectiveFovLH_ZO; + using glm::perspectiveFovNO; + using glm::perspectiveFovRH; + using glm::perspectiveFovRH_NO; + using glm::perspectiveFovRH_ZO; + using glm::perspectiveFovZO; + using glm::perspectiveLH; + using glm::perspectiveLH_NO; + using glm::perspectiveLH_ZO; + using glm::perspectiveNO; + using glm::perspectiveRH; + using glm::perspectiveRH_NO; + using glm::perspectiveRH_ZO; + using glm::perspectiveZO; + using glm::pi; + using glm::pickMatrix; + using glm::pitch; + using glm::pow; + using glm::prev_float; + using glm::project; + using glm::projectNO; + using glm::projectZO; + using glm::quarter_pi; + using glm::quatLookAt; + using glm::quatLookAtLH; + using glm::quatLookAtRH; + using glm::quat_cast; + using glm::radians; + using glm::reflect; + using glm::refract; + using glm::repeat; + using glm::roll; + using glm::root_five; + using glm::root_half_pi; + using glm::root_ln_four; + using glm::root_pi; + using glm::root_three; + using glm::root_two; + using glm::root_two_pi; + using glm::rotate; + using glm::round; + using glm::roundEven; + using glm::roundMultiple; + using glm::roundPowerOfTwo; + using glm::row; + using glm::scale; + using glm::sec; + using glm::sech; + using glm::sign; + using glm::simplex; + using glm::sin; + using glm::sinh; + using glm::slerp; + using glm::smoothstep; + using glm::sphericalRand; + using glm::sqrt; + using glm::step; + using glm::tan; + using glm::tanh; + using glm::third; + using glm::three_over_two_pi; + using glm::translate; + using glm::transpose; + using glm::trunc; + using glm::tweakedInfinitePerspective; + using glm::two_over_pi; + using glm::two_over_root_pi; + using glm::two_pi; + using glm::two_thirds; + using glm::uaddCarry; + using glm::uintBitsToFloat; + using glm::umulExtended; + using glm::unProject; + using glm::unProjectNO; + using glm::unProjectZO; + using glm::unpackF2x11_1x10; + using glm::unpackF3x9_E1x5; + using glm::unpackHalf; + using glm::unpackHalf1x16; + using glm::unpackHalf4x16; + using glm::unpackI3x10_1x2; + using glm::unpackInt2x16; + using glm::unpackInt2x32; + using glm::unpackInt2x8; + using glm::unpackInt4x16; + using glm::unpackInt4x8; + using glm::unpackRGBM; + using glm::unpackSnorm; + using glm::unpackSnorm1x16; + using glm::unpackSnorm1x8; + using glm::unpackSnorm2x8; + using glm::unpackSnorm3x10_1x2; + using glm::unpackSnorm4x16; + using glm::unpackU3x10_1x2; + using glm::unpackUint2x16; + using glm::unpackUint2x32; + using glm::unpackUint2x8; + using glm::unpackUint4x16; + using glm::unpackUint4x8; + using glm::unpackUnorm; + using glm::unpackUnorm1x16; + using glm::unpackUnorm1x5_1x6_1x5; + using glm::unpackUnorm1x8; + using glm::unpackUnorm2x3_1x2; + using glm::unpackUnorm2x4; + using glm::unpackUnorm2x8; + using glm::unpackUnorm3x10_1x2; + using glm::unpackUnorm3x5_1x1; + using glm::unpackUnorm4x16; + using glm::unpackUnorm4x4; + using glm::uround; + using glm::usubBorrow; + using glm::value_ptr; + using glm::yaw; + using glm::zero; + } + +# ifdef GLM_EXT_INLINE_NAMESPACE + inline +# endif + namespace ext { + using glm::abs; + using glm::acos; + using glm::acosh; + using glm::acot; + using glm::acoth; + using glm::acsc; + using glm::acsch; + using glm::all; + using glm::angle; + using glm::angleAxis; + using glm::any; + using glm::asec; + using glm::asech; + using glm::asin; + using glm::asinh; + using glm::atan; + using glm::atanh; + using glm::axis; + using glm::ceil; + using glm::clamp; + using glm::conjugate; + using glm::cos; + using glm::cos_one_over_two; + using glm::cosh; + using glm::cot; + using glm::coth; + using glm::cross; + using glm::csc; + using glm::csch; + using glm::degrees; + using glm::determinant; + using glm::distance; + using glm::dot; + using glm::e; + using glm::epsilon; + using glm::equal; + using glm::euler; + using glm::exp; + using glm::exp2; + using glm::faceforward; + using glm::fclamp; + using glm::findNSB; + using glm::floatBitsToInt; + using glm::floatBitsToUint; + using glm::floatDistance; + using glm::floor; + using glm::fma; + using glm::fmax; + using glm::fmin; + using glm::four_over_pi; + using glm::fract; + using glm::frexp; + using glm::frustum; + using glm::frustumLH; + using glm::frustumLH_NO; + using glm::frustumLH_ZO; + using glm::frustumNO; + using glm::frustumRH; + using glm::frustumRH_NO; + using glm::frustumRH_ZO; + using glm::frustumZO; + using glm::golden_ratio; + using glm::greaterThan; + using glm::greaterThanEqual; + using glm::half_pi; + using glm::identity; + using glm::infinitePerspective; + using glm::infinitePerspectiveLH; + using glm::infinitePerspectiveRH; + using glm::intBitsToFloat; + using glm::inverse; + using glm::inversesqrt; + using glm::iround; + using glm::isMultiple; + using glm::isPowerOfTwo; + using glm::isinf; + using glm::isnan; + using glm::ldexp; + using glm::length; + using glm::lerp; + using glm::lessThan; + using glm::lessThanEqual; + using glm::ln_ln_two; + using glm::ln_ten; + using glm::ln_two; + using glm::log; + using glm::log2; + using glm::lookAt; + using glm::lookAtLH; + using glm::lookAtRH; + using glm::matrixCompMult; + using glm::max; + using glm::min; + using glm::mirrorClamp; + using glm::mirrorRepeat; + using glm::mix; + using glm::mod; + using glm::modf; + using glm::nextFloat; + using glm::nextMultiple; + using glm::nextPowerOfTwo; + using glm::normalize; + using glm::notEqual; + using glm::not_; + using glm::one; + using glm::one_over_pi; + using glm::one_over_root_two; + using glm::one_over_two_pi; + using glm::ortho; + using glm::orthoLH; + using glm::orthoLH_NO; + using glm::orthoLH_ZO; + using glm::orthoNO; + using glm::orthoRH; + using glm::orthoRH_NO; + using glm::orthoRH_ZO; + using glm::orthoZO; + using glm::outerProduct; + using glm::perspective; + using glm::perspectiveFov; + using glm::perspectiveFovLH; + using glm::perspectiveFovLH_NO; + using glm::perspectiveFovLH_ZO; + using glm::perspectiveFovNO; + using glm::perspectiveFovRH; + using glm::perspectiveFovRH_NO; + using glm::perspectiveFovRH_ZO; + using glm::perspectiveFovZO; + using glm::perspectiveLH; + using glm::perspectiveLH_NO; + using glm::perspectiveLH_ZO; + using glm::perspectiveNO; + using glm::perspectiveRH; + using glm::perspectiveRH_NO; + using glm::perspectiveRH_ZO; + using glm::perspectiveZO; + using glm::pi; + using glm::pickMatrix; + using glm::pow; + using glm::prevFloat; + using glm::prevMultiple; + using glm::prevPowerOfTwo; + using glm::project; + using glm::projectNO; + using glm::projectZO; + using glm::quarter_pi; + using glm::radians; + using glm::reflect; + using glm::refract; + using glm::repeat; + using glm::root_five; + using glm::root_half_pi; + using glm::root_ln_four; + using glm::root_pi; + using glm::root_three; + using glm::root_two; + using glm::root_two_pi; + using glm::rotate; + using glm::round; + using glm::roundEven; + using glm::scale; + using glm::sec; + using glm::sech; + using glm::sign; + using glm::sin; + using glm::sinh; + using glm::slerp; + using glm::smoothstep; + using glm::sqrt; + using glm::step; + using glm::tan; + using glm::tanh; + using glm::third; + using glm::three_over_two_pi; + using glm::translate; + using glm::transpose; + using glm::trunc; + using glm::tweakedInfinitePerspective; + using glm::two_over_pi; + using glm::two_over_root_pi; + using glm::two_pi; + using glm::two_thirds; + using glm::uintBitsToFloat; + using glm::unProject; + using glm::unProjectNO; + using glm::unProjectZO; + using glm::uround; + using glm::zero; + } + +# ifdef GLM_ENABLE_EXPERIMENTAL +# ifdef GLM_GTX_INLINE_NAMESPACE + inline +# endif + namespace gtx { + using glm::io::order_type; + using glm::io::format_punct; + using glm::io::basic_state_saver; + using glm::io::basic_format_saver; + using glm::io::precision; + using glm::io::width; + using glm::io::delimeter; + using glm::io::order; + using glm::io::get_facet; + using glm::io::formatted; + using glm::io::unformatted; + using glm::io::operator<<; + using glm::operator<<; + using glm::tdualquat; + +# if !((GLM_COMPILER & GLM_COMPILER_CUDA) || (GLM_COMPILER & GLM_COMPILER_HIP)) + using glm::to_string; +# endif +# if GLM_HAS_TEMPLATE_ALIASES + using glm::operator*; + using glm::operator/; +# endif +# if GLM_HAS_RANGE_FOR + using glm::components; + using glm::begin; + using glm::end; +# endif + + using glm::abs; + using glm::acos; + using glm::acosh; + using glm::adjugate; + using glm::all; + using glm::angle; + using glm::angleAxis; + using glm::any; + using glm::areCollinear; + using glm::areOrthogonal; + using glm::areOrthonormal; + using glm::asin; + using glm::asinh; + using glm::associatedMax; + using glm::associatedMin; + using glm::atan; + using glm::atanh; + using glm::axis; + using glm::axisAngle; + using glm::axisAngleMatrix; + using glm::backEaseIn; + using glm::backEaseInOut; + using glm::backEaseOut; + using glm::bitCount; + using glm::bitfieldDeinterleave; + using glm::bitfieldExtract; + using glm::bitfieldFillOne; + using glm::bitfieldFillZero; + using glm::bitfieldInsert; + using glm::bitfieldInterleave; + using glm::bitfieldReverse; + using glm::bitfieldRotateLeft; + using glm::bitfieldRotateRight; + using glm::bounceEaseIn; + using glm::bounceEaseInOut; + using glm::bounceEaseOut; + using glm::catmullRom; + using glm::ceil; + using glm::circularEaseIn; + using glm::circularEaseInOut; + using glm::circularEaseOut; + using glm::clamp; + using glm::closeBounded; + using glm::closestPointOnLine; + using glm::colMajor2; + using glm::colMajor3; + using glm::colMajor4; + using glm::compAdd; + using glm::compMax; + using glm::compMin; + using glm::compMul; + using glm::compNormalize; + using glm::compScale; + using glm::computeCovarianceMatrix; + using glm::conjugate; + using glm::convertD65XYZToD50XYZ; + using glm::convertD65XYZToLinearSRGB; + using glm::convertLinearSRGBToD50XYZ; + using glm::convertLinearSRGBToD65XYZ; + using glm::cos; + using glm::cos_one_over_two; + using glm::cosh; + using glm::cross; + using glm::cubic; + using glm::cubicEaseIn; + using glm::cubicEaseInOut; + using glm::cubicEaseOut; + using glm::decompose; + using glm::degrees; + using glm::derivedEulerAngleX; + using glm::derivedEulerAngleY; + using glm::derivedEulerAngleZ; + using glm::determinant; + using glm::diagonal2x2; + using glm::diagonal2x3; + using glm::diagonal2x4; + using glm::diagonal3x2; + using glm::diagonal3x3; + using glm::diagonal3x4; + using glm::diagonal4x2; + using glm::diagonal4x3; + using glm::diagonal4x4; + using glm::distance; + using glm::distance2; + using glm::dot; + using glm::dual_quat_identity; + using glm::dualquat_cast; + using glm::e; + using glm::elasticEaseIn; + using glm::elasticEaseInOut; + using glm::elasticEaseOut; + using glm::epsilon; + using glm::epsilonEqual; + using glm::epsilonNotEqual; + using glm::equal; + using glm::euclidean; + using glm::euler; + using glm::eulerAngleX; + using glm::eulerAngleXY; + using glm::eulerAngleXYX; + using glm::eulerAngleXYZ; + using glm::eulerAngleXZ; + using glm::eulerAngleXZX; + using glm::eulerAngleXZY; + using glm::eulerAngleY; + using glm::eulerAngleYX; + using glm::eulerAngleYXY; + using glm::eulerAngleYXZ; + using glm::eulerAngleYZ; + using glm::eulerAngleYZX; + using glm::eulerAngleYZY; + using glm::eulerAngleZ; + using glm::eulerAngleZX; + using glm::eulerAngleZXY; + using glm::eulerAngleZXZ; + using glm::eulerAngleZY; + using glm::eulerAngleZYX; + using glm::eulerAngleZYZ; + using glm::eulerAngles; + using glm::exp; + using glm::exp2; + using glm::exponentialEaseIn; + using glm::exponentialEaseInOut; + using glm::exponentialEaseOut; + using glm::extend; + using glm::extractEulerAngleXYX; + using glm::extractEulerAngleXYZ; + using glm::extractEulerAngleXZX; + using glm::extractEulerAngleXZY; + using glm::extractEulerAngleYXY; + using glm::extractEulerAngleYXZ; + using glm::extractEulerAngleYZX; + using glm::extractEulerAngleYZY; + using glm::extractEulerAngleZXY; + using glm::extractEulerAngleZXZ; + using glm::extractEulerAngleZYX; + using glm::extractEulerAngleZYZ; + using glm::extractMatrixRotation; + using glm::extractRealComponent; + using glm::faceforward; + using glm::factorial; + using glm::fastAcos; + using glm::fastAsin; + using glm::fastAtan; + using glm::fastCos; + using glm::fastDistance; + using glm::fastExp; + using glm::fastExp2; + using glm::fastInverseSqrt; + using glm::fastLength; + using glm::fastLog; + using glm::fastLog2; + using glm::fastMix; + using glm::fastNormalize; + using glm::fastNormalizeDot; + using glm::fastPow; + using glm::fastSin; + using glm::fastSqrt; + using glm::fastTan; + using glm::fclamp; + using glm::findLSB; + using glm::findMSB; + using glm::fliplr; + using glm::flipud; + using glm::floatBitsToInt; + using glm::floatBitsToUint; + using glm::floor; + using glm::floor_log2; + using glm::fma; + using glm::fmax; + using glm::fmin; + using glm::fmod; + using glm::four_over_pi; + using glm::fract; + using glm::frexp; + using glm::frustum; + using glm::frustumLH; + using glm::frustumLH_NO; + using glm::frustumLH_ZO; + using glm::frustumNO; + using glm::frustumRH; + using glm::frustumRH_NO; + using glm::frustumRH_ZO; + using glm::frustumZO; + using glm::gauss; + using glm::golden_ratio; + using glm::greaterThan; + using glm::greaterThanEqual; + using glm::half_pi; + using glm::hermite; + using glm::highestBitValue; + using glm::hsvColor; + using glm::identity; + using glm::imulExtended; + using glm::infinitePerspective; + using glm::infinitePerspectiveLH; + using glm::infinitePerspectiveRH; + using glm::intBitsToFloat; + using glm::intermediate; + using glm::interpolate; + using glm::intersectLineSphere; + using glm::intersectLineTriangle; + using glm::intersectRayPlane; + using glm::intersectRaySphere; + using glm::intersectRayTriangle; + using glm::inverse; + using glm::inversesqrt; + using glm::iround; + using glm::isCompNull; + using glm::isIdentity; + using glm::isNormalized; + using glm::isNull; + using glm::isOrthogonal; + using glm::isdenormal; + using glm::isfinite; + using glm::isinf; + using glm::isnan; + using glm::l1Norm; + using glm::l2Norm; + using glm::lMaxNorm; + using glm::ldexp; + using glm::leftHanded; + using glm::length; + using glm::length2; + using glm::lerp; + using glm::lessThan; + using glm::lessThanEqual; + using glm::linearGradient; + using glm::linearInterpolation; + using glm::ln_ln_two; + using glm::ln_ten; + using glm::ln_two; + using glm::log; + using glm::log2; + using glm::lookAt; + using glm::lookAtLH; + using glm::lookAtRH; + using glm::lowestBitValue; + using glm::luminosity; + using glm::lxNorm; + using glm::make_mat2; + using glm::make_mat2x2; + using glm::make_mat2x3; + using glm::make_mat2x4; + using glm::make_mat3; + using glm::make_mat3x2; + using glm::make_mat3x3; + using glm::make_mat3x4; + using glm::make_mat4; + using glm::make_mat4x2; + using glm::make_mat4x3; + using glm::make_mat4x4; + using glm::make_quat; + using glm::make_vec1; + using glm::make_vec2; + using glm::make_vec3; + using glm::make_vec4; + using glm::mask; + using glm::mat2x4_cast; + using glm::mat3_cast; + using glm::mat3x4_cast; + using glm::mat4_cast; + using glm::matrixCompMult; + using glm::matrixCross3; + using glm::matrixCross4; + using glm::max; + using glm::min; + using glm::mirrorClamp; + using glm::mirrorRepeat; + using glm::mix; + using glm::mixedProduct; + using glm::mod; + using glm::modf; + using glm::nlz; + using glm::normalize; + using glm::normalizeDot; + using glm::notEqual; + using glm::not_; + using glm::YCoCg2rgb; + using glm::YCoCgR2rgb; + using glm::one; + using glm::one_over_pi; + using glm::one_over_root_two; + using glm::one_over_two_pi; + using glm::openBounded; + using glm::orientate2; + using glm::orientate3; + using glm::orientate4; + using glm::orientation; + using glm::orientedAngle; + using glm::ortho; + using glm::orthoLH; + using glm::orthoLH_NO; + using glm::orthoLH_ZO; + using glm::orthoNO; + using glm::orthoRH; + using glm::orthoRH_NO; + using glm::orthoRH_ZO; + using glm::orthoZO; + using glm::orthonormalize; + using glm::outerProduct; + using glm::packDouble2x32; + using glm::packHalf2x16; + using glm::packSnorm2x16; + using glm::packSnorm4x8; + using glm::packUnorm2x16; + using glm::packUnorm4x8; + using glm::perp; + using glm::perspective; + using glm::perspectiveFov; + using glm::perspectiveFovLH; + using glm::perspectiveFovLH_NO; + using glm::perspectiveFovLH_ZO; + using glm::perspectiveFovNO; + using glm::perspectiveFovRH; + using glm::perspectiveFovRH_NO; + using glm::perspectiveFovRH_ZO; + using glm::perspectiveFovZO; + using glm::perspectiveLH; + using glm::perspectiveLH_NO; + using glm::perspectiveLH_ZO; + using glm::perspectiveNO; + using glm::perspectiveRH; + using glm::perspectiveRH_NO; + using glm::perspectiveRH_ZO; + using glm::perspectiveZO; + using glm::pi; + using glm::pickMatrix; + using glm::pitch; + using glm::polar; + using glm::pow; + using glm::pow2; + using glm::pow3; + using glm::pow4; + using glm::powerOfTwoAbove; + using glm::powerOfTwoBelow; + using glm::powerOfTwoNearest; + using glm::proj; + using glm::proj2D; + using glm::proj3D; + using glm::project; + using glm::projectNO; + using glm::projectZO; + using glm::qr_decompose; + using glm::quadraticEaseIn; + using glm::quadraticEaseInOut; + using glm::quadraticEaseOut; + using glm::quarter_pi; + using glm::quarticEaseIn; + using glm::quarticEaseInOut; + using glm::quarticEaseOut; + using glm::quatLookAt; + using glm::quatLookAtLH; + using glm::quatLookAtRH; + using glm::quat_cast; + using glm::quat_identity; + using glm::quinticEaseIn; + using glm::quinticEaseInOut; + using glm::quinticEaseOut; + using glm::radialGradient; + using glm::radians; + using glm::recompose; + using glm::reflect; + using glm::refract; + using glm::repeat; + using glm::rgb2YCoCg; + using glm::rgb2YCoCgR; + using glm::rgbColor; + using glm::rightHanded; + using glm::roll; + using glm::root_five; + using glm::root_half_pi; + using glm::root_ln_four; + using glm::root_pi; + using glm::root_three; + using glm::root_two; + using glm::root_two_pi; + using glm::rotate; + using glm::rotateNormalizedAxis; + using glm::rotateX; + using glm::rotateY; + using glm::rotateZ; + using glm::rotation; + using glm::round; + using glm::roundEven; + using glm::rowMajor2; + using glm::rowMajor3; + using glm::rowMajor4; + using glm::rq_decompose; + using glm::saturation; + using glm::scale; + using glm::scaleBias; + using glm::shearX2D; + using glm::shearX3D; + using glm::shearY2D; + using glm::shearY3D; + using glm::shearZ3D; + using glm::shortMix; + using glm::sign; + using glm::sin; + using glm::sineEaseIn; + using glm::sineEaseInOut; + using glm::sineEaseOut; + using glm::sinh; + using glm::slerp; + using glm::smoothstep; + using glm::sortEigenvalues; + using glm::sqrt; + using glm::squad; + using glm::step; + using glm::tan; + using glm::tanh; + using glm::third; + using glm::three_over_two_pi; + using glm::translate; + using glm::transpose; + using glm::triangleNormal; + using glm::trunc; + using glm::tweakedInfinitePerspective; + using glm::two_over_pi; + using glm::two_over_root_pi; + using glm::two_pi; + using glm::two_thirds; + using glm::uaddCarry; + using glm::uintBitsToFloat; + using glm::umulExtended; + using glm::unProject; + using glm::unProjectNO; + using glm::unProjectZO; + using glm::unpackDouble2x32; + using glm::unpackHalf2x16; + using glm::unpackSnorm2x16; + using glm::unpackSnorm4x8; + using glm::unpackUnorm2x16; + using glm::unpackUnorm4x8; + using glm::uround; + using glm::usubBorrow; + using glm::value_ptr; + using glm::wrapAngle; + using glm::wxyz; + using glm::yaw; + using glm::yawPitchRoll; + using glm::zero; + } +# endif +} + +#if defined(_MSC_VER) // Workaround +// Partial template specialization doesn't need to be exported explicitly, but this may not work otherwise on MSVC. +export namespace std { + using std::hash; // See GLM_GTX_hash +} +#endif diff --git a/thirdparty/glm/glm/glm.hpp b/thirdparty/glm/glm/glm.hpp new file mode 100644 index 000000000000..8b375459a784 --- /dev/null +++ b/thirdparty/glm/glm/glm.hpp @@ -0,0 +1,137 @@ +/// @ref core +/// @file glm/glm.hpp +/// +/// @mainpage OpenGL Mathematics (GLM) +/// - Website: glm.g-truc.net +/// - GLM API documentation +/// - GLM Manual +/// +/// @defgroup core Core features +/// +/// @brief Features that implement in C++ the GLSL specification as closely as possible. +/// +/// The GLM core consists of C++ types that mirror GLSL types and +/// C++ functions that mirror the GLSL functions. +/// +/// The best documentation for GLM Core is the current GLSL specification, +/// version 4.2 +/// (pdf file). +/// +/// GLM core functionalities require to be included to be used. +/// +/// +/// @defgroup core_vector Vector types +/// +/// Vector types of two to four components with an exhaustive set of operators. +/// +/// @ingroup core +/// +/// +/// @defgroup core_vector_precision Vector types with precision qualifiers +/// +/// @brief Vector types with precision qualifiers which may result in various precision in term of ULPs +/// +/// GLSL allows defining qualifiers for particular variables. +/// With OpenGL's GLSL, these qualifiers have no effect; they are there for compatibility, +/// with OpenGL ES's GLSL, these qualifiers do have an effect. +/// +/// C++ has no language equivalent to qualifier qualifiers. So GLM provides the next-best thing: +/// a number of typedefs that use a particular qualifier. +/// +/// None of these types make any guarantees about the actual qualifier used. +/// +/// @ingroup core +/// +/// +/// @defgroup core_matrix Matrix types +/// +/// Matrix types of with C columns and R rows where C and R are values between 2 to 4 included. +/// These types have exhaustive sets of operators. +/// +/// @ingroup core +/// +/// +/// @defgroup core_matrix_precision Matrix types with precision qualifiers +/// +/// @brief Matrix types with precision qualifiers which may result in various precision in term of ULPs +/// +/// GLSL allows defining qualifiers for particular variables. +/// With OpenGL's GLSL, these qualifiers have no effect; they are there for compatibility, +/// with OpenGL ES's GLSL, these qualifiers do have an effect. +/// +/// C++ has no language equivalent to qualifier qualifiers. So GLM provides the next-best thing: +/// a number of typedefs that use a particular qualifier. +/// +/// None of these types make any guarantees about the actual qualifier used. +/// +/// @ingroup core +/// +/// +/// @defgroup ext Stable extensions +/// +/// @brief Additional features not specified by GLSL specification. +/// +/// EXT extensions are fully tested and documented. +/// +/// Even if it's highly unrecommended, it's possible to include all the extensions at once by +/// including . Otherwise, each extension needs to be included a specific file. +/// +/// +/// @defgroup gtc Recommended extensions +/// +/// @brief Additional features not specified by GLSL specification. +/// +/// GTC extensions aim to be stable with tests and documentation. +/// +/// Even if it's highly unrecommended, it's possible to include all the extensions at once by +/// including . Otherwise, each extension needs to be included a specific file. +/// +/// +/// @defgroup gtx Experimental extensions +/// +/// @brief Experimental features not specified by GLSL specification. +/// +/// Experimental extensions are useful functions and types, but the development of +/// their API and functionality is not necessarily stable. They can change +/// substantially between versions. Backwards compatibility is not much of an issue +/// for them. +/// +/// Even if it's highly unrecommended, it's possible to include all the extensions +/// at once by including . Otherwise, each extension needs to be +/// included a specific file. +/// + +#include "detail/_fixes.hpp" + +#include "detail/setup.hpp" + +#pragma once + +#include +#include +#include +#include +#include +#include "fwd.hpp" + +#include "vec2.hpp" +#include "vec3.hpp" +#include "vec4.hpp" +#include "mat2x2.hpp" +#include "mat2x3.hpp" +#include "mat2x4.hpp" +#include "mat3x2.hpp" +#include "mat3x3.hpp" +#include "mat3x4.hpp" +#include "mat4x2.hpp" +#include "mat4x3.hpp" +#include "mat4x4.hpp" + +#include "trigonometric.hpp" +#include "exponential.hpp" +#include "common.hpp" +#include "packing.hpp" +#include "geometric.hpp" +#include "matrix.hpp" +#include "vector_relational.hpp" +#include "integer.hpp" diff --git a/thirdparty/glm/glm/gtc/bitfield.hpp b/thirdparty/glm/glm/gtc/bitfield.hpp new file mode 100644 index 000000000000..084fbe75ff14 --- /dev/null +++ b/thirdparty/glm/glm/gtc/bitfield.hpp @@ -0,0 +1,266 @@ +/// @ref gtc_bitfield +/// @file glm/gtc/bitfield.hpp +/// +/// @see core (dependence) +/// @see gtc_bitfield (dependence) +/// +/// @defgroup gtc_bitfield GLM_GTC_bitfield +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// Allow to perform bit operations on integer values + +#include "../detail/setup.hpp" + +#pragma once + +// Dependencies +#include "../ext/scalar_int_sized.hpp" +#include "../ext/scalar_uint_sized.hpp" +#include "../detail/qualifier.hpp" +#include "../detail/_vectorize.hpp" +#include "type_precision.hpp" +#include + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_bitfield extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_bitfield + /// @{ + + /// Build a mask of 'count' bits + /// + /// @see gtc_bitfield + template + GLM_FUNC_DECL genIUType mask(genIUType Bits); + + /// Build a mask of 'count' bits + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed and unsigned integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see gtc_bitfield + template + GLM_FUNC_DECL vec mask(vec const& v); + + /// Rotate all bits to the right. All the bits dropped in the right side are inserted back on the left side. + /// + /// @see gtc_bitfield + template + GLM_FUNC_DECL genIUType bitfieldRotateRight(genIUType In, int Shift); + + /// Rotate all bits to the right. All the bits dropped in the right side are inserted back on the left side. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed and unsigned integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see gtc_bitfield + template + GLM_FUNC_DECL vec bitfieldRotateRight(vec const& In, int Shift); + + /// Rotate all bits to the left. All the bits dropped in the left side are inserted back on the right side. + /// + /// @see gtc_bitfield + template + GLM_FUNC_DECL genIUType bitfieldRotateLeft(genIUType In, int Shift); + + /// Rotate all bits to the left. All the bits dropped in the left side are inserted back on the right side. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed and unsigned integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see gtc_bitfield + template + GLM_FUNC_DECL vec bitfieldRotateLeft(vec const& In, int Shift); + + /// Set to 1 a range of bits. + /// + /// @see gtc_bitfield + template + GLM_FUNC_DECL genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount); + + /// Set to 1 a range of bits. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed and unsigned integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see gtc_bitfield + template + GLM_FUNC_DECL vec bitfieldFillOne(vec const& Value, int FirstBit, int BitCount); + + /// Set to 0 a range of bits. + /// + /// @see gtc_bitfield + template + GLM_FUNC_DECL genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount); + + /// Set to 0 a range of bits. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Signed and unsigned integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see gtc_bitfield + template + GLM_FUNC_DECL vec bitfieldFillZero(vec const& Value, int FirstBit, int BitCount); + + /// Interleaves the bits of x and y. + /// The first bit is the first bit of x followed by the first bit of y. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL int16 bitfieldInterleave(int8 x, int8 y); + + /// Interleaves the bits of x and y. + /// The first bit is the first bit of x followed by the first bit of y. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint16 bitfieldInterleave(uint8 x, uint8 y); + + /// Interleaves the bits of x and y. + /// The first bit is the first bit of v.x followed by the first bit of v.y. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint16 bitfieldInterleave(u8vec2 const& v); + + /// Deinterleaves the bits of x. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL glm::u8vec2 bitfieldDeinterleave(glm::uint16 x); + + /// Interleaves the bits of x and y. + /// The first bit is the first bit of x followed by the first bit of y. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL int32 bitfieldInterleave(int16 x, int16 y); + + /// Interleaves the bits of x and y. + /// The first bit is the first bit of x followed by the first bit of y. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint32 bitfieldInterleave(uint16 x, uint16 y); + + /// Interleaves the bits of x and y. + /// The first bit is the first bit of v.x followed by the first bit of v.y. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint32 bitfieldInterleave(u16vec2 const& v); + + /// Deinterleaves the bits of x. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL glm::u16vec2 bitfieldDeinterleave(glm::uint32 x); + + /// Interleaves the bits of x and y. + /// The first bit is the first bit of x followed by the first bit of y. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL int64 bitfieldInterleave(int32 x, int32 y); + + /// Interleaves the bits of x and y. + /// The first bit is the first bit of x followed by the first bit of y. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint64 bitfieldInterleave(uint32 x, uint32 y); + + /// Interleaves the bits of x and y. + /// The first bit is the first bit of v.x followed by the first bit of v.y. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint64 bitfieldInterleave(u32vec2 const& v); + + /// Deinterleaves the bits of x. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL glm::u32vec2 bitfieldDeinterleave(glm::uint64 x); + + /// Interleaves the bits of x, y and z. + /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z); + + /// Interleaves the bits of x, y and z. + /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z); + + /// Interleaves the bits of x, y and z. + /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL int64 bitfieldInterleave(int16 x, int16 y, int16 z); + + /// Interleaves the bits of x, y and z. + /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z); + + /// Interleaves the bits of x, y and z. + /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL int64 bitfieldInterleave(int32 x, int32 y, int32 z); + + /// Interleaves the bits of x, y and z. + /// The first bit is the first bit of x followed by the first bit of y and the first bit of z. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z); + + /// Interleaves the bits of x, y, z and w. + /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w); + + /// Interleaves the bits of x, y, z and w. + /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w); + + /// Interleaves the bits of x, y, z and w. + /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w); + + /// Interleaves the bits of x, y, z and w. + /// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w. + /// The other bits are interleaved following the previous sequence. + /// + /// @see gtc_bitfield + GLM_FUNC_DECL uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w); + + /// @} +} //namespace glm + +#include "bitfield.inl" diff --git a/thirdparty/glm/glm/gtc/bitfield.inl b/thirdparty/glm/glm/gtc/bitfield.inl new file mode 100644 index 000000000000..06cf1889cd40 --- /dev/null +++ b/thirdparty/glm/glm/gtc/bitfield.inl @@ -0,0 +1,626 @@ +/// @ref gtc_bitfield + +#include "../simd/integer.h" + +namespace glm{ +namespace detail +{ + template + GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y); + + template + GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z); + + template + GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w); + + template<> + GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y) + { + glm::uint16 REG1(x); + glm::uint16 REG2(y); + + REG1 = ((REG1 << 4) | REG1) & static_cast(0x0F0F); + REG2 = ((REG2 << 4) | REG2) & static_cast(0x0F0F); + + REG1 = ((REG1 << 2) | REG1) & static_cast(0x3333); + REG2 = ((REG2 << 2) | REG2) & static_cast(0x3333); + + REG1 = ((REG1 << 1) | REG1) & static_cast(0x5555); + REG2 = ((REG2 << 1) | REG2) & static_cast(0x5555); + + return REG1 | static_cast(REG2 << 1); + } + + template<> + GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint16 x, glm::uint16 y) + { + glm::uint32 REG1(x); + glm::uint32 REG2(y); + + REG1 = ((REG1 << 8) | REG1) & static_cast(0x00FF00FF); + REG2 = ((REG2 << 8) | REG2) & static_cast(0x00FF00FF); + + REG1 = ((REG1 << 4) | REG1) & static_cast(0x0F0F0F0F); + REG2 = ((REG2 << 4) | REG2) & static_cast(0x0F0F0F0F); + + REG1 = ((REG1 << 2) | REG1) & static_cast(0x33333333); + REG2 = ((REG2 << 2) | REG2) & static_cast(0x33333333); + + REG1 = ((REG1 << 1) | REG1) & static_cast(0x55555555); + REG2 = ((REG2 << 1) | REG2) & static_cast(0x55555555); + + return REG1 | (REG2 << 1); + } + + template<> + GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y) + { + glm::uint64 REG1(x); + glm::uint64 REG2(y); + + REG1 = ((REG1 << 16) | REG1) & static_cast(0x0000FFFF0000FFFFull); + REG2 = ((REG2 << 16) | REG2) & static_cast(0x0000FFFF0000FFFFull); + + REG1 = ((REG1 << 8) | REG1) & static_cast(0x00FF00FF00FF00FFull); + REG2 = ((REG2 << 8) | REG2) & static_cast(0x00FF00FF00FF00FFull); + + REG1 = ((REG1 << 4) | REG1) & static_cast(0x0F0F0F0F0F0F0F0Full); + REG2 = ((REG2 << 4) | REG2) & static_cast(0x0F0F0F0F0F0F0F0Full); + + REG1 = ((REG1 << 2) | REG1) & static_cast(0x3333333333333333ull); + REG2 = ((REG2 << 2) | REG2) & static_cast(0x3333333333333333ull); + + REG1 = ((REG1 << 1) | REG1) & static_cast(0x5555555555555555ull); + REG2 = ((REG2 << 1) | REG2) & static_cast(0x5555555555555555ull); + + return REG1 | (REG2 << 1); + } + + template<> + GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z) + { + glm::uint32 REG1(x); + glm::uint32 REG2(y); + glm::uint32 REG3(z); + + REG1 = ((REG1 << 16) | REG1) & static_cast(0xFF0000FFu); + REG2 = ((REG2 << 16) | REG2) & static_cast(0xFF0000FFu); + REG3 = ((REG3 << 16) | REG3) & static_cast(0xFF0000FFu); + + REG1 = ((REG1 << 8) | REG1) & static_cast(0x0F00F00Fu); + REG2 = ((REG2 << 8) | REG2) & static_cast(0x0F00F00Fu); + REG3 = ((REG3 << 8) | REG3) & static_cast(0x0F00F00Fu); + + REG1 = ((REG1 << 4) | REG1) & static_cast(0xC30C30C3u); + REG2 = ((REG2 << 4) | REG2) & static_cast(0xC30C30C3u); + REG3 = ((REG3 << 4) | REG3) & static_cast(0xC30C30C3u); + + REG1 = ((REG1 << 2) | REG1) & static_cast(0x49249249u); + REG2 = ((REG2 << 2) | REG2) & static_cast(0x49249249u); + REG3 = ((REG3 << 2) | REG3) & static_cast(0x49249249u); + + return REG1 | (REG2 << 1) | (REG3 << 2); + } + + template<> + GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z) + { + glm::uint64 REG1(x); + glm::uint64 REG2(y); + glm::uint64 REG3(z); + + REG1 = ((REG1 << 32) | REG1) & static_cast(0xFFFF00000000FFFFull); + REG2 = ((REG2 << 32) | REG2) & static_cast(0xFFFF00000000FFFFull); + REG3 = ((REG3 << 32) | REG3) & static_cast(0xFFFF00000000FFFFull); + + REG1 = ((REG1 << 16) | REG1) & static_cast(0x00FF0000FF0000FFull); + REG2 = ((REG2 << 16) | REG2) & static_cast(0x00FF0000FF0000FFull); + REG3 = ((REG3 << 16) | REG3) & static_cast(0x00FF0000FF0000FFull); + + REG1 = ((REG1 << 8) | REG1) & static_cast(0xF00F00F00F00F00Full); + REG2 = ((REG2 << 8) | REG2) & static_cast(0xF00F00F00F00F00Full); + REG3 = ((REG3 << 8) | REG3) & static_cast(0xF00F00F00F00F00Full); + + REG1 = ((REG1 << 4) | REG1) & static_cast(0x30C30C30C30C30C3ull); + REG2 = ((REG2 << 4) | REG2) & static_cast(0x30C30C30C30C30C3ull); + REG3 = ((REG3 << 4) | REG3) & static_cast(0x30C30C30C30C30C3ull); + + REG1 = ((REG1 << 2) | REG1) & static_cast(0x9249249249249249ull); + REG2 = ((REG2 << 2) | REG2) & static_cast(0x9249249249249249ull); + REG3 = ((REG3 << 2) | REG3) & static_cast(0x9249249249249249ull); + + return REG1 | (REG2 << 1) | (REG3 << 2); + } + + template<> + GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y, glm::uint32 z) + { + glm::uint64 REG1(x); + glm::uint64 REG2(y); + glm::uint64 REG3(z); + + REG1 = ((REG1 << 32) | REG1) & static_cast(0xFFFF00000000FFFFull); + REG2 = ((REG2 << 32) | REG2) & static_cast(0xFFFF00000000FFFFull); + REG3 = ((REG3 << 32) | REG3) & static_cast(0xFFFF00000000FFFFull); + + REG1 = ((REG1 << 16) | REG1) & static_cast(0x00FF0000FF0000FFull); + REG2 = ((REG2 << 16) | REG2) & static_cast(0x00FF0000FF0000FFull); + REG3 = ((REG3 << 16) | REG3) & static_cast(0x00FF0000FF0000FFull); + + REG1 = ((REG1 << 8) | REG1) & static_cast(0xF00F00F00F00F00Full); + REG2 = ((REG2 << 8) | REG2) & static_cast(0xF00F00F00F00F00Full); + REG3 = ((REG3 << 8) | REG3) & static_cast(0xF00F00F00F00F00Full); + + REG1 = ((REG1 << 4) | REG1) & static_cast(0x30C30C30C30C30C3ull); + REG2 = ((REG2 << 4) | REG2) & static_cast(0x30C30C30C30C30C3ull); + REG3 = ((REG3 << 4) | REG3) & static_cast(0x30C30C30C30C30C3ull); + + REG1 = ((REG1 << 2) | REG1) & static_cast(0x9249249249249249ull); + REG2 = ((REG2 << 2) | REG2) & static_cast(0x9249249249249249ull); + REG3 = ((REG3 << 2) | REG3) & static_cast(0x9249249249249249ull); + + return REG1 | (REG2 << 1) | (REG3 << 2); + } + + template<> + GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w) + { + glm::uint32 REG1(x); + glm::uint32 REG2(y); + glm::uint32 REG3(z); + glm::uint32 REG4(w); + + REG1 = ((REG1 << 12) | REG1) & static_cast(0x000F000Fu); + REG2 = ((REG2 << 12) | REG2) & static_cast(0x000F000Fu); + REG3 = ((REG3 << 12) | REG3) & static_cast(0x000F000Fu); + REG4 = ((REG4 << 12) | REG4) & static_cast(0x000F000Fu); + + REG1 = ((REG1 << 6) | REG1) & static_cast(0x03030303u); + REG2 = ((REG2 << 6) | REG2) & static_cast(0x03030303u); + REG3 = ((REG3 << 6) | REG3) & static_cast(0x03030303u); + REG4 = ((REG4 << 6) | REG4) & static_cast(0x03030303u); + + REG1 = ((REG1 << 3) | REG1) & static_cast(0x11111111u); + REG2 = ((REG2 << 3) | REG2) & static_cast(0x11111111u); + REG3 = ((REG3 << 3) | REG3) & static_cast(0x11111111u); + REG4 = ((REG4 << 3) | REG4) & static_cast(0x11111111u); + + return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); + } + + template<> + GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z, glm::uint16 w) + { + glm::uint64 REG1(x); + glm::uint64 REG2(y); + glm::uint64 REG3(z); + glm::uint64 REG4(w); + + REG1 = ((REG1 << 24) | REG1) & static_cast(0x000000FF000000FFull); + REG2 = ((REG2 << 24) | REG2) & static_cast(0x000000FF000000FFull); + REG3 = ((REG3 << 24) | REG3) & static_cast(0x000000FF000000FFull); + REG4 = ((REG4 << 24) | REG4) & static_cast(0x000000FF000000FFull); + + REG1 = ((REG1 << 12) | REG1) & static_cast(0x000F000F000F000Full); + REG2 = ((REG2 << 12) | REG2) & static_cast(0x000F000F000F000Full); + REG3 = ((REG3 << 12) | REG3) & static_cast(0x000F000F000F000Full); + REG4 = ((REG4 << 12) | REG4) & static_cast(0x000F000F000F000Full); + + REG1 = ((REG1 << 6) | REG1) & static_cast(0x0303030303030303ull); + REG2 = ((REG2 << 6) | REG2) & static_cast(0x0303030303030303ull); + REG3 = ((REG3 << 6) | REG3) & static_cast(0x0303030303030303ull); + REG4 = ((REG4 << 6) | REG4) & static_cast(0x0303030303030303ull); + + REG1 = ((REG1 << 3) | REG1) & static_cast(0x1111111111111111ull); + REG2 = ((REG2 << 3) | REG2) & static_cast(0x1111111111111111ull); + REG3 = ((REG3 << 3) | REG3) & static_cast(0x1111111111111111ull); + REG4 = ((REG4 << 3) | REG4) & static_cast(0x1111111111111111ull); + + return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); + } +}//namespace detail + + template + GLM_FUNC_QUALIFIER genIUType mask(genIUType Bits) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'mask' accepts only integer values"); + + return Bits >= sizeof(genIUType) * 8 ? ~static_cast(0) : (static_cast(1) << Bits) - static_cast(1); + } + + template + GLM_FUNC_QUALIFIER vec mask(vec const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'mask' accepts only integer values"); + + return detail::functor1::call(mask, v); + } + + template + GLM_FUNC_QUALIFIER genIType bitfieldRotateRight(genIType In, int Shift) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitfieldRotateRight' accepts only integer values"); + + int const BitSize = static_cast(sizeof(genIType) * 8); + return (In << static_cast(Shift)) | (In >> static_cast(BitSize - Shift)); + } + + template + GLM_FUNC_QUALIFIER vec bitfieldRotateRight(vec const& In, int Shift) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitfieldRotateRight' accepts only integer values"); + + int const BitSize = static_cast(sizeof(T) * 8); + return (In << static_cast(Shift)) | (In >> static_cast(BitSize - Shift)); + } + + template + GLM_FUNC_QUALIFIER genIType bitfieldRotateLeft(genIType In, int Shift) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitfieldRotateLeft' accepts only integer values"); + + int const BitSize = static_cast(sizeof(genIType) * 8); + return (In >> static_cast(Shift)) | (In << static_cast(BitSize - Shift)); + } + + template + GLM_FUNC_QUALIFIER vec bitfieldRotateLeft(vec const& In, int Shift) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "'bitfieldRotateLeft' accepts only integer values"); + + int const BitSize = static_cast(sizeof(T) * 8); + return (In >> static_cast(Shift)) | (In << static_cast(BitSize - Shift)); + } + + template + GLM_FUNC_QUALIFIER genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount) + { + return Value | static_cast(mask(BitCount) << FirstBit); + } + + template + GLM_FUNC_QUALIFIER vec bitfieldFillOne(vec const& Value, int FirstBit, int BitCount) + { + return Value | static_cast(mask(BitCount) << FirstBit); + } + + template + GLM_FUNC_QUALIFIER genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount) + { + return Value & static_cast(~(mask(BitCount) << FirstBit)); + } + + template + GLM_FUNC_QUALIFIER vec bitfieldFillZero(vec const& Value, int FirstBit, int BitCount) + { + return Value & static_cast(~(mask(BitCount) << FirstBit)); + } + + GLM_FUNC_QUALIFIER int16 bitfieldInterleave(int8 x, int8 y) + { + union sign8 + { + int8 i; + uint8 u; + } sign_x, sign_y; + + union sign16 + { + int16 i; + uint16 u; + } result; + + sign_x.i = x; + sign_y.i = y; + result.u = bitfieldInterleave(sign_x.u, sign_y.u); + + return result.i; + } + + GLM_FUNC_QUALIFIER uint16 bitfieldInterleave(uint8 x, uint8 y) + { + return detail::bitfieldInterleave(x, y); + } + + GLM_FUNC_QUALIFIER uint16 bitfieldInterleave(u8vec2 const& v) + { + return detail::bitfieldInterleave(v.x, v.y); + } + + GLM_FUNC_QUALIFIER u8vec2 bitfieldDeinterleave(glm::uint16 x) + { + uint16 REG1(x); + uint16 REG2(x >>= 1); + + REG1 = REG1 & static_cast(0x5555); + REG2 = REG2 & static_cast(0x5555); + + REG1 = ((REG1 >> 1) | REG1) & static_cast(0x3333); + REG2 = ((REG2 >> 1) | REG2) & static_cast(0x3333); + + REG1 = ((REG1 >> 2) | REG1) & static_cast(0x0F0F); + REG2 = ((REG2 >> 2) | REG2) & static_cast(0x0F0F); + + REG1 = ((REG1 >> 4) | REG1) & static_cast(0x00FF); + REG2 = ((REG2 >> 4) | REG2) & static_cast(0x00FF); + + REG1 = ((REG1 >> 8) | REG1) & static_cast(0xFFFF); + REG2 = ((REG2 >> 8) | REG2) & static_cast(0xFFFF); + + return glm::u8vec2(REG1, REG2); + } + + GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int16 x, int16 y) + { + union sign16 + { + int16 i; + uint16 u; + } sign_x, sign_y; + + union sign32 + { + int32 i; + uint32 u; + } result; + + sign_x.i = x; + sign_y.i = y; + result.u = bitfieldInterleave(sign_x.u, sign_y.u); + + return result.i; + } + + GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint16 x, uint16 y) + { + return detail::bitfieldInterleave(x, y); + } + + GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(u16vec2 const& v) + { + return detail::bitfieldInterleave(v.x, v.y); + } + + GLM_FUNC_QUALIFIER glm::u16vec2 bitfieldDeinterleave(glm::uint32 x) + { + glm::uint32 REG1(x); + glm::uint32 REG2(x >>= 1); + + REG1 = REG1 & static_cast(0x55555555); + REG2 = REG2 & static_cast(0x55555555); + + REG1 = ((REG1 >> 1) | REG1) & static_cast(0x33333333); + REG2 = ((REG2 >> 1) | REG2) & static_cast(0x33333333); + + REG1 = ((REG1 >> 2) | REG1) & static_cast(0x0F0F0F0F); + REG2 = ((REG2 >> 2) | REG2) & static_cast(0x0F0F0F0F); + + REG1 = ((REG1 >> 4) | REG1) & static_cast(0x00FF00FF); + REG2 = ((REG2 >> 4) | REG2) & static_cast(0x00FF00FF); + + REG1 = ((REG1 >> 8) | REG1) & static_cast(0x0000FFFF); + REG2 = ((REG2 >> 8) | REG2) & static_cast(0x0000FFFF); + + return glm::u16vec2(REG1, REG2); + } + + GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y) + { + union sign32 + { + int32 i; + uint32 u; + } sign_x, sign_y; + + union sign64 + { + int64 i; + uint64 u; + } result; + + sign_x.i = x; + sign_y.i = y; + result.u = bitfieldInterleave(sign_x.u, sign_y.u); + + return result.i; + } + + GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y) + { + return detail::bitfieldInterleave(x, y); + } + + GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(u32vec2 const& v) + { + return detail::bitfieldInterleave(v.x, v.y); + } + + GLM_FUNC_QUALIFIER glm::u32vec2 bitfieldDeinterleave(glm::uint64 x) + { + glm::uint64 REG1(x); + glm::uint64 REG2(x >>= 1); + + REG1 = REG1 & static_cast(0x5555555555555555ull); + REG2 = REG2 & static_cast(0x5555555555555555ull); + + REG1 = ((REG1 >> 1) | REG1) & static_cast(0x3333333333333333ull); + REG2 = ((REG2 >> 1) | REG2) & static_cast(0x3333333333333333ull); + + REG1 = ((REG1 >> 2) | REG1) & static_cast(0x0F0F0F0F0F0F0F0Full); + REG2 = ((REG2 >> 2) | REG2) & static_cast(0x0F0F0F0F0F0F0F0Full); + + REG1 = ((REG1 >> 4) | REG1) & static_cast(0x00FF00FF00FF00FFull); + REG2 = ((REG2 >> 4) | REG2) & static_cast(0x00FF00FF00FF00FFull); + + REG1 = ((REG1 >> 8) | REG1) & static_cast(0x0000FFFF0000FFFFull); + REG2 = ((REG2 >> 8) | REG2) & static_cast(0x0000FFFF0000FFFFull); + + REG1 = ((REG1 >> 16) | REG1) & static_cast(0x00000000FFFFFFFFull); + REG2 = ((REG2 >> 16) | REG2) & static_cast(0x00000000FFFFFFFFull); + + return glm::u32vec2(REG1, REG2); + } + + GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z) + { + union sign8 + { + int8 i; + uint8 u; + } sign_x, sign_y, sign_z; + + union sign32 + { + int32 i; + uint32 u; + } result; + + sign_x.i = x; + sign_y.i = y; + sign_z.i = z; + result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); + + return result.i; + } + + GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z) + { + return detail::bitfieldInterleave(x, y, z); + } + + GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(u8vec3 const& v) + { + return detail::bitfieldInterleave(v.x, v.y, v.z); + } + + GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z) + { + union sign16 + { + int16 i; + uint16 u; + } sign_x, sign_y, sign_z; + + union sign64 + { + int64 i; + uint64 u; + } result; + + sign_x.i = x; + sign_y.i = y; + sign_z.i = z; + result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); + + return result.i; + } + + GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z) + { + return detail::bitfieldInterleave(x, y, z); + } + + GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(u16vec3 const& v) + { + return detail::bitfieldInterleave(v.x, v.y, v.z); + } + + GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y, int32 z) + { + union sign16 + { + int32 i; + uint32 u; + } sign_x, sign_y, sign_z; + + union sign64 + { + int64 i; + uint64 u; + } result; + + sign_x.i = x; + sign_y.i = y; + sign_z.i = z; + result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); + + return result.i; + } + + GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z) + { + return detail::bitfieldInterleave(x, y, z); + } + + GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(u32vec3 const& v) + { + return detail::bitfieldInterleave(v.x, v.y, v.z); + } + + GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w) + { + union sign8 + { + int8 i; + uint8 u; + } sign_x, sign_y, sign_z, sign_w; + + union sign32 + { + int32 i; + uint32 u; + } result; + + sign_x.i = x; + sign_y.i = y; + sign_z.i = z; + sign_w.i = w; + result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u); + + return result.i; + } + + GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w) + { + return detail::bitfieldInterleave(x, y, z, w); + } + + GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(u8vec4 const& v) + { + return detail::bitfieldInterleave(v.x, v.y, v.z, v.w); + } + + GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w) + { + union sign16 + { + int16 i; + uint16 u; + } sign_x, sign_y, sign_z, sign_w; + + union sign64 + { + int64 i; + uint64 u; + } result; + + sign_x.i = x; + sign_y.i = y; + sign_z.i = z; + sign_w.i = w; + result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u); + + return result.i; + } + + GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w) + { + return detail::bitfieldInterleave(x, y, z, w); + } + + GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(u16vec4 const& v) + { + return detail::bitfieldInterleave(v.x, v.y, v.z, v.w); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtc/color_space.hpp b/thirdparty/glm/glm/gtc/color_space.hpp new file mode 100644 index 000000000000..cffd9f093fb9 --- /dev/null +++ b/thirdparty/glm/glm/gtc/color_space.hpp @@ -0,0 +1,56 @@ +/// @ref gtc_color_space +/// @file glm/gtc/color_space.hpp +/// +/// @see core (dependence) +/// @see gtc_color_space (dependence) +/// +/// @defgroup gtc_color_space GLM_GTC_color_space +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// Allow to perform bit operations on integer values + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/qualifier.hpp" +#include "../exponential.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" +#include + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_color_space extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_color_space + /// @{ + + /// Convert a linear color to sRGB color using a standard gamma correction. + /// IEC 61966-2-1:1999 / Rec. 709 specification https://www.w3.org/Graphics/Color/srgb + template + GLM_FUNC_DECL vec convertLinearToSRGB(vec const& ColorLinear); + + /// Convert a linear color to sRGB color using a custom gamma correction. + /// IEC 61966-2-1:1999 / Rec. 709 specification https://www.w3.org/Graphics/Color/srgb + template + GLM_FUNC_DECL vec convertLinearToSRGB(vec const& ColorLinear, T Gamma); + + /// Convert a sRGB color to linear color using a standard gamma correction. + /// IEC 61966-2-1:1999 / Rec. 709 specification https://www.w3.org/Graphics/Color/srgb + template + GLM_FUNC_DECL vec convertSRGBToLinear(vec const& ColorSRGB); + + /// Convert a sRGB color to linear color using a custom gamma correction. + // IEC 61966-2-1:1999 / Rec. 709 specification https://www.w3.org/Graphics/Color/srgb + template + GLM_FUNC_DECL vec convertSRGBToLinear(vec const& ColorSRGB, T Gamma); + + /// @} +} //namespace glm + +#include "color_space.inl" diff --git a/thirdparty/glm/glm/gtc/color_space.inl b/thirdparty/glm/glm/gtc/color_space.inl new file mode 100644 index 000000000000..2a900044e99b --- /dev/null +++ b/thirdparty/glm/glm/gtc/color_space.inl @@ -0,0 +1,84 @@ +/// @ref gtc_color_space + +namespace glm{ +namespace detail +{ + template + struct compute_rgbToSrgb + { + GLM_FUNC_QUALIFIER static vec call(vec const& ColorRGB, T GammaCorrection) + { + vec const ClampedColor(clamp(ColorRGB, static_cast(0), static_cast(1))); + + return mix( + pow(ClampedColor, vec(GammaCorrection)) * static_cast(1.055) - static_cast(0.055), + ClampedColor * static_cast(12.92), + lessThan(ClampedColor, vec(static_cast(0.0031308)))); + } + }; + + template + struct compute_rgbToSrgb<4, T, Q> + { + GLM_FUNC_QUALIFIER static vec<4, T, Q> call(vec<4, T, Q> const& ColorRGB, T GammaCorrection) + { + return vec<4, T, Q>(compute_rgbToSrgb<3, T, Q>::call(vec<3, T, Q>(ColorRGB), GammaCorrection), ColorRGB.w); + } + }; + + template + struct compute_srgbToRgb + { + GLM_FUNC_QUALIFIER static vec call(vec const& ColorSRGB, T Gamma) + { + return mix( + pow((ColorSRGB + static_cast(0.055)) * static_cast(0.94786729857819905213270142180095), vec(Gamma)), + ColorSRGB * static_cast(0.07739938080495356037151702786378), + lessThanEqual(ColorSRGB, vec(static_cast(0.04045)))); + } + }; + + template + struct compute_srgbToRgb<4, T, Q> + { + GLM_FUNC_QUALIFIER static vec<4, T, Q> call(vec<4, T, Q> const& ColorSRGB, T Gamma) + { + return vec<4, T, Q>(compute_srgbToRgb<3, T, Q>::call(vec<3, T, Q>(ColorSRGB), Gamma), ColorSRGB.w); + } + }; +}//namespace detail + + template + GLM_FUNC_QUALIFIER vec convertLinearToSRGB(vec const& ColorLinear) + { + return detail::compute_rgbToSrgb::call(ColorLinear, static_cast(0.41666)); + } + + // Based on Ian Taylor http://chilliant.blogspot.fr/2012/08/srgb-approximations-for-hlsl.html + template<> + GLM_FUNC_QUALIFIER vec<3, float, lowp> convertLinearToSRGB(vec<3, float, lowp> const& ColorLinear) + { + vec<3, float, lowp> S1 = sqrt(ColorLinear); + vec<3, float, lowp> S2 = sqrt(S1); + vec<3, float, lowp> S3 = sqrt(S2); + return 0.662002687f * S1 + 0.684122060f * S2 - 0.323583601f * S3 - 0.0225411470f * ColorLinear; + } + + template + GLM_FUNC_QUALIFIER vec convertLinearToSRGB(vec const& ColorLinear, T Gamma) + { + return detail::compute_rgbToSrgb::call(ColorLinear, static_cast(1) / Gamma); + } + + template + GLM_FUNC_QUALIFIER vec convertSRGBToLinear(vec const& ColorSRGB) + { + return detail::compute_srgbToRgb::call(ColorSRGB, static_cast(2.4)); + } + + template + GLM_FUNC_QUALIFIER vec convertSRGBToLinear(vec const& ColorSRGB, T Gamma) + { + return detail::compute_srgbToRgb::call(ColorSRGB, Gamma); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtc/constants.hpp b/thirdparty/glm/glm/gtc/constants.hpp new file mode 100644 index 000000000000..6a1f37d30f95 --- /dev/null +++ b/thirdparty/glm/glm/gtc/constants.hpp @@ -0,0 +1,170 @@ +/// @ref gtc_constants +/// @file glm/gtc/constants.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_constants GLM_GTC_constants +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// Provide a list of constants and precomputed useful values. + +#pragma once + +// Dependencies +#include "../ext/scalar_constants.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_constants extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_constants + /// @{ + + /// Return 0. + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType zero(); + + /// Return 1. + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType one(); + + /// Return pi * 2. + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType two_pi(); + + /// Return unit-circle circumference, or pi * 2. + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType tau(); + + /// Return square root of pi. + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType root_pi(); + + /// Return pi / 2. + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType half_pi(); + + /// Return pi / 2 * 3. + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType three_over_two_pi(); + + /// Return pi / 4. + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType quarter_pi(); + + /// Return 1 / pi. + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_pi(); + + /// Return 1 / (pi * 2). + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_two_pi(); + + /// Return 2 / pi. + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType two_over_pi(); + + /// Return 4 / pi. + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType four_over_pi(); + + /// Return 2 / sqrt(pi). + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType two_over_root_pi(); + + /// Return 1 / sqrt(2). + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType one_over_root_two(); + + /// Return sqrt(pi / 2). + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType root_half_pi(); + + /// Return sqrt(2 * pi). + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType root_two_pi(); + + /// Return sqrt(ln(4)). + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType root_ln_four(); + + /// Return e constant. + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType e(); + + /// Return Euler's constant. + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType euler(); + + /// Return sqrt(2). + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType root_two(); + + /// Return sqrt(3). + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType root_three(); + + /// Return sqrt(5). + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType root_five(); + + /// Return ln(2). + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType ln_two(); + + /// Return ln(10). + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType ln_ten(); + + /// Return ln(ln(2)). + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType ln_ln_two(); + + /// Return 1 / 3. + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType third(); + + /// Return 2 / 3. + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType two_thirds(); + + /// Return the golden ratio constant. + /// @see gtc_constants + template + GLM_FUNC_DECL GLM_CONSTEXPR genType golden_ratio(); + + /// @} +} //namespace glm + +#include "constants.inl" diff --git a/thirdparty/glm/glm/gtc/constants.inl b/thirdparty/glm/glm/gtc/constants.inl new file mode 100644 index 000000000000..e9d3776148d0 --- /dev/null +++ b/thirdparty/glm/glm/gtc/constants.inl @@ -0,0 +1,173 @@ +/// @ref gtc_constants + +namespace glm +{ + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType zero() + { + return genType(0); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one() + { + return genType(1); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_pi() + { + return genType(6.28318530717958647692528676655900576); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType tau() + { + return two_pi(); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_pi() + { + return genType(1.772453850905516027); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType half_pi() + { + return genType(1.57079632679489661923132169163975144); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType three_over_two_pi() + { + return genType(4.71238898038468985769396507491925432); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType quarter_pi() + { + return genType(0.785398163397448309615660845819875721); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_pi() + { + return genType(0.318309886183790671537767526745028724); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_two_pi() + { + return genType(0.159154943091895335768883763372514362); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_over_pi() + { + return genType(0.636619772367581343075535053490057448); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType four_over_pi() + { + return genType(1.273239544735162686151070106980114898); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_over_root_pi() + { + return genType(1.12837916709551257389615890312154517); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType one_over_root_two() + { + return genType(0.707106781186547524400844362104849039); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_half_pi() + { + return genType(1.253314137315500251); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_two_pi() + { + return genType(2.506628274631000502); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_ln_four() + { + return genType(1.17741002251547469); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType e() + { + return genType(2.71828182845904523536); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType euler() + { + return genType(0.577215664901532860606); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_two() + { + return genType(1.41421356237309504880168872420969808); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_three() + { + return genType(1.73205080756887729352744634150587236); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType root_five() + { + return genType(2.23606797749978969640917366873127623); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_two() + { + return genType(0.693147180559945309417232121458176568); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_ten() + { + return genType(2.30258509299404568401799145468436421); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType ln_ln_two() + { + return genType(-0.3665129205816643); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType third() + { + return genType(0.3333333333333333333333333333333333333333); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType two_thirds() + { + return genType(0.666666666666666666666666666666666666667); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType golden_ratio() + { + return genType(1.61803398874989484820458683436563811); + } + +} //namespace glm diff --git a/thirdparty/glm/glm/gtc/epsilon.hpp b/thirdparty/glm/glm/gtc/epsilon.hpp new file mode 100644 index 000000000000..640439b11c36 --- /dev/null +++ b/thirdparty/glm/glm/gtc/epsilon.hpp @@ -0,0 +1,60 @@ +/// @ref gtc_epsilon +/// @file glm/gtc/epsilon.hpp +/// +/// @see core (dependence) +/// @see gtc_quaternion (dependence) +/// +/// @defgroup gtc_epsilon GLM_GTC_epsilon +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// Comparison functions for a user defined epsilon values. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/qualifier.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_epsilon extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_epsilon + /// @{ + + /// Returns the component-wise comparison of |x - y| < epsilon. + /// True if this expression is satisfied. + /// + /// @see gtc_epsilon + template + GLM_FUNC_DECL vec epsilonEqual(vec const& x, vec const& y, T const& epsilon); + + /// Returns the component-wise comparison of |x - y| < epsilon. + /// True if this expression is satisfied. + /// + /// @see gtc_epsilon + template + GLM_FUNC_DECL bool epsilonEqual(genType const& x, genType const& y, genType const& epsilon); + + /// Returns the component-wise comparison of |x - y| < epsilon. + /// True if this expression is not satisfied. + /// + /// @see gtc_epsilon + template + GLM_FUNC_DECL vec epsilonNotEqual(vec const& x, vec const& y, T const& epsilon); + + /// Returns the component-wise comparison of |x - y| >= epsilon. + /// True if this expression is not satisfied. + /// + /// @see gtc_epsilon + template + GLM_FUNC_DECL bool epsilonNotEqual(genType const& x, genType const& y, genType const& epsilon); + + /// @} +}//namespace glm + +#include "epsilon.inl" diff --git a/thirdparty/glm/glm/gtc/epsilon.inl b/thirdparty/glm/glm/gtc/epsilon.inl new file mode 100644 index 000000000000..508b9f8966fe --- /dev/null +++ b/thirdparty/glm/glm/gtc/epsilon.inl @@ -0,0 +1,80 @@ +/// @ref gtc_epsilon + +// Dependency: +#include "../vector_relational.hpp" +#include "../common.hpp" + +namespace glm +{ + template<> + GLM_FUNC_QUALIFIER bool epsilonEqual + ( + float const& x, + float const& y, + float const& epsilon + ) + { + return abs(x - y) < epsilon; + } + + template<> + GLM_FUNC_QUALIFIER bool epsilonEqual + ( + double const& x, + double const& y, + double const& epsilon + ) + { + return abs(x - y) < epsilon; + } + + template + GLM_FUNC_QUALIFIER vec epsilonEqual(vec const& x, vec const& y, T const& epsilon) + { + return lessThan(abs(x - y), vec(epsilon)); + } + + template + GLM_FUNC_QUALIFIER vec epsilonEqual(vec const& x, vec const& y, vec const& epsilon) + { + return lessThan(abs(x - y), vec(epsilon)); + } + + template<> + GLM_FUNC_QUALIFIER bool epsilonNotEqual(float const& x, float const& y, float const& epsilon) + { + return abs(x - y) >= epsilon; + } + + template<> + GLM_FUNC_QUALIFIER bool epsilonNotEqual(double const& x, double const& y, double const& epsilon) + { + return abs(x - y) >= epsilon; + } + + template + GLM_FUNC_QUALIFIER vec epsilonNotEqual(vec const& x, vec const& y, T const& epsilon) + { + return greaterThanEqual(abs(x - y), vec(epsilon)); + } + + template + GLM_FUNC_QUALIFIER vec epsilonNotEqual(vec const& x, vec const& y, vec const& epsilon) + { + return greaterThanEqual(abs(x - y), vec(epsilon)); + } + + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> epsilonEqual(qua const& x, qua const& y, T const& epsilon) + { + vec<4, T, Q> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w); + return lessThan(abs(v), vec<4, T, Q>(epsilon)); + } + + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> epsilonNotEqual(qua const& x, qua const& y, T const& epsilon) + { + vec<4, T, Q> v(x.x - y.x, x.y - y.y, x.z - y.z, x.w - y.w); + return greaterThanEqual(abs(v), vec<4, T, Q>(epsilon)); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtc/integer.hpp b/thirdparty/glm/glm/gtc/integer.hpp new file mode 100644 index 000000000000..ee52e0e0c154 --- /dev/null +++ b/thirdparty/glm/glm/gtc/integer.hpp @@ -0,0 +1,43 @@ +/// @ref gtc_integer +/// @file glm/gtc/integer.hpp +/// +/// @see core (dependence) +/// @see gtc_integer (dependence) +/// +/// @defgroup gtc_integer GLM_GTC_integer +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// @brief Allow to perform bit operations on integer values + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/qualifier.hpp" +#include "../common.hpp" +#include "../integer.hpp" +#include "../exponential.hpp" +#include "../ext/scalar_common.hpp" +#include "../ext/vector_common.hpp" +#include + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_integer extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_integer + /// @{ + + /// Returns the log2 of x for integer values. Useful to compute mipmap count from the texture size. + /// @see gtc_integer + template + GLM_FUNC_DECL genIUType log2(genIUType x); + + /// @} +} //namespace glm + +#include "integer.inl" diff --git a/thirdparty/glm/glm/gtc/integer.inl b/thirdparty/glm/glm/gtc/integer.inl new file mode 100644 index 000000000000..5f66dfe2c096 --- /dev/null +++ b/thirdparty/glm/glm/gtc/integer.inl @@ -0,0 +1,33 @@ +/// @ref gtc_integer + +namespace glm{ +namespace detail +{ + template + struct compute_log2 + { + GLM_FUNC_QUALIFIER static vec call(vec const& v) + { + //Equivalent to return findMSB(vec); but save one function call in ASM with VC + //return findMSB(vec); + return vec(detail::compute_findMSB_vec::call(v)); + } + }; + +# if GLM_HAS_BITSCAN_WINDOWS + template + struct compute_log2<4, int, Q, false, Aligned> + { + GLM_FUNC_QUALIFIER static vec<4, int, Q> call(vec<4, int, Q> const& v) + { + vec<4, int, Q> Result; + _BitScanReverse(reinterpret_cast(&Result.x), v.x); + _BitScanReverse(reinterpret_cast(&Result.y), v.y); + _BitScanReverse(reinterpret_cast(&Result.z), v.z); + _BitScanReverse(reinterpret_cast(&Result.w), v.w); + return Result; + } + }; +# endif//GLM_HAS_BITSCAN_WINDOWS +}//namespace detail +}//namespace glm diff --git a/thirdparty/glm/glm/gtc/matrix_access.hpp b/thirdparty/glm/glm/gtc/matrix_access.hpp new file mode 100644 index 000000000000..4935ba755dd5 --- /dev/null +++ b/thirdparty/glm/glm/gtc/matrix_access.hpp @@ -0,0 +1,60 @@ +/// @ref gtc_matrix_access +/// @file glm/gtc/matrix_access.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_matrix_access GLM_GTC_matrix_access +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// Defines functions to access rows or columns of a matrix easily. + +#pragma once + +// Dependency: +#include "../detail/setup.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_matrix_access extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_matrix_access + /// @{ + + /// Get a specific row of a matrix. + /// @see gtc_matrix_access + template + GLM_FUNC_DECL typename genType::row_type row( + genType const& m, + length_t index); + + /// Set a specific row to a matrix. + /// @see gtc_matrix_access + template + GLM_FUNC_DECL genType row( + genType const& m, + length_t index, + typename genType::row_type const& x); + + /// Get a specific column of a matrix. + /// @see gtc_matrix_access + template + GLM_FUNC_DECL typename genType::col_type column( + genType const& m, + length_t index); + + /// Set a specific column to a matrix. + /// @see gtc_matrix_access + template + GLM_FUNC_DECL genType column( + genType const& m, + length_t index, + typename genType::col_type const& x); + + /// @} +}//namespace glm + +#include "matrix_access.inl" diff --git a/thirdparty/glm/glm/gtc/matrix_access.inl b/thirdparty/glm/glm/gtc/matrix_access.inl new file mode 100644 index 000000000000..09fcc10d3d7e --- /dev/null +++ b/thirdparty/glm/glm/gtc/matrix_access.inl @@ -0,0 +1,62 @@ +/// @ref gtc_matrix_access + +namespace glm +{ + template + GLM_FUNC_QUALIFIER genType row + ( + genType const& m, + length_t index, + typename genType::row_type const& x + ) + { + assert(index >= 0 && index < m[0].length()); + + genType Result = m; + for(length_t i = 0; i < m.length(); ++i) + Result[i][index] = x[i]; + return Result; + } + + template + GLM_FUNC_QUALIFIER typename genType::row_type row + ( + genType const& m, + length_t index + ) + { + assert(index >= 0 && index < m[0].length()); + + typename genType::row_type Result(0); + for(length_t i = 0; i < m.length(); ++i) + Result[i] = m[i][index]; + return Result; + } + + template + GLM_FUNC_QUALIFIER genType column + ( + genType const& m, + length_t index, + typename genType::col_type const& x + ) + { + assert(index >= 0 && index < m.length()); + + genType Result = m; + Result[index] = x; + return Result; + } + + template + GLM_FUNC_QUALIFIER typename genType::col_type column + ( + genType const& m, + length_t index + ) + { + assert(index >= 0 && index < m.length()); + + return m[index]; + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtc/matrix_integer.hpp b/thirdparty/glm/glm/gtc/matrix_integer.hpp new file mode 100644 index 000000000000..d7ebdc719221 --- /dev/null +++ b/thirdparty/glm/glm/gtc/matrix_integer.hpp @@ -0,0 +1,433 @@ +/// @ref gtc_matrix_integer +/// @file glm/gtc/matrix_integer.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_matrix_integer GLM_GTC_matrix_integer +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// Defines a number of matrices with integer types. + +#pragma once + +// Dependency: +#include "../mat2x2.hpp" +#include "../mat2x3.hpp" +#include "../mat2x4.hpp" +#include "../mat3x2.hpp" +#include "../mat3x3.hpp" +#include "../mat3x4.hpp" +#include "../mat4x2.hpp" +#include "../mat4x3.hpp" +#include "../mat4x4.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_matrix_integer extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_matrix_integer + /// @{ + + /// High-qualifier signed integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 2, int, highp> highp_imat2; + + /// High-qualifier signed integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 3, int, highp> highp_imat3; + + /// High-qualifier signed integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 4, int, highp> highp_imat4; + + /// High-qualifier signed integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 2, int, highp> highp_imat2x2; + + /// High-qualifier signed integer 2x3 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 3, int, highp> highp_imat2x3; + + /// High-qualifier signed integer 2x4 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 4, int, highp> highp_imat2x4; + + /// High-qualifier signed integer 3x2 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 2, int, highp> highp_imat3x2; + + /// High-qualifier signed integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 3, int, highp> highp_imat3x3; + + /// High-qualifier signed integer 3x4 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 4, int, highp> highp_imat3x4; + + /// High-qualifier signed integer 4x2 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 2, int, highp> highp_imat4x2; + + /// High-qualifier signed integer 4x3 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 3, int, highp> highp_imat4x3; + + /// High-qualifier signed integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 4, int, highp> highp_imat4x4; + + + /// Medium-qualifier signed integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 2, int, mediump> mediump_imat2; + + /// Medium-qualifier signed integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 3, int, mediump> mediump_imat3; + + /// Medium-qualifier signed integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 4, int, mediump> mediump_imat4; + + + /// Medium-qualifier signed integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 2, int, mediump> mediump_imat2x2; + + /// Medium-qualifier signed integer 2x3 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 3, int, mediump> mediump_imat2x3; + + /// Medium-qualifier signed integer 2x4 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 4, int, mediump> mediump_imat2x4; + + /// Medium-qualifier signed integer 3x2 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 2, int, mediump> mediump_imat3x2; + + /// Medium-qualifier signed integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 3, int, mediump> mediump_imat3x3; + + /// Medium-qualifier signed integer 3x4 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 4, int, mediump> mediump_imat3x4; + + /// Medium-qualifier signed integer 4x2 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 2, int, mediump> mediump_imat4x2; + + /// Medium-qualifier signed integer 4x3 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 3, int, mediump> mediump_imat4x3; + + /// Medium-qualifier signed integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 4, int, mediump> mediump_imat4x4; + + + /// Low-qualifier signed integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 2, int, lowp> lowp_imat2; + + /// Low-qualifier signed integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 3, int, lowp> lowp_imat3; + + /// Low-qualifier signed integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 4, int, lowp> lowp_imat4; + + + /// Low-qualifier signed integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 2, int, lowp> lowp_imat2x2; + + /// Low-qualifier signed integer 2x3 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 3, int, lowp> lowp_imat2x3; + + /// Low-qualifier signed integer 2x4 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 4, int, lowp> lowp_imat2x4; + + /// Low-qualifier signed integer 3x2 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 2, int, lowp> lowp_imat3x2; + + /// Low-qualifier signed integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 3, int, lowp> lowp_imat3x3; + + /// Low-qualifier signed integer 3x4 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 4, int, lowp> lowp_imat3x4; + + /// Low-qualifier signed integer 4x2 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 2, int, lowp> lowp_imat4x2; + + /// Low-qualifier signed integer 4x3 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 3, int, lowp> lowp_imat4x3; + + /// Low-qualifier signed integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 4, int, lowp> lowp_imat4x4; + + + /// High-qualifier unsigned integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 2, uint, highp> highp_umat2; + + /// High-qualifier unsigned integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 3, uint, highp> highp_umat3; + + /// High-qualifier unsigned integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 4, uint, highp> highp_umat4; + + /// High-qualifier unsigned integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 2, uint, highp> highp_umat2x2; + + /// High-qualifier unsigned integer 2x3 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 3, uint, highp> highp_umat2x3; + + /// High-qualifier unsigned integer 2x4 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 4, uint, highp> highp_umat2x4; + + /// High-qualifier unsigned integer 3x2 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 2, uint, highp> highp_umat3x2; + + /// High-qualifier unsigned integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 3, uint, highp> highp_umat3x3; + + /// High-qualifier unsigned integer 3x4 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 4, uint, highp> highp_umat3x4; + + /// High-qualifier unsigned integer 4x2 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 2, uint, highp> highp_umat4x2; + + /// High-qualifier unsigned integer 4x3 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 3, uint, highp> highp_umat4x3; + + /// High-qualifier unsigned integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 4, uint, highp> highp_umat4x4; + + + /// Medium-qualifier unsigned integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 2, uint, mediump> mediump_umat2; + + /// Medium-qualifier unsigned integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 3, uint, mediump> mediump_umat3; + + /// Medium-qualifier unsigned integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 4, uint, mediump> mediump_umat4; + + + /// Medium-qualifier unsigned integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 2, uint, mediump> mediump_umat2x2; + + /// Medium-qualifier unsigned integer 2x3 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 3, uint, mediump> mediump_umat2x3; + + /// Medium-qualifier unsigned integer 2x4 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 4, uint, mediump> mediump_umat2x4; + + /// Medium-qualifier unsigned integer 3x2 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 2, uint, mediump> mediump_umat3x2; + + /// Medium-qualifier unsigned integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 3, uint, mediump> mediump_umat3x3; + + /// Medium-qualifier unsigned integer 3x4 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 4, uint, mediump> mediump_umat3x4; + + /// Medium-qualifier unsigned integer 4x2 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 2, uint, mediump> mediump_umat4x2; + + /// Medium-qualifier unsigned integer 4x3 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 3, uint, mediump> mediump_umat4x3; + + /// Medium-qualifier unsigned integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 4, uint, mediump> mediump_umat4x4; + + + /// Low-qualifier unsigned integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 2, uint, lowp> lowp_umat2; + + /// Low-qualifier unsigned integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 3, uint, lowp> lowp_umat3; + + /// Low-qualifier unsigned integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 4, uint, lowp> lowp_umat4; + + + /// Low-qualifier unsigned integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 2, uint, lowp> lowp_umat2x2; + + /// Low-qualifier unsigned integer 2x3 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 3, uint, lowp> lowp_umat2x3; + + /// Low-qualifier unsigned integer 2x4 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 4, uint, lowp> lowp_umat2x4; + + /// Low-qualifier unsigned integer 3x2 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 2, uint, lowp> lowp_umat3x2; + + /// Low-qualifier unsigned integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 3, uint, lowp> lowp_umat3x3; + + /// Low-qualifier unsigned integer 3x4 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 4, uint, lowp> lowp_umat3x4; + + /// Low-qualifier unsigned integer 4x2 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 2, uint, lowp> lowp_umat4x2; + + /// Low-qualifier unsigned integer 4x3 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 3, uint, lowp> lowp_umat4x3; + + /// Low-qualifier unsigned integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 4, uint, lowp> lowp_umat4x4; + + + + /// Signed integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 2, int, defaultp> imat2; + + /// Signed integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 3, int, defaultp> imat3; + + /// Signed integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 4, int, defaultp> imat4; + + /// Signed integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 2, int, defaultp> imat2x2; + + /// Signed integer 2x3 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 3, int, defaultp> imat2x3; + + /// Signed integer 2x4 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 4, int, defaultp> imat2x4; + + /// Signed integer 3x2 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 2, int, defaultp> imat3x2; + + /// Signed integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 3, int, defaultp> imat3x3; + + /// Signed integer 3x4 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 4, int, defaultp> imat3x4; + + /// Signed integer 4x2 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 2, int, defaultp> imat4x2; + + /// Signed integer 4x3 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 3, int, defaultp> imat4x3; + + /// Signed integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 4, int, defaultp> imat4x4; + + + + /// Unsigned integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 2, uint, defaultp> umat2; + + /// Unsigned integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 3, uint, defaultp> umat3; + + /// Unsigned integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 4, uint, defaultp> umat4; + + /// Unsigned integer 2x2 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 2, uint, defaultp> umat2x2; + + /// Unsigned integer 2x3 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 3, uint, defaultp> umat2x3; + + /// Unsigned integer 2x4 matrix. + /// @see gtc_matrix_integer + typedef mat<2, 4, uint, defaultp> umat2x4; + + /// Unsigned integer 3x2 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 2, uint, defaultp> umat3x2; + + /// Unsigned integer 3x3 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 3, uint, defaultp> umat3x3; + + /// Unsigned integer 3x4 matrix. + /// @see gtc_matrix_integer + typedef mat<3, 4, uint, defaultp> umat3x4; + + /// Unsigned integer 4x2 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 2, uint, defaultp> umat4x2; + + /// Unsigned integer 4x3 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 3, uint, defaultp> umat4x3; + + /// Unsigned integer 4x4 matrix. + /// @see gtc_matrix_integer + typedef mat<4, 4, uint, defaultp> umat4x4; + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/gtc/matrix_inverse.hpp b/thirdparty/glm/glm/gtc/matrix_inverse.hpp new file mode 100644 index 000000000000..75d53f20234d --- /dev/null +++ b/thirdparty/glm/glm/gtc/matrix_inverse.hpp @@ -0,0 +1,50 @@ +/// @ref gtc_matrix_inverse +/// @file glm/gtc/matrix_inverse.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_matrix_inverse GLM_GTC_matrix_inverse +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// Defines additional matrix inverting functions. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../matrix.hpp" +#include "../mat2x2.hpp" +#include "../mat3x3.hpp" +#include "../mat4x4.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_matrix_inverse extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_matrix_inverse + /// @{ + + /// Fast matrix inverse for affine matrix. + /// + /// @param m Input matrix to invert. + /// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-qualifier floating point value is highly inaccurate. + /// @see gtc_matrix_inverse + template + GLM_FUNC_DECL genType affineInverse(genType const& m); + + /// Compute the inverse transpose of a matrix. + /// + /// @param m Input matrix to invert transpose. + /// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-qualifier floating point value is highly inaccurate. + /// @see gtc_matrix_inverse + template + GLM_FUNC_DECL genType inverseTranspose(genType const& m); + + /// @} +}//namespace glm + +#include "matrix_inverse.inl" diff --git a/thirdparty/glm/glm/gtc/matrix_inverse.inl b/thirdparty/glm/glm/gtc/matrix_inverse.inl new file mode 100644 index 000000000000..c004b9e14670 --- /dev/null +++ b/thirdparty/glm/glm/gtc/matrix_inverse.inl @@ -0,0 +1,118 @@ +/// @ref gtc_matrix_inverse + +namespace glm +{ + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> affineInverse(mat<3, 3, T, Q> const& m) + { + mat<2, 2, T, Q> const Inv(inverse(mat<2, 2, T, Q>(m))); + + return mat<3, 3, T, Q>( + vec<3, T, Q>(Inv[0], static_cast(0)), + vec<3, T, Q>(Inv[1], static_cast(0)), + vec<3, T, Q>(-Inv * vec<2, T, Q>(m[2]), static_cast(1))); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> affineInverse(mat<4, 4, T, Q> const& m) + { + mat<3, 3, T, Q> const Inv(inverse(mat<3, 3, T, Q>(m))); + + return mat<4, 4, T, Q>( + vec<4, T, Q>(Inv[0], static_cast(0)), + vec<4, T, Q>(Inv[1], static_cast(0)), + vec<4, T, Q>(Inv[2], static_cast(0)), + vec<4, T, Q>(-Inv * vec<3, T, Q>(m[3]), static_cast(1))); + } + + template + GLM_FUNC_QUALIFIER mat<2, 2, T, Q> inverseTranspose(mat<2, 2, T, Q> const& m) + { + T Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1]; + + mat<2, 2, T, Q> Inverse( + + m[1][1] / Determinant, + - m[0][1] / Determinant, + - m[1][0] / Determinant, + + m[0][0] / Determinant); + + return Inverse; + } + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> inverseTranspose(mat<3, 3, T, Q> const& m) + { + T Determinant = + + m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1]) + - m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0]) + + m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); + + mat<3, 3, T, Q> Inverse; + Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]); + Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]); + Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]); + Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]); + Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]); + Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]); + Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]); + Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]); + Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]); + Inverse /= Determinant; + + return Inverse; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> inverseTranspose(mat<4, 4, T, Q> const& m) + { + T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; + T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; + T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; + T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; + T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; + T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; + T SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3]; + T SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3]; + T SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2]; + T SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3]; + T SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2]; + T SubFactor11 = m[1][0] * m[3][1] - m[3][0] * m[1][1]; + T SubFactor12 = m[1][2] * m[2][3] - m[2][2] * m[1][3]; + T SubFactor13 = m[1][1] * m[2][3] - m[2][1] * m[1][3]; + T SubFactor14 = m[1][1] * m[2][2] - m[2][1] * m[1][2]; + T SubFactor15 = m[1][0] * m[2][3] - m[2][0] * m[1][3]; + T SubFactor16 = m[1][0] * m[2][2] - m[2][0] * m[1][2]; + T SubFactor17 = m[1][0] * m[2][1] - m[2][0] * m[1][1]; + + mat<4, 4, T, Q> Inverse; + Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02); + Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04); + Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05); + Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05); + + Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02); + Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04); + Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05); + Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05); + + Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08); + Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10); + Inverse[2][2] = + (m[0][0] * SubFactor07 - m[0][1] * SubFactor09 + m[0][3] * SubFactor11); + Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor11); + + Inverse[3][0] = - (m[0][1] * SubFactor12 - m[0][2] * SubFactor13 + m[0][3] * SubFactor14); + Inverse[3][1] = + (m[0][0] * SubFactor12 - m[0][2] * SubFactor15 + m[0][3] * SubFactor16); + Inverse[3][2] = - (m[0][0] * SubFactor13 - m[0][1] * SubFactor15 + m[0][3] * SubFactor17); + Inverse[3][3] = + (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][2] * SubFactor17); + + T Determinant = + + m[0][0] * Inverse[0][0] + + m[0][1] * Inverse[0][1] + + m[0][2] * Inverse[0][2] + + m[0][3] * Inverse[0][3]; + + Inverse /= Determinant; + + return Inverse; + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtc/matrix_transform.hpp b/thirdparty/glm/glm/gtc/matrix_transform.hpp new file mode 100644 index 000000000000..612418fa51c4 --- /dev/null +++ b/thirdparty/glm/glm/gtc/matrix_transform.hpp @@ -0,0 +1,36 @@ +/// @ref gtc_matrix_transform +/// @file glm/gtc/matrix_transform.hpp +/// +/// @see core (dependence) +/// @see gtx_transform +/// @see gtx_transform2 +/// +/// @defgroup gtc_matrix_transform GLM_GTC_matrix_transform +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// Defines functions that generate common transformation matrices. +/// +/// The matrices generated by this extension use standard OpenGL fixed-function +/// conventions. For example, the lookAt function generates a transform from world +/// space into the specific eye space that the projective matrix functions +/// (perspective, ortho, etc) are designed to expect. The OpenGL compatibility +/// specifications defines the particular layout of this eye space. + +#pragma once + +// Dependencies +#include "../mat4x4.hpp" +#include "../vec2.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" +#include "../ext/matrix_projection.hpp" +#include "../ext/matrix_clip_space.hpp" +#include "../ext/matrix_transform.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_matrix_transform extension included") +#endif + +#include "matrix_transform.inl" diff --git a/thirdparty/glm/glm/gtc/matrix_transform.inl b/thirdparty/glm/glm/gtc/matrix_transform.inl new file mode 100644 index 000000000000..15b46bc9db61 --- /dev/null +++ b/thirdparty/glm/glm/gtc/matrix_transform.inl @@ -0,0 +1,3 @@ +#include "../geometric.hpp" +#include "../trigonometric.hpp" +#include "../matrix.hpp" diff --git a/thirdparty/glm/glm/gtc/noise.hpp b/thirdparty/glm/glm/gtc/noise.hpp new file mode 100644 index 000000000000..ab1772e78125 --- /dev/null +++ b/thirdparty/glm/glm/gtc/noise.hpp @@ -0,0 +1,61 @@ +/// @ref gtc_noise +/// @file glm/gtc/noise.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_noise GLM_GTC_noise +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// Defines 2D, 3D and 4D procedural noise functions +/// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise": +/// https://github.com/ashima/webgl-noise +/// Following Stefan Gustavson's paper "Simplex noise demystified": +/// http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/qualifier.hpp" +#include "../detail/_noise.hpp" +#include "../geometric.hpp" +#include "../common.hpp" +#include "../vector_relational.hpp" +#include "../vec2.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_noise extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_noise + /// @{ + + /// Classic perlin noise. + /// @see gtc_noise + template + GLM_FUNC_DECL T perlin( + vec const& p); + + /// Periodic perlin noise. + /// @see gtc_noise + template + GLM_FUNC_DECL T perlin( + vec const& p, + vec const& rep); + + /// Simplex noise. + /// @see gtc_noise + template + GLM_FUNC_DECL T simplex( + vec const& p); + + /// @} +}//namespace glm + +#include "noise.inl" diff --git a/thirdparty/glm/glm/gtc/noise.inl b/thirdparty/glm/glm/gtc/noise.inl new file mode 100644 index 000000000000..a1cf399d38d4 --- /dev/null +++ b/thirdparty/glm/glm/gtc/noise.inl @@ -0,0 +1,807 @@ +/// @ref gtc_noise +/// +// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise": +// https://github.com/ashima/webgl-noise +// Following Stefan Gustavson's paper "Simplex noise demystified": +// http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf + +namespace glm{ +namespace detail +{ + template + GLM_FUNC_QUALIFIER vec<4, T, Q> grad4(T const& j, vec<4, T, Q> const& ip) + { + vec<3, T, Q> pXYZ = floor(fract(vec<3, T, Q>(j) * vec<3, T, Q>(ip)) * T(7)) * ip[2] - T(1); + T pW = static_cast(1.5) - dot(abs(pXYZ), vec<3, T, Q>(1)); + vec<4, T, Q> s = vec<4, T, Q>(lessThan(vec<4, T, Q>(pXYZ, pW), vec<4, T, Q>(0.0))); + pXYZ = pXYZ + (vec<3, T, Q>(s) * T(2) - T(1)) * s.w; + return vec<4, T, Q>(pXYZ, pW); + } +}//namespace detail + + // Classic Perlin noise + template + GLM_FUNC_QUALIFIER T perlin(vec<2, T, Q> const& Position) + { + vec<4, T, Q> Pi = glm::floor(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) + vec<4, T, Q>(0.0, 0.0, 1.0, 1.0); + vec<4, T, Q> Pf = glm::fract(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) - vec<4, T, Q>(0.0, 0.0, 1.0, 1.0); + Pi = mod(Pi, vec<4, T, Q>(289)); // To avoid truncation effects in permutation + vec<4, T, Q> ix(Pi.x, Pi.z, Pi.x, Pi.z); + vec<4, T, Q> iy(Pi.y, Pi.y, Pi.w, Pi.w); + vec<4, T, Q> fx(Pf.x, Pf.z, Pf.x, Pf.z); + vec<4, T, Q> fy(Pf.y, Pf.y, Pf.w, Pf.w); + + vec<4, T, Q> i = detail::permute(detail::permute(ix) + iy); + + vec<4, T, Q> gx = static_cast(2) * glm::fract(i / T(41)) - T(1); + vec<4, T, Q> gy = glm::abs(gx) - T(0.5); + vec<4, T, Q> tx = glm::floor(gx + T(0.5)); + gx = gx - tx; + + vec<2, T, Q> g00(gx.x, gy.x); + vec<2, T, Q> g10(gx.y, gy.y); + vec<2, T, Q> g01(gx.z, gy.z); + vec<2, T, Q> g11(gx.w, gy.w); + + vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); + g00 *= norm.x; + g01 *= norm.y; + g10 *= norm.z; + g11 *= norm.w; + + T n00 = dot(g00, vec<2, T, Q>(fx.x, fy.x)); + T n10 = dot(g10, vec<2, T, Q>(fx.y, fy.y)); + T n01 = dot(g01, vec<2, T, Q>(fx.z, fy.z)); + T n11 = dot(g11, vec<2, T, Q>(fx.w, fy.w)); + + vec<2, T, Q> fade_xy = detail::fade(vec<2, T, Q>(Pf.x, Pf.y)); + vec<2, T, Q> n_x = mix(vec<2, T, Q>(n00, n01), vec<2, T, Q>(n10, n11), fade_xy.x); + T n_xy = mix(n_x.x, n_x.y, fade_xy.y); + return T(2.3) * n_xy; + } + + // Classic Perlin noise + template + GLM_FUNC_QUALIFIER T perlin(vec<3, T, Q> const& Position) + { + vec<3, T, Q> Pi0 = floor(Position); // Integer part for indexing + vec<3, T, Q> Pi1 = Pi0 + T(1); // Integer part + 1 + Pi0 = detail::mod289(Pi0); + Pi1 = detail::mod289(Pi1); + vec<3, T, Q> Pf0 = fract(Position); // Fractional part for interpolation + vec<3, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0 + vec<4, T, Q> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec<4, T, Q> iy = vec<4, T, Q>(vec<2, T, Q>(Pi0.y), vec<2, T, Q>(Pi1.y)); + vec<4, T, Q> iz0(Pi0.z); + vec<4, T, Q> iz1(Pi1.z); + + vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy); + vec<4, T, Q> ixy0 = detail::permute(ixy + iz0); + vec<4, T, Q> ixy1 = detail::permute(ixy + iz1); + + vec<4, T, Q> gx0 = ixy0 * T(1.0 / 7.0); + vec<4, T, Q> gy0 = fract(floor(gx0) * T(1.0 / 7.0)) - T(0.5); + gx0 = fract(gx0); + vec<4, T, Q> gz0 = vec<4, T, Q>(0.5) - abs(gx0) - abs(gy0); + vec<4, T, Q> sz0 = step(gz0, vec<4, T, Q>(0.0)); + gx0 -= sz0 * (step(T(0), gx0) - T(0.5)); + gy0 -= sz0 * (step(T(0), gy0) - T(0.5)); + + vec<4, T, Q> gx1 = ixy1 * T(1.0 / 7.0); + vec<4, T, Q> gy1 = fract(floor(gx1) * T(1.0 / 7.0)) - T(0.5); + gx1 = fract(gx1); + vec<4, T, Q> gz1 = vec<4, T, Q>(0.5) - abs(gx1) - abs(gy1); + vec<4, T, Q> sz1 = step(gz1, vec<4, T, Q>(0.0)); + gx1 -= sz1 * (step(T(0), gx1) - T(0.5)); + gy1 -= sz1 * (step(T(0), gy1) - T(0.5)); + + vec<3, T, Q> g000(gx0.x, gy0.x, gz0.x); + vec<3, T, Q> g100(gx0.y, gy0.y, gz0.y); + vec<3, T, Q> g010(gx0.z, gy0.z, gz0.z); + vec<3, T, Q> g110(gx0.w, gy0.w, gz0.w); + vec<3, T, Q> g001(gx1.x, gy1.x, gz1.x); + vec<3, T, Q> g101(gx1.y, gy1.y, gz1.y); + vec<3, T, Q> g011(gx1.z, gy1.z, gz1.z); + vec<3, T, Q> g111(gx1.w, gy1.w, gz1.w); + + vec<4, T, Q> norm0 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); + g000 *= norm0.x; + g010 *= norm0.y; + g100 *= norm0.z; + g110 *= norm0.w; + vec<4, T, Q> norm1 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); + g001 *= norm1.x; + g011 *= norm1.y; + g101 *= norm1.z; + g111 *= norm1.w; + + T n000 = dot(g000, Pf0); + T n100 = dot(g100, vec<3, T, Q>(Pf1.x, Pf0.y, Pf0.z)); + T n010 = dot(g010, vec<3, T, Q>(Pf0.x, Pf1.y, Pf0.z)); + T n110 = dot(g110, vec<3, T, Q>(Pf1.x, Pf1.y, Pf0.z)); + T n001 = dot(g001, vec<3, T, Q>(Pf0.x, Pf0.y, Pf1.z)); + T n101 = dot(g101, vec<3, T, Q>(Pf1.x, Pf0.y, Pf1.z)); + T n011 = dot(g011, vec<3, T, Q>(Pf0.x, Pf1.y, Pf1.z)); + T n111 = dot(g111, Pf1); + + vec<3, T, Q> fade_xyz = detail::fade(Pf0); + vec<4, T, Q> n_z = mix(vec<4, T, Q>(n000, n100, n010, n110), vec<4, T, Q>(n001, n101, n011, n111), fade_xyz.z); + vec<2, T, Q> n_yz = mix(vec<2, T, Q>(n_z.x, n_z.y), vec<2, T, Q>(n_z.z, n_z.w), fade_xyz.y); + T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); + return T(2.2) * n_xyz; + } + /* + // Classic Perlin noise + template + GLM_FUNC_QUALIFIER T perlin(vec<3, T, Q> const& P) + { + vec<3, T, Q> Pi0 = floor(P); // Integer part for indexing + vec<3, T, Q> Pi1 = Pi0 + T(1); // Integer part + 1 + Pi0 = mod(Pi0, T(289)); + Pi1 = mod(Pi1, T(289)); + vec<3, T, Q> Pf0 = fract(P); // Fractional part for interpolation + vec<3, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0 + vec<4, T, Q> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec<4, T, Q> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y); + vec<4, T, Q> iz0(Pi0.z); + vec<4, T, Q> iz1(Pi1.z); + + vec<4, T, Q> ixy = permute(permute(ix) + iy); + vec<4, T, Q> ixy0 = permute(ixy + iz0); + vec<4, T, Q> ixy1 = permute(ixy + iz1); + + vec<4, T, Q> gx0 = ixy0 / T(7); + vec<4, T, Q> gy0 = fract(floor(gx0) / T(7)) - T(0.5); + gx0 = fract(gx0); + vec<4, T, Q> gz0 = vec<4, T, Q>(0.5) - abs(gx0) - abs(gy0); + vec<4, T, Q> sz0 = step(gz0, vec<4, T, Q>(0.0)); + gx0 -= sz0 * (step(0.0, gx0) - T(0.5)); + gy0 -= sz0 * (step(0.0, gy0) - T(0.5)); + + vec<4, T, Q> gx1 = ixy1 / T(7); + vec<4, T, Q> gy1 = fract(floor(gx1) / T(7)) - T(0.5); + gx1 = fract(gx1); + vec<4, T, Q> gz1 = vec<4, T, Q>(0.5) - abs(gx1) - abs(gy1); + vec<4, T, Q> sz1 = step(gz1, vec<4, T, Q>(0.0)); + gx1 -= sz1 * (step(T(0), gx1) - T(0.5)); + gy1 -= sz1 * (step(T(0), gy1) - T(0.5)); + + vec<3, T, Q> g000(gx0.x, gy0.x, gz0.x); + vec<3, T, Q> g100(gx0.y, gy0.y, gz0.y); + vec<3, T, Q> g010(gx0.z, gy0.z, gz0.z); + vec<3, T, Q> g110(gx0.w, gy0.w, gz0.w); + vec<3, T, Q> g001(gx1.x, gy1.x, gz1.x); + vec<3, T, Q> g101(gx1.y, gy1.y, gz1.y); + vec<3, T, Q> g011(gx1.z, gy1.z, gz1.z); + vec<3, T, Q> g111(gx1.w, gy1.w, gz1.w); + + vec<4, T, Q> norm0 = taylorInvSqrt(vec<4, T, Q>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); + g000 *= norm0.x; + g010 *= norm0.y; + g100 *= norm0.z; + g110 *= norm0.w; + vec<4, T, Q> norm1 = taylorInvSqrt(vec<4, T, Q>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); + g001 *= norm1.x; + g011 *= norm1.y; + g101 *= norm1.z; + g111 *= norm1.w; + + T n000 = dot(g000, Pf0); + T n100 = dot(g100, vec<3, T, Q>(Pf1.x, Pf0.y, Pf0.z)); + T n010 = dot(g010, vec<3, T, Q>(Pf0.x, Pf1.y, Pf0.z)); + T n110 = dot(g110, vec<3, T, Q>(Pf1.x, Pf1.y, Pf0.z)); + T n001 = dot(g001, vec<3, T, Q>(Pf0.x, Pf0.y, Pf1.z)); + T n101 = dot(g101, vec<3, T, Q>(Pf1.x, Pf0.y, Pf1.z)); + T n011 = dot(g011, vec<3, T, Q>(Pf0.x, Pf1.y, Pf1.z)); + T n111 = dot(g111, Pf1); + + vec<3, T, Q> fade_xyz = fade(Pf0); + vec<4, T, Q> n_z = mix(vec<4, T, Q>(n000, n100, n010, n110), vec<4, T, Q>(n001, n101, n011, n111), fade_xyz.z); + vec<2, T, Q> n_yz = mix( + vec<2, T, Q>(n_z.x, n_z.y), + vec<2, T, Q>(n_z.z, n_z.w), fade_xyz.y); + T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); + return T(2.2) * n_xyz; + } + */ + // Classic Perlin noise + template + GLM_FUNC_QUALIFIER T perlin(vec<4, T, Q> const& Position) + { + vec<4, T, Q> Pi0 = floor(Position); // Integer part for indexing + vec<4, T, Q> Pi1 = Pi0 + T(1); // Integer part + 1 + Pi0 = mod(Pi0, vec<4, T, Q>(289)); + Pi1 = mod(Pi1, vec<4, T, Q>(289)); + vec<4, T, Q> Pf0 = fract(Position); // Fractional part for interpolation + vec<4, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0 + vec<4, T, Q> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec<4, T, Q> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y); + vec<4, T, Q> iz0(Pi0.z); + vec<4, T, Q> iz1(Pi1.z); + vec<4, T, Q> iw0(Pi0.w); + vec<4, T, Q> iw1(Pi1.w); + + vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy); + vec<4, T, Q> ixy0 = detail::permute(ixy + iz0); + vec<4, T, Q> ixy1 = detail::permute(ixy + iz1); + vec<4, T, Q> ixy00 = detail::permute(ixy0 + iw0); + vec<4, T, Q> ixy01 = detail::permute(ixy0 + iw1); + vec<4, T, Q> ixy10 = detail::permute(ixy1 + iw0); + vec<4, T, Q> ixy11 = detail::permute(ixy1 + iw1); + + vec<4, T, Q> gx00 = ixy00 / T(7); + vec<4, T, Q> gy00 = floor(gx00) / T(7); + vec<4, T, Q> gz00 = floor(gy00) / T(6); + gx00 = fract(gx00) - T(0.5); + gy00 = fract(gy00) - T(0.5); + gz00 = fract(gz00) - T(0.5); + vec<4, T, Q> gw00 = vec<4, T, Q>(0.75) - abs(gx00) - abs(gy00) - abs(gz00); + vec<4, T, Q> sw00 = step(gw00, vec<4, T, Q>(0.0)); + gx00 -= sw00 * (step(T(0), gx00) - T(0.5)); + gy00 -= sw00 * (step(T(0), gy00) - T(0.5)); + + vec<4, T, Q> gx01 = ixy01 / T(7); + vec<4, T, Q> gy01 = floor(gx01) / T(7); + vec<4, T, Q> gz01 = floor(gy01) / T(6); + gx01 = fract(gx01) - T(0.5); + gy01 = fract(gy01) - T(0.5); + gz01 = fract(gz01) - T(0.5); + vec<4, T, Q> gw01 = vec<4, T, Q>(0.75) - abs(gx01) - abs(gy01) - abs(gz01); + vec<4, T, Q> sw01 = step(gw01, vec<4, T, Q>(0.0)); + gx01 -= sw01 * (step(T(0), gx01) - T(0.5)); + gy01 -= sw01 * (step(T(0), gy01) - T(0.5)); + + vec<4, T, Q> gx10 = ixy10 / T(7); + vec<4, T, Q> gy10 = floor(gx10) / T(7); + vec<4, T, Q> gz10 = floor(gy10) / T(6); + gx10 = fract(gx10) - T(0.5); + gy10 = fract(gy10) - T(0.5); + gz10 = fract(gz10) - T(0.5); + vec<4, T, Q> gw10 = vec<4, T, Q>(0.75) - abs(gx10) - abs(gy10) - abs(gz10); + vec<4, T, Q> sw10 = step(gw10, vec<4, T, Q>(0)); + gx10 -= sw10 * (step(T(0), gx10) - T(0.5)); + gy10 -= sw10 * (step(T(0), gy10) - T(0.5)); + + vec<4, T, Q> gx11 = ixy11 / T(7); + vec<4, T, Q> gy11 = floor(gx11) / T(7); + vec<4, T, Q> gz11 = floor(gy11) / T(6); + gx11 = fract(gx11) - T(0.5); + gy11 = fract(gy11) - T(0.5); + gz11 = fract(gz11) - T(0.5); + vec<4, T, Q> gw11 = vec<4, T, Q>(0.75) - abs(gx11) - abs(gy11) - abs(gz11); + vec<4, T, Q> sw11 = step(gw11, vec<4, T, Q>(0.0)); + gx11 -= sw11 * (step(T(0), gx11) - T(0.5)); + gy11 -= sw11 * (step(T(0), gy11) - T(0.5)); + + vec<4, T, Q> g0000(gx00.x, gy00.x, gz00.x, gw00.x); + vec<4, T, Q> g1000(gx00.y, gy00.y, gz00.y, gw00.y); + vec<4, T, Q> g0100(gx00.z, gy00.z, gz00.z, gw00.z); + vec<4, T, Q> g1100(gx00.w, gy00.w, gz00.w, gw00.w); + vec<4, T, Q> g0010(gx10.x, gy10.x, gz10.x, gw10.x); + vec<4, T, Q> g1010(gx10.y, gy10.y, gz10.y, gw10.y); + vec<4, T, Q> g0110(gx10.z, gy10.z, gz10.z, gw10.z); + vec<4, T, Q> g1110(gx10.w, gy10.w, gz10.w, gw10.w); + vec<4, T, Q> g0001(gx01.x, gy01.x, gz01.x, gw01.x); + vec<4, T, Q> g1001(gx01.y, gy01.y, gz01.y, gw01.y); + vec<4, T, Q> g0101(gx01.z, gy01.z, gz01.z, gw01.z); + vec<4, T, Q> g1101(gx01.w, gy01.w, gz01.w, gw01.w); + vec<4, T, Q> g0011(gx11.x, gy11.x, gz11.x, gw11.x); + vec<4, T, Q> g1011(gx11.y, gy11.y, gz11.y, gw11.y); + vec<4, T, Q> g0111(gx11.z, gy11.z, gz11.z, gw11.z); + vec<4, T, Q> g1111(gx11.w, gy11.w, gz11.w, gw11.w); + + vec<4, T, Q> norm00 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); + g0000 *= norm00.x; + g0100 *= norm00.y; + g1000 *= norm00.z; + g1100 *= norm00.w; + + vec<4, T, Q> norm01 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); + g0001 *= norm01.x; + g0101 *= norm01.y; + g1001 *= norm01.z; + g1101 *= norm01.w; + + vec<4, T, Q> norm10 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); + g0010 *= norm10.x; + g0110 *= norm10.y; + g1010 *= norm10.z; + g1110 *= norm10.w; + + vec<4, T, Q> norm11 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); + g0011 *= norm11.x; + g0111 *= norm11.y; + g1011 *= norm11.z; + g1111 *= norm11.w; + + T n0000 = dot(g0000, Pf0); + T n1000 = dot(g1000, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf0.w)); + T n0100 = dot(g0100, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf0.w)); + T n1100 = dot(g1100, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf0.w)); + T n0010 = dot(g0010, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf0.w)); + T n1010 = dot(g1010, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); + T n0110 = dot(g0110, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf0.w)); + T n1110 = dot(g1110, vec<4, T, Q>(Pf1.x, Pf1.y, Pf1.z, Pf0.w)); + T n0001 = dot(g0001, vec<4, T, Q>(Pf0.x, Pf0.y, Pf0.z, Pf1.w)); + T n1001 = dot(g1001, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf1.w)); + T n0101 = dot(g0101, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); + T n1101 = dot(g1101, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf1.w)); + T n0011 = dot(g0011, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf1.w)); + T n1011 = dot(g1011, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf1.w)); + T n0111 = dot(g0111, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf1.w)); + T n1111 = dot(g1111, Pf1); + + vec<4, T, Q> fade_xyzw = detail::fade(Pf0); + vec<4, T, Q> n_0w = mix(vec<4, T, Q>(n0000, n1000, n0100, n1100), vec<4, T, Q>(n0001, n1001, n0101, n1101), fade_xyzw.w); + vec<4, T, Q> n_1w = mix(vec<4, T, Q>(n0010, n1010, n0110, n1110), vec<4, T, Q>(n0011, n1011, n0111, n1111), fade_xyzw.w); + vec<4, T, Q> n_zw = mix(n_0w, n_1w, fade_xyzw.z); + vec<2, T, Q> n_yzw = mix(vec<2, T, Q>(n_zw.x, n_zw.y), vec<2, T, Q>(n_zw.z, n_zw.w), fade_xyzw.y); + T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x); + return T(2.2) * n_xyzw; + } + + // Classic Perlin noise, periodic variant + template + GLM_FUNC_QUALIFIER T perlin(vec<2, T, Q> const& Position, vec<2, T, Q> const& rep) + { + vec<4, T, Q> Pi = floor(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) + vec<4, T, Q>(0.0, 0.0, 1.0, 1.0); + vec<4, T, Q> Pf = fract(vec<4, T, Q>(Position.x, Position.y, Position.x, Position.y)) - vec<4, T, Q>(0.0, 0.0, 1.0, 1.0); + Pi = mod(Pi, vec<4, T, Q>(rep.x, rep.y, rep.x, rep.y)); // To create noise with explicit period + Pi = mod(Pi, vec<4, T, Q>(289)); // To avoid truncation effects in permutation + vec<4, T, Q> ix(Pi.x, Pi.z, Pi.x, Pi.z); + vec<4, T, Q> iy(Pi.y, Pi.y, Pi.w, Pi.w); + vec<4, T, Q> fx(Pf.x, Pf.z, Pf.x, Pf.z); + vec<4, T, Q> fy(Pf.y, Pf.y, Pf.w, Pf.w); + + vec<4, T, Q> i = detail::permute(detail::permute(ix) + iy); + + vec<4, T, Q> gx = static_cast(2) * fract(i / T(41)) - T(1); + vec<4, T, Q> gy = abs(gx) - T(0.5); + vec<4, T, Q> tx = floor(gx + T(0.5)); + gx = gx - tx; + + vec<2, T, Q> g00(gx.x, gy.x); + vec<2, T, Q> g10(gx.y, gy.y); + vec<2, T, Q> g01(gx.z, gy.z); + vec<2, T, Q> g11(gx.w, gy.w); + + vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); + g00 *= norm.x; + g01 *= norm.y; + g10 *= norm.z; + g11 *= norm.w; + + T n00 = dot(g00, vec<2, T, Q>(fx.x, fy.x)); + T n10 = dot(g10, vec<2, T, Q>(fx.y, fy.y)); + T n01 = dot(g01, vec<2, T, Q>(fx.z, fy.z)); + T n11 = dot(g11, vec<2, T, Q>(fx.w, fy.w)); + + vec<2, T, Q> fade_xy = detail::fade(vec<2, T, Q>(Pf.x, Pf.y)); + vec<2, T, Q> n_x = mix(vec<2, T, Q>(n00, n01), vec<2, T, Q>(n10, n11), fade_xy.x); + T n_xy = mix(n_x.x, n_x.y, fade_xy.y); + return T(2.3) * n_xy; + } + + // Classic Perlin noise, periodic variant + template + GLM_FUNC_QUALIFIER T perlin(vec<3, T, Q> const& Position, vec<3, T, Q> const& rep) + { + vec<3, T, Q> Pi0 = mod(floor(Position), rep); // Integer part, modulo period + vec<3, T, Q> Pi1 = mod(Pi0 + vec<3, T, Q>(T(1)), rep); // Integer part + 1, mod period + Pi0 = mod(Pi0, vec<3, T, Q>(289)); + Pi1 = mod(Pi1, vec<3, T, Q>(289)); + vec<3, T, Q> Pf0 = fract(Position); // Fractional part for interpolation + vec<3, T, Q> Pf1 = Pf0 - vec<3, T, Q>(T(1)); // Fractional part - 1.0 + vec<4, T, Q> ix = vec<4, T, Q>(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec<4, T, Q> iy = vec<4, T, Q>(Pi0.y, Pi0.y, Pi1.y, Pi1.y); + vec<4, T, Q> iz0(Pi0.z); + vec<4, T, Q> iz1(Pi1.z); + + vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy); + vec<4, T, Q> ixy0 = detail::permute(ixy + iz0); + vec<4, T, Q> ixy1 = detail::permute(ixy + iz1); + + vec<4, T, Q> gx0 = ixy0 / T(7); + vec<4, T, Q> gy0 = fract(floor(gx0) / T(7)) - T(0.5); + gx0 = fract(gx0); + vec<4, T, Q> gz0 = vec<4, T, Q>(0.5) - abs(gx0) - abs(gy0); + vec<4, T, Q> sz0 = step(gz0, vec<4, T, Q>(0)); + gx0 -= sz0 * (step(T(0), gx0) - T(0.5)); + gy0 -= sz0 * (step(T(0), gy0) - T(0.5)); + + vec<4, T, Q> gx1 = ixy1 / T(7); + vec<4, T, Q> gy1 = fract(floor(gx1) / T(7)) - T(0.5); + gx1 = fract(gx1); + vec<4, T, Q> gz1 = vec<4, T, Q>(0.5) - abs(gx1) - abs(gy1); + vec<4, T, Q> sz1 = step(gz1, vec<4, T, Q>(T(0))); + gx1 -= sz1 * (step(T(0), gx1) - T(0.5)); + gy1 -= sz1 * (step(T(0), gy1) - T(0.5)); + + vec<3, T, Q> g000 = vec<3, T, Q>(gx0.x, gy0.x, gz0.x); + vec<3, T, Q> g100 = vec<3, T, Q>(gx0.y, gy0.y, gz0.y); + vec<3, T, Q> g010 = vec<3, T, Q>(gx0.z, gy0.z, gz0.z); + vec<3, T, Q> g110 = vec<3, T, Q>(gx0.w, gy0.w, gz0.w); + vec<3, T, Q> g001 = vec<3, T, Q>(gx1.x, gy1.x, gz1.x); + vec<3, T, Q> g101 = vec<3, T, Q>(gx1.y, gy1.y, gz1.y); + vec<3, T, Q> g011 = vec<3, T, Q>(gx1.z, gy1.z, gz1.z); + vec<3, T, Q> g111 = vec<3, T, Q>(gx1.w, gy1.w, gz1.w); + + vec<4, T, Q> norm0 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); + g000 *= norm0.x; + g010 *= norm0.y; + g100 *= norm0.z; + g110 *= norm0.w; + vec<4, T, Q> norm1 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); + g001 *= norm1.x; + g011 *= norm1.y; + g101 *= norm1.z; + g111 *= norm1.w; + + T n000 = dot(g000, Pf0); + T n100 = dot(g100, vec<3, T, Q>(Pf1.x, Pf0.y, Pf0.z)); + T n010 = dot(g010, vec<3, T, Q>(Pf0.x, Pf1.y, Pf0.z)); + T n110 = dot(g110, vec<3, T, Q>(Pf1.x, Pf1.y, Pf0.z)); + T n001 = dot(g001, vec<3, T, Q>(Pf0.x, Pf0.y, Pf1.z)); + T n101 = dot(g101, vec<3, T, Q>(Pf1.x, Pf0.y, Pf1.z)); + T n011 = dot(g011, vec<3, T, Q>(Pf0.x, Pf1.y, Pf1.z)); + T n111 = dot(g111, Pf1); + + vec<3, T, Q> fade_xyz = detail::fade(Pf0); + vec<4, T, Q> n_z = mix(vec<4, T, Q>(n000, n100, n010, n110), vec<4, T, Q>(n001, n101, n011, n111), fade_xyz.z); + vec<2, T, Q> n_yz = mix(vec<2, T, Q>(n_z.x, n_z.y), vec<2, T, Q>(n_z.z, n_z.w), fade_xyz.y); + T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); + return T(2.2) * n_xyz; + } + + // Classic Perlin noise, periodic version + template + GLM_FUNC_QUALIFIER T perlin(vec<4, T, Q> const& Position, vec<4, T, Q> const& rep) + { + vec<4, T, Q> Pi0 = mod(floor(Position), rep); // Integer part modulo rep + vec<4, T, Q> Pi1 = mod(Pi0 + T(1), rep); // Integer part + 1 mod rep + vec<4, T, Q> Pf0 = fract(Position); // Fractional part for interpolation + vec<4, T, Q> Pf1 = Pf0 - T(1); // Fractional part - 1.0 + vec<4, T, Q> ix = vec<4, T, Q>(Pi0.x, Pi1.x, Pi0.x, Pi1.x); + vec<4, T, Q> iy = vec<4, T, Q>(Pi0.y, Pi0.y, Pi1.y, Pi1.y); + vec<4, T, Q> iz0(Pi0.z); + vec<4, T, Q> iz1(Pi1.z); + vec<4, T, Q> iw0(Pi0.w); + vec<4, T, Q> iw1(Pi1.w); + + vec<4, T, Q> ixy = detail::permute(detail::permute(ix) + iy); + vec<4, T, Q> ixy0 = detail::permute(ixy + iz0); + vec<4, T, Q> ixy1 = detail::permute(ixy + iz1); + vec<4, T, Q> ixy00 = detail::permute(ixy0 + iw0); + vec<4, T, Q> ixy01 = detail::permute(ixy0 + iw1); + vec<4, T, Q> ixy10 = detail::permute(ixy1 + iw0); + vec<4, T, Q> ixy11 = detail::permute(ixy1 + iw1); + + vec<4, T, Q> gx00 = ixy00 / T(7); + vec<4, T, Q> gy00 = floor(gx00) / T(7); + vec<4, T, Q> gz00 = floor(gy00) / T(6); + gx00 = fract(gx00) - T(0.5); + gy00 = fract(gy00) - T(0.5); + gz00 = fract(gz00) - T(0.5); + vec<4, T, Q> gw00 = vec<4, T, Q>(0.75) - abs(gx00) - abs(gy00) - abs(gz00); + vec<4, T, Q> sw00 = step(gw00, vec<4, T, Q>(0)); + gx00 -= sw00 * (step(T(0), gx00) - T(0.5)); + gy00 -= sw00 * (step(T(0), gy00) - T(0.5)); + + vec<4, T, Q> gx01 = ixy01 / T(7); + vec<4, T, Q> gy01 = floor(gx01) / T(7); + vec<4, T, Q> gz01 = floor(gy01) / T(6); + gx01 = fract(gx01) - T(0.5); + gy01 = fract(gy01) - T(0.5); + gz01 = fract(gz01) - T(0.5); + vec<4, T, Q> gw01 = vec<4, T, Q>(0.75) - abs(gx01) - abs(gy01) - abs(gz01); + vec<4, T, Q> sw01 = step(gw01, vec<4, T, Q>(0.0)); + gx01 -= sw01 * (step(T(0), gx01) - T(0.5)); + gy01 -= sw01 * (step(T(0), gy01) - T(0.5)); + + vec<4, T, Q> gx10 = ixy10 / T(7); + vec<4, T, Q> gy10 = floor(gx10) / T(7); + vec<4, T, Q> gz10 = floor(gy10) / T(6); + gx10 = fract(gx10) - T(0.5); + gy10 = fract(gy10) - T(0.5); + gz10 = fract(gz10) - T(0.5); + vec<4, T, Q> gw10 = vec<4, T, Q>(0.75) - abs(gx10) - abs(gy10) - abs(gz10); + vec<4, T, Q> sw10 = step(gw10, vec<4, T, Q>(0.0)); + gx10 -= sw10 * (step(T(0), gx10) - T(0.5)); + gy10 -= sw10 * (step(T(0), gy10) - T(0.5)); + + vec<4, T, Q> gx11 = ixy11 / T(7); + vec<4, T, Q> gy11 = floor(gx11) / T(7); + vec<4, T, Q> gz11 = floor(gy11) / T(6); + gx11 = fract(gx11) - T(0.5); + gy11 = fract(gy11) - T(0.5); + gz11 = fract(gz11) - T(0.5); + vec<4, T, Q> gw11 = vec<4, T, Q>(0.75) - abs(gx11) - abs(gy11) - abs(gz11); + vec<4, T, Q> sw11 = step(gw11, vec<4, T, Q>(T(0))); + gx11 -= sw11 * (step(T(0), gx11) - T(0.5)); + gy11 -= sw11 * (step(T(0), gy11) - T(0.5)); + + vec<4, T, Q> g0000(gx00.x, gy00.x, gz00.x, gw00.x); + vec<4, T, Q> g1000(gx00.y, gy00.y, gz00.y, gw00.y); + vec<4, T, Q> g0100(gx00.z, gy00.z, gz00.z, gw00.z); + vec<4, T, Q> g1100(gx00.w, gy00.w, gz00.w, gw00.w); + vec<4, T, Q> g0010(gx10.x, gy10.x, gz10.x, gw10.x); + vec<4, T, Q> g1010(gx10.y, gy10.y, gz10.y, gw10.y); + vec<4, T, Q> g0110(gx10.z, gy10.z, gz10.z, gw10.z); + vec<4, T, Q> g1110(gx10.w, gy10.w, gz10.w, gw10.w); + vec<4, T, Q> g0001(gx01.x, gy01.x, gz01.x, gw01.x); + vec<4, T, Q> g1001(gx01.y, gy01.y, gz01.y, gw01.y); + vec<4, T, Q> g0101(gx01.z, gy01.z, gz01.z, gw01.z); + vec<4, T, Q> g1101(gx01.w, gy01.w, gz01.w, gw01.w); + vec<4, T, Q> g0011(gx11.x, gy11.x, gz11.x, gw11.x); + vec<4, T, Q> g1011(gx11.y, gy11.y, gz11.y, gw11.y); + vec<4, T, Q> g0111(gx11.z, gy11.z, gz11.z, gw11.z); + vec<4, T, Q> g1111(gx11.w, gy11.w, gz11.w, gw11.w); + + vec<4, T, Q> norm00 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100))); + g0000 *= norm00.x; + g0100 *= norm00.y; + g1000 *= norm00.z; + g1100 *= norm00.w; + + vec<4, T, Q> norm01 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101))); + g0001 *= norm01.x; + g0101 *= norm01.y; + g1001 *= norm01.z; + g1101 *= norm01.w; + + vec<4, T, Q> norm10 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110))); + g0010 *= norm10.x; + g0110 *= norm10.y; + g1010 *= norm10.z; + g1110 *= norm10.w; + + vec<4, T, Q> norm11 = detail::taylorInvSqrt(vec<4, T, Q>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111))); + g0011 *= norm11.x; + g0111 *= norm11.y; + g1011 *= norm11.z; + g1111 *= norm11.w; + + T n0000 = dot(g0000, Pf0); + T n1000 = dot(g1000, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf0.w)); + T n0100 = dot(g0100, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf0.w)); + T n1100 = dot(g1100, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf0.w)); + T n0010 = dot(g0010, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf0.w)); + T n1010 = dot(g1010, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf0.w)); + T n0110 = dot(g0110, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf0.w)); + T n1110 = dot(g1110, vec<4, T, Q>(Pf1.x, Pf1.y, Pf1.z, Pf0.w)); + T n0001 = dot(g0001, vec<4, T, Q>(Pf0.x, Pf0.y, Pf0.z, Pf1.w)); + T n1001 = dot(g1001, vec<4, T, Q>(Pf1.x, Pf0.y, Pf0.z, Pf1.w)); + T n0101 = dot(g0101, vec<4, T, Q>(Pf0.x, Pf1.y, Pf0.z, Pf1.w)); + T n1101 = dot(g1101, vec<4, T, Q>(Pf1.x, Pf1.y, Pf0.z, Pf1.w)); + T n0011 = dot(g0011, vec<4, T, Q>(Pf0.x, Pf0.y, Pf1.z, Pf1.w)); + T n1011 = dot(g1011, vec<4, T, Q>(Pf1.x, Pf0.y, Pf1.z, Pf1.w)); + T n0111 = dot(g0111, vec<4, T, Q>(Pf0.x, Pf1.y, Pf1.z, Pf1.w)); + T n1111 = dot(g1111, Pf1); + + vec<4, T, Q> fade_xyzw = detail::fade(Pf0); + vec<4, T, Q> n_0w = mix(vec<4, T, Q>(n0000, n1000, n0100, n1100), vec<4, T, Q>(n0001, n1001, n0101, n1101), fade_xyzw.w); + vec<4, T, Q> n_1w = mix(vec<4, T, Q>(n0010, n1010, n0110, n1110), vec<4, T, Q>(n0011, n1011, n0111, n1111), fade_xyzw.w); + vec<4, T, Q> n_zw = mix(n_0w, n_1w, fade_xyzw.z); + vec<2, T, Q> n_yzw = mix(vec<2, T, Q>(n_zw.x, n_zw.y), vec<2, T, Q>(n_zw.z, n_zw.w), fade_xyzw.y); + T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x); + return T(2.2) * n_xyzw; + } + + template + GLM_FUNC_QUALIFIER T simplex(glm::vec<2, T, Q> const& v) + { + vec<4, T, Q> const C = vec<4, T, Q>( + T( 0.211324865405187), // (3.0 - sqrt(3.0)) / 6.0 + T( 0.366025403784439), // 0.5 * (sqrt(3.0) - 1.0) + T(-0.577350269189626), // -1.0 + 2.0 * C.x + T( 0.024390243902439)); // 1.0 / 41.0 + + // First corner + vec<2, T, Q> i = floor(v + dot(v, vec<2, T, Q>(C[1]))); + vec<2, T, Q> x0 = v - i + dot(i, vec<2, T, Q>(C[0])); + + // Other corners + //i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0 + //i1.y = 1.0 - i1.x; + vec<2, T, Q> i1 = (x0.x > x0.y) ? vec<2, T, Q>(1, 0) : vec<2, T, Q>(0, 1); + // x0 = x0 - 0.0 + 0.0 * C.xx ; + // x1 = x0 - i1 + 1.0 * C.xx ; + // x2 = x0 - 1.0 + 2.0 * C.xx ; + vec<4, T, Q> x12 = vec<4, T, Q>(x0.x, x0.y, x0.x, x0.y) + vec<4, T, Q>(C.x, C.x, C.z, C.z); + x12 = vec<4, T, Q>(vec<2, T, Q>(x12) - i1, x12.z, x12.w); + + // Permutations + i = mod(i, vec<2, T, Q>(289)); // Avoid truncation effects in permutation + vec<3, T, Q> p = detail::permute( + detail::permute(i.y + vec<3, T, Q>(T(0), i1.y, T(1))) + + i.x + vec<3, T, Q>(T(0), i1.x, T(1))); + + vec<3, T, Q> m = max(vec<3, T, Q>(0.5) - vec<3, T, Q>( + dot(x0, x0), + dot(vec<2, T, Q>(x12.x, x12.y), vec<2, T, Q>(x12.x, x12.y)), + dot(vec<2, T, Q>(x12.z, x12.w), vec<2, T, Q>(x12.z, x12.w))), vec<3, T, Q>(0)); + m = m * m ; + m = m * m ; + + // Gradients: 41 points uniformly over a line, mapped onto a diamond. + // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287) + + vec<3, T, Q> x = static_cast(2) * fract(p * C.w) - T(1); + vec<3, T, Q> h = abs(x) - T(0.5); + vec<3, T, Q> ox = floor(x + T(0.5)); + vec<3, T, Q> a0 = x - ox; + + // Normalise gradients implicitly by scaling m + // Inlined for speed: m *= taylorInvSqrt( a0*a0 + h*h ); + m *= static_cast(1.79284291400159) - T(0.85373472095314) * (a0 * a0 + h * h); + + // Compute final noise value at P + vec<3, T, Q> g; + g.x = a0.x * x0.x + h.x * x0.y; + //g.yz = a0.yz * x12.xz + h.yz * x12.yw; + g.y = a0.y * x12.x + h.y * x12.y; + g.z = a0.z * x12.z + h.z * x12.w; + return T(130) * dot(m, g); + } + + template + GLM_FUNC_QUALIFIER T simplex(vec<3, T, Q> const& v) + { + vec<2, T, Q> const C(1.0 / 6.0, 1.0 / 3.0); + vec<4, T, Q> const D(0.0, 0.5, 1.0, 2.0); + + // First corner + vec<3, T, Q> i(floor(v + dot(v, vec<3, T, Q>(C.y)))); + vec<3, T, Q> x0(v - i + dot(i, vec<3, T, Q>(C.x))); + + // Other corners + vec<3, T, Q> g(step(vec<3, T, Q>(x0.y, x0.z, x0.x), x0)); + vec<3, T, Q> l(T(1) - g); + vec<3, T, Q> i1(min(g, vec<3, T, Q>(l.z, l.x, l.y))); + vec<3, T, Q> i2(max(g, vec<3, T, Q>(l.z, l.x, l.y))); + + // x0 = x0 - 0.0 + 0.0 * C.xxx; + // x1 = x0 - i1 + 1.0 * C.xxx; + // x2 = x0 - i2 + 2.0 * C.xxx; + // x3 = x0 - 1.0 + 3.0 * C.xxx; + vec<3, T, Q> x1(x0 - i1 + C.x); + vec<3, T, Q> x2(x0 - i2 + C.y); // 2.0*C.x = 1/3 = C.y + vec<3, T, Q> x3(x0 - D.y); // -1.0+3.0*C.x = -0.5 = -D.y + + // Permutations + i = detail::mod289(i); + vec<4, T, Q> p(detail::permute(detail::permute(detail::permute( + i.z + vec<4, T, Q>(T(0), i1.z, i2.z, T(1))) + + i.y + vec<4, T, Q>(T(0), i1.y, i2.y, T(1))) + + i.x + vec<4, T, Q>(T(0), i1.x, i2.x, T(1)))); + + // Gradients: 7x7 points over a square, mapped onto an octahedron. + // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) + T n_ = static_cast(0.142857142857); // 1.0/7.0 + vec<3, T, Q> ns(n_ * vec<3, T, Q>(D.w, D.y, D.z) - vec<3, T, Q>(D.x, D.z, D.x)); + + vec<4, T, Q> j(p - T(49) * floor(p * ns.z * ns.z)); // mod(p,7*7) + + vec<4, T, Q> x_(floor(j * ns.z)); + vec<4, T, Q> y_(floor(j - T(7) * x_)); // mod(j,N) + + vec<4, T, Q> x(x_ * ns.x + ns.y); + vec<4, T, Q> y(y_ * ns.x + ns.y); + vec<4, T, Q> h(T(1) - abs(x) - abs(y)); + + vec<4, T, Q> b0(x.x, x.y, y.x, y.y); + vec<4, T, Q> b1(x.z, x.w, y.z, y.w); + + // vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; + // vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; + vec<4, T, Q> s0(floor(b0) * T(2) + T(1)); + vec<4, T, Q> s1(floor(b1) * T(2) + T(1)); + vec<4, T, Q> sh(-step(h, vec<4, T, Q>(0.0))); + + vec<4, T, Q> a0 = vec<4, T, Q>(b0.x, b0.z, b0.y, b0.w) + vec<4, T, Q>(s0.x, s0.z, s0.y, s0.w) * vec<4, T, Q>(sh.x, sh.x, sh.y, sh.y); + vec<4, T, Q> a1 = vec<4, T, Q>(b1.x, b1.z, b1.y, b1.w) + vec<4, T, Q>(s1.x, s1.z, s1.y, s1.w) * vec<4, T, Q>(sh.z, sh.z, sh.w, sh.w); + + vec<3, T, Q> p0(a0.x, a0.y, h.x); + vec<3, T, Q> p1(a0.z, a0.w, h.y); + vec<3, T, Q> p2(a1.x, a1.y, h.z); + vec<3, T, Q> p3(a1.z, a1.w, h.w); + + // Normalise gradients + vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); + p0 *= norm.x; + p1 *= norm.y; + p2 *= norm.z; + p3 *= norm.w; + + // Mix final noise value + vec<4, T, Q> m = max(T(0.6) - vec<4, T, Q>(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), vec<4, T, Q>(0)); + m = m * m; + return T(42) * dot(m * m, vec<4, T, Q>(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3))); + } + + template + GLM_FUNC_QUALIFIER T simplex(vec<4, T, Q> const& v) + { + vec<4, T, Q> const C( + 0.138196601125011, // (5 - sqrt(5))/20 G4 + 0.276393202250021, // 2 * G4 + 0.414589803375032, // 3 * G4 + -0.447213595499958); // -1 + 4 * G4 + + // (sqrt(5) - 1)/4 = F4, used once below + T const F4 = static_cast(0.309016994374947451); + + // First corner + vec<4, T, Q> i = floor(v + dot(v, vec<4, T, Q>(F4))); + vec<4, T, Q> x0 = v - i + dot(i, vec<4, T, Q>(C.x)); + + // Other corners + + // Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI) + vec<4, T, Q> i0; + vec<3, T, Q> isX = step(vec<3, T, Q>(x0.y, x0.z, x0.w), vec<3, T, Q>(x0.x)); + vec<3, T, Q> isYZ = step(vec<3, T, Q>(x0.z, x0.w, x0.w), vec<3, T, Q>(x0.y, x0.y, x0.z)); + // i0.x = dot(isX, vec3(1.0)); + //i0.x = isX.x + isX.y + isX.z; + //i0.yzw = static_cast(1) - isX; + i0 = vec<4, T, Q>(isX.x + isX.y + isX.z, T(1) - isX); + // i0.y += dot(isYZ.xy, vec2(1.0)); + i0.y += isYZ.x + isYZ.y; + //i0.zw += 1.0 - vec<2, T, Q>(isYZ.x, isYZ.y); + i0.z += static_cast(1) - isYZ.x; + i0.w += static_cast(1) - isYZ.y; + i0.z += isYZ.z; + i0.w += static_cast(1) - isYZ.z; + + // i0 now contains the unique values 0,1,2,3 in each channel + vec<4, T, Q> i3 = clamp(i0, T(0), T(1)); + vec<4, T, Q> i2 = clamp(i0 - T(1), T(0), T(1)); + vec<4, T, Q> i1 = clamp(i0 - T(2), T(0), T(1)); + + // x0 = x0 - 0.0 + 0.0 * C.xxxx + // x1 = x0 - i1 + 0.0 * C.xxxx + // x2 = x0 - i2 + 0.0 * C.xxxx + // x3 = x0 - i3 + 0.0 * C.xxxx + // x4 = x0 - 1.0 + 4.0 * C.xxxx + vec<4, T, Q> x1 = x0 - i1 + C.x; + vec<4, T, Q> x2 = x0 - i2 + C.y; + vec<4, T, Q> x3 = x0 - i3 + C.z; + vec<4, T, Q> x4 = x0 + C.w; + + // Permutations + i = mod(i, vec<4, T, Q>(289)); + T j0 = detail::permute(detail::permute(detail::permute(detail::permute(i.w) + i.z) + i.y) + i.x); + vec<4, T, Q> j1 = detail::permute(detail::permute(detail::permute(detail::permute( + i.w + vec<4, T, Q>(i1.w, i2.w, i3.w, T(1))) + + i.z + vec<4, T, Q>(i1.z, i2.z, i3.z, T(1))) + + i.y + vec<4, T, Q>(i1.y, i2.y, i3.y, T(1))) + + i.x + vec<4, T, Q>(i1.x, i2.x, i3.x, T(1))); + + // Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope + // 7*7*6 = 294, which is close to the ring size 17*17 = 289. + vec<4, T, Q> ip = vec<4, T, Q>(T(1) / T(294), T(1) / T(49), T(1) / T(7), T(0)); + + vec<4, T, Q> p0 = detail::grad4(j0, ip); + vec<4, T, Q> p1 = detail::grad4(j1.x, ip); + vec<4, T, Q> p2 = detail::grad4(j1.y, ip); + vec<4, T, Q> p3 = detail::grad4(j1.z, ip); + vec<4, T, Q> p4 = detail::grad4(j1.w, ip); + + // Normalise gradients + vec<4, T, Q> norm = detail::taylorInvSqrt(vec<4, T, Q>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); + p0 *= norm.x; + p1 *= norm.y; + p2 *= norm.z; + p3 *= norm.w; + p4 *= detail::taylorInvSqrt(dot(p4, p4)); + + // Mix contributions from the five corners + vec<3, T, Q> m0 = max(T(0.6) - vec<3, T, Q>(dot(x0, x0), dot(x1, x1), dot(x2, x2)), vec<3, T, Q>(0)); + vec<2, T, Q> m1 = max(T(0.6) - vec<2, T, Q>(dot(x3, x3), dot(x4, x4) ), vec<2, T, Q>(0)); + m0 = m0 * m0; + m1 = m1 * m1; + return T(49) * + (dot(m0 * m0, vec<3, T, Q>(dot(p0, x0), dot(p1, x1), dot(p2, x2))) + + dot(m1 * m1, vec<2, T, Q>(dot(p3, x3), dot(p4, x4)))); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtc/packing.hpp b/thirdparty/glm/glm/gtc/packing.hpp new file mode 100644 index 000000000000..8e416b3fe1b5 --- /dev/null +++ b/thirdparty/glm/glm/gtc/packing.hpp @@ -0,0 +1,728 @@ +/// @ref gtc_packing +/// @file glm/gtc/packing.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_packing GLM_GTC_packing +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// This extension provides a set of function to convert vertors to packed +/// formats. + +#pragma once + +// Dependency: +#include "type_precision.hpp" +#include "../ext/vector_packing.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_packing extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_packing + /// @{ + + /// First, converts the normalized floating-point value v into a 8-bit integer value. + /// Then, the results are packed into the returned 8-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packUnorm1x8: round(clamp(c, 0, +1) * 255.0) + /// + /// @see gtc_packing + /// @see uint16 packUnorm2x8(vec2 const& v) + /// @see uint32 packUnorm4x8(vec4 const& v) + /// @see GLSL packUnorm4x8 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL uint8 packUnorm1x8(float v); + + /// Convert a single 8-bit integer to a normalized floating-point value. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackUnorm4x8: f / 255.0 + /// + /// @see gtc_packing + /// @see vec2 unpackUnorm2x8(uint16 p) + /// @see vec4 unpackUnorm4x8(uint32 p) + /// @see GLSL unpackUnorm4x8 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL float unpackUnorm1x8(uint8 p); + + /// First, converts each component of the normalized floating-point value v into 8-bit integer values. + /// Then, the results are packed into the returned 16-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packUnorm2x8: round(clamp(c, 0, +1) * 255.0) + /// + /// The first component of the vector will be written to the least significant bits of the output; + /// the last component will be written to the most significant bits. + /// + /// @see gtc_packing + /// @see uint8 packUnorm1x8(float const& v) + /// @see uint32 packUnorm4x8(vec4 const& v) + /// @see GLSL packUnorm4x8 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL uint16 packUnorm2x8(vec2 const& v); + + /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit unsigned integers. + /// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackUnorm4x8: f / 255.0 + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see float unpackUnorm1x8(uint8 v) + /// @see vec4 unpackUnorm4x8(uint32 p) + /// @see GLSL unpackUnorm4x8 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL vec2 unpackUnorm2x8(uint16 p); + + /// First, converts the normalized floating-point value v into 8-bit integer value. + /// Then, the results are packed into the returned 8-bit unsigned integer. + /// + /// The conversion to fixed point is done as follows: + /// packSnorm1x8: round(clamp(s, -1, +1) * 127.0) + /// + /// @see gtc_packing + /// @see uint16 packSnorm2x8(vec2 const& v) + /// @see uint32 packSnorm4x8(vec4 const& v) + /// @see GLSL packSnorm4x8 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL uint8 packSnorm1x8(float s); + + /// First, unpacks a single 8-bit unsigned integer p into a single 8-bit signed integers. + /// Then, the value is converted to a normalized floating-point value to generate the returned scalar. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackSnorm1x8: clamp(f / 127.0, -1, +1) + /// + /// @see gtc_packing + /// @see vec2 unpackSnorm2x8(uint16 p) + /// @see vec4 unpackSnorm4x8(uint32 p) + /// @see GLSL unpackSnorm4x8 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL float unpackSnorm1x8(uint8 p); + + /// First, converts each component of the normalized floating-point value v into 8-bit integer values. + /// Then, the results are packed into the returned 16-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packSnorm2x8: round(clamp(c, -1, +1) * 127.0) + /// + /// The first component of the vector will be written to the least significant bits of the output; + /// the last component will be written to the most significant bits. + /// + /// @see gtc_packing + /// @see uint8 packSnorm1x8(float const& v) + /// @see uint32 packSnorm4x8(vec4 const& v) + /// @see GLSL packSnorm4x8 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL uint16 packSnorm2x8(vec2 const& v); + + /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit signed integers. + /// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackSnorm2x8: clamp(f / 127.0, -1, +1) + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see float unpackSnorm1x8(uint8 p) + /// @see vec4 unpackSnorm4x8(uint32 p) + /// @see GLSL unpackSnorm4x8 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL vec2 unpackSnorm2x8(uint16 p); + + /// First, converts the normalized floating-point value v into a 16-bit integer value. + /// Then, the results are packed into the returned 16-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packUnorm1x16: round(clamp(c, 0, +1) * 65535.0) + /// + /// @see gtc_packing + /// @see uint16 packSnorm1x16(float const& v) + /// @see uint64 packSnorm4x16(vec4 const& v) + /// @see GLSL packUnorm4x8 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL uint16 packUnorm1x16(float v); + + /// First, unpacks a single 16-bit unsigned integer p into a of 16-bit unsigned integers. + /// Then, the value is converted to a normalized floating-point value to generate the returned scalar. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackUnorm1x16: f / 65535.0 + /// + /// @see gtc_packing + /// @see vec2 unpackUnorm2x16(uint32 p) + /// @see vec4 unpackUnorm4x16(uint64 p) + /// @see GLSL unpackUnorm2x16 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL float unpackUnorm1x16(uint16 p); + + /// First, converts each component of the normalized floating-point value v into 16-bit integer values. + /// Then, the results are packed into the returned 64-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packUnorm4x16: round(clamp(c, 0, +1) * 65535.0) + /// + /// The first component of the vector will be written to the least significant bits of the output; + /// the last component will be written to the most significant bits. + /// + /// @see gtc_packing + /// @see uint16 packUnorm1x16(float const& v) + /// @see uint32 packUnorm2x16(vec2 const& v) + /// @see GLSL packUnorm4x8 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL uint64 packUnorm4x16(vec4 const& v); + + /// First, unpacks a single 64-bit unsigned integer p into four 16-bit unsigned integers. + /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackUnormx4x16: f / 65535.0 + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see float unpackUnorm1x16(uint16 p) + /// @see vec2 unpackUnorm2x16(uint32 p) + /// @see GLSL unpackUnorm2x16 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL vec4 unpackUnorm4x16(uint64 p); + + /// First, converts the normalized floating-point value v into 16-bit integer value. + /// Then, the results are packed into the returned 16-bit unsigned integer. + /// + /// The conversion to fixed point is done as follows: + /// packSnorm1x8: round(clamp(s, -1, +1) * 32767.0) + /// + /// @see gtc_packing + /// @see uint32 packSnorm2x16(vec2 const& v) + /// @see uint64 packSnorm4x16(vec4 const& v) + /// @see GLSL packSnorm4x8 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL uint16 packSnorm1x16(float v); + + /// First, unpacks a single 16-bit unsigned integer p into a single 16-bit signed integers. + /// Then, each component is converted to a normalized floating-point value to generate the returned scalar. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackSnorm1x16: clamp(f / 32767.0, -1, +1) + /// + /// @see gtc_packing + /// @see vec2 unpackSnorm2x16(uint32 p) + /// @see vec4 unpackSnorm4x16(uint64 p) + /// @see GLSL unpackSnorm4x8 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL float unpackSnorm1x16(uint16 p); + + /// First, converts each component of the normalized floating-point value v into 16-bit integer values. + /// Then, the results are packed into the returned 64-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packSnorm2x8: round(clamp(c, -1, +1) * 32767.0) + /// + /// The first component of the vector will be written to the least significant bits of the output; + /// the last component will be written to the most significant bits. + /// + /// @see gtc_packing + /// @see uint16 packSnorm1x16(float const& v) + /// @see uint32 packSnorm2x16(vec2 const& v) + /// @see GLSL packSnorm4x8 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL uint64 packSnorm4x16(vec4 const& v); + + /// First, unpacks a single 64-bit unsigned integer p into four 16-bit signed integers. + /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackSnorm4x16: clamp(f / 32767.0, -1, +1) + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see float unpackSnorm1x16(uint16 p) + /// @see vec2 unpackSnorm2x16(uint32 p) + /// @see GLSL unpackSnorm4x8 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL vec4 unpackSnorm4x16(uint64 p); + + /// Returns an unsigned integer obtained by converting the components of a floating-point scalar + /// to the 16-bit floating-point representation found in the OpenGL Specification, + /// and then packing this 16-bit value into a 16-bit unsigned integer. + /// + /// @see gtc_packing + /// @see uint32 packHalf2x16(vec2 const& v) + /// @see uint64 packHalf4x16(vec4 const& v) + /// @see GLSL packHalf2x16 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL uint16 packHalf1x16(float v); + + /// Returns a floating-point scalar with components obtained by unpacking a 16-bit unsigned integer into a 16-bit value, + /// interpreted as a 16-bit floating-point number according to the OpenGL Specification, + /// and converting it to 32-bit floating-point values. + /// + /// @see gtc_packing + /// @see vec2 unpackHalf2x16(uint32 const& v) + /// @see vec4 unpackHalf4x16(uint64 const& v) + /// @see GLSL unpackHalf2x16 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL float unpackHalf1x16(uint16 v); + + /// Returns an unsigned integer obtained by converting the components of a four-component floating-point vector + /// to the 16-bit floating-point representation found in the OpenGL Specification, + /// and then packing these four 16-bit values into a 64-bit unsigned integer. + /// The first vector component specifies the 16 least-significant bits of the result; + /// the forth component specifies the 16 most-significant bits. + /// + /// @see gtc_packing + /// @see uint16 packHalf1x16(float const& v) + /// @see uint32 packHalf2x16(vec2 const& v) + /// @see GLSL packHalf2x16 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL uint64 packHalf4x16(vec4 const& v); + + /// Returns a four-component floating-point vector with components obtained by unpacking a 64-bit unsigned integer into four 16-bit values, + /// interpreting those values as 16-bit floating-point numbers according to the OpenGL Specification, + /// and converting them to 32-bit floating-point values. + /// The first component of the vector is obtained from the 16 least-significant bits of v; + /// the forth component is obtained from the 16 most-significant bits of v. + /// + /// @see gtc_packing + /// @see float unpackHalf1x16(uint16 const& v) + /// @see vec2 unpackHalf2x16(uint32 const& v) + /// @see GLSL unpackHalf2x16 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL vec4 unpackHalf4x16(uint64 p); + + /// Returns an unsigned integer obtained by converting the components of a four-component signed integer vector + /// to the 10-10-10-2-bit signed integer representation found in the OpenGL Specification, + /// and then packing these four values into a 32-bit unsigned integer. + /// The first vector component specifies the 10 least-significant bits of the result; + /// the forth component specifies the 2 most-significant bits. + /// + /// @see gtc_packing + /// @see uint32 packI3x10_1x2(uvec4 const& v) + /// @see uint32 packSnorm3x10_1x2(vec4 const& v) + /// @see uint32 packUnorm3x10_1x2(vec4 const& v) + /// @see ivec4 unpackI3x10_1x2(uint32 const& p) + GLM_FUNC_DECL uint32 packI3x10_1x2(ivec4 const& v); + + /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit signed integers. + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see uint32 packU3x10_1x2(uvec4 const& v) + /// @see vec4 unpackSnorm3x10_1x2(uint32 const& p); + /// @see uvec4 unpackI3x10_1x2(uint32 const& p); + GLM_FUNC_DECL ivec4 unpackI3x10_1x2(uint32 p); + + /// Returns an unsigned integer obtained by converting the components of a four-component unsigned integer vector + /// to the 10-10-10-2-bit unsigned integer representation found in the OpenGL Specification, + /// and then packing these four values into a 32-bit unsigned integer. + /// The first vector component specifies the 10 least-significant bits of the result; + /// the forth component specifies the 2 most-significant bits. + /// + /// @see gtc_packing + /// @see uint32 packI3x10_1x2(ivec4 const& v) + /// @see uint32 packSnorm3x10_1x2(vec4 const& v) + /// @see uint32 packUnorm3x10_1x2(vec4 const& v) + /// @see ivec4 unpackU3x10_1x2(uint32 const& p) + GLM_FUNC_DECL uint32 packU3x10_1x2(uvec4 const& v); + + /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit unsigned integers. + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see uint32 packU3x10_1x2(uvec4 const& v) + /// @see vec4 unpackSnorm3x10_1x2(uint32 const& p); + /// @see uvec4 unpackI3x10_1x2(uint32 const& p); + GLM_FUNC_DECL uvec4 unpackU3x10_1x2(uint32 p); + + /// First, converts the first three components of the normalized floating-point value v into 10-bit signed integer values. + /// Then, converts the forth component of the normalized floating-point value v into 2-bit signed integer values. + /// Then, the results are packed into the returned 32-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packSnorm3x10_1x2(xyz): round(clamp(c, -1, +1) * 511.0) + /// packSnorm3x10_1x2(w): round(clamp(c, -1, +1) * 1.0) + /// + /// The first vector component specifies the 10 least-significant bits of the result; + /// the forth component specifies the 2 most-significant bits. + /// + /// @see gtc_packing + /// @see vec4 unpackSnorm3x10_1x2(uint32 const& p) + /// @see uint32 packUnorm3x10_1x2(vec4 const& v) + /// @see uint32 packU3x10_1x2(uvec4 const& v) + /// @see uint32 packI3x10_1x2(ivec4 const& v) + GLM_FUNC_DECL uint32 packSnorm3x10_1x2(vec4 const& v); + + /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers. + /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackSnorm3x10_1x2(xyz): clamp(f / 511.0, -1, +1) + /// unpackSnorm3x10_1x2(w): clamp(f / 511.0, -1, +1) + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see uint32 packSnorm3x10_1x2(vec4 const& v) + /// @see vec4 unpackUnorm3x10_1x2(uint32 const& p)) + /// @see uvec4 unpackI3x10_1x2(uint32 const& p) + /// @see uvec4 unpackU3x10_1x2(uint32 const& p) + GLM_FUNC_DECL vec4 unpackSnorm3x10_1x2(uint32 p); + + /// First, converts the first three components of the normalized floating-point value v into 10-bit unsigned integer values. + /// Then, converts the forth component of the normalized floating-point value v into 2-bit signed uninteger values. + /// Then, the results are packed into the returned 32-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packUnorm3x10_1x2(xyz): round(clamp(c, 0, +1) * 1023.0) + /// packUnorm3x10_1x2(w): round(clamp(c, 0, +1) * 3.0) + /// + /// The first vector component specifies the 10 least-significant bits of the result; + /// the forth component specifies the 2 most-significant bits. + /// + /// @see gtc_packing + /// @see vec4 unpackUnorm3x10_1x2(uint32 const& p) + /// @see uint32 packUnorm3x10_1x2(vec4 const& v) + /// @see uint32 packU3x10_1x2(uvec4 const& v) + /// @see uint32 packI3x10_1x2(ivec4 const& v) + GLM_FUNC_DECL uint32 packUnorm3x10_1x2(vec4 const& v); + + /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers. + /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackSnorm3x10_1x2(xyz): clamp(f / 1023.0, 0, +1) + /// unpackSnorm3x10_1x2(w): clamp(f / 3.0, 0, +1) + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see uint32 packSnorm3x10_1x2(vec4 const& v) + /// @see vec4 unpackInorm3x10_1x2(uint32 const& p)) + /// @see uvec4 unpackI3x10_1x2(uint32 const& p) + /// @see uvec4 unpackU3x10_1x2(uint32 const& p) + GLM_FUNC_DECL vec4 unpackUnorm3x10_1x2(uint32 p); + + /// First, converts the first two components of the normalized floating-point value v into 11-bit signless floating-point values. + /// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value. + /// Then, the results are packed into the returned 32-bit unsigned integer. + /// + /// The first vector component specifies the 11 least-significant bits of the result; + /// the last component specifies the 10 most-significant bits. + /// + /// @see gtc_packing + /// @see vec3 unpackF2x11_1x10(uint32 const& p) + GLM_FUNC_DECL uint32 packF2x11_1x10(vec3 const& v); + + /// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value . + /// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector. + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see gtc_packing + /// @see uint32 packF2x11_1x10(vec3 const& v) + GLM_FUNC_DECL vec3 unpackF2x11_1x10(uint32 p); + + + /// First, converts the first two components of the normalized floating-point value v into 11-bit signless floating-point values. + /// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value. + /// Then, the results are packed into the returned 32-bit unsigned integer. + /// + /// The first vector component specifies the 11 least-significant bits of the result; + /// the last component specifies the 10 most-significant bits. + /// + /// packF3x9_E1x5 allows encoding into RGBE / RGB9E5 format + /// + /// @see gtc_packing + /// @see vec3 unpackF3x9_E1x5(uint32 const& p) + GLM_FUNC_DECL uint32 packF3x9_E1x5(vec3 const& v); + + /// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value . + /// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector. + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// unpackF3x9_E1x5 allows decoding RGBE / RGB9E5 data + /// + /// @see gtc_packing + /// @see uint32 packF3x9_E1x5(vec3 const& v) + GLM_FUNC_DECL vec3 unpackF3x9_E1x5(uint32 p); + + /// Returns an unsigned integer vector obtained by converting the components of a floating-point vector + /// to the 16-bit floating-point representation found in the OpenGL Specification. + /// The first vector component specifies the 16 least-significant bits of the result; + /// the forth component specifies the 16 most-significant bits. + /// + /// @see gtc_packing + /// @see vec<3, T, Q> unpackRGBM(vec<4, T, Q> const& p) + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + template + GLM_FUNC_DECL vec<4, T, Q> packRGBM(vec<3, T, Q> const& rgb); + + /// Returns a floating-point vector with components obtained by reinterpreting an integer vector as 16-bit floating-point numbers and converting them to 32-bit floating-point values. + /// The first component of the vector is obtained from the 16 least-significant bits of v; + /// the forth component is obtained from the 16 most-significant bits of v. + /// + /// @see gtc_packing + /// @see vec<4, T, Q> packRGBM(vec<3, float, Q> const& v) + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + template + GLM_FUNC_DECL vec<3, T, Q> unpackRGBM(vec<4, T, Q> const& rgbm); + + /// Returns an unsigned integer vector obtained by converting the components of a floating-point vector + /// to the 16-bit floating-point representation found in the OpenGL Specification. + /// The first vector component specifies the 16 least-significant bits of the result; + /// the forth component specifies the 16 most-significant bits. + /// + /// @see gtc_packing + /// @see vec unpackHalf(vec const& p) + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + template + GLM_FUNC_DECL vec packHalf(vec const& v); + + /// Returns a floating-point vector with components obtained by reinterpreting an integer vector as 16-bit floating-point numbers and converting them to 32-bit floating-point values. + /// The first component of the vector is obtained from the 16 least-significant bits of v; + /// the forth component is obtained from the 16 most-significant bits of v. + /// + /// @see gtc_packing + /// @see vec packHalf(vec const& v) + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + template + GLM_FUNC_DECL vec unpackHalf(vec const& p); + + /// Convert each component of the normalized floating-point vector into unsigned integer values. + /// + /// @see gtc_packing + /// @see vec unpackUnorm(vec const& p); + template + GLM_FUNC_DECL vec packUnorm(vec const& v); + + /// Convert a packed integer to a normalized floating-point vector. + /// + /// @see gtc_packing + /// @see vec packUnorm(vec const& v) + template + GLM_FUNC_DECL vec unpackUnorm(vec const& v); + + /// Convert each component of the normalized floating-point vector into signed integer values. + /// + /// @see gtc_packing + /// @see vec unpackSnorm(vec const& p); + template + GLM_FUNC_DECL vec packSnorm(vec const& v); + + /// Convert a packed integer to a normalized floating-point vector. + /// + /// @see gtc_packing + /// @see vec packSnorm(vec const& v) + template + GLM_FUNC_DECL vec unpackSnorm(vec const& v); + + /// Convert each component of the normalized floating-point vector into unsigned integer values. + /// + /// @see gtc_packing + /// @see vec2 unpackUnorm2x4(uint8 p) + GLM_FUNC_DECL uint8 packUnorm2x4(vec2 const& v); + + /// Convert a packed integer to a normalized floating-point vector. + /// + /// @see gtc_packing + /// @see uint8 packUnorm2x4(vec2 const& v) + GLM_FUNC_DECL vec2 unpackUnorm2x4(uint8 p); + + /// Convert each component of the normalized floating-point vector into unsigned integer values. + /// + /// @see gtc_packing + /// @see vec4 unpackUnorm4x4(uint16 p) + GLM_FUNC_DECL uint16 packUnorm4x4(vec4 const& v); + + /// Convert a packed integer to a normalized floating-point vector. + /// + /// @see gtc_packing + /// @see uint16 packUnorm4x4(vec4 const& v) + GLM_FUNC_DECL vec4 unpackUnorm4x4(uint16 p); + + /// Convert each component of the normalized floating-point vector into unsigned integer values. + /// + /// @see gtc_packing + /// @see vec3 unpackUnorm1x5_1x6_1x5(uint16 p) + GLM_FUNC_DECL uint16 packUnorm1x5_1x6_1x5(vec3 const& v); + + /// Convert a packed integer to a normalized floating-point vector. + /// + /// @see gtc_packing + /// @see uint16 packUnorm1x5_1x6_1x5(vec3 const& v) + GLM_FUNC_DECL vec3 unpackUnorm1x5_1x6_1x5(uint16 p); + + /// Convert each component of the normalized floating-point vector into unsigned integer values. + /// + /// @see gtc_packing + /// @see vec4 unpackUnorm3x5_1x1(uint16 p) + GLM_FUNC_DECL uint16 packUnorm3x5_1x1(vec4 const& v); + + /// Convert a packed integer to a normalized floating-point vector. + /// + /// @see gtc_packing + /// @see uint16 packUnorm3x5_1x1(vec4 const& v) + GLM_FUNC_DECL vec4 unpackUnorm3x5_1x1(uint16 p); + + /// Convert each component of the normalized floating-point vector into unsigned integer values. + /// + /// @see gtc_packing + /// @see vec3 unpackUnorm2x3_1x2(uint8 p) + GLM_FUNC_DECL uint8 packUnorm2x3_1x2(vec3 const& v); + + /// Convert a packed integer to a normalized floating-point vector. + /// + /// @see gtc_packing + /// @see uint8 packUnorm2x3_1x2(vec3 const& v) + GLM_FUNC_DECL vec3 unpackUnorm2x3_1x2(uint8 p); + + + + /// Convert each component from an integer vector into a packed integer. + /// + /// @see gtc_packing + /// @see i8vec2 unpackInt2x8(int16 p) + GLM_FUNC_DECL int16 packInt2x8(i8vec2 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see int16 packInt2x8(i8vec2 const& v) + GLM_FUNC_DECL i8vec2 unpackInt2x8(int16 p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see u8vec2 unpackInt2x8(uint16 p) + GLM_FUNC_DECL uint16 packUint2x8(u8vec2 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see uint16 packInt2x8(u8vec2 const& v) + GLM_FUNC_DECL u8vec2 unpackUint2x8(uint16 p); + + /// Convert each component from an integer vector into a packed integer. + /// + /// @see gtc_packing + /// @see i8vec4 unpackInt4x8(int32 p) + GLM_FUNC_DECL int32 packInt4x8(i8vec4 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see int32 packInt2x8(i8vec4 const& v) + GLM_FUNC_DECL i8vec4 unpackInt4x8(int32 p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see u8vec4 unpackUint4x8(uint32 p) + GLM_FUNC_DECL uint32 packUint4x8(u8vec4 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see uint32 packUint4x8(u8vec2 const& v) + GLM_FUNC_DECL u8vec4 unpackUint4x8(uint32 p); + + /// Convert each component from an integer vector into a packed integer. + /// + /// @see gtc_packing + /// @see i16vec2 unpackInt2x16(int p) + GLM_FUNC_DECL int packInt2x16(i16vec2 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see int packInt2x16(i16vec2 const& v) + GLM_FUNC_DECL i16vec2 unpackInt2x16(int p); + + /// Convert each component from an integer vector into a packed integer. + /// + /// @see gtc_packing + /// @see i16vec4 unpackInt4x16(int64 p) + GLM_FUNC_DECL int64 packInt4x16(i16vec4 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see int64 packInt4x16(i16vec4 const& v) + GLM_FUNC_DECL i16vec4 unpackInt4x16(int64 p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see u16vec2 unpackUint2x16(uint p) + GLM_FUNC_DECL uint packUint2x16(u16vec2 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see uint packUint2x16(u16vec2 const& v) + GLM_FUNC_DECL u16vec2 unpackUint2x16(uint p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see u16vec4 unpackUint4x16(uint64 p) + GLM_FUNC_DECL uint64 packUint4x16(u16vec4 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see uint64 packUint4x16(u16vec4 const& v) + GLM_FUNC_DECL u16vec4 unpackUint4x16(uint64 p); + + /// Convert each component from an integer vector into a packed integer. + /// + /// @see gtc_packing + /// @see i32vec2 unpackInt2x32(int p) + GLM_FUNC_DECL int64 packInt2x32(i32vec2 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see int packInt2x16(i32vec2 const& v) + GLM_FUNC_DECL i32vec2 unpackInt2x32(int64 p); + + /// Convert each component from an integer vector into a packed unsigned integer. + /// + /// @see gtc_packing + /// @see u32vec2 unpackUint2x32(int p) + GLM_FUNC_DECL uint64 packUint2x32(u32vec2 const& v); + + /// Convert a packed integer into an integer vector. + /// + /// @see gtc_packing + /// @see int packUint2x16(u32vec2 const& v) + GLM_FUNC_DECL u32vec2 unpackUint2x32(uint64 p); + + /// @} +}// namespace glm + +#include "packing.inl" diff --git a/thirdparty/glm/glm/gtc/packing.inl b/thirdparty/glm/glm/gtc/packing.inl new file mode 100644 index 000000000000..84ad60c70f85 --- /dev/null +++ b/thirdparty/glm/glm/gtc/packing.inl @@ -0,0 +1,938 @@ +/// @ref gtc_packing + +#include "../ext/scalar_relational.hpp" +#include "../ext/vector_relational.hpp" +#include "../common.hpp" +#include "../vec2.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" +#include "../detail/type_half.hpp" +#include +#include + +namespace glm{ +namespace detail +{ + GLM_FUNC_QUALIFIER glm::uint16 float2half(glm::uint32 f) + { + // 10 bits => EE EEEFFFFF + // 11 bits => EEE EEFFFFFF + // Half bits => SEEEEEFF FFFFFFFF + // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF + + // 0x00007c00 => 00000000 00000000 01111100 00000000 + // 0x000003ff => 00000000 00000000 00000011 11111111 + // 0x38000000 => 00111000 00000000 00000000 00000000 + // 0x7f800000 => 01111111 10000000 00000000 00000000 + // 0x00008000 => 00000000 00000000 10000000 00000000 + return + ((f >> 16) & 0x8000) | // sign + ((((f & 0x7f800000) - 0x38000000) >> 13) & 0x7c00) | // exponential + ((f >> 13) & 0x03ff); // Mantissa + } + + GLM_FUNC_QUALIFIER glm::uint32 float2packed11(glm::uint32 f) + { + // 10 bits => EE EEEFFFFF + // 11 bits => EEE EEFFFFFF + // Half bits => SEEEEEFF FFFFFFFF + // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF + + // 0x000007c0 => 00000000 00000000 00000111 11000000 + // 0x00007c00 => 00000000 00000000 01111100 00000000 + // 0x000003ff => 00000000 00000000 00000011 11111111 + // 0x38000000 => 00111000 00000000 00000000 00000000 + // 0x7f800000 => 01111111 10000000 00000000 00000000 + // 0x00008000 => 00000000 00000000 10000000 00000000 + return + ((((f & 0x7f800000) - 0x38000000) >> 17) & 0x07c0) | // exponential + ((f >> 17) & 0x003f); // Mantissa + } + + GLM_FUNC_QUALIFIER glm::uint32 packed11ToFloat(glm::uint32 p) + { + // 10 bits => EE EEEFFFFF + // 11 bits => EEE EEFFFFFF + // Half bits => SEEEEEFF FFFFFFFF + // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF + + // 0x000007c0 => 00000000 00000000 00000111 11000000 + // 0x00007c00 => 00000000 00000000 01111100 00000000 + // 0x000003ff => 00000000 00000000 00000011 11111111 + // 0x38000000 => 00111000 00000000 00000000 00000000 + // 0x7f800000 => 01111111 10000000 00000000 00000000 + // 0x00008000 => 00000000 00000000 10000000 00000000 + return + ((((p & 0x07c0) << 17) + 0x38000000) & 0x7f800000) | // exponential + ((p & 0x003f) << 17); // Mantissa + } + + GLM_FUNC_QUALIFIER glm::uint32 float2packed10(glm::uint32 f) + { + // 10 bits => EE EEEFFFFF + // 11 bits => EEE EEFFFFFF + // Half bits => SEEEEEFF FFFFFFFF + // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF + + // 0x0000001F => 00000000 00000000 00000000 00011111 + // 0x0000003F => 00000000 00000000 00000000 00111111 + // 0x000003E0 => 00000000 00000000 00000011 11100000 + // 0x000007C0 => 00000000 00000000 00000111 11000000 + // 0x00007C00 => 00000000 00000000 01111100 00000000 + // 0x000003FF => 00000000 00000000 00000011 11111111 + // 0x38000000 => 00111000 00000000 00000000 00000000 + // 0x7f800000 => 01111111 10000000 00000000 00000000 + // 0x00008000 => 00000000 00000000 10000000 00000000 + return + ((((f & 0x7f800000) - 0x38000000) >> 18) & 0x03E0) | // exponential + ((f >> 18) & 0x001f); // Mantissa + } + + GLM_FUNC_QUALIFIER glm::uint32 packed10ToFloat(glm::uint32 p) + { + // 10 bits => EE EEEFFFFF + // 11 bits => EEE EEFFFFFF + // Half bits => SEEEEEFF FFFFFFFF + // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF + + // 0x0000001F => 00000000 00000000 00000000 00011111 + // 0x0000003F => 00000000 00000000 00000000 00111111 + // 0x000003E0 => 00000000 00000000 00000011 11100000 + // 0x000007C0 => 00000000 00000000 00000111 11000000 + // 0x00007C00 => 00000000 00000000 01111100 00000000 + // 0x000003FF => 00000000 00000000 00000011 11111111 + // 0x38000000 => 00111000 00000000 00000000 00000000 + // 0x7f800000 => 01111111 10000000 00000000 00000000 + // 0x00008000 => 00000000 00000000 10000000 00000000 + return + ((((p & 0x03E0) << 18) + 0x38000000) & 0x7f800000) | // exponential + ((p & 0x001f) << 18); // Mantissa + } + + GLM_FUNC_QUALIFIER glm::uint half2float(glm::uint h) + { + return ((h & 0x8000) << 16) | ((( h & 0x7c00) + 0x1C000) << 13) | ((h & 0x03FF) << 13); + } + + GLM_FUNC_QUALIFIER glm::uint floatTo11bit(float x) + { + if(x == 0.0f) + return 0u; + else if(glm::isnan(x)) + return ~0u; + else if(glm::isinf(x)) + return 0x1Fu << 6u; + + uint Pack = 0u; + memcpy(&Pack, &x, sizeof(Pack)); + return float2packed11(Pack); + } + + GLM_FUNC_QUALIFIER float packed11bitToFloat(glm::uint x) + { + if(x == 0) + return 0.0f; + else if(x == ((1 << 11) - 1)) + return ~0;//NaN + else if(x == (0x1f << 6)) + return ~0;//Inf + + uint Result = packed11ToFloat(x); + + float Temp = 0; + memcpy(&Temp, &Result, sizeof(Temp)); + return Temp; + } + + GLM_FUNC_QUALIFIER glm::uint floatTo10bit(float x) + { + if(x == 0.0f) + return 0u; + else if(glm::isnan(x)) + return ~0u; + else if(glm::isinf(x)) + return 0x1Fu << 5u; + + uint Pack = 0; + memcpy(&Pack, &x, sizeof(Pack)); + return float2packed10(Pack); + } + + GLM_FUNC_QUALIFIER float packed10bitToFloat(glm::uint x) + { + if(x == 0) + return 0.0f; + else if(x == ((1 << 10) - 1)) + return ~0;//NaN + else if(x == (0x1f << 5)) + return ~0;//Inf + + uint Result = packed10ToFloat(x); + + float Temp = 0; + memcpy(&Temp, &Result, sizeof(Temp)); + return Temp; + } + +// GLM_FUNC_QUALIFIER glm::uint f11_f11_f10(float x, float y, float z) +// { +// return ((floatTo11bit(x) & ((1 << 11) - 1)) << 0) | ((floatTo11bit(y) & ((1 << 11) - 1)) << 11) | ((floatTo10bit(z) & ((1 << 10) - 1)) << 22); +// } + + union u3u3u2 + { + struct + { + uint x : 3; + uint y : 3; + uint z : 2; + } data; + uint8 pack; + }; + + union u4u4 + { + struct + { + uint x : 4; + uint y : 4; + } data; + uint8 pack; + }; + + union u4u4u4u4 + { + struct + { + uint x : 4; + uint y : 4; + uint z : 4; + uint w : 4; + } data; + uint16 pack; + }; + + union u5u6u5 + { + struct + { + uint x : 5; + uint y : 6; + uint z : 5; + } data; + uint16 pack; + }; + + union u5u5u5u1 + { + struct + { + uint x : 5; + uint y : 5; + uint z : 5; + uint w : 1; + } data; + uint16 pack; + }; + + union u10u10u10u2 + { + struct + { + uint x : 10; + uint y : 10; + uint z : 10; + uint w : 2; + } data; + uint32 pack; + }; + + union i10i10i10i2 + { + struct + { + int x : 10; + int y : 10; + int z : 10; + int w : 2; + } data; + uint32 pack; + }; + + union u9u9u9e5 + { + struct + { + uint x : 9; + uint y : 9; + uint z : 9; + uint w : 5; + } data; + uint32 pack; + }; + + template + struct compute_half + {}; + + template + struct compute_half<1, Q> + { + GLM_FUNC_QUALIFIER static vec<1, uint16, Q> pack(vec<1, float, Q> const& v) + { + int16 const Unpack(detail::toFloat16(v.x)); + u16vec1 Packed; + memcpy(&Packed, &Unpack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER static vec<1, float, Q> unpack(vec<1, uint16, Q> const& v) + { + i16vec1 Unpack; + memcpy(&Unpack, &v, sizeof(Unpack)); + return vec<1, float, Q>(detail::toFloat32(v.x)); + } + }; + + template + struct compute_half<2, Q> + { + GLM_FUNC_QUALIFIER static vec<2, uint16, Q> pack(vec<2, float, Q> const& v) + { + vec<2, int16, Q> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y)); + u16vec2 Packed; + memcpy(&Packed, &Unpack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER static vec<2, float, Q> unpack(vec<2, uint16, Q> const& v) + { + i16vec2 Unpack; + memcpy(&Unpack, &v, sizeof(Unpack)); + return vec<2, float, Q>(detail::toFloat32(v.x), detail::toFloat32(v.y)); + } + }; + + template + struct compute_half<3, Q> + { + GLM_FUNC_QUALIFIER static vec<3, uint16, Q> pack(vec<3, float, Q> const& v) + { + vec<3, int16, Q> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z)); + u16vec3 Packed; + memcpy(&Packed, &Unpack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER static vec<3, float, Q> unpack(vec<3, uint16, Q> const& v) + { + i16vec3 Unpack; + memcpy(&Unpack, &v, sizeof(Unpack)); + return vec<3, float, Q>(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z)); + } + }; + + template + struct compute_half<4, Q> + { + GLM_FUNC_QUALIFIER static vec<4, uint16, Q> pack(vec<4, float, Q> const& v) + { + vec<4, int16, Q> const Unpack(detail::toFloat16(v.x), detail::toFloat16(v.y), detail::toFloat16(v.z), detail::toFloat16(v.w)); + u16vec4 Packed; + memcpy(&Packed, &Unpack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER static vec<4, float, Q> unpack(vec<4, uint16, Q> const& v) + { + i16vec4 Unpack; + memcpy(&Unpack, &v, sizeof(Unpack)); + return vec<4, float, Q>(detail::toFloat32(v.x), detail::toFloat32(v.y), detail::toFloat32(v.z), detail::toFloat32(v.w)); + } + }; +}//namespace detail + + GLM_FUNC_QUALIFIER uint8 packUnorm1x8(float v) + { + return static_cast(round(clamp(v, 0.0f, 1.0f) * 255.0f)); + } + + GLM_FUNC_QUALIFIER float unpackUnorm1x8(uint8 p) + { + float const Unpack(p); + return Unpack * static_cast(0.0039215686274509803921568627451); // 1 / 255 + } + + GLM_FUNC_QUALIFIER uint16 packUnorm2x8(vec2 const& v) + { + u8vec2 const Topack(round(clamp(v, 0.0f, 1.0f) * 255.0f)); + + uint16 Unpack = 0; + memcpy(&Unpack, &Topack, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER vec2 unpackUnorm2x8(uint16 p) + { + u8vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return vec2(Unpack) * float(0.0039215686274509803921568627451); // 1 / 255 + } + + GLM_FUNC_QUALIFIER uint8 packSnorm1x8(float v) + { + int8 const Topack(static_cast(round(clamp(v ,-1.0f, 1.0f) * 127.0f))); + uint8 Packed = 0; + memcpy(&Packed, &Topack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER float unpackSnorm1x8(uint8 p) + { + int8 Unpack = 0; + memcpy(&Unpack, &p, sizeof(Unpack)); + return clamp( + static_cast(Unpack) * 0.00787401574803149606299212598425f, // 1.0f / 127.0f + -1.0f, 1.0f); + } + + GLM_FUNC_QUALIFIER uint16 packSnorm2x8(vec2 const& v) + { + i8vec2 const Topack(round(clamp(v, -1.0f, 1.0f) * 127.0f)); + uint16 Packed = 0; + memcpy(&Packed, &Topack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER vec2 unpackSnorm2x8(uint16 p) + { + i8vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return clamp( + vec2(Unpack) * 0.00787401574803149606299212598425f, // 1.0f / 127.0f + -1.0f, 1.0f); + } + + GLM_FUNC_QUALIFIER uint16 packUnorm1x16(float s) + { + return static_cast(round(clamp(s, 0.0f, 1.0f) * 65535.0f)); + } + + GLM_FUNC_QUALIFIER float unpackUnorm1x16(uint16 p) + { + float const Unpack(p); + return Unpack * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0 + } + + GLM_FUNC_QUALIFIER uint64 packUnorm4x16(vec4 const& v) + { + u16vec4 const Topack(round(clamp(v , 0.0f, 1.0f) * 65535.0f)); + uint64 Packed = 0; + memcpy(&Packed, &Topack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER vec4 unpackUnorm4x16(uint64 p) + { + u16vec4 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return vec4(Unpack) * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0 + } + + GLM_FUNC_QUALIFIER uint16 packSnorm1x16(float v) + { + int16 const Topack = static_cast(round(clamp(v ,-1.0f, 1.0f) * 32767.0f)); + uint16 Packed = 0; + memcpy(&Packed, &Topack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER float unpackSnorm1x16(uint16 p) + { + int16 Unpack = 0; + memcpy(&Unpack, &p, sizeof(Unpack)); + return clamp( + static_cast(Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f, + -1.0f, 1.0f); + } + + GLM_FUNC_QUALIFIER uint64 packSnorm4x16(vec4 const& v) + { + i16vec4 const Topack(round(clamp(v ,-1.0f, 1.0f) * 32767.0f)); + uint64 Packed = 0; + memcpy(&Packed, &Topack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER vec4 unpackSnorm4x16(uint64 p) + { + i16vec4 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return clamp( + vec4(Unpack) * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f, + -1.0f, 1.0f); + } + + GLM_FUNC_QUALIFIER uint16 packHalf1x16(float v) + { + int16 const Topack(detail::toFloat16(v)); + uint16 Packed = 0; + memcpy(&Packed, &Topack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER float unpackHalf1x16(uint16 v) + { + int16 Unpack = 0; + memcpy(&Unpack, &v, sizeof(Unpack)); + return detail::toFloat32(Unpack); + } + + GLM_FUNC_QUALIFIER uint64 packHalf4x16(glm::vec4 const& v) + { + i16vec4 const Unpack( + detail::toFloat16(v.x), + detail::toFloat16(v.y), + detail::toFloat16(v.z), + detail::toFloat16(v.w)); + uint64 Packed = 0; + memcpy(&Packed, &Unpack, sizeof(Packed)); + return Packed; + } + + GLM_FUNC_QUALIFIER glm::vec4 unpackHalf4x16(uint64 v) + { + i16vec4 Unpack; + memcpy(&Unpack, &v, sizeof(Unpack)); + return vec4( + detail::toFloat32(Unpack.x), + detail::toFloat32(Unpack.y), + detail::toFloat32(Unpack.z), + detail::toFloat32(Unpack.w)); + } + + GLM_FUNC_QUALIFIER uint32 packI3x10_1x2(ivec4 const& v) + { + detail::i10i10i10i2 Result; + Result.data.x = v.x; + Result.data.y = v.y; + Result.data.z = v.z; + Result.data.w = v.w; + return Result.pack; + } + + GLM_FUNC_QUALIFIER ivec4 unpackI3x10_1x2(uint32 v) + { + detail::i10i10i10i2 Unpack; + Unpack.pack = v; + return ivec4( + Unpack.data.x, + Unpack.data.y, + Unpack.data.z, + Unpack.data.w); + } + + GLM_FUNC_QUALIFIER uint32 packU3x10_1x2(uvec4 const& v) + { + detail::u10u10u10u2 Result; + Result.data.x = v.x; + Result.data.y = v.y; + Result.data.z = v.z; + Result.data.w = v.w; + return Result.pack; + } + + GLM_FUNC_QUALIFIER uvec4 unpackU3x10_1x2(uint32 v) + { + detail::u10u10u10u2 Unpack; + Unpack.pack = v; + return uvec4( + Unpack.data.x, + Unpack.data.y, + Unpack.data.z, + Unpack.data.w); + } + + GLM_FUNC_QUALIFIER uint32 packSnorm3x10_1x2(vec4 const& v) + { + ivec4 const Pack(round(clamp(v,-1.0f, 1.0f) * vec4(511.f, 511.f, 511.f, 1.f))); + + detail::i10i10i10i2 Result; + Result.data.x = Pack.x; + Result.data.y = Pack.y; + Result.data.z = Pack.z; + Result.data.w = Pack.w; + return Result.pack; + } + + GLM_FUNC_QUALIFIER vec4 unpackSnorm3x10_1x2(uint32 v) + { + detail::i10i10i10i2 Unpack; + Unpack.pack = v; + + vec4 const Result(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w); + + return clamp(Result * vec4(1.f / 511.f, 1.f / 511.f, 1.f / 511.f, 1.f), -1.0f, 1.0f); + } + + GLM_FUNC_QUALIFIER uint32 packUnorm3x10_1x2(vec4 const& v) + { + uvec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec4(1023.f, 1023.f, 1023.f, 3.f))); + + detail::u10u10u10u2 Result; + Result.data.x = Unpack.x; + Result.data.y = Unpack.y; + Result.data.z = Unpack.z; + Result.data.w = Unpack.w; + return Result.pack; + } + + GLM_FUNC_QUALIFIER vec4 unpackUnorm3x10_1x2(uint32 v) + { + vec4 const ScaleFactors(1.0f / 1023.f, 1.0f / 1023.f, 1.0f / 1023.f, 1.0f / 3.f); + + detail::u10u10u10u2 Unpack; + Unpack.pack = v; + return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactors; + } + + GLM_FUNC_QUALIFIER uint32 packF2x11_1x10(vec3 const& v) + { + return + ((detail::floatTo11bit(v.x) & ((1 << 11) - 1)) << 0) | + ((detail::floatTo11bit(v.y) & ((1 << 11) - 1)) << 11) | + ((detail::floatTo10bit(v.z) & ((1 << 10) - 1)) << 22); + } + + GLM_FUNC_QUALIFIER vec3 unpackF2x11_1x10(uint32 v) + { + return vec3( + detail::packed11bitToFloat(v >> 0), + detail::packed11bitToFloat(v >> 11), + detail::packed10bitToFloat(v >> 22)); + } + + GLM_FUNC_QUALIFIER uint32 packF3x9_E1x5(vec3 const& v) + { + float const SharedExpMax = (pow(2.0f, 9.0f - 1.0f) / pow(2.0f, 9.0f)) * pow(2.0f, 31.f - 15.f); + vec3 const Color = clamp(v, 0.0f, SharedExpMax); + float const MaxColor = max(Color.x, max(Color.y, Color.z)); + + float const ExpSharedP = max(-15.f - 1.f, floor(log2(MaxColor))) + 1.0f + 15.f; + float const MaxShared = floor(MaxColor / pow(2.0f, (ExpSharedP - 15.f - 9.f)) + 0.5f); + float const ExpShared = equal(MaxShared, pow(2.0f, 9.0f), epsilon()) ? ExpSharedP + 1.0f : ExpSharedP; + + uvec3 const ColorComp(floor(Color / pow(2.f, (ExpShared - 15.f - 9.f)) + 0.5f)); + + detail::u9u9u9e5 Unpack; + Unpack.data.x = ColorComp.x; + Unpack.data.y = ColorComp.y; + Unpack.data.z = ColorComp.z; + Unpack.data.w = uint(ExpShared); + return Unpack.pack; + } + + GLM_FUNC_QUALIFIER vec3 unpackF3x9_E1x5(uint32 v) + { + detail::u9u9u9e5 Unpack; + Unpack.pack = v; + + return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * pow(2.0f, Unpack.data.w - 15.f - 9.f); + } + + // Based on Brian Karis http://graphicrants.blogspot.fr/2009/04/rgbm-color-encoding.html + template + GLM_FUNC_QUALIFIER vec<4, T, Q> packRGBM(vec<3, T, Q> const& rgb) + { + vec<3, T, Q> const Color(rgb * static_cast(1.0 / 6.0)); + T Alpha = clamp(max(max(Color.x, Color.y), max(Color.z, static_cast(1e-6))), static_cast(0), static_cast(1)); + Alpha = ceil(Alpha * static_cast(255.0)) / static_cast(255.0); + return vec<4, T, Q>(Color / Alpha, Alpha); + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> unpackRGBM(vec<4, T, Q> const& rgbm) + { + return vec<3, T, Q>(rgbm.x, rgbm.y, rgbm.z) * rgbm.w * static_cast(6); + } + + template + GLM_FUNC_QUALIFIER vec packHalf(vec const& v) + { + return detail::compute_half::pack(v); + } + + template + GLM_FUNC_QUALIFIER vec unpackHalf(vec const& v) + { + return detail::compute_half::unpack(v); + } + + template + GLM_FUNC_QUALIFIER vec packUnorm(vec const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "uintType must be an integer type"); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "floatType must be a floating point type"); + + return vec(round(clamp(v, static_cast(0), static_cast(1)) * static_cast(std::numeric_limits::max()))); + } + + template + GLM_FUNC_QUALIFIER vec unpackUnorm(vec const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "uintType must be an integer type"); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "floatType must be a floating point type"); + + return vec(v) * (static_cast(1) / static_cast(std::numeric_limits::max())); + } + + template + GLM_FUNC_QUALIFIER vec packSnorm(vec const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "uintType must be an integer type"); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "floatType must be a floating point type"); + + return vec(round(clamp(v , static_cast(-1), static_cast(1)) * static_cast(std::numeric_limits::max()))); + } + + template + GLM_FUNC_QUALIFIER vec unpackSnorm(vec const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_integer, "uintType must be an integer type"); + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "floatType must be a floating point type"); + + return clamp(vec(v) * (static_cast(1) / static_cast(std::numeric_limits::max())), static_cast(-1), static_cast(1)); + } + + GLM_FUNC_QUALIFIER uint8 packUnorm2x4(vec2 const& v) + { + u32vec2 const Unpack(round(clamp(v, 0.0f, 1.0f) * 15.0f)); + detail::u4u4 Result; + Result.data.x = Unpack.x; + Result.data.y = Unpack.y; + return Result.pack; + } + + GLM_FUNC_QUALIFIER vec2 unpackUnorm2x4(uint8 v) + { + float const ScaleFactor(1.f / 15.f); + detail::u4u4 Unpack; + Unpack.pack = v; + return vec2(Unpack.data.x, Unpack.data.y) * ScaleFactor; + } + + GLM_FUNC_QUALIFIER uint16 packUnorm4x4(vec4 const& v) + { + u32vec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * 15.0f)); + detail::u4u4u4u4 Result; + Result.data.x = Unpack.x; + Result.data.y = Unpack.y; + Result.data.z = Unpack.z; + Result.data.w = Unpack.w; + return Result.pack; + } + + GLM_FUNC_QUALIFIER vec4 unpackUnorm4x4(uint16 v) + { + float const ScaleFactor(1.f / 15.f); + detail::u4u4u4u4 Unpack; + Unpack.pack = v; + return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactor; + } + + GLM_FUNC_QUALIFIER uint16 packUnorm1x5_1x6_1x5(vec3 const& v) + { + u32vec3 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec3(31.f, 63.f, 31.f))); + detail::u5u6u5 Result; + Result.data.x = Unpack.x; + Result.data.y = Unpack.y; + Result.data.z = Unpack.z; + return Result.pack; + } + + GLM_FUNC_QUALIFIER vec3 unpackUnorm1x5_1x6_1x5(uint16 v) + { + vec3 const ScaleFactor(1.f / 31.f, 1.f / 63.f, 1.f / 31.f); + detail::u5u6u5 Unpack; + Unpack.pack = v; + return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * ScaleFactor; + } + + GLM_FUNC_QUALIFIER uint16 packUnorm3x5_1x1(vec4 const& v) + { + u32vec4 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec4(31.f, 31.f, 31.f, 1.f))); + detail::u5u5u5u1 Result; + Result.data.x = Unpack.x; + Result.data.y = Unpack.y; + Result.data.z = Unpack.z; + Result.data.w = Unpack.w; + return Result.pack; + } + + GLM_FUNC_QUALIFIER vec4 unpackUnorm3x5_1x1(uint16 v) + { + vec4 const ScaleFactor(1.f / 31.f, 1.f / 31.f, 1.f / 31.f, 1.f); + detail::u5u5u5u1 Unpack; + Unpack.pack = v; + return vec4(Unpack.data.x, Unpack.data.y, Unpack.data.z, Unpack.data.w) * ScaleFactor; + } + + GLM_FUNC_QUALIFIER uint8 packUnorm2x3_1x2(vec3 const& v) + { + u32vec3 const Unpack(round(clamp(v, 0.0f, 1.0f) * vec3(7.f, 7.f, 3.f))); + detail::u3u3u2 Result; + Result.data.x = Unpack.x; + Result.data.y = Unpack.y; + Result.data.z = Unpack.z; + return Result.pack; + } + + GLM_FUNC_QUALIFIER vec3 unpackUnorm2x3_1x2(uint8 v) + { + vec3 const ScaleFactor(1.f / 7.f, 1.f / 7.f, 1.f / 3.f); + detail::u3u3u2 Unpack; + Unpack.pack = v; + return vec3(Unpack.data.x, Unpack.data.y, Unpack.data.z) * ScaleFactor; + } + + GLM_FUNC_QUALIFIER int16 packInt2x8(i8vec2 const& v) + { + int16 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER i8vec2 unpackInt2x8(int16 p) + { + i8vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER uint16 packUint2x8(u8vec2 const& v) + { + uint16 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER u8vec2 unpackUint2x8(uint16 p) + { + u8vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER int32 packInt4x8(i8vec4 const& v) + { + int32 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER i8vec4 unpackInt4x8(int32 p) + { + i8vec4 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER uint32 packUint4x8(u8vec4 const& v) + { + uint32 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER u8vec4 unpackUint4x8(uint32 p) + { + u8vec4 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER int packInt2x16(i16vec2 const& v) + { + int Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER i16vec2 unpackInt2x16(int p) + { + i16vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER int64 packInt4x16(i16vec4 const& v) + { + int64 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER i16vec4 unpackInt4x16(int64 p) + { + i16vec4 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER uint packUint2x16(u16vec2 const& v) + { + uint Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER u16vec2 unpackUint2x16(uint p) + { + u16vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER uint64 packUint4x16(u16vec4 const& v) + { + uint64 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER u16vec4 unpackUint4x16(uint64 p) + { + u16vec4 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER int64 packInt2x32(i32vec2 const& v) + { + int64 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER i32vec2 unpackInt2x32(int64 p) + { + i32vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } + + GLM_FUNC_QUALIFIER uint64 packUint2x32(u32vec2 const& v) + { + uint64 Pack = 0; + memcpy(&Pack, &v, sizeof(Pack)); + return Pack; + } + + GLM_FUNC_QUALIFIER u32vec2 unpackUint2x32(uint64 p) + { + u32vec2 Unpack; + memcpy(&Unpack, &p, sizeof(Unpack)); + return Unpack; + } +}//namespace glm + diff --git a/thirdparty/glm/glm/gtc/quaternion.hpp b/thirdparty/glm/glm/gtc/quaternion.hpp new file mode 100644 index 000000000000..314449ebd97e --- /dev/null +++ b/thirdparty/glm/glm/gtc/quaternion.hpp @@ -0,0 +1,173 @@ +/// @ref gtc_quaternion +/// @file glm/gtc/quaternion.hpp +/// +/// @see core (dependence) +/// @see gtc_constants (dependence) +/// +/// @defgroup gtc_quaternion GLM_GTC_quaternion +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// Defines a templated quaternion type and several quaternion operations. + +#pragma once + +// Dependency: +#include "../gtc/constants.hpp" +#include "../gtc/matrix_transform.hpp" +#include "../ext/vector_relational.hpp" +#include "../ext/quaternion_common.hpp" +#include "../ext/quaternion_float.hpp" +#include "../ext/quaternion_float_precision.hpp" +#include "../ext/quaternion_double.hpp" +#include "../ext/quaternion_double_precision.hpp" +#include "../ext/quaternion_relational.hpp" +#include "../ext/quaternion_geometric.hpp" +#include "../ext/quaternion_trigonometric.hpp" +#include "../ext/quaternion_transform.hpp" +#include "../detail/type_mat3x3.hpp" +#include "../detail/type_mat4x4.hpp" +#include "../detail/type_vec3.hpp" +#include "../detail/type_vec4.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_quaternion extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_quaternion + /// @{ + + /// Returns euler angles, pitch as x, yaw as y, roll as z. + /// The result is expressed in radians. + /// + /// @tparam T Floating-point scalar types. + /// + /// @see gtc_quaternion + template + GLM_FUNC_DECL vec<3, T, Q> eulerAngles(qua const& x); + + /// Returns roll value of euler angles expressed in radians. + /// + /// @tparam T Floating-point scalar types. + /// + /// @see gtc_quaternion + template + GLM_FUNC_DECL T roll(qua const& x); + + /// Returns pitch value of euler angles expressed in radians. + /// + /// @tparam T Floating-point scalar types. + /// + /// @see gtc_quaternion + template + GLM_FUNC_DECL T pitch(qua const& x); + + /// Returns yaw value of euler angles expressed in radians. + /// + /// @tparam T Floating-point scalar types. + /// + /// @see gtc_quaternion + template + GLM_FUNC_DECL T yaw(qua const& x); + + /// Converts a quaternion to a 3 * 3 matrix. + /// + /// @tparam T Floating-point scalar types. + /// + /// @see gtc_quaternion + template + GLM_FUNC_DECL mat<3, 3, T, Q> mat3_cast(qua const& x); + + /// Converts a quaternion to a 4 * 4 matrix. + /// + /// @tparam T Floating-point scalar types. + /// + /// @see gtc_quaternion + template + GLM_FUNC_DECL mat<4, 4, T, Q> mat4_cast(qua const& x); + + /// Converts a pure rotation 3 * 3 matrix to a quaternion. + /// + /// @tparam T Floating-point scalar types. + /// + /// @see gtc_quaternion + template + GLM_FUNC_DECL qua quat_cast(mat<3, 3, T, Q> const& x); + + /// Converts a pure rotation 4 * 4 matrix to a quaternion. + /// + /// @tparam T Floating-point scalar types. + /// + /// @see gtc_quaternion + template + GLM_FUNC_DECL qua quat_cast(mat<4, 4, T, Q> const& x); + + /// Returns the component-wise comparison result of x < y. + /// + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see ext_quaternion_relational + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, bool, Q> lessThan(qua const& x, qua const& y); + + /// Returns the component-wise comparison of result x <= y. + /// + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see ext_quaternion_relational + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, bool, Q> lessThanEqual(qua const& x, qua const& y); + + /// Returns the component-wise comparison of result x > y. + /// + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see ext_quaternion_relational + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, bool, Q> greaterThan(qua const& x, qua const& y); + + /// Returns the component-wise comparison of result x >= y. + /// + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see ext_quaternion_relational + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<4, bool, Q> greaterThanEqual(qua const& x, qua const& y); + + /// Build a look at quaternion based on the default handedness. + /// + /// @param direction Desired forward direction. Needs to be normalized. + /// @param up Up vector, how the camera is oriented. Typically (0, 1, 0). + template + GLM_FUNC_DECL qua quatLookAt( + vec<3, T, Q> const& direction, + vec<3, T, Q> const& up); + + /// Build a right-handed look at quaternion. + /// + /// @param direction Desired forward direction onto which the -z-axis gets mapped. Needs to be normalized. + /// @param up Up vector, how the camera is oriented. Typically (0, 1, 0). + template + GLM_FUNC_DECL qua quatLookAtRH( + vec<3, T, Q> const& direction, + vec<3, T, Q> const& up); + + /// Build a left-handed look at quaternion. + /// + /// @param direction Desired forward direction onto which the +z-axis gets mapped. Needs to be normalized. + /// @param up Up vector, how the camera is oriented. Typically (0, 1, 0). + template + GLM_FUNC_DECL qua quatLookAtLH( + vec<3, T, Q> const& direction, + vec<3, T, Q> const& up); + /// @} +} //namespace glm + +#include "quaternion.inl" diff --git a/thirdparty/glm/glm/gtc/quaternion.inl b/thirdparty/glm/glm/gtc/quaternion.inl new file mode 100644 index 000000000000..ea159f298819 --- /dev/null +++ b/thirdparty/glm/glm/gtc/quaternion.inl @@ -0,0 +1,208 @@ +#include "../trigonometric.hpp" +#include "../geometric.hpp" +#include "../exponential.hpp" +#include "epsilon.hpp" +#include + +namespace glm +{ + template + GLM_FUNC_QUALIFIER vec<3, T, Q> eulerAngles(qua const& x) + { + return vec<3, T, Q>(pitch(x), yaw(x), roll(x)); + } + + template + GLM_FUNC_QUALIFIER T roll(qua const& q) + { + T const y = static_cast(2) * (q.x * q.y + q.w * q.z); + T const x = q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z; + + if(all(equal(vec<2, T, Q>(x, y), vec<2, T, Q>(0), epsilon()))) //avoid atan2(0,0) - handle singularity - Matiis + return static_cast(0); + + return static_cast(atan(y, x)); + } + + template + GLM_FUNC_QUALIFIER T pitch(qua const& q) + { + //return T(atan(T(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z)); + T const y = static_cast(2) * (q.y * q.z + q.w * q.x); + T const x = q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z; + + if(all(equal(vec<2, T, Q>(x, y), vec<2, T, Q>(0), epsilon()))) //avoid atan2(0,0) - handle singularity - Matiis + return static_cast(static_cast(2) * atan(q.x, q.w)); + + return static_cast(atan(y, x)); + } + + template + GLM_FUNC_QUALIFIER T yaw(qua const& q) + { + return asin(clamp(static_cast(-2) * (q.x * q.z - q.w * q.y), static_cast(-1), static_cast(1))); + } + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> mat3_cast(qua const& q) + { + mat<3, 3, T, Q> Result(T(1)); + T qxx(q.x * q.x); + T qyy(q.y * q.y); + T qzz(q.z * q.z); + T qxz(q.x * q.z); + T qxy(q.x * q.y); + T qyz(q.y * q.z); + T qwx(q.w * q.x); + T qwy(q.w * q.y); + T qwz(q.w * q.z); + + Result[0][0] = T(1) - T(2) * (qyy + qzz); + Result[0][1] = T(2) * (qxy + qwz); + Result[0][2] = T(2) * (qxz - qwy); + + Result[1][0] = T(2) * (qxy - qwz); + Result[1][1] = T(1) - T(2) * (qxx + qzz); + Result[1][2] = T(2) * (qyz + qwx); + + Result[2][0] = T(2) * (qxz + qwy); + Result[2][1] = T(2) * (qyz - qwx); + Result[2][2] = T(1) - T(2) * (qxx + qyy); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> mat4_cast(qua const& q) + { + return mat<4, 4, T, Q>(mat3_cast(q)); + } + + template + GLM_FUNC_QUALIFIER qua quat_cast(mat<3, 3, T, Q> const& m) + { + T fourXSquaredMinus1 = m[0][0] - m[1][1] - m[2][2]; + T fourYSquaredMinus1 = m[1][1] - m[0][0] - m[2][2]; + T fourZSquaredMinus1 = m[2][2] - m[0][0] - m[1][1]; + T fourWSquaredMinus1 = m[0][0] + m[1][1] + m[2][2]; + + int biggestIndex = 0; + T fourBiggestSquaredMinus1 = fourWSquaredMinus1; + if(fourXSquaredMinus1 > fourBiggestSquaredMinus1) + { + fourBiggestSquaredMinus1 = fourXSquaredMinus1; + biggestIndex = 1; + } + if(fourYSquaredMinus1 > fourBiggestSquaredMinus1) + { + fourBiggestSquaredMinus1 = fourYSquaredMinus1; + biggestIndex = 2; + } + if(fourZSquaredMinus1 > fourBiggestSquaredMinus1) + { + fourBiggestSquaredMinus1 = fourZSquaredMinus1; + biggestIndex = 3; + } + + T biggestVal = sqrt(fourBiggestSquaredMinus1 + static_cast(1)) * static_cast(0.5); + T mult = static_cast(0.25) / biggestVal; + + switch(biggestIndex) + { + case 0: + return qua::wxyz(biggestVal, (m[1][2] - m[2][1]) * mult, (m[2][0] - m[0][2]) * mult, (m[0][1] - m[1][0]) * mult); + case 1: + return qua::wxyz((m[1][2] - m[2][1]) * mult, biggestVal, (m[0][1] + m[1][0]) * mult, (m[2][0] + m[0][2]) * mult); + case 2: + return qua::wxyz((m[2][0] - m[0][2]) * mult, (m[0][1] + m[1][0]) * mult, biggestVal, (m[1][2] + m[2][1]) * mult); + case 3: + return qua::wxyz((m[0][1] - m[1][0]) * mult, (m[2][0] + m[0][2]) * mult, (m[1][2] + m[2][1]) * mult, biggestVal); + default: // Silence a -Wswitch-default warning in GCC. Should never actually get here. Assert is just for sanity. + assert(false); + return qua::wxyz(1, 0, 0, 0); + } + } + + template + GLM_FUNC_QUALIFIER qua quat_cast(mat<4, 4, T, Q> const& m4) + { + return quat_cast(mat<3, 3, T, Q>(m4)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, bool, Q> lessThan(qua const& x, qua const& y) + { + vec<4, bool, Q> Result(false, false, false, false); + for(length_t i = 0; i < x.length(); ++i) + Result[i] = x[i] < y[i]; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, bool, Q> lessThanEqual(qua const& x, qua const& y) + { + vec<4, bool, Q> Result(false, false, false, false); + for(length_t i = 0; i < x.length(); ++i) + Result[i] = x[i] <= y[i]; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, bool, Q> greaterThan(qua const& x, qua const& y) + { + vec<4, bool, Q> Result(false, false, false, false); + for(length_t i = 0; i < x.length(); ++i) + Result[i] = x[i] > y[i]; + return Result; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<4, bool, Q> greaterThanEqual(qua const& x, qua const& y) + { + vec<4, bool, Q> Result(false, false, false, false); + for(length_t i = 0; i < x.length(); ++i) + Result[i] = x[i] >= y[i]; + return Result; + } + + + template + GLM_FUNC_QUALIFIER qua quatLookAt(vec<3, T, Q> const& direction, vec<3, T, Q> const& up) + { +# if GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT + return quatLookAtLH(direction, up); +# else + return quatLookAtRH(direction, up); +# endif + } + + template + GLM_FUNC_QUALIFIER qua quatLookAtRH(vec<3, T, Q> const& direction, vec<3, T, Q> const& up) + { + mat<3, 3, T, Q> Result; + + Result[2] = -direction; + vec<3, T, Q> const& Right = cross(up, Result[2]); + Result[0] = Right * inversesqrt(max(static_cast(0.00001), dot(Right, Right))); + Result[1] = cross(Result[2], Result[0]); + + return quat_cast(Result); + } + + template + GLM_FUNC_QUALIFIER qua quatLookAtLH(vec<3, T, Q> const& direction, vec<3, T, Q> const& up) + { + mat<3, 3, T, Q> Result; + + Result[2] = direction; + vec<3, T, Q> const& Right = cross(up, Result[2]); + Result[0] = Right * inversesqrt(max(static_cast(0.00001), dot(Right, Right))); + Result[1] = cross(Result[2], Result[0]); + + return quat_cast(Result); + } +}//namespace glm + +#if GLM_CONFIG_SIMD == GLM_ENABLE +# include "quaternion_simd.inl" +#endif + diff --git a/thirdparty/glm/glm/gtc/quaternion_simd.inl b/thirdparty/glm/glm/gtc/quaternion_simd.inl new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/thirdparty/glm/glm/gtc/random.hpp b/thirdparty/glm/glm/gtc/random.hpp new file mode 100644 index 000000000000..c6485bf1da38 --- /dev/null +++ b/thirdparty/glm/glm/gtc/random.hpp @@ -0,0 +1,82 @@ +/// @ref gtc_random +/// @file glm/gtc/random.hpp +/// +/// @see core (dependence) +/// @see gtx_random (extended) +/// +/// @defgroup gtc_random GLM_GTC_random +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// Generate random number from various distribution methods. + +#pragma once + +// Dependency: +#include "../ext/scalar_int_sized.hpp" +#include "../ext/scalar_uint_sized.hpp" +#include "../detail/qualifier.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_random extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_random + /// @{ + + /// Generate random numbers in the interval [Min, Max], according a linear distribution + /// + /// @param Min Minimum value included in the sampling + /// @param Max Maximum value included in the sampling + /// @tparam genType Value type. Currently supported: float or double scalars. + /// @see gtc_random + template + GLM_FUNC_DECL genType linearRand(genType Min, genType Max); + + /// Generate random numbers in the interval [Min, Max], according a linear distribution + /// + /// @param Min Minimum value included in the sampling + /// @param Max Maximum value included in the sampling + /// @tparam T Value type. Currently supported: float or double. + /// + /// @see gtc_random + template + GLM_FUNC_DECL vec linearRand(vec const& Min, vec const& Max); + + /// Generate random numbers in the interval [Min, Max], according a gaussian distribution + /// + /// @see gtc_random + template + GLM_FUNC_DECL genType gaussRand(genType Mean, genType Deviation); + + /// Generate a random 2D vector which coordinates are regularly distributed on a circle of a given radius + /// + /// @see gtc_random + template + GLM_FUNC_DECL vec<2, T, defaultp> circularRand(T Radius); + + /// Generate a random 3D vector which coordinates are regularly distributed on a sphere of a given radius + /// + /// @see gtc_random + template + GLM_FUNC_DECL vec<3, T, defaultp> sphericalRand(T Radius); + + /// Generate a random 2D vector which coordinates are regularly distributed within the area of a disk of a given radius + /// + /// @see gtc_random + template + GLM_FUNC_DECL vec<2, T, defaultp> diskRand(T Radius); + + /// Generate a random 3D vector which coordinates are regularly distributed within the volume of a ball of a given radius + /// + /// @see gtc_random + template + GLM_FUNC_DECL vec<3, T, defaultp> ballRand(T Radius); + + /// @} +}//namespace glm + +#include "random.inl" diff --git a/thirdparty/glm/glm/gtc/random.inl b/thirdparty/glm/glm/gtc/random.inl new file mode 100644 index 000000000000..249ec9f92b48 --- /dev/null +++ b/thirdparty/glm/glm/gtc/random.inl @@ -0,0 +1,303 @@ +#include "../geometric.hpp" +#include "../exponential.hpp" +#include "../trigonometric.hpp" +#include "../detail/type_vec1.hpp" +#include +#include +#include +#include + +namespace glm{ +namespace detail +{ + template + struct compute_rand + { + GLM_FUNC_QUALIFIER static vec call(); + }; + + template + struct compute_rand<1, uint8, P> + { + GLM_FUNC_QUALIFIER static vec<1, uint8, P> call() + { + return vec<1, uint8, P>( + static_cast(std::rand() % std::numeric_limits::max())); + } + }; + + template + struct compute_rand<2, uint8, P> + { + GLM_FUNC_QUALIFIER static vec<2, uint8, P> call() + { + return vec<2, uint8, P>( + std::rand() % std::numeric_limits::max(), + std::rand() % std::numeric_limits::max()); + } + }; + + template + struct compute_rand<3, uint8, P> + { + GLM_FUNC_QUALIFIER static vec<3, uint8, P> call() + { + return vec<3, uint8, P>( + std::rand() % std::numeric_limits::max(), + std::rand() % std::numeric_limits::max(), + std::rand() % std::numeric_limits::max()); + } + }; + + template + struct compute_rand<4, uint8, P> + { + GLM_FUNC_QUALIFIER static vec<4, uint8, P> call() + { + return vec<4, uint8, P>( + std::rand() % std::numeric_limits::max(), + std::rand() % std::numeric_limits::max(), + std::rand() % std::numeric_limits::max(), + std::rand() % std::numeric_limits::max()); + } + }; + + template + struct compute_rand + { + GLM_FUNC_QUALIFIER static vec call() + { + return + (vec(compute_rand::call()) << static_cast(8)) | + (vec(compute_rand::call()) << static_cast(0)); + } + }; + + template + struct compute_rand + { + GLM_FUNC_QUALIFIER static vec call() + { + return + (vec(compute_rand::call()) << static_cast(16)) | + (vec(compute_rand::call()) << static_cast(0)); + } + }; + + template + struct compute_rand + { + GLM_FUNC_QUALIFIER static vec call() + { + return + (vec(compute_rand::call()) << static_cast(32)) | + (vec(compute_rand::call()) << static_cast(0)); + } + }; + + template + struct compute_linearRand + { + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max); + }; + + template + struct compute_linearRand + { + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max) + { + return (vec(compute_rand::call() % vec(Max + static_cast(1) - Min))) + Min; + } + }; + + template + struct compute_linearRand + { + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max) + { + return (compute_rand::call() % (Max + static_cast(1) - Min)) + Min; + } + }; + + template + struct compute_linearRand + { + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max) + { + return (vec(compute_rand::call() % vec(Max + static_cast(1) - Min))) + Min; + } + }; + + template + struct compute_linearRand + { + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max) + { + return (compute_rand::call() % (Max + static_cast(1) - Min)) + Min; + } + }; + + template + struct compute_linearRand + { + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max) + { + return (vec(compute_rand::call() % vec(Max + static_cast(1) - Min))) + Min; + } + }; + + template + struct compute_linearRand + { + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max) + { + return (compute_rand::call() % (Max + static_cast(1) - Min)) + Min; + } + }; + + template + struct compute_linearRand + { + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max) + { + return (vec(compute_rand::call() % vec(Max + static_cast(1) - Min))) + Min; + } + }; + + template + struct compute_linearRand + { + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max) + { + return (compute_rand::call() % (Max + static_cast(1) - Min)) + Min; + } + }; + + template + struct compute_linearRand + { + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max) + { + return vec(compute_rand::call()) / static_cast(std::numeric_limits::max()) * (Max - Min) + Min; + } + }; + + template + struct compute_linearRand + { + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max) + { + return vec(compute_rand::call()) / static_cast(std::numeric_limits::max()) * (Max - Min) + Min; + } + }; + + template + struct compute_linearRand + { + GLM_FUNC_QUALIFIER static vec call(vec const& Min, vec const& Max) + { + return vec(compute_rand::call()) / static_cast(std::numeric_limits::max()) * (Max - Min) + Min; + } + }; +}//namespace detail + + template + GLM_FUNC_QUALIFIER genType linearRand(genType Min, genType Max) + { + return detail::compute_linearRand<1, genType, highp>::call( + vec<1, genType, highp>(Min), + vec<1, genType, highp>(Max)).x; + } + + template + GLM_FUNC_QUALIFIER vec linearRand(vec const& Min, vec const& Max) + { + return detail::compute_linearRand::call(Min, Max); + } + + template + GLM_FUNC_QUALIFIER genType gaussRand(genType Mean, genType Deviation) + { + genType w, x1, x2; + + do + { + x1 = linearRand(genType(-1), genType(1)); + x2 = linearRand(genType(-1), genType(1)); + + w = x1 * x1 + x2 * x2; + } while(w > genType(1)); + + return static_cast(x2 * Deviation * Deviation * sqrt((genType(-2) * log(w)) / w) + Mean); + } + + template + GLM_FUNC_QUALIFIER vec gaussRand(vec const& Mean, vec const& Deviation) + { + return detail::functor2::call(gaussRand, Mean, Deviation); + } + + template + GLM_FUNC_QUALIFIER vec<2, T, defaultp> diskRand(T Radius) + { + assert(Radius > static_cast(0)); + + vec<2, T, defaultp> Result(T(0)); + T LenRadius(T(0)); + + do + { + Result = linearRand( + vec<2, T, defaultp>(-Radius), + vec<2, T, defaultp>(Radius)); + LenRadius = length(Result); + } + while(LenRadius > Radius); + + return Result; + } + + template + GLM_FUNC_QUALIFIER vec<3, T, defaultp> ballRand(T Radius) + { + assert(Radius > static_cast(0)); + + vec<3, T, defaultp> Result(T(0)); + T LenRadius(T(0)); + + do + { + Result = linearRand( + vec<3, T, defaultp>(-Radius), + vec<3, T, defaultp>(Radius)); + LenRadius = length(Result); + } + while(LenRadius > Radius); + + return Result; + } + + template + GLM_FUNC_QUALIFIER vec<2, T, defaultp> circularRand(T Radius) + { + assert(Radius > static_cast(0)); + + T a = linearRand(T(0), static_cast(6.283185307179586476925286766559)); + return vec<2, T, defaultp>(glm::cos(a), glm::sin(a)) * Radius; + } + + template + GLM_FUNC_QUALIFIER vec<3, T, defaultp> sphericalRand(T Radius) + { + assert(Radius > static_cast(0)); + + T theta = linearRand(T(0), T(6.283185307179586476925286766559f)); + T phi = std::acos(linearRand(T(-1.0f), T(1.0f))); + + T x = std::sin(phi) * std::cos(theta); + T y = std::sin(phi) * std::sin(theta); + T z = std::cos(phi); + + return vec<3, T, defaultp>(x, y, z) * Radius; + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtc/reciprocal.hpp b/thirdparty/glm/glm/gtc/reciprocal.hpp new file mode 100644 index 000000000000..4d0fc91ca657 --- /dev/null +++ b/thirdparty/glm/glm/gtc/reciprocal.hpp @@ -0,0 +1,24 @@ +/// @ref gtc_reciprocal +/// @file glm/gtc/reciprocal.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_reciprocal GLM_GTC_reciprocal +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// Define secant, cosecant and cotangent functions. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_reciprocal extension included") +#endif + +#include "../ext/scalar_reciprocal.hpp" +#include "../ext/vector_reciprocal.hpp" + diff --git a/thirdparty/glm/glm/gtc/round.hpp b/thirdparty/glm/glm/gtc/round.hpp new file mode 100644 index 000000000000..56edbbca30b5 --- /dev/null +++ b/thirdparty/glm/glm/gtc/round.hpp @@ -0,0 +1,160 @@ +/// @ref gtc_round +/// @file glm/gtc/round.hpp +/// +/// @see core (dependence) +/// @see gtc_round (dependence) +/// +/// @defgroup gtc_round GLM_GTC_round +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// Rounding value to specific boundings + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/qualifier.hpp" +#include "../detail/_vectorize.hpp" +#include "../vector_relational.hpp" +#include "../common.hpp" +#include + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_round extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_round + /// @{ + + /// Return the power of two number which value is just higher the input value, + /// round up to a power of two. + /// + /// @see gtc_round + template + GLM_FUNC_DECL genIUType ceilPowerOfTwo(genIUType v); + + /// Return the power of two number which value is just higher the input value, + /// round up to a power of two. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see gtc_round + template + GLM_FUNC_DECL vec ceilPowerOfTwo(vec const& v); + + /// Return the power of two number which value is just lower the input value, + /// round down to a power of two. + /// + /// @see gtc_round + template + GLM_FUNC_DECL genIUType floorPowerOfTwo(genIUType v); + + /// Return the power of two number which value is just lower the input value, + /// round down to a power of two. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see gtc_round + template + GLM_FUNC_DECL vec floorPowerOfTwo(vec const& v); + + /// Return the power of two number which value is the closet to the input value. + /// + /// @see gtc_round + template + GLM_FUNC_DECL genIUType roundPowerOfTwo(genIUType v); + + /// Return the power of two number which value is the closet to the input value. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see gtc_round + template + GLM_FUNC_DECL vec roundPowerOfTwo(vec const& v); + + /// Higher multiple number of Source. + /// + /// @tparam genType Floating-point or integer scalar or vector types. + /// + /// @param v Source value to which is applied the function + /// @param Multiple Must be a null or positive value + /// + /// @see gtc_round + template + GLM_FUNC_DECL genType ceilMultiple(genType v, genType Multiple); + + /// Higher multiple number of Source. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @param v Source values to which is applied the function + /// @param Multiple Must be a null or positive value + /// + /// @see gtc_round + template + GLM_FUNC_DECL vec ceilMultiple(vec const& v, vec const& Multiple); + + /// Lower multiple number of Source. + /// + /// @tparam genType Floating-point or integer scalar or vector types. + /// + /// @param v Source value to which is applied the function + /// @param Multiple Must be a null or positive value + /// + /// @see gtc_round + template + GLM_FUNC_DECL genType floorMultiple(genType v, genType Multiple); + + /// Lower multiple number of Source. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @param v Source values to which is applied the function + /// @param Multiple Must be a null or positive value + /// + /// @see gtc_round + template + GLM_FUNC_DECL vec floorMultiple(vec const& v, vec const& Multiple); + + /// Lower multiple number of Source. + /// + /// @tparam genType Floating-point or integer scalar or vector types. + /// + /// @param v Source value to which is applied the function + /// @param Multiple Must be a null or positive value + /// + /// @see gtc_round + template + GLM_FUNC_DECL genType roundMultiple(genType v, genType Multiple); + + /// Lower multiple number of Source. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @param v Source values to which is applied the function + /// @param Multiple Must be a null or positive value + /// + /// @see gtc_round + template + GLM_FUNC_DECL vec roundMultiple(vec const& v, vec const& Multiple); + + /// @} +} //namespace glm + +#include "round.inl" diff --git a/thirdparty/glm/glm/gtc/round.inl b/thirdparty/glm/glm/gtc/round.inl new file mode 100644 index 000000000000..48411e41dc34 --- /dev/null +++ b/thirdparty/glm/glm/gtc/round.inl @@ -0,0 +1,155 @@ +/// @ref gtc_round + +#include "../integer.hpp" +#include "../ext/vector_integer.hpp" + +namespace glm{ +namespace detail +{ + template + struct compute_roundMultiple {}; + + template<> + struct compute_roundMultiple + { + template + GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) + { + if (Source >= genType(0)) + return Source - std::fmod(Source, Multiple); + else + { + genType Tmp = Source + genType(1); + return Tmp - std::fmod(Tmp, Multiple) - Multiple; + } + } + }; + + template<> + struct compute_roundMultiple + { + template + GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) + { + if (Source >= genType(0)) + return Source - Source % Multiple; + else + { + genType Tmp = Source + genType(1); + return Tmp - Tmp % Multiple - Multiple; + } + } + }; + + template<> + struct compute_roundMultiple + { + template + GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple) + { + if (Source >= genType(0)) + return Source - Source % Multiple; + else + { + genType Tmp = Source + genType(1); + return Tmp - Tmp % Multiple - Multiple; + } + } + }; +}//namespace detail + + ////////////////// + // ceilPowerOfTwo + + template + GLM_FUNC_QUALIFIER genType ceilPowerOfTwo(genType value) + { + return detail::compute_ceilPowerOfTwo<1, genType, defaultp, std::numeric_limits::is_signed>::call(vec<1, genType, defaultp>(value)).x; + } + + template + GLM_FUNC_QUALIFIER vec ceilPowerOfTwo(vec const& v) + { + return detail::compute_ceilPowerOfTwo::is_signed>::call(v); + } + + /////////////////// + // floorPowerOfTwo + + template + GLM_FUNC_QUALIFIER genType floorPowerOfTwo(genType value) + { + return isPowerOfTwo(value) ? value : static_cast(1) << findMSB(value); + } + + template + GLM_FUNC_QUALIFIER vec floorPowerOfTwo(vec const& v) + { + return detail::functor1::call(floorPowerOfTwo, v); + } + + /////////////////// + // roundPowerOfTwo + + template + GLM_FUNC_QUALIFIER genIUType roundPowerOfTwo(genIUType value) + { + if(isPowerOfTwo(value)) + return value; + + genIUType const prev = static_cast(1) << findMSB(value); + genIUType const next = prev << static_cast(1); + return (next - value) < (value - prev) ? next : prev; + } + + template + GLM_FUNC_QUALIFIER vec roundPowerOfTwo(vec const& v) + { + return detail::functor1::call(roundPowerOfTwo, v); + } + + ////////////////////// + // ceilMultiple + + template + GLM_FUNC_QUALIFIER genType ceilMultiple(genType Source, genType Multiple) + { + return detail::compute_ceilMultiple::is_iec559, std::numeric_limits::is_signed>::call(Source, Multiple); + } + + template + GLM_FUNC_QUALIFIER vec ceilMultiple(vec const& Source, vec const& Multiple) + { + return detail::functor2::call(ceilMultiple, Source, Multiple); + } + + ////////////////////// + // floorMultiple + + template + GLM_FUNC_QUALIFIER genType floorMultiple(genType Source, genType Multiple) + { + return detail::compute_floorMultiple::is_iec559, std::numeric_limits::is_signed>::call(Source, Multiple); + } + + template + GLM_FUNC_QUALIFIER vec floorMultiple(vec const& Source, vec const& Multiple) + { + return detail::functor2::call(floorMultiple, Source, Multiple); + } + + ////////////////////// + // roundMultiple + + template + GLM_FUNC_QUALIFIER genType roundMultiple(genType Source, genType Multiple) + { + return detail::compute_roundMultiple::is_iec559, std::numeric_limits::is_signed>::call(Source, Multiple); + } + + template + GLM_FUNC_QUALIFIER vec roundMultiple(vec const& Source, vec const& Multiple) + { + return detail::functor2::call(roundMultiple, Source, Multiple); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtc/type_aligned.hpp b/thirdparty/glm/glm/gtc/type_aligned.hpp new file mode 100644 index 000000000000..5403abf67525 --- /dev/null +++ b/thirdparty/glm/glm/gtc/type_aligned.hpp @@ -0,0 +1,1315 @@ +/// @ref gtc_type_aligned +/// @file glm/gtc/type_aligned.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_type_aligned GLM_GTC_type_aligned +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// Aligned types allowing SIMD optimizations of vectors and matrices types + +#pragma once + +#if (GLM_CONFIG_ALIGNED_GENTYPES == GLM_DISABLE) +# error "GLM: Aligned gentypes require to enable C++ language extensions. Define GLM_FORCE_ALIGNED_GENTYPES before including GLM headers to use aligned types." +#endif + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_type_aligned extension included") +#endif + +#include "../mat4x4.hpp" +#include "../mat4x3.hpp" +#include "../mat4x2.hpp" +#include "../mat3x4.hpp" +#include "../mat3x3.hpp" +#include "../mat3x2.hpp" +#include "../mat2x4.hpp" +#include "../mat2x3.hpp" +#include "../mat2x2.hpp" +#include "../gtc/vec1.hpp" +#include "../vec2.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" + +namespace glm +{ + /// @addtogroup gtc_type_aligned + /// @{ + + // -- *vec1 -- + + /// 1 component vector aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<1, float, aligned_highp> aligned_highp_vec1; + + /// 1 component vector aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<1, float, aligned_mediump> aligned_mediump_vec1; + + /// 1 component vector aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<1, float, aligned_lowp> aligned_lowp_vec1; + + /// 1 component vector aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<1, double, aligned_highp> aligned_highp_dvec1; + + /// 1 component vector aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<1, double, aligned_mediump> aligned_mediump_dvec1; + + /// 1 component vector aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<1, double, aligned_lowp> aligned_lowp_dvec1; + + /// 1 component vector aligned in memory of signed integer numbers. + typedef vec<1, int, aligned_highp> aligned_highp_ivec1; + + /// 1 component vector aligned in memory of signed integer numbers. + typedef vec<1, int, aligned_mediump> aligned_mediump_ivec1; + + /// 1 component vector aligned in memory of signed integer numbers. + typedef vec<1, int, aligned_lowp> aligned_lowp_ivec1; + + /// 1 component vector aligned in memory of unsigned integer numbers. + typedef vec<1, uint, aligned_highp> aligned_highp_uvec1; + + /// 1 component vector aligned in memory of unsigned integer numbers. + typedef vec<1, uint, aligned_mediump> aligned_mediump_uvec1; + + /// 1 component vector aligned in memory of unsigned integer numbers. + typedef vec<1, uint, aligned_lowp> aligned_lowp_uvec1; + + /// 1 component vector aligned in memory of bool values. + typedef vec<1, bool, aligned_highp> aligned_highp_bvec1; + + /// 1 component vector aligned in memory of bool values. + typedef vec<1, bool, aligned_mediump> aligned_mediump_bvec1; + + /// 1 component vector aligned in memory of bool values. + typedef vec<1, bool, aligned_lowp> aligned_lowp_bvec1; + + /// 1 component vector tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<1, float, packed_highp> packed_highp_vec1; + + /// 1 component vector tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<1, float, packed_mediump> packed_mediump_vec1; + + /// 1 component vector tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<1, float, packed_lowp> packed_lowp_vec1; + + /// 1 component vector tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<1, double, packed_highp> packed_highp_dvec1; + + /// 1 component vector tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<1, double, packed_mediump> packed_mediump_dvec1; + + /// 1 component vector tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<1, double, packed_lowp> packed_lowp_dvec1; + + /// 1 component vector tightly packed in memory of signed integer numbers. + typedef vec<1, int, packed_highp> packed_highp_ivec1; + + /// 1 component vector tightly packed in memory of signed integer numbers. + typedef vec<1, int, packed_mediump> packed_mediump_ivec1; + + /// 1 component vector tightly packed in memory of signed integer numbers. + typedef vec<1, int, packed_lowp> packed_lowp_ivec1; + + /// 1 component vector tightly packed in memory of unsigned integer numbers. + typedef vec<1, uint, packed_highp> packed_highp_uvec1; + + /// 1 component vector tightly packed in memory of unsigned integer numbers. + typedef vec<1, uint, packed_mediump> packed_mediump_uvec1; + + /// 1 component vector tightly packed in memory of unsigned integer numbers. + typedef vec<1, uint, packed_lowp> packed_lowp_uvec1; + + /// 1 component vector tightly packed in memory of bool values. + typedef vec<1, bool, packed_highp> packed_highp_bvec1; + + /// 1 component vector tightly packed in memory of bool values. + typedef vec<1, bool, packed_mediump> packed_mediump_bvec1; + + /// 1 component vector tightly packed in memory of bool values. + typedef vec<1, bool, packed_lowp> packed_lowp_bvec1; + + // -- *vec2 -- + + /// 2 components vector aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<2, float, aligned_highp> aligned_highp_vec2; + + /// 2 components vector aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<2, float, aligned_mediump> aligned_mediump_vec2; + + /// 2 components vector aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<2, float, aligned_lowp> aligned_lowp_vec2; + + /// 2 components vector aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<2, double, aligned_highp> aligned_highp_dvec2; + + /// 2 components vector aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<2, double, aligned_mediump> aligned_mediump_dvec2; + + /// 2 components vector aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<2, double, aligned_lowp> aligned_lowp_dvec2; + + /// 2 components vector aligned in memory of signed integer numbers. + typedef vec<2, int, aligned_highp> aligned_highp_ivec2; + + /// 2 components vector aligned in memory of signed integer numbers. + typedef vec<2, int, aligned_mediump> aligned_mediump_ivec2; + + /// 2 components vector aligned in memory of signed integer numbers. + typedef vec<2, int, aligned_lowp> aligned_lowp_ivec2; + + /// 2 components vector aligned in memory of unsigned integer numbers. + typedef vec<2, uint, aligned_highp> aligned_highp_uvec2; + + /// 2 components vector aligned in memory of unsigned integer numbers. + typedef vec<2, uint, aligned_mediump> aligned_mediump_uvec2; + + /// 2 components vector aligned in memory of unsigned integer numbers. + typedef vec<2, uint, aligned_lowp> aligned_lowp_uvec2; + + /// 2 components vector aligned in memory of bool values. + typedef vec<2, bool, aligned_highp> aligned_highp_bvec2; + + /// 2 components vector aligned in memory of bool values. + typedef vec<2, bool, aligned_mediump> aligned_mediump_bvec2; + + /// 2 components vector aligned in memory of bool values. + typedef vec<2, bool, aligned_lowp> aligned_lowp_bvec2; + + /// 2 components vector tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<2, float, packed_highp> packed_highp_vec2; + + /// 2 components vector tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<2, float, packed_mediump> packed_mediump_vec2; + + /// 2 components vector tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<2, float, packed_lowp> packed_lowp_vec2; + + /// 2 components vector tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<2, double, packed_highp> packed_highp_dvec2; + + /// 2 components vector tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<2, double, packed_mediump> packed_mediump_dvec2; + + /// 2 components vector tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<2, double, packed_lowp> packed_lowp_dvec2; + + /// 2 components vector tightly packed in memory of signed integer numbers. + typedef vec<2, int, packed_highp> packed_highp_ivec2; + + /// 2 components vector tightly packed in memory of signed integer numbers. + typedef vec<2, int, packed_mediump> packed_mediump_ivec2; + + /// 2 components vector tightly packed in memory of signed integer numbers. + typedef vec<2, int, packed_lowp> packed_lowp_ivec2; + + /// 2 components vector tightly packed in memory of unsigned integer numbers. + typedef vec<2, uint, packed_highp> packed_highp_uvec2; + + /// 2 components vector tightly packed in memory of unsigned integer numbers. + typedef vec<2, uint, packed_mediump> packed_mediump_uvec2; + + /// 2 components vector tightly packed in memory of unsigned integer numbers. + typedef vec<2, uint, packed_lowp> packed_lowp_uvec2; + + /// 2 components vector tightly packed in memory of bool values. + typedef vec<2, bool, packed_highp> packed_highp_bvec2; + + /// 2 components vector tightly packed in memory of bool values. + typedef vec<2, bool, packed_mediump> packed_mediump_bvec2; + + /// 2 components vector tightly packed in memory of bool values. + typedef vec<2, bool, packed_lowp> packed_lowp_bvec2; + + // -- *vec3 -- + + /// 3 components vector aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<3, float, aligned_highp> aligned_highp_vec3; + + /// 3 components vector aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<3, float, aligned_mediump> aligned_mediump_vec3; + + /// 3 components vector aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<3, float, aligned_lowp> aligned_lowp_vec3; + + /// 3 components vector aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<3, double, aligned_highp> aligned_highp_dvec3; + + /// 3 components vector aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<3, double, aligned_mediump> aligned_mediump_dvec3; + + /// 3 components vector aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<3, double, aligned_lowp> aligned_lowp_dvec3; + + /// 3 components vector aligned in memory of signed integer numbers. + typedef vec<3, int, aligned_highp> aligned_highp_ivec3; + + /// 3 components vector aligned in memory of signed integer numbers. + typedef vec<3, int, aligned_mediump> aligned_mediump_ivec3; + + /// 3 components vector aligned in memory of signed integer numbers. + typedef vec<3, int, aligned_lowp> aligned_lowp_ivec3; + + /// 3 components vector aligned in memory of unsigned integer numbers. + typedef vec<3, uint, aligned_highp> aligned_highp_uvec3; + + /// 3 components vector aligned in memory of unsigned integer numbers. + typedef vec<3, uint, aligned_mediump> aligned_mediump_uvec3; + + /// 3 components vector aligned in memory of unsigned integer numbers. + typedef vec<3, uint, aligned_lowp> aligned_lowp_uvec3; + + /// 3 components vector aligned in memory of bool values. + typedef vec<3, bool, aligned_highp> aligned_highp_bvec3; + + /// 3 components vector aligned in memory of bool values. + typedef vec<3, bool, aligned_mediump> aligned_mediump_bvec3; + + /// 3 components vector aligned in memory of bool values. + typedef vec<3, bool, aligned_lowp> aligned_lowp_bvec3; + + /// 3 components vector tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<3, float, packed_highp> packed_highp_vec3; + + /// 3 components vector tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<3, float, packed_mediump> packed_mediump_vec3; + + /// 3 components vector tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<3, float, packed_lowp> packed_lowp_vec3; + + /// 3 components vector tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<3, double, packed_highp> packed_highp_dvec3; + + /// 3 components vector tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<3, double, packed_mediump> packed_mediump_dvec3; + + /// 3 components vector tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<3, double, packed_lowp> packed_lowp_dvec3; + + /// 3 components vector tightly packed in memory of signed integer numbers. + typedef vec<3, int, packed_highp> packed_highp_ivec3; + + /// 3 components vector tightly packed in memory of signed integer numbers. + typedef vec<3, int, packed_mediump> packed_mediump_ivec3; + + /// 3 components vector tightly packed in memory of signed integer numbers. + typedef vec<3, int, packed_lowp> packed_lowp_ivec3; + + /// 3 components vector tightly packed in memory of unsigned integer numbers. + typedef vec<3, uint, packed_highp> packed_highp_uvec3; + + /// 3 components vector tightly packed in memory of unsigned integer numbers. + typedef vec<3, uint, packed_mediump> packed_mediump_uvec3; + + /// 3 components vector tightly packed in memory of unsigned integer numbers. + typedef vec<3, uint, packed_lowp> packed_lowp_uvec3; + + /// 3 components vector tightly packed in memory of bool values. + typedef vec<3, bool, packed_highp> packed_highp_bvec3; + + /// 3 components vector tightly packed in memory of bool values. + typedef vec<3, bool, packed_mediump> packed_mediump_bvec3; + + /// 3 components vector tightly packed in memory of bool values. + typedef vec<3, bool, packed_lowp> packed_lowp_bvec3; + + // -- *vec4 -- + + /// 4 components vector aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<4, float, aligned_highp> aligned_highp_vec4; + + /// 4 components vector aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<4, float, aligned_mediump> aligned_mediump_vec4; + + /// 4 components vector aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<4, float, aligned_lowp> aligned_lowp_vec4; + + /// 4 components vector aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<4, double, aligned_highp> aligned_highp_dvec4; + + /// 4 components vector aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<4, double, aligned_mediump> aligned_mediump_dvec4; + + /// 4 components vector aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<4, double, aligned_lowp> aligned_lowp_dvec4; + + /// 4 components vector aligned in memory of signed integer numbers. + typedef vec<4, int, aligned_highp> aligned_highp_ivec4; + + /// 4 components vector aligned in memory of signed integer numbers. + typedef vec<4, int, aligned_mediump> aligned_mediump_ivec4; + + /// 4 components vector aligned in memory of signed integer numbers. + typedef vec<4, int, aligned_lowp> aligned_lowp_ivec4; + + /// 4 components vector aligned in memory of unsigned integer numbers. + typedef vec<4, uint, aligned_highp> aligned_highp_uvec4; + + /// 4 components vector aligned in memory of unsigned integer numbers. + typedef vec<4, uint, aligned_mediump> aligned_mediump_uvec4; + + /// 4 components vector aligned in memory of unsigned integer numbers. + typedef vec<4, uint, aligned_lowp> aligned_lowp_uvec4; + + /// 4 components vector aligned in memory of bool values. + typedef vec<4, bool, aligned_highp> aligned_highp_bvec4; + + /// 4 components vector aligned in memory of bool values. + typedef vec<4, bool, aligned_mediump> aligned_mediump_bvec4; + + /// 4 components vector aligned in memory of bool values. + typedef vec<4, bool, aligned_lowp> aligned_lowp_bvec4; + + /// 4 components vector tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<4, float, packed_highp> packed_highp_vec4; + + /// 4 components vector tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<4, float, packed_mediump> packed_mediump_vec4; + + /// 4 components vector tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<4, float, packed_lowp> packed_lowp_vec4; + + /// 4 components vector tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef vec<4, double, packed_highp> packed_highp_dvec4; + + /// 4 components vector tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef vec<4, double, packed_mediump> packed_mediump_dvec4; + + /// 4 components vector tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef vec<4, double, packed_lowp> packed_lowp_dvec4; + + /// 4 components vector tightly packed in memory of signed integer numbers. + typedef vec<4, int, packed_highp> packed_highp_ivec4; + + /// 4 components vector tightly packed in memory of signed integer numbers. + typedef vec<4, int, packed_mediump> packed_mediump_ivec4; + + /// 4 components vector tightly packed in memory of signed integer numbers. + typedef vec<4, int, packed_lowp> packed_lowp_ivec4; + + /// 4 components vector tightly packed in memory of unsigned integer numbers. + typedef vec<4, uint, packed_highp> packed_highp_uvec4; + + /// 4 components vector tightly packed in memory of unsigned integer numbers. + typedef vec<4, uint, packed_mediump> packed_mediump_uvec4; + + /// 4 components vector tightly packed in memory of unsigned integer numbers. + typedef vec<4, uint, packed_lowp> packed_lowp_uvec4; + + /// 4 components vector tightly packed in memory of bool values. + typedef vec<4, bool, packed_highp> packed_highp_bvec4; + + /// 4 components vector tightly packed in memory of bool values. + typedef vec<4, bool, packed_mediump> packed_mediump_bvec4; + + /// 4 components vector tightly packed in memory of bool values. + typedef vec<4, bool, packed_lowp> packed_lowp_bvec4; + + // -- *mat2 -- + + /// 2 by 2 matrix aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<2, 2, float, aligned_highp> aligned_highp_mat2; + + /// 2 by 2 matrix aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<2, 2, float, aligned_mediump> aligned_mediump_mat2; + + /// 2 by 2 matrix aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<2, 2, float, aligned_lowp> aligned_lowp_mat2; + + /// 2 by 2 matrix aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<2, 2, double, aligned_highp> aligned_highp_dmat2; + + /// 2 by 2 matrix aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<2, 2, double, aligned_mediump> aligned_mediump_dmat2; + + /// 2 by 2 matrix aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<2, 2, double, aligned_lowp> aligned_lowp_dmat2; + + /// 2 by 2 matrix tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<2, 2, float, packed_highp> packed_highp_mat2; + + /// 2 by 2 matrix tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<2, 2, float, packed_mediump> packed_mediump_mat2; + + /// 2 by 2 matrix tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<2, 2, float, packed_lowp> packed_lowp_mat2; + + /// 2 by 2 matrix tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<2, 2, double, packed_highp> packed_highp_dmat2; + + /// 2 by 2 matrix tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<2, 2, double, packed_mediump> packed_mediump_dmat2; + + /// 2 by 2 matrix tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<2, 2, double, packed_lowp> packed_lowp_dmat2; + + // -- *mat3 -- + + /// 3 by 3 matrix aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<3, 3, float, aligned_highp> aligned_highp_mat3; + + /// 3 by 3 matrix aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<3, 3, float, aligned_mediump> aligned_mediump_mat3; + + /// 3 by 3 matrix aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<3, 3, float, aligned_lowp> aligned_lowp_mat3; + + /// 3 by 3 matrix aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<3, 3, double, aligned_highp> aligned_highp_dmat3; + + /// 3 by 3 matrix aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<3, 3, double, aligned_mediump> aligned_mediump_dmat3; + + /// 3 by 3 matrix aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<3, 3, double, aligned_lowp> aligned_lowp_dmat3; + + /// 3 by 3 matrix tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<3, 3, float, packed_highp> packed_highp_mat3; + + /// 3 by 3 matrix tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<3, 3, float, packed_mediump> packed_mediump_mat3; + + /// 3 by 3 matrix tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<3, 3, float, packed_lowp> packed_lowp_mat3; + + /// 3 by 3 matrix tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<3, 3, double, packed_highp> packed_highp_dmat3; + + /// 3 by 3 matrix tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<3, 3, double, packed_mediump> packed_mediump_dmat3; + + /// 3 by 3 matrix tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<3, 3, double, packed_lowp> packed_lowp_dmat3; + + // -- *mat4 -- + + /// 4 by 4 matrix aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<4, 4, float, aligned_highp> aligned_highp_mat4; + + /// 4 by 4 matrix aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<4, 4, float, aligned_mediump> aligned_mediump_mat4; + + /// 4 by 4 matrix aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<4, 4, float, aligned_lowp> aligned_lowp_mat4; + + /// 4 by 4 matrix aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<4, 4, double, aligned_highp> aligned_highp_dmat4; + + /// 4 by 4 matrix aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<4, 4, double, aligned_mediump> aligned_mediump_dmat4; + + /// 4 by 4 matrix aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<4, 4, double, aligned_lowp> aligned_lowp_dmat4; + + /// 4 by 4 matrix tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<4, 4, float, packed_highp> packed_highp_mat4; + + /// 4 by 4 matrix tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<4, 4, float, packed_mediump> packed_mediump_mat4; + + /// 4 by 4 matrix tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<4, 4, float, packed_lowp> packed_lowp_mat4; + + /// 4 by 4 matrix tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<4, 4, double, packed_highp> packed_highp_dmat4; + + /// 4 by 4 matrix tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<4, 4, double, packed_mediump> packed_mediump_dmat4; + + /// 4 by 4 matrix tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<4, 4, double, packed_lowp> packed_lowp_dmat4; + + // -- *mat2x2 -- + + /// 2 by 2 matrix aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<2, 2, float, aligned_highp> aligned_highp_mat2x2; + + /// 2 by 2 matrix aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<2, 2, float, aligned_mediump> aligned_mediump_mat2x2; + + /// 2 by 2 matrix aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<2, 2, float, aligned_lowp> aligned_lowp_mat2x2; + + /// 2 by 2 matrix aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<2, 2, double, aligned_highp> aligned_highp_dmat2x2; + + /// 2 by 2 matrix aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<2, 2, double, aligned_mediump> aligned_mediump_dmat2x2; + + /// 2 by 2 matrix aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<2, 2, double, aligned_lowp> aligned_lowp_dmat2x2; + + /// 2 by 2 matrix tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<2, 2, float, packed_highp> packed_highp_mat2x2; + + /// 2 by 2 matrix tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<2, 2, float, packed_mediump> packed_mediump_mat2x2; + + /// 2 by 2 matrix tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<2, 2, float, packed_lowp> packed_lowp_mat2x2; + + /// 2 by 2 matrix tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<2, 2, double, packed_highp> packed_highp_dmat2x2; + + /// 2 by 2 matrix tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<2, 2, double, packed_mediump> packed_mediump_dmat2x2; + + /// 2 by 2 matrix tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<2, 2, double, packed_lowp> packed_lowp_dmat2x2; + + // -- *mat2x3 -- + + /// 2 by 3 matrix aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<2, 3, float, aligned_highp> aligned_highp_mat2x3; + + /// 2 by 3 matrix aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<2, 3, float, aligned_mediump> aligned_mediump_mat2x3; + + /// 2 by 3 matrix aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<2, 3, float, aligned_lowp> aligned_lowp_mat2x3; + + /// 2 by 3 matrix aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<2, 3, double, aligned_highp> aligned_highp_dmat2x3; + + /// 2 by 3 matrix aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<2, 3, double, aligned_mediump> aligned_mediump_dmat2x3; + + /// 2 by 3 matrix aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<2, 3, double, aligned_lowp> aligned_lowp_dmat2x3; + + /// 2 by 3 matrix tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<2, 3, float, packed_highp> packed_highp_mat2x3; + + /// 2 by 3 matrix tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<2, 3, float, packed_mediump> packed_mediump_mat2x3; + + /// 2 by 3 matrix tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<2, 3, float, packed_lowp> packed_lowp_mat2x3; + + /// 2 by 3 matrix tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<2, 3, double, packed_highp> packed_highp_dmat2x3; + + /// 2 by 3 matrix tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<2, 3, double, packed_mediump> packed_mediump_dmat2x3; + + /// 2 by 3 matrix tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<2, 3, double, packed_lowp> packed_lowp_dmat2x3; + + // -- *mat2x4 -- + + /// 2 by 4 matrix aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<2, 4, float, aligned_highp> aligned_highp_mat2x4; + + /// 2 by 4 matrix aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<2, 4, float, aligned_mediump> aligned_mediump_mat2x4; + + /// 2 by 4 matrix aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<2, 4, float, aligned_lowp> aligned_lowp_mat2x4; + + /// 2 by 4 matrix aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<2, 4, double, aligned_highp> aligned_highp_dmat2x4; + + /// 2 by 4 matrix aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<2, 4, double, aligned_mediump> aligned_mediump_dmat2x4; + + /// 2 by 4 matrix aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<2, 4, double, aligned_lowp> aligned_lowp_dmat2x4; + + /// 2 by 4 matrix tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<2, 4, float, packed_highp> packed_highp_mat2x4; + + /// 2 by 4 matrix tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<2, 4, float, packed_mediump> packed_mediump_mat2x4; + + /// 2 by 4 matrix tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<2, 4, float, packed_lowp> packed_lowp_mat2x4; + + /// 2 by 4 matrix tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<2, 4, double, packed_highp> packed_highp_dmat2x4; + + /// 2 by 4 matrix tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<2, 4, double, packed_mediump> packed_mediump_dmat2x4; + + /// 2 by 4 matrix tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<2, 4, double, packed_lowp> packed_lowp_dmat2x4; + + // -- *mat3x2 -- + + /// 3 by 2 matrix aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<3, 2, float, aligned_highp> aligned_highp_mat3x2; + + /// 3 by 2 matrix aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<3, 2, float, aligned_mediump> aligned_mediump_mat3x2; + + /// 3 by 2 matrix aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<3, 2, float, aligned_lowp> aligned_lowp_mat3x2; + + /// 3 by 2 matrix aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<3, 2, double, aligned_highp> aligned_highp_dmat3x2; + + /// 3 by 2 matrix aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<3, 2, double, aligned_mediump> aligned_mediump_dmat3x2; + + /// 3 by 2 matrix aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<3, 2, double, aligned_lowp> aligned_lowp_dmat3x2; + + /// 3 by 2 matrix tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<3, 2, float, packed_highp> packed_highp_mat3x2; + + /// 3 by 2 matrix tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<3, 2, float, packed_mediump> packed_mediump_mat3x2; + + /// 3 by 2 matrix tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<3, 2, float, packed_lowp> packed_lowp_mat3x2; + + /// 3 by 2 matrix tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<3, 2, double, packed_highp> packed_highp_dmat3x2; + + /// 3 by 2 matrix tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<3, 2, double, packed_mediump> packed_mediump_dmat3x2; + + /// 3 by 2 matrix tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<3, 2, double, packed_lowp> packed_lowp_dmat3x2; + + // -- *mat3x3 -- + + /// 3 by 3 matrix aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<3, 3, float, aligned_highp> aligned_highp_mat3x3; + + /// 3 by 3 matrix aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<3, 3, float, aligned_mediump> aligned_mediump_mat3x3; + + /// 3 by 3 matrix aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<3, 3, float, aligned_lowp> aligned_lowp_mat3x3; + + /// 3 by 3 matrix aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<3, 3, double, aligned_highp> aligned_highp_dmat3x3; + + /// 3 by 3 matrix aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<3, 3, double, aligned_mediump> aligned_mediump_dmat3x3; + + /// 3 by 3 matrix aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<3, 3, double, aligned_lowp> aligned_lowp_dmat3x3; + + /// 3 by 3 matrix tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<3, 3, float, packed_highp> packed_highp_mat3x3; + + /// 3 by 3 matrix tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<3, 3, float, packed_mediump> packed_mediump_mat3x3; + + /// 3 by 3 matrix tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<3, 3, float, packed_lowp> packed_lowp_mat3x3; + + /// 3 by 3 matrix tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<3, 3, double, packed_highp> packed_highp_dmat3x3; + + /// 3 by 3 matrix tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<3, 3, double, packed_mediump> packed_mediump_dmat3x3; + + /// 3 by 3 matrix tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<3, 3, double, packed_lowp> packed_lowp_dmat3x3; + + // -- *mat3x4 -- + + /// 3 by 4 matrix aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<3, 4, float, aligned_highp> aligned_highp_mat3x4; + + /// 3 by 4 matrix aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<3, 4, float, aligned_mediump> aligned_mediump_mat3x4; + + /// 3 by 4 matrix aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<3, 4, float, aligned_lowp> aligned_lowp_mat3x4; + + /// 3 by 4 matrix aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<3, 4, double, aligned_highp> aligned_highp_dmat3x4; + + /// 3 by 4 matrix aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<3, 4, double, aligned_mediump> aligned_mediump_dmat3x4; + + /// 3 by 4 matrix aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<3, 4, double, aligned_lowp> aligned_lowp_dmat3x4; + + /// 3 by 4 matrix tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<3, 4, float, packed_highp> packed_highp_mat3x4; + + /// 3 by 4 matrix tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<3, 4, float, packed_mediump> packed_mediump_mat3x4; + + /// 3 by 4 matrix tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<3, 4, float, packed_lowp> packed_lowp_mat3x4; + + /// 3 by 4 matrix tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<3, 4, double, packed_highp> packed_highp_dmat3x4; + + /// 3 by 4 matrix tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<3, 4, double, packed_mediump> packed_mediump_dmat3x4; + + /// 3 by 4 matrix tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<3, 4, double, packed_lowp> packed_lowp_dmat3x4; + + // -- *mat4x2 -- + + /// 4 by 2 matrix aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<4, 2, float, aligned_highp> aligned_highp_mat4x2; + + /// 4 by 2 matrix aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<4, 2, float, aligned_mediump> aligned_mediump_mat4x2; + + /// 4 by 2 matrix aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<4, 2, float, aligned_lowp> aligned_lowp_mat4x2; + + /// 4 by 2 matrix aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<4, 2, double, aligned_highp> aligned_highp_dmat4x2; + + /// 4 by 2 matrix aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<4, 2, double, aligned_mediump> aligned_mediump_dmat4x2; + + /// 4 by 2 matrix aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<4, 2, double, aligned_lowp> aligned_lowp_dmat4x2; + + /// 4 by 2 matrix tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<4, 2, float, packed_highp> packed_highp_mat4x2; + + /// 4 by 2 matrix tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<4, 2, float, packed_mediump> packed_mediump_mat4x2; + + /// 4 by 2 matrix tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<4, 2, float, packed_lowp> packed_lowp_mat4x2; + + /// 4 by 2 matrix tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<4, 2, double, packed_highp> packed_highp_dmat4x2; + + /// 4 by 2 matrix tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<4, 2, double, packed_mediump> packed_mediump_dmat4x2; + + /// 4 by 2 matrix tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<4, 2, double, packed_lowp> packed_lowp_dmat4x2; + + // -- *mat4x3 -- + + /// 4 by 3 matrix aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<4, 3, float, aligned_highp> aligned_highp_mat4x3; + + /// 4 by 3 matrix aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<4, 3, float, aligned_mediump> aligned_mediump_mat4x3; + + /// 4 by 3 matrix aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<4, 3, float, aligned_lowp> aligned_lowp_mat4x3; + + /// 4 by 3 matrix aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<4, 3, double, aligned_highp> aligned_highp_dmat4x3; + + /// 4 by 3 matrix aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<4, 3, double, aligned_mediump> aligned_mediump_dmat4x3; + + /// 4 by 3 matrix aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<4, 3, double, aligned_lowp> aligned_lowp_dmat4x3; + + /// 4 by 3 matrix tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<4, 3, float, packed_highp> packed_highp_mat4x3; + + /// 4 by 3 matrix tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<4, 3, float, packed_mediump> packed_mediump_mat4x3; + + /// 4 by 3 matrix tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<4, 3, float, packed_lowp> packed_lowp_mat4x3; + + /// 4 by 3 matrix tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<4, 3, double, packed_highp> packed_highp_dmat4x3; + + /// 4 by 3 matrix tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<4, 3, double, packed_mediump> packed_mediump_dmat4x3; + + /// 4 by 3 matrix tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<4, 3, double, packed_lowp> packed_lowp_dmat4x3; + + // -- *mat4x4 -- + + /// 4 by 4 matrix aligned in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<4, 4, float, aligned_highp> aligned_highp_mat4x4; + + /// 4 by 4 matrix aligned in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<4, 4, float, aligned_mediump> aligned_mediump_mat4x4; + + /// 4 by 4 matrix aligned in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<4, 4, float, aligned_lowp> aligned_lowp_mat4x4; + + /// 4 by 4 matrix aligned in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<4, 4, double, aligned_highp> aligned_highp_dmat4x4; + + /// 4 by 4 matrix aligned in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<4, 4, double, aligned_mediump> aligned_mediump_dmat4x4; + + /// 4 by 4 matrix aligned in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<4, 4, double, aligned_lowp> aligned_lowp_dmat4x4; + + /// 4 by 4 matrix tightly packed in memory of single-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<4, 4, float, packed_highp> packed_highp_mat4x4; + + /// 4 by 4 matrix tightly packed in memory of single-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<4, 4, float, packed_mediump> packed_mediump_mat4x4; + + /// 4 by 4 matrix tightly packed in memory of single-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<4, 4, float, packed_lowp> packed_lowp_mat4x4; + + /// 4 by 4 matrix tightly packed in memory of double-precision floating-point numbers using high precision arithmetic in term of ULPs. + typedef mat<4, 4, double, packed_highp> packed_highp_dmat4x4; + + /// 4 by 4 matrix tightly packed in memory of double-precision floating-point numbers using medium precision arithmetic in term of ULPs. + typedef mat<4, 4, double, packed_mediump> packed_mediump_dmat4x4; + + /// 4 by 4 matrix tightly packed in memory of double-precision floating-point numbers using low precision arithmetic in term of ULPs. + typedef mat<4, 4, double, packed_lowp> packed_lowp_dmat4x4; + + // -- default -- + +#if(defined(GLM_PRECISION_LOWP_FLOAT)) + typedef aligned_lowp_vec1 aligned_vec1; + typedef aligned_lowp_vec2 aligned_vec2; + typedef aligned_lowp_vec3 aligned_vec3; + typedef aligned_lowp_vec4 aligned_vec4; + typedef packed_lowp_vec1 packed_vec1; + typedef packed_lowp_vec2 packed_vec2; + typedef packed_lowp_vec3 packed_vec3; + typedef packed_lowp_vec4 packed_vec4; + + typedef aligned_lowp_mat2 aligned_mat2; + typedef aligned_lowp_mat3 aligned_mat3; + typedef aligned_lowp_mat4 aligned_mat4; + typedef packed_lowp_mat2 packed_mat2; + typedef packed_lowp_mat3 packed_mat3; + typedef packed_lowp_mat4 packed_mat4; + + typedef aligned_lowp_mat2x2 aligned_mat2x2; + typedef aligned_lowp_mat2x3 aligned_mat2x3; + typedef aligned_lowp_mat2x4 aligned_mat2x4; + typedef aligned_lowp_mat3x2 aligned_mat3x2; + typedef aligned_lowp_mat3x3 aligned_mat3x3; + typedef aligned_lowp_mat3x4 aligned_mat3x4; + typedef aligned_lowp_mat4x2 aligned_mat4x2; + typedef aligned_lowp_mat4x3 aligned_mat4x3; + typedef aligned_lowp_mat4x4 aligned_mat4x4; + typedef packed_lowp_mat2x2 packed_mat2x2; + typedef packed_lowp_mat2x3 packed_mat2x3; + typedef packed_lowp_mat2x4 packed_mat2x4; + typedef packed_lowp_mat3x2 packed_mat3x2; + typedef packed_lowp_mat3x3 packed_mat3x3; + typedef packed_lowp_mat3x4 packed_mat3x4; + typedef packed_lowp_mat4x2 packed_mat4x2; + typedef packed_lowp_mat4x3 packed_mat4x3; + typedef packed_lowp_mat4x4 packed_mat4x4; +#elif(defined(GLM_PRECISION_MEDIUMP_FLOAT)) + typedef aligned_mediump_vec1 aligned_vec1; + typedef aligned_mediump_vec2 aligned_vec2; + typedef aligned_mediump_vec3 aligned_vec3; + typedef aligned_mediump_vec4 aligned_vec4; + typedef packed_mediump_vec1 packed_vec1; + typedef packed_mediump_vec2 packed_vec2; + typedef packed_mediump_vec3 packed_vec3; + typedef packed_mediump_vec4 packed_vec4; + + typedef aligned_mediump_mat2 aligned_mat2; + typedef aligned_mediump_mat3 aligned_mat3; + typedef aligned_mediump_mat4 aligned_mat4; + typedef packed_mediump_mat2 packed_mat2; + typedef packed_mediump_mat3 packed_mat3; + typedef packed_mediump_mat4 packed_mat4; + + typedef aligned_mediump_mat2x2 aligned_mat2x2; + typedef aligned_mediump_mat2x3 aligned_mat2x3; + typedef aligned_mediump_mat2x4 aligned_mat2x4; + typedef aligned_mediump_mat3x2 aligned_mat3x2; + typedef aligned_mediump_mat3x3 aligned_mat3x3; + typedef aligned_mediump_mat3x4 aligned_mat3x4; + typedef aligned_mediump_mat4x2 aligned_mat4x2; + typedef aligned_mediump_mat4x3 aligned_mat4x3; + typedef aligned_mediump_mat4x4 aligned_mat4x4; + typedef packed_mediump_mat2x2 packed_mat2x2; + typedef packed_mediump_mat2x3 packed_mat2x3; + typedef packed_mediump_mat2x4 packed_mat2x4; + typedef packed_mediump_mat3x2 packed_mat3x2; + typedef packed_mediump_mat3x3 packed_mat3x3; + typedef packed_mediump_mat3x4 packed_mat3x4; + typedef packed_mediump_mat4x2 packed_mat4x2; + typedef packed_mediump_mat4x3 packed_mat4x3; + typedef packed_mediump_mat4x4 packed_mat4x4; +#else //defined(GLM_PRECISION_HIGHP_FLOAT) + /// 1 component vector aligned in memory of single-precision floating-point numbers. + typedef aligned_highp_vec1 aligned_vec1; + + /// 2 components vector aligned in memory of single-precision floating-point numbers. + typedef aligned_highp_vec2 aligned_vec2; + + /// 3 components vector aligned in memory of single-precision floating-point numbers. + typedef aligned_highp_vec3 aligned_vec3; + + /// 4 components vector aligned in memory of single-precision floating-point numbers. + typedef aligned_highp_vec4 aligned_vec4; + + /// 1 component vector tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_vec1 packed_vec1; + + /// 2 components vector tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_vec2 packed_vec2; + + /// 3 components vector tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_vec3 packed_vec3; + + /// 4 components vector tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_vec4 packed_vec4; + + /// 2 by 2 matrix tightly aligned in memory of single-precision floating-point numbers. + typedef aligned_highp_mat2 aligned_mat2; + + /// 3 by 3 matrix tightly aligned in memory of single-precision floating-point numbers. + typedef aligned_highp_mat3 aligned_mat3; + + /// 4 by 4 matrix tightly aligned in memory of single-precision floating-point numbers. + typedef aligned_highp_mat4 aligned_mat4; + + /// 2 by 2 matrix tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_mat2 packed_mat2; + + /// 3 by 3 matrix tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_mat3 packed_mat3; + + /// 4 by 4 matrix tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_mat4 packed_mat4; + + /// 2 by 2 matrix tightly aligned in memory of single-precision floating-point numbers. + typedef aligned_highp_mat2x2 aligned_mat2x2; + + /// 2 by 3 matrix tightly aligned in memory of single-precision floating-point numbers. + typedef aligned_highp_mat2x3 aligned_mat2x3; + + /// 2 by 4 matrix tightly aligned in memory of single-precision floating-point numbers. + typedef aligned_highp_mat2x4 aligned_mat2x4; + + /// 3 by 2 matrix tightly aligned in memory of single-precision floating-point numbers. + typedef aligned_highp_mat3x2 aligned_mat3x2; + + /// 3 by 3 matrix tightly aligned in memory of single-precision floating-point numbers. + typedef aligned_highp_mat3x3 aligned_mat3x3; + + /// 3 by 4 matrix tightly aligned in memory of single-precision floating-point numbers. + typedef aligned_highp_mat3x4 aligned_mat3x4; + + /// 4 by 2 matrix tightly aligned in memory of single-precision floating-point numbers. + typedef aligned_highp_mat4x2 aligned_mat4x2; + + /// 4 by 3 matrix tightly aligned in memory of single-precision floating-point numbers. + typedef aligned_highp_mat4x3 aligned_mat4x3; + + /// 4 by 4 matrix tightly aligned in memory of single-precision floating-point numbers. + typedef aligned_highp_mat4x4 aligned_mat4x4; + + /// 2 by 2 matrix tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_mat2x2 packed_mat2x2; + + /// 2 by 3 matrix tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_mat2x3 packed_mat2x3; + + /// 2 by 4 matrix tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_mat2x4 packed_mat2x4; + + /// 3 by 2 matrix tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_mat3x2 packed_mat3x2; + + /// 3 by 3 matrix tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_mat3x3 packed_mat3x3; + + /// 3 by 4 matrix tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_mat3x4 packed_mat3x4; + + /// 4 by 2 matrix tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_mat4x2 packed_mat4x2; + + /// 4 by 3 matrix tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_mat4x3 packed_mat4x3; + + /// 4 by 4 matrix tightly packed in memory of single-precision floating-point numbers. + typedef packed_highp_mat4x4 packed_mat4x4; +#endif//GLM_PRECISION + +#if(defined(GLM_PRECISION_LOWP_DOUBLE)) + typedef aligned_lowp_dvec1 aligned_dvec1; + typedef aligned_lowp_dvec2 aligned_dvec2; + typedef aligned_lowp_dvec3 aligned_dvec3; + typedef aligned_lowp_dvec4 aligned_dvec4; + typedef packed_lowp_dvec1 packed_dvec1; + typedef packed_lowp_dvec2 packed_dvec2; + typedef packed_lowp_dvec3 packed_dvec3; + typedef packed_lowp_dvec4 packed_dvec4; + + typedef aligned_lowp_dmat2 aligned_dmat2; + typedef aligned_lowp_dmat3 aligned_dmat3; + typedef aligned_lowp_dmat4 aligned_dmat4; + typedef packed_lowp_dmat2 packed_dmat2; + typedef packed_lowp_dmat3 packed_dmat3; + typedef packed_lowp_dmat4 packed_dmat4; + + typedef aligned_lowp_dmat2x2 aligned_dmat2x2; + typedef aligned_lowp_dmat2x3 aligned_dmat2x3; + typedef aligned_lowp_dmat2x4 aligned_dmat2x4; + typedef aligned_lowp_dmat3x2 aligned_dmat3x2; + typedef aligned_lowp_dmat3x3 aligned_dmat3x3; + typedef aligned_lowp_dmat3x4 aligned_dmat3x4; + typedef aligned_lowp_dmat4x2 aligned_dmat4x2; + typedef aligned_lowp_dmat4x3 aligned_dmat4x3; + typedef aligned_lowp_dmat4x4 aligned_dmat4x4; + typedef packed_lowp_dmat2x2 packed_dmat2x2; + typedef packed_lowp_dmat2x3 packed_dmat2x3; + typedef packed_lowp_dmat2x4 packed_dmat2x4; + typedef packed_lowp_dmat3x2 packed_dmat3x2; + typedef packed_lowp_dmat3x3 packed_dmat3x3; + typedef packed_lowp_dmat3x4 packed_dmat3x4; + typedef packed_lowp_dmat4x2 packed_dmat4x2; + typedef packed_lowp_dmat4x3 packed_dmat4x3; + typedef packed_lowp_dmat4x4 packed_dmat4x4; +#elif(defined(GLM_PRECISION_MEDIUMP_DOUBLE)) + typedef aligned_mediump_dvec1 aligned_dvec1; + typedef aligned_mediump_dvec2 aligned_dvec2; + typedef aligned_mediump_dvec3 aligned_dvec3; + typedef aligned_mediump_dvec4 aligned_dvec4; + typedef packed_mediump_dvec1 packed_dvec1; + typedef packed_mediump_dvec2 packed_dvec2; + typedef packed_mediump_dvec3 packed_dvec3; + typedef packed_mediump_dvec4 packed_dvec4; + + typedef aligned_mediump_dmat2 aligned_dmat2; + typedef aligned_mediump_dmat3 aligned_dmat3; + typedef aligned_mediump_dmat4 aligned_dmat4; + typedef packed_mediump_dmat2 packed_dmat2; + typedef packed_mediump_dmat3 packed_dmat3; + typedef packed_mediump_dmat4 packed_dmat4; + + typedef aligned_mediump_dmat2x2 aligned_dmat2x2; + typedef aligned_mediump_dmat2x3 aligned_dmat2x3; + typedef aligned_mediump_dmat2x4 aligned_dmat2x4; + typedef aligned_mediump_dmat3x2 aligned_dmat3x2; + typedef aligned_mediump_dmat3x3 aligned_dmat3x3; + typedef aligned_mediump_dmat3x4 aligned_dmat3x4; + typedef aligned_mediump_dmat4x2 aligned_dmat4x2; + typedef aligned_mediump_dmat4x3 aligned_dmat4x3; + typedef aligned_mediump_dmat4x4 aligned_dmat4x4; + typedef packed_mediump_dmat2x2 packed_dmat2x2; + typedef packed_mediump_dmat2x3 packed_dmat2x3; + typedef packed_mediump_dmat2x4 packed_dmat2x4; + typedef packed_mediump_dmat3x2 packed_dmat3x2; + typedef packed_mediump_dmat3x3 packed_dmat3x3; + typedef packed_mediump_dmat3x4 packed_dmat3x4; + typedef packed_mediump_dmat4x2 packed_dmat4x2; + typedef packed_mediump_dmat4x3 packed_dmat4x3; + typedef packed_mediump_dmat4x4 packed_dmat4x4; +#else //defined(GLM_PRECISION_HIGHP_DOUBLE) + /// 1 component vector aligned in memory of double-precision floating-point numbers. + typedef aligned_highp_dvec1 aligned_dvec1; + + /// 2 components vector aligned in memory of double-precision floating-point numbers. + typedef aligned_highp_dvec2 aligned_dvec2; + + /// 3 components vector aligned in memory of double-precision floating-point numbers. + typedef aligned_highp_dvec3 aligned_dvec3; + + /// 4 components vector aligned in memory of double-precision floating-point numbers. + typedef aligned_highp_dvec4 aligned_dvec4; + + /// 1 component vector tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dvec1 packed_dvec1; + + /// 2 components vector tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dvec2 packed_dvec2; + + /// 3 components vector tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dvec3 packed_dvec3; + + /// 4 components vector tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dvec4 packed_dvec4; + + /// 2 by 2 matrix tightly aligned in memory of double-precision floating-point numbers. + typedef aligned_highp_dmat2 aligned_dmat2; + + /// 3 by 3 matrix tightly aligned in memory of double-precision floating-point numbers. + typedef aligned_highp_dmat3 aligned_dmat3; + + /// 4 by 4 matrix tightly aligned in memory of double-precision floating-point numbers. + typedef aligned_highp_dmat4 aligned_dmat4; + + /// 2 by 2 matrix tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dmat2 packed_dmat2; + + /// 3 by 3 matrix tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dmat3 packed_dmat3; + + /// 4 by 4 matrix tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dmat4 packed_dmat4; + + /// 2 by 2 matrix tightly aligned in memory of double-precision floating-point numbers. + typedef aligned_highp_dmat2x2 aligned_dmat2x2; + + /// 2 by 3 matrix tightly aligned in memory of double-precision floating-point numbers. + typedef aligned_highp_dmat2x3 aligned_dmat2x3; + + /// 2 by 4 matrix tightly aligned in memory of double-precision floating-point numbers. + typedef aligned_highp_dmat2x4 aligned_dmat2x4; + + /// 3 by 2 matrix tightly aligned in memory of double-precision floating-point numbers. + typedef aligned_highp_dmat3x2 aligned_dmat3x2; + + /// 3 by 3 matrix tightly aligned in memory of double-precision floating-point numbers. + typedef aligned_highp_dmat3x3 aligned_dmat3x3; + + /// 3 by 4 matrix tightly aligned in memory of double-precision floating-point numbers. + typedef aligned_highp_dmat3x4 aligned_dmat3x4; + + /// 4 by 2 matrix tightly aligned in memory of double-precision floating-point numbers. + typedef aligned_highp_dmat4x2 aligned_dmat4x2; + + /// 4 by 3 matrix tightly aligned in memory of double-precision floating-point numbers. + typedef aligned_highp_dmat4x3 aligned_dmat4x3; + + /// 4 by 4 matrix tightly aligned in memory of double-precision floating-point numbers. + typedef aligned_highp_dmat4x4 aligned_dmat4x4; + + /// 2 by 2 matrix tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dmat2x2 packed_dmat2x2; + + /// 2 by 3 matrix tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dmat2x3 packed_dmat2x3; + + /// 2 by 4 matrix tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dmat2x4 packed_dmat2x4; + + /// 3 by 2 matrix tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dmat3x2 packed_dmat3x2; + + /// 3 by 3 matrix tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dmat3x3 packed_dmat3x3; + + /// 3 by 4 matrix tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dmat3x4 packed_dmat3x4; + + /// 4 by 2 matrix tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dmat4x2 packed_dmat4x2; + + /// 4 by 3 matrix tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dmat4x3 packed_dmat4x3; + + /// 4 by 4 matrix tightly packed in memory of double-precision floating-point numbers. + typedef packed_highp_dmat4x4 packed_dmat4x4; +#endif//GLM_PRECISION + +#if(defined(GLM_PRECISION_LOWP_INT)) + typedef aligned_lowp_ivec1 aligned_ivec1; + typedef aligned_lowp_ivec2 aligned_ivec2; + typedef aligned_lowp_ivec3 aligned_ivec3; + typedef aligned_lowp_ivec4 aligned_ivec4; +#elif(defined(GLM_PRECISION_MEDIUMP_INT)) + typedef aligned_mediump_ivec1 aligned_ivec1; + typedef aligned_mediump_ivec2 aligned_ivec2; + typedef aligned_mediump_ivec3 aligned_ivec3; + typedef aligned_mediump_ivec4 aligned_ivec4; +#else //defined(GLM_PRECISION_HIGHP_INT) + /// 1 component vector aligned in memory of signed integer numbers. + typedef aligned_highp_ivec1 aligned_ivec1; + + /// 2 components vector aligned in memory of signed integer numbers. + typedef aligned_highp_ivec2 aligned_ivec2; + + /// 3 components vector aligned in memory of signed integer numbers. + typedef aligned_highp_ivec3 aligned_ivec3; + + /// 4 components vector aligned in memory of signed integer numbers. + typedef aligned_highp_ivec4 aligned_ivec4; + + /// 1 component vector tightly packed in memory of signed integer numbers. + typedef packed_highp_ivec1 packed_ivec1; + + /// 2 components vector tightly packed in memory of signed integer numbers. + typedef packed_highp_ivec2 packed_ivec2; + + /// 3 components vector tightly packed in memory of signed integer numbers. + typedef packed_highp_ivec3 packed_ivec3; + + /// 4 components vector tightly packed in memory of signed integer numbers. + typedef packed_highp_ivec4 packed_ivec4; +#endif//GLM_PRECISION + + // -- Unsigned integer definition -- + +#if(defined(GLM_PRECISION_LOWP_UINT)) + typedef aligned_lowp_uvec1 aligned_uvec1; + typedef aligned_lowp_uvec2 aligned_uvec2; + typedef aligned_lowp_uvec3 aligned_uvec3; + typedef aligned_lowp_uvec4 aligned_uvec4; +#elif(defined(GLM_PRECISION_MEDIUMP_UINT)) + typedef aligned_mediump_uvec1 aligned_uvec1; + typedef aligned_mediump_uvec2 aligned_uvec2; + typedef aligned_mediump_uvec3 aligned_uvec3; + typedef aligned_mediump_uvec4 aligned_uvec4; +#else //defined(GLM_PRECISION_HIGHP_UINT) + /// 1 component vector aligned in memory of unsigned integer numbers. + typedef aligned_highp_uvec1 aligned_uvec1; + + /// 2 components vector aligned in memory of unsigned integer numbers. + typedef aligned_highp_uvec2 aligned_uvec2; + + /// 3 components vector aligned in memory of unsigned integer numbers. + typedef aligned_highp_uvec3 aligned_uvec3; + + /// 4 components vector aligned in memory of unsigned integer numbers. + typedef aligned_highp_uvec4 aligned_uvec4; + + /// 1 component vector tightly packed in memory of unsigned integer numbers. + typedef packed_highp_uvec1 packed_uvec1; + + /// 2 components vector tightly packed in memory of unsigned integer numbers. + typedef packed_highp_uvec2 packed_uvec2; + + /// 3 components vector tightly packed in memory of unsigned integer numbers. + typedef packed_highp_uvec3 packed_uvec3; + + /// 4 components vector tightly packed in memory of unsigned integer numbers. + typedef packed_highp_uvec4 packed_uvec4; +#endif//GLM_PRECISION + +#if(defined(GLM_PRECISION_LOWP_BOOL)) + typedef aligned_lowp_bvec1 aligned_bvec1; + typedef aligned_lowp_bvec2 aligned_bvec2; + typedef aligned_lowp_bvec3 aligned_bvec3; + typedef aligned_lowp_bvec4 aligned_bvec4; +#elif(defined(GLM_PRECISION_MEDIUMP_BOOL)) + typedef aligned_mediump_bvec1 aligned_bvec1; + typedef aligned_mediump_bvec2 aligned_bvec2; + typedef aligned_mediump_bvec3 aligned_bvec3; + typedef aligned_mediump_bvec4 aligned_bvec4; +#else //defined(GLM_PRECISION_HIGHP_BOOL) + /// 1 component vector aligned in memory of bool values. + typedef aligned_highp_bvec1 aligned_bvec1; + + /// 2 components vector aligned in memory of bool values. + typedef aligned_highp_bvec2 aligned_bvec2; + + /// 3 components vector aligned in memory of bool values. + typedef aligned_highp_bvec3 aligned_bvec3; + + /// 4 components vector aligned in memory of bool values. + typedef aligned_highp_bvec4 aligned_bvec4; + + /// 1 components vector tightly packed in memory of bool values. + typedef packed_highp_bvec1 packed_bvec1; + + /// 2 components vector tightly packed in memory of bool values. + typedef packed_highp_bvec2 packed_bvec2; + + /// 3 components vector tightly packed in memory of bool values. + typedef packed_highp_bvec3 packed_bvec3; + + /// 4 components vector tightly packed in memory of bool values. + typedef packed_highp_bvec4 packed_bvec4; +#endif//GLM_PRECISION + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/gtc/type_precision.hpp b/thirdparty/glm/glm/gtc/type_precision.hpp new file mode 100644 index 000000000000..775e2f484d73 --- /dev/null +++ b/thirdparty/glm/glm/gtc/type_precision.hpp @@ -0,0 +1,2094 @@ +/// @ref gtc_type_precision +/// @file glm/gtc/type_precision.hpp +/// +/// @see core (dependence) +/// @see gtc_quaternion (dependence) +/// +/// @defgroup gtc_type_precision GLM_GTC_type_precision +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// Defines specific C++-based qualifier types. + +#pragma once + +// Dependency: +#include "../gtc/quaternion.hpp" +#include "../gtc/vec1.hpp" +#include "../ext/vector_int1_sized.hpp" +#include "../ext/vector_int2_sized.hpp" +#include "../ext/vector_int3_sized.hpp" +#include "../ext/vector_int4_sized.hpp" +#include "../ext/scalar_int_sized.hpp" +#include "../ext/vector_uint1_sized.hpp" +#include "../ext/vector_uint2_sized.hpp" +#include "../ext/vector_uint3_sized.hpp" +#include "../ext/vector_uint4_sized.hpp" +#include "../ext/scalar_uint_sized.hpp" +#include "../detail/type_vec2.hpp" +#include "../detail/type_vec3.hpp" +#include "../detail/type_vec4.hpp" +#include "../detail/type_mat2x2.hpp" +#include "../detail/type_mat2x3.hpp" +#include "../detail/type_mat2x4.hpp" +#include "../detail/type_mat3x2.hpp" +#include "../detail/type_mat3x3.hpp" +#include "../detail/type_mat3x4.hpp" +#include "../detail/type_mat4x2.hpp" +#include "../detail/type_mat4x3.hpp" +#include "../detail/type_mat4x4.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_type_precision extension included") +#endif + +namespace glm +{ + /////////////////////////// + // Signed int vector types + + /// @addtogroup gtc_type_precision + /// @{ + + /// Low qualifier 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 lowp_int8; + + /// Low qualifier 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 lowp_int16; + + /// Low qualifier 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 lowp_int32; + + /// Low qualifier 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 lowp_int64; + + /// Low qualifier 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 lowp_int8_t; + + /// Low qualifier 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 lowp_int16_t; + + /// Low qualifier 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 lowp_int32_t; + + /// Low qualifier 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 lowp_int64_t; + + /// Low qualifier 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 lowp_i8; + + /// Low qualifier 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 lowp_i16; + + /// Low qualifier 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 lowp_i32; + + /// Low qualifier 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 lowp_i64; + + /// Medium qualifier 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 mediump_int8; + + /// Medium qualifier 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 mediump_int16; + + /// Medium qualifier 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 mediump_int32; + + /// Medium qualifier 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 mediump_int64; + + /// Medium qualifier 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 mediump_int8_t; + + /// Medium qualifier 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 mediump_int16_t; + + /// Medium qualifier 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 mediump_int32_t; + + /// Medium qualifier 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 mediump_int64_t; + + /// Medium qualifier 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 mediump_i8; + + /// Medium qualifier 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 mediump_i16; + + /// Medium qualifier 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 mediump_i32; + + /// Medium qualifier 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 mediump_i64; + + /// High qualifier 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 highp_int8; + + /// High qualifier 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 highp_int16; + + /// High qualifier 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 highp_int32; + + /// High qualifier 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 highp_int64; + + /// High qualifier 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 highp_int8_t; + + /// High qualifier 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 highp_int16_t; + + /// 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 highp_int32_t; + + /// High qualifier 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 highp_int64_t; + + /// High qualifier 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 highp_i8; + + /// High qualifier 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 highp_i16; + + /// High qualifier 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 highp_i32; + + /// High qualifier 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 highp_i64; + + +#if GLM_HAS_EXTENDED_INTEGER_TYPE + using std::int8_t; + using std::int16_t; + using std::int32_t; + using std::int64_t; +#else + /// 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 int8_t; + + /// 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 int16_t; + + /// 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 int32_t; + + /// 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 int64_t; +#endif + + /// 8 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int8 i8; + + /// 16 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int16 i16; + + /// 32 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int32 i32; + + /// 64 bit signed integer type. + /// @see gtc_type_precision + typedef detail::int64 i64; + + ///////////////////////////// + // Unsigned int vector types + + /// Low qualifier 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 lowp_uint8; + + /// Low qualifier 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 lowp_uint16; + + /// Low qualifier 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 lowp_uint32; + + /// Low qualifier 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 lowp_uint64; + + /// Low qualifier 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 lowp_uint8_t; + + /// Low qualifier 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 lowp_uint16_t; + + /// Low qualifier 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 lowp_uint32_t; + + /// Low qualifier 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 lowp_uint64_t; + + /// Low qualifier 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 lowp_u8; + + /// Low qualifier 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 lowp_u16; + + /// Low qualifier 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 lowp_u32; + + /// Low qualifier 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 lowp_u64; + + /// Medium qualifier 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 mediump_uint8; + + /// Medium qualifier 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 mediump_uint16; + + /// Medium qualifier 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 mediump_uint32; + + /// Medium qualifier 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 mediump_uint64; + + /// Medium qualifier 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 mediump_uint8_t; + + /// Medium qualifier 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 mediump_uint16_t; + + /// Medium qualifier 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 mediump_uint32_t; + + /// Medium qualifier 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 mediump_uint64_t; + + /// Medium qualifier 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 mediump_u8; + + /// Medium qualifier 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 mediump_u16; + + /// Medium qualifier 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 mediump_u32; + + /// Medium qualifier 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 mediump_u64; + + /// High qualifier 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 highp_uint8; + + /// High qualifier 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 highp_uint16; + + /// High qualifier 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 highp_uint32; + + /// High qualifier 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 highp_uint64; + + /// High qualifier 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 highp_uint8_t; + + /// High qualifier 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 highp_uint16_t; + + /// High qualifier 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 highp_uint32_t; + + /// High qualifier 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 highp_uint64_t; + + /// High qualifier 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 highp_u8; + + /// High qualifier 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 highp_u16; + + /// High qualifier 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 highp_u32; + + /// High qualifier 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 highp_u64; + +#if GLM_HAS_EXTENDED_INTEGER_TYPE + using std::uint8_t; + using std::uint16_t; + using std::uint32_t; + using std::uint64_t; +#else + /// Default qualifier 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 uint8_t; + + /// Default qualifier 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 uint16_t; + + /// Default qualifier 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 uint32_t; + + /// Default qualifier 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 uint64_t; +#endif + + /// Default qualifier 8 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint8 u8; + + /// Default qualifier 16 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint16 u16; + + /// Default qualifier 32 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint32 u32; + + /// Default qualifier 64 bit unsigned integer type. + /// @see gtc_type_precision + typedef detail::uint64 u64; + + + + + + ////////////////////// + // Float vector types + + /// Single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float float32; + + /// Double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef double float64; + + /// Low 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float32 lowp_float32; + + /// Low 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float64 lowp_float64; + + /// Low 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float32 lowp_float32_t; + + /// Low 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float64 lowp_float64_t; + + /// Low 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float32 lowp_f32; + + /// Low 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float64 lowp_f64; + + /// Low 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float32 lowp_float32; + + /// Low 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float64 lowp_float64; + + /// Low 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float32 lowp_float32_t; + + /// Low 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float64 lowp_float64_t; + + /// Low 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float32 lowp_f32; + + /// Low 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float64 lowp_f64; + + + /// Low 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float32 lowp_float32; + + /// Low 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float64 lowp_float64; + + /// Low 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float32 lowp_float32_t; + + /// Low 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float64 lowp_float64_t; + + /// Low 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float32 lowp_f32; + + /// Low 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float64 lowp_f64; + + + /// Medium 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float32 mediump_float32; + + /// Medium 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float64 mediump_float64; + + /// Medium 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float32 mediump_float32_t; + + /// Medium 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float64 mediump_float64_t; + + /// Medium 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float32 mediump_f32; + + /// Medium 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float64 mediump_f64; + + + /// High 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float32 highp_float32; + + /// High 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float64 highp_float64; + + /// High 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float32 highp_float32_t; + + /// High 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float64 highp_float64_t; + + /// High 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float32 highp_f32; + + /// High 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float64 highp_f64; + + +#if(defined(GLM_PRECISION_LOWP_FLOAT)) + /// Default 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef lowp_float32_t float32_t; + + /// Default 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef lowp_float64_t float64_t; + + /// Default 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef lowp_f32 f32; + + /// Default 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef lowp_f64 f64; + +#elif(defined(GLM_PRECISION_MEDIUMP_FLOAT)) + /// Default 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef mediump_float32 float32_t; + + /// Default 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef mediump_float64 float64_t; + + /// Default 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef mediump_float32 f32; + + /// Default 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef mediump_float64 f64; + +#else//(defined(GLM_PRECISION_HIGHP_FLOAT)) + + /// Default 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef highp_float32_t float32_t; + + /// Default 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef highp_float64_t float64_t; + + /// Default 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef highp_float32_t f32; + + /// Default 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef highp_float64_t f64; +#endif + + + /// Low single-qualifier floating-point vector of 1 component. + /// @see gtc_type_precision + typedef vec<1, float, lowp> lowp_fvec1; + + /// Low single-qualifier floating-point vector of 2 components. + /// @see gtc_type_precision + typedef vec<2, float, lowp> lowp_fvec2; + + /// Low single-qualifier floating-point vector of 3 components. + /// @see gtc_type_precision + typedef vec<3, float, lowp> lowp_fvec3; + + /// Low single-qualifier floating-point vector of 4 components. + /// @see gtc_type_precision + typedef vec<4, float, lowp> lowp_fvec4; + + + /// Medium single-qualifier floating-point vector of 1 component. + /// @see gtc_type_precision + typedef vec<1, float, mediump> mediump_fvec1; + + /// Medium Single-qualifier floating-point vector of 2 components. + /// @see gtc_type_precision + typedef vec<2, float, mediump> mediump_fvec2; + + /// Medium Single-qualifier floating-point vector of 3 components. + /// @see gtc_type_precision + typedef vec<3, float, mediump> mediump_fvec3; + + /// Medium Single-qualifier floating-point vector of 4 components. + /// @see gtc_type_precision + typedef vec<4, float, mediump> mediump_fvec4; + + + /// High single-qualifier floating-point vector of 1 component. + /// @see gtc_type_precision + typedef vec<1, float, highp> highp_fvec1; + + /// High Single-qualifier floating-point vector of 2 components. + /// @see core_precision + typedef vec<2, float, highp> highp_fvec2; + + /// High Single-qualifier floating-point vector of 3 components. + /// @see core_precision + typedef vec<3, float, highp> highp_fvec3; + + /// High Single-qualifier floating-point vector of 4 components. + /// @see core_precision + typedef vec<4, float, highp> highp_fvec4; + + + /// Low single-qualifier floating-point vector of 1 component. + /// @see gtc_type_precision + typedef vec<1, f32, lowp> lowp_f32vec1; + + /// Low single-qualifier floating-point vector of 2 components. + /// @see core_precision + typedef vec<2, f32, lowp> lowp_f32vec2; + + /// Low single-qualifier floating-point vector of 3 components. + /// @see core_precision + typedef vec<3, f32, lowp> lowp_f32vec3; + + /// Low single-qualifier floating-point vector of 4 components. + /// @see core_precision + typedef vec<4, f32, lowp> lowp_f32vec4; + + /// Medium single-qualifier floating-point vector of 1 component. + /// @see gtc_type_precision + typedef vec<1, f32, mediump> mediump_f32vec1; + + /// Medium single-qualifier floating-point vector of 2 components. + /// @see core_precision + typedef vec<2, f32, mediump> mediump_f32vec2; + + /// Medium single-qualifier floating-point vector of 3 components. + /// @see core_precision + typedef vec<3, f32, mediump> mediump_f32vec3; + + /// Medium single-qualifier floating-point vector of 4 components. + /// @see core_precision + typedef vec<4, f32, mediump> mediump_f32vec4; + + /// High single-qualifier floating-point vector of 1 component. + /// @see gtc_type_precision + typedef vec<1, f32, highp> highp_f32vec1; + + /// High single-qualifier floating-point vector of 2 components. + /// @see gtc_type_precision + typedef vec<2, f32, highp> highp_f32vec2; + + /// High single-qualifier floating-point vector of 3 components. + /// @see gtc_type_precision + typedef vec<3, f32, highp> highp_f32vec3; + + /// High single-qualifier floating-point vector of 4 components. + /// @see gtc_type_precision + typedef vec<4, f32, highp> highp_f32vec4; + + + /// Low double-qualifier floating-point vector of 1 component. + /// @see gtc_type_precision + typedef vec<1, f64, lowp> lowp_f64vec1; + + /// Low double-qualifier floating-point vector of 2 components. + /// @see gtc_type_precision + typedef vec<2, f64, lowp> lowp_f64vec2; + + /// Low double-qualifier floating-point vector of 3 components. + /// @see gtc_type_precision + typedef vec<3, f64, lowp> lowp_f64vec3; + + /// Low double-qualifier floating-point vector of 4 components. + /// @see gtc_type_precision + typedef vec<4, f64, lowp> lowp_f64vec4; + + /// Medium double-qualifier floating-point vector of 1 component. + /// @see gtc_type_precision + typedef vec<1, f64, mediump> mediump_f64vec1; + + /// Medium double-qualifier floating-point vector of 2 components. + /// @see gtc_type_precision + typedef vec<2, f64, mediump> mediump_f64vec2; + + /// Medium double-qualifier floating-point vector of 3 components. + /// @see gtc_type_precision + typedef vec<3, f64, mediump> mediump_f64vec3; + + /// Medium double-qualifier floating-point vector of 4 components. + /// @see gtc_type_precision + typedef vec<4, f64, mediump> mediump_f64vec4; + + /// High double-qualifier floating-point vector of 1 component. + /// @see gtc_type_precision + typedef vec<1, f64, highp> highp_f64vec1; + + /// High double-qualifier floating-point vector of 2 components. + /// @see gtc_type_precision + typedef vec<2, f64, highp> highp_f64vec2; + + /// High double-qualifier floating-point vector of 3 components. + /// @see gtc_type_precision + typedef vec<3, f64, highp> highp_f64vec3; + + /// High double-qualifier floating-point vector of 4 components. + /// @see gtc_type_precision + typedef vec<4, f64, highp> highp_f64vec4; + + + + ////////////////////// + // Float matrix types + + /// Low single-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef lowp_f32 lowp_fmat1x1; + + /// Low single-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef mat<2, 2, f32, lowp> lowp_fmat2x2; + + /// Low single-qualifier floating-point 2x3 matrix. + /// @see gtc_type_precision + typedef mat<2, 3, f32, lowp> lowp_fmat2x3; + + /// Low single-qualifier floating-point 2x4 matrix. + /// @see gtc_type_precision + typedef mat<2, 4, f32, lowp> lowp_fmat2x4; + + /// Low single-qualifier floating-point 3x2 matrix. + /// @see gtc_type_precision + typedef mat<3, 2, f32, lowp> lowp_fmat3x2; + + /// Low single-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef mat<3, 3, f32, lowp> lowp_fmat3x3; + + /// Low single-qualifier floating-point 3x4 matrix. + /// @see gtc_type_precision + typedef mat<3, 4, f32, lowp> lowp_fmat3x4; + + /// Low single-qualifier floating-point 4x2 matrix. + /// @see gtc_type_precision + typedef mat<4, 2, f32, lowp> lowp_fmat4x2; + + /// Low single-qualifier floating-point 4x3 matrix. + /// @see gtc_type_precision + typedef mat<4, 3, f32, lowp> lowp_fmat4x3; + + /// Low single-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef mat<4, 4, f32, lowp> lowp_fmat4x4; + + /// Low single-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef lowp_fmat1x1 lowp_fmat1; + + /// Low single-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef lowp_fmat2x2 lowp_fmat2; + + /// Low single-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef lowp_fmat3x3 lowp_fmat3; + + /// Low single-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef lowp_fmat4x4 lowp_fmat4; + + + /// Medium single-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef mediump_f32 mediump_fmat1x1; + + /// Medium single-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef mat<2, 2, f32, mediump> mediump_fmat2x2; + + /// Medium single-qualifier floating-point 2x3 matrix. + /// @see gtc_type_precision + typedef mat<2, 3, f32, mediump> mediump_fmat2x3; + + /// Medium single-qualifier floating-point 2x4 matrix. + /// @see gtc_type_precision + typedef mat<2, 4, f32, mediump> mediump_fmat2x4; + + /// Medium single-qualifier floating-point 3x2 matrix. + /// @see gtc_type_precision + typedef mat<3, 2, f32, mediump> mediump_fmat3x2; + + /// Medium single-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef mat<3, 3, f32, mediump> mediump_fmat3x3; + + /// Medium single-qualifier floating-point 3x4 matrix. + /// @see gtc_type_precision + typedef mat<3, 4, f32, mediump> mediump_fmat3x4; + + /// Medium single-qualifier floating-point 4x2 matrix. + /// @see gtc_type_precision + typedef mat<4, 2, f32, mediump> mediump_fmat4x2; + + /// Medium single-qualifier floating-point 4x3 matrix. + /// @see gtc_type_precision + typedef mat<4, 3, f32, mediump> mediump_fmat4x3; + + /// Medium single-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef mat<4, 4, f32, mediump> mediump_fmat4x4; + + /// Medium single-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef mediump_fmat1x1 mediump_fmat1; + + /// Medium single-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef mediump_fmat2x2 mediump_fmat2; + + /// Medium single-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef mediump_fmat3x3 mediump_fmat3; + + /// Medium single-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef mediump_fmat4x4 mediump_fmat4; + + + /// High single-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef highp_f32 highp_fmat1x1; + + /// High single-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef mat<2, 2, f32, highp> highp_fmat2x2; + + /// High single-qualifier floating-point 2x3 matrix. + /// @see gtc_type_precision + typedef mat<2, 3, f32, highp> highp_fmat2x3; + + /// High single-qualifier floating-point 2x4 matrix. + /// @see gtc_type_precision + typedef mat<2, 4, f32, highp> highp_fmat2x4; + + /// High single-qualifier floating-point 3x2 matrix. + /// @see gtc_type_precision + typedef mat<3, 2, f32, highp> highp_fmat3x2; + + /// High single-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef mat<3, 3, f32, highp> highp_fmat3x3; + + /// High single-qualifier floating-point 3x4 matrix. + /// @see gtc_type_precision + typedef mat<3, 4, f32, highp> highp_fmat3x4; + + /// High single-qualifier floating-point 4x2 matrix. + /// @see gtc_type_precision + typedef mat<4, 2, f32, highp> highp_fmat4x2; + + /// High single-qualifier floating-point 4x3 matrix. + /// @see gtc_type_precision + typedef mat<4, 3, f32, highp> highp_fmat4x3; + + /// High single-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef mat<4, 4, f32, highp> highp_fmat4x4; + + /// High single-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef highp_fmat1x1 highp_fmat1; + + /// High single-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef highp_fmat2x2 highp_fmat2; + + /// High single-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef highp_fmat3x3 highp_fmat3; + + /// High single-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef highp_fmat4x4 highp_fmat4; + + + /// Low single-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef f32 lowp_f32mat1x1; + + /// Low single-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef mat<2, 2, f32, lowp> lowp_f32mat2x2; + + /// Low single-qualifier floating-point 2x3 matrix. + /// @see gtc_type_precision + typedef mat<2, 3, f32, lowp> lowp_f32mat2x3; + + /// Low single-qualifier floating-point 2x4 matrix. + /// @see gtc_type_precision + typedef mat<2, 4, f32, lowp> lowp_f32mat2x4; + + /// Low single-qualifier floating-point 3x2 matrix. + /// @see gtc_type_precision + typedef mat<3, 2, f32, lowp> lowp_f32mat3x2; + + /// Low single-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef mat<3, 3, f32, lowp> lowp_f32mat3x3; + + /// Low single-qualifier floating-point 3x4 matrix. + /// @see gtc_type_precision + typedef mat<3, 4, f32, lowp> lowp_f32mat3x4; + + /// Low single-qualifier floating-point 4x2 matrix. + /// @see gtc_type_precision + typedef mat<4, 2, f32, lowp> lowp_f32mat4x2; + + /// Low single-qualifier floating-point 4x3 matrix. + /// @see gtc_type_precision + typedef mat<4, 3, f32, lowp> lowp_f32mat4x3; + + /// Low single-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef mat<4, 4, f32, lowp> lowp_f32mat4x4; + + /// Low single-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef detail::tmat1x1 lowp_f32mat1; + + /// Low single-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef lowp_f32mat2x2 lowp_f32mat2; + + /// Low single-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef lowp_f32mat3x3 lowp_f32mat3; + + /// Low single-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef lowp_f32mat4x4 lowp_f32mat4; + + + /// High single-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef f32 mediump_f32mat1x1; + + /// Low single-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef mat<2, 2, f32, mediump> mediump_f32mat2x2; + + /// Medium single-qualifier floating-point 2x3 matrix. + /// @see gtc_type_precision + typedef mat<2, 3, f32, mediump> mediump_f32mat2x3; + + /// Medium single-qualifier floating-point 2x4 matrix. + /// @see gtc_type_precision + typedef mat<2, 4, f32, mediump> mediump_f32mat2x4; + + /// Medium single-qualifier floating-point 3x2 matrix. + /// @see gtc_type_precision + typedef mat<3, 2, f32, mediump> mediump_f32mat3x2; + + /// Medium single-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef mat<3, 3, f32, mediump> mediump_f32mat3x3; + + /// Medium single-qualifier floating-point 3x4 matrix. + /// @see gtc_type_precision + typedef mat<3, 4, f32, mediump> mediump_f32mat3x4; + + /// Medium single-qualifier floating-point 4x2 matrix. + /// @see gtc_type_precision + typedef mat<4, 2, f32, mediump> mediump_f32mat4x2; + + /// Medium single-qualifier floating-point 4x3 matrix. + /// @see gtc_type_precision + typedef mat<4, 3, f32, mediump> mediump_f32mat4x3; + + /// Medium single-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef mat<4, 4, f32, mediump> mediump_f32mat4x4; + + /// Medium single-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef detail::tmat1x1 f32mat1; + + /// Medium single-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef mediump_f32mat2x2 mediump_f32mat2; + + /// Medium single-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef mediump_f32mat3x3 mediump_f32mat3; + + /// Medium single-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef mediump_f32mat4x4 mediump_f32mat4; + + + /// High single-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef f32 highp_f32mat1x1; + + /// High single-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef mat<2, 2, f32, highp> highp_f32mat2x2; + + /// High single-qualifier floating-point 2x3 matrix. + /// @see gtc_type_precision + typedef mat<2, 3, f32, highp> highp_f32mat2x3; + + /// High single-qualifier floating-point 2x4 matrix. + /// @see gtc_type_precision + typedef mat<2, 4, f32, highp> highp_f32mat2x4; + + /// High single-qualifier floating-point 3x2 matrix. + /// @see gtc_type_precision + typedef mat<3, 2, f32, highp> highp_f32mat3x2; + + /// High single-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef mat<3, 3, f32, highp> highp_f32mat3x3; + + /// High single-qualifier floating-point 3x4 matrix. + /// @see gtc_type_precision + typedef mat<3, 4, f32, highp> highp_f32mat3x4; + + /// High single-qualifier floating-point 4x2 matrix. + /// @see gtc_type_precision + typedef mat<4, 2, f32, highp> highp_f32mat4x2; + + /// High single-qualifier floating-point 4x3 matrix. + /// @see gtc_type_precision + typedef mat<4, 3, f32, highp> highp_f32mat4x3; + + /// High single-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef mat<4, 4, f32, highp> highp_f32mat4x4; + + /// High single-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef detail::tmat1x1 f32mat1; + + /// High single-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef highp_f32mat2x2 highp_f32mat2; + + /// High single-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef highp_f32mat3x3 highp_f32mat3; + + /// High single-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef highp_f32mat4x4 highp_f32mat4; + + + /// Low double-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef f64 lowp_f64mat1x1; + + /// Low double-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef mat<2, 2, f64, lowp> lowp_f64mat2x2; + + /// Low double-qualifier floating-point 2x3 matrix. + /// @see gtc_type_precision + typedef mat<2, 3, f64, lowp> lowp_f64mat2x3; + + /// Low double-qualifier floating-point 2x4 matrix. + /// @see gtc_type_precision + typedef mat<2, 4, f64, lowp> lowp_f64mat2x4; + + /// Low double-qualifier floating-point 3x2 matrix. + /// @see gtc_type_precision + typedef mat<3, 2, f64, lowp> lowp_f64mat3x2; + + /// Low double-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef mat<3, 3, f64, lowp> lowp_f64mat3x3; + + /// Low double-qualifier floating-point 3x4 matrix. + /// @see gtc_type_precision + typedef mat<3, 4, f64, lowp> lowp_f64mat3x4; + + /// Low double-qualifier floating-point 4x2 matrix. + /// @see gtc_type_precision + typedef mat<4, 2, f64, lowp> lowp_f64mat4x2; + + /// Low double-qualifier floating-point 4x3 matrix. + /// @see gtc_type_precision + typedef mat<4, 3, f64, lowp> lowp_f64mat4x3; + + /// Low double-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef mat<4, 4, f64, lowp> lowp_f64mat4x4; + + /// Low double-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef lowp_f64mat1x1 lowp_f64mat1; + + /// Low double-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef lowp_f64mat2x2 lowp_f64mat2; + + /// Low double-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef lowp_f64mat3x3 lowp_f64mat3; + + /// Low double-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef lowp_f64mat4x4 lowp_f64mat4; + + + /// Medium double-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef f64 Highp_f64mat1x1; + + /// Medium double-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef mat<2, 2, f64, mediump> mediump_f64mat2x2; + + /// Medium double-qualifier floating-point 2x3 matrix. + /// @see gtc_type_precision + typedef mat<2, 3, f64, mediump> mediump_f64mat2x3; + + /// Medium double-qualifier floating-point 2x4 matrix. + /// @see gtc_type_precision + typedef mat<2, 4, f64, mediump> mediump_f64mat2x4; + + /// Medium double-qualifier floating-point 3x2 matrix. + /// @see gtc_type_precision + typedef mat<3, 2, f64, mediump> mediump_f64mat3x2; + + /// Medium double-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef mat<3, 3, f64, mediump> mediump_f64mat3x3; + + /// Medium double-qualifier floating-point 3x4 matrix. + /// @see gtc_type_precision + typedef mat<3, 4, f64, mediump> mediump_f64mat3x4; + + /// Medium double-qualifier floating-point 4x2 matrix. + /// @see gtc_type_precision + typedef mat<4, 2, f64, mediump> mediump_f64mat4x2; + + /// Medium double-qualifier floating-point 4x3 matrix. + /// @see gtc_type_precision + typedef mat<4, 3, f64, mediump> mediump_f64mat4x3; + + /// Medium double-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef mat<4, 4, f64, mediump> mediump_f64mat4x4; + + /// Medium double-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef mediump_f64mat1x1 mediump_f64mat1; + + /// Medium double-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef mediump_f64mat2x2 mediump_f64mat2; + + /// Medium double-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef mediump_f64mat3x3 mediump_f64mat3; + + /// Medium double-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef mediump_f64mat4x4 mediump_f64mat4; + + /// High double-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef f64 highp_f64mat1x1; + + /// High double-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef mat<2, 2, f64, highp> highp_f64mat2x2; + + /// High double-qualifier floating-point 2x3 matrix. + /// @see gtc_type_precision + typedef mat<2, 3, f64, highp> highp_f64mat2x3; + + /// High double-qualifier floating-point 2x4 matrix. + /// @see gtc_type_precision + typedef mat<2, 4, f64, highp> highp_f64mat2x4; + + /// High double-qualifier floating-point 3x2 matrix. + /// @see gtc_type_precision + typedef mat<3, 2, f64, highp> highp_f64mat3x2; + + /// High double-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef mat<3, 3, f64, highp> highp_f64mat3x3; + + /// High double-qualifier floating-point 3x4 matrix. + /// @see gtc_type_precision + typedef mat<3, 4, f64, highp> highp_f64mat3x4; + + /// High double-qualifier floating-point 4x2 matrix. + /// @see gtc_type_precision + typedef mat<4, 2, f64, highp> highp_f64mat4x2; + + /// High double-qualifier floating-point 4x3 matrix. + /// @see gtc_type_precision + typedef mat<4, 3, f64, highp> highp_f64mat4x3; + + /// High double-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef mat<4, 4, f64, highp> highp_f64mat4x4; + + /// High double-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef highp_f64mat1x1 highp_f64mat1; + + /// High double-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef highp_f64mat2x2 highp_f64mat2; + + /// High double-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef highp_f64mat3x3 highp_f64mat3; + + /// High double-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef highp_f64mat4x4 highp_f64mat4; + + + ///////////////////////////// + // Signed int vector types + + /// Low qualifier signed integer vector of 1 component type. + /// @see gtc_type_precision + typedef vec<1, int, lowp> lowp_ivec1; + + /// Low qualifier signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, int, lowp> lowp_ivec2; + + /// Low qualifier signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, int, lowp> lowp_ivec3; + + /// Low qualifier signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, int, lowp> lowp_ivec4; + + + /// Medium qualifier signed integer vector of 1 component type. + /// @see gtc_type_precision + typedef vec<1, int, mediump> mediump_ivec1; + + /// Medium qualifier signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, int, mediump> mediump_ivec2; + + /// Medium qualifier signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, int, mediump> mediump_ivec3; + + /// Medium qualifier signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, int, mediump> mediump_ivec4; + + + /// High qualifier signed integer vector of 1 component type. + /// @see gtc_type_precision + typedef vec<1, int, highp> highp_ivec1; + + /// High qualifier signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, int, highp> highp_ivec2; + + /// High qualifier signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, int, highp> highp_ivec3; + + /// High qualifier signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, int, highp> highp_ivec4; + + + /// Low qualifier 8 bit signed integer vector of 1 component type. + /// @see gtc_type_precision + typedef vec<1, i8, lowp> lowp_i8vec1; + + /// Low qualifier 8 bit signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, i8, lowp> lowp_i8vec2; + + /// Low qualifier 8 bit signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, i8, lowp> lowp_i8vec3; + + /// Low qualifier 8 bit signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, i8, lowp> lowp_i8vec4; + + + /// Medium qualifier 8 bit signed integer scalar type. + /// @see gtc_type_precision + typedef vec<1, i8, mediump> mediump_i8vec1; + + /// Medium qualifier 8 bit signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, i8, mediump> mediump_i8vec2; + + /// Medium qualifier 8 bit signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, i8, mediump> mediump_i8vec3; + + /// Medium qualifier 8 bit signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, i8, mediump> mediump_i8vec4; + + + /// High qualifier 8 bit signed integer scalar type. + /// @see gtc_type_precision + typedef vec<1, i8, highp> highp_i8vec1; + + /// High qualifier 8 bit signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, i8, highp> highp_i8vec2; + + /// High qualifier 8 bit signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, i8, highp> highp_i8vec3; + + /// High qualifier 8 bit signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, i8, highp> highp_i8vec4; + + + /// Low qualifier 16 bit signed integer scalar type. + /// @see gtc_type_precision + typedef vec<1, i16, lowp> lowp_i16vec1; + + /// Low qualifier 16 bit signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, i16, lowp> lowp_i16vec2; + + /// Low qualifier 16 bit signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, i16, lowp> lowp_i16vec3; + + /// Low qualifier 16 bit signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, i16, lowp> lowp_i16vec4; + + + /// Medium qualifier 16 bit signed integer scalar type. + /// @see gtc_type_precision + typedef vec<1, i16, mediump> mediump_i16vec1; + + /// Medium qualifier 16 bit signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, i16, mediump> mediump_i16vec2; + + /// Medium qualifier 16 bit signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, i16, mediump> mediump_i16vec3; + + /// Medium qualifier 16 bit signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, i16, mediump> mediump_i16vec4; + + + /// High qualifier 16 bit signed integer scalar type. + /// @see gtc_type_precision + typedef vec<1, i16, highp> highp_i16vec1; + + /// High qualifier 16 bit signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, i16, highp> highp_i16vec2; + + /// High qualifier 16 bit signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, i16, highp> highp_i16vec3; + + /// High qualifier 16 bit signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, i16, highp> highp_i16vec4; + + + /// Low qualifier 32 bit signed integer scalar type. + /// @see gtc_type_precision + typedef vec<1, i32, lowp> lowp_i32vec1; + + /// Low qualifier 32 bit signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, i32, lowp> lowp_i32vec2; + + /// Low qualifier 32 bit signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, i32, lowp> lowp_i32vec3; + + /// Low qualifier 32 bit signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, i32, lowp> lowp_i32vec4; + + + /// Medium qualifier 32 bit signed integer scalar type. + /// @see gtc_type_precision + typedef vec<1, i32, mediump> mediump_i32vec1; + + /// Medium qualifier 32 bit signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, i32, mediump> mediump_i32vec2; + + /// Medium qualifier 32 bit signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, i32, mediump> mediump_i32vec3; + + /// Medium qualifier 32 bit signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, i32, mediump> mediump_i32vec4; + + + /// High qualifier 32 bit signed integer scalar type. + /// @see gtc_type_precision + typedef vec<1, i32, highp> highp_i32vec1; + + /// High qualifier 32 bit signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, i32, highp> highp_i32vec2; + + /// High qualifier 32 bit signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, i32, highp> highp_i32vec3; + + /// High qualifier 32 bit signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, i32, highp> highp_i32vec4; + + + /// Low qualifier 64 bit signed integer scalar type. + /// @see gtc_type_precision + typedef vec<1, i64, lowp> lowp_i64vec1; + + /// Low qualifier 64 bit signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, i64, lowp> lowp_i64vec2; + + /// Low qualifier 64 bit signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, i64, lowp> lowp_i64vec3; + + /// Low qualifier 64 bit signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, i64, lowp> lowp_i64vec4; + + + /// Medium qualifier 64 bit signed integer scalar type. + /// @see gtc_type_precision + typedef vec<1, i64, mediump> mediump_i64vec1; + + /// Medium qualifier 64 bit signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, i64, mediump> mediump_i64vec2; + + /// Medium qualifier 64 bit signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, i64, mediump> mediump_i64vec3; + + /// Medium qualifier 64 bit signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, i64, mediump> mediump_i64vec4; + + + /// High qualifier 64 bit signed integer scalar type. + /// @see gtc_type_precision + typedef vec<1, i64, highp> highp_i64vec1; + + /// High qualifier 64 bit signed integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, i64, highp> highp_i64vec2; + + /// High qualifier 64 bit signed integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, i64, highp> highp_i64vec3; + + /// High qualifier 64 bit signed integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, i64, highp> highp_i64vec4; + + + ///////////////////////////// + // Unsigned int vector types + + /// Low qualifier unsigned integer vector of 1 component type. + /// @see gtc_type_precision + typedef vec<1, uint, lowp> lowp_uvec1; + + /// Low qualifier unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, uint, lowp> lowp_uvec2; + + /// Low qualifier unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, uint, lowp> lowp_uvec3; + + /// Low qualifier unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, uint, lowp> lowp_uvec4; + + + /// Medium qualifier unsigned integer vector of 1 component type. + /// @see gtc_type_precision + typedef vec<1, uint, mediump> mediump_uvec1; + + /// Medium qualifier unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, uint, mediump> mediump_uvec2; + + /// Medium qualifier unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, uint, mediump> mediump_uvec3; + + /// Medium qualifier unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, uint, mediump> mediump_uvec4; + + + /// High qualifier unsigned integer vector of 1 component type. + /// @see gtc_type_precision + typedef vec<1, uint, highp> highp_uvec1; + + /// High qualifier unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, uint, highp> highp_uvec2; + + /// High qualifier unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, uint, highp> highp_uvec3; + + /// High qualifier unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, uint, highp> highp_uvec4; + + + /// Low qualifier 8 bit unsigned integer scalar type. + /// @see gtc_type_precision + typedef vec<1, u8, lowp> lowp_u8vec1; + + /// Low qualifier 8 bit unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, u8, lowp> lowp_u8vec2; + + /// Low qualifier 8 bit unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, u8, lowp> lowp_u8vec3; + + /// Low qualifier 8 bit unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, u8, lowp> lowp_u8vec4; + + + /// Medium qualifier 8 bit unsigned integer scalar type. + /// @see gtc_type_precision + typedef vec<1, u8, mediump> mediump_u8vec1; + + /// Medium qualifier 8 bit unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, u8, mediump> mediump_u8vec2; + + /// Medium qualifier 8 bit unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, u8, mediump> mediump_u8vec3; + + /// Medium qualifier 8 bit unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, u8, mediump> mediump_u8vec4; + + + /// High qualifier 8 bit unsigned integer scalar type. + /// @see gtc_type_precision + typedef vec<1, u8, highp> highp_u8vec1; + + /// High qualifier 8 bit unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, u8, highp> highp_u8vec2; + + /// High qualifier 8 bit unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, u8, highp> highp_u8vec3; + + /// High qualifier 8 bit unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, u8, highp> highp_u8vec4; + + + /// Low qualifier 16 bit unsigned integer scalar type. + /// @see gtc_type_precision + typedef vec<1, u16, lowp> lowp_u16vec1; + + /// Low qualifier 16 bit unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, u16, lowp> lowp_u16vec2; + + /// Low qualifier 16 bit unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, u16, lowp> lowp_u16vec3; + + /// Low qualifier 16 bit unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, u16, lowp> lowp_u16vec4; + + + /// Medium qualifier 16 bit unsigned integer scalar type. + /// @see gtc_type_precision + typedef vec<1, u16, mediump> mediump_u16vec1; + + /// Medium qualifier 16 bit unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, u16, mediump> mediump_u16vec2; + + /// Medium qualifier 16 bit unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, u16, mediump> mediump_u16vec3; + + /// Medium qualifier 16 bit unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, u16, mediump> mediump_u16vec4; + + + /// High qualifier 16 bit unsigned integer scalar type. + /// @see gtc_type_precision + typedef vec<1, u16, highp> highp_u16vec1; + + /// High qualifier 16 bit unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, u16, highp> highp_u16vec2; + + /// High qualifier 16 bit unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, u16, highp> highp_u16vec3; + + /// High qualifier 16 bit unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, u16, highp> highp_u16vec4; + + + /// Low qualifier 32 bit unsigned integer scalar type. + /// @see gtc_type_precision + typedef vec<1, u32, lowp> lowp_u32vec1; + + /// Low qualifier 32 bit unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, u32, lowp> lowp_u32vec2; + + /// Low qualifier 32 bit unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, u32, lowp> lowp_u32vec3; + + /// Low qualifier 32 bit unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, u32, lowp> lowp_u32vec4; + + + /// Medium qualifier 32 bit unsigned integer scalar type. + /// @see gtc_type_precision + typedef vec<1, u32, mediump> mediump_u32vec1; + + /// Medium qualifier 32 bit unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, u32, mediump> mediump_u32vec2; + + /// Medium qualifier 32 bit unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, u32, mediump> mediump_u32vec3; + + /// Medium qualifier 32 bit unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, u32, mediump> mediump_u32vec4; + + + /// High qualifier 32 bit unsigned integer scalar type. + /// @see gtc_type_precision + typedef vec<1, u32, highp> highp_u32vec1; + + /// High qualifier 32 bit unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, u32, highp> highp_u32vec2; + + /// High qualifier 32 bit unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, u32, highp> highp_u32vec3; + + /// High qualifier 32 bit unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, u32, highp> highp_u32vec4; + + + /// Low qualifier 64 bit unsigned integer scalar type. + /// @see gtc_type_precision + typedef vec<1, u64, lowp> lowp_u64vec1; + + /// Low qualifier 64 bit unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, u64, lowp> lowp_u64vec2; + + /// Low qualifier 64 bit unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, u64, lowp> lowp_u64vec3; + + /// Low qualifier 64 bit unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, u64, lowp> lowp_u64vec4; + + + /// Medium qualifier 64 bit unsigned integer scalar type. + /// @see gtc_type_precision + typedef vec<1, u64, mediump> mediump_u64vec1; + + /// Medium qualifier 64 bit unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, u64, mediump> mediump_u64vec2; + + /// Medium qualifier 64 bit unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, u64, mediump> mediump_u64vec3; + + /// Medium qualifier 64 bit unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, u64, mediump> mediump_u64vec4; + + + /// High qualifier 64 bit unsigned integer scalar type. + /// @see gtc_type_precision + typedef vec<1, u64, highp> highp_u64vec1; + + /// High qualifier 64 bit unsigned integer vector of 2 components type. + /// @see gtc_type_precision + typedef vec<2, u64, highp> highp_u64vec2; + + /// High qualifier 64 bit unsigned integer vector of 3 components type. + /// @see gtc_type_precision + typedef vec<3, u64, highp> highp_u64vec3; + + /// High qualifier 64 bit unsigned integer vector of 4 components type. + /// @see gtc_type_precision + typedef vec<4, u64, highp> highp_u64vec4; + + + ////////////////////// + // Float vector types + + /// 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float32 float32_t; + + /// 32 bit single-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float32 f32; + +# ifndef GLM_FORCE_SINGLE_ONLY + + /// 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float64 float64_t; + + /// 64 bit double-qualifier floating-point scalar. + /// @see gtc_type_precision + typedef float64 f64; +# endif//GLM_FORCE_SINGLE_ONLY + + /// Single-qualifier floating-point vector of 1 component. + /// @see gtc_type_precision + typedef vec<1, float, defaultp> fvec1; + + /// Single-qualifier floating-point vector of 2 components. + /// @see gtc_type_precision + typedef vec<2, float, defaultp> fvec2; + + /// Single-qualifier floating-point vector of 3 components. + /// @see gtc_type_precision + typedef vec<3, float, defaultp> fvec3; + + /// Single-qualifier floating-point vector of 4 components. + /// @see gtc_type_precision + typedef vec<4, float, defaultp> fvec4; + + + /// Single-qualifier floating-point vector of 1 component. + /// @see gtc_type_precision + typedef vec<1, f32, defaultp> f32vec1; + + /// Single-qualifier floating-point vector of 2 components. + /// @see gtc_type_precision + typedef vec<2, f32, defaultp> f32vec2; + + /// Single-qualifier floating-point vector of 3 components. + /// @see gtc_type_precision + typedef vec<3, f32, defaultp> f32vec3; + + /// Single-qualifier floating-point vector of 4 components. + /// @see gtc_type_precision + typedef vec<4, f32, defaultp> f32vec4; + +# ifndef GLM_FORCE_SINGLE_ONLY + /// Double-qualifier floating-point vector of 1 component. + /// @see gtc_type_precision + typedef vec<1, f64, defaultp> f64vec1; + + /// Double-qualifier floating-point vector of 2 components. + /// @see gtc_type_precision + typedef vec<2, f64, defaultp> f64vec2; + + /// Double-qualifier floating-point vector of 3 components. + /// @see gtc_type_precision + typedef vec<3, f64, defaultp> f64vec3; + + /// Double-qualifier floating-point vector of 4 components. + /// @see gtc_type_precision + typedef vec<4, f64, defaultp> f64vec4; +# endif//GLM_FORCE_SINGLE_ONLY + + + ////////////////////// + // Float matrix types + + /// Single-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef detail::tmat1x1 fmat1; + + /// Single-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef mat<2, 2, f32, defaultp> fmat2; + + /// Single-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef mat<3, 3, f32, defaultp> fmat3; + + /// Single-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef mat<4, 4, f32, defaultp> fmat4; + + + /// Single-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef f32 fmat1x1; + + /// Single-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef mat<2, 2, f32, defaultp> fmat2x2; + + /// Single-qualifier floating-point 2x3 matrix. + /// @see gtc_type_precision + typedef mat<2, 3, f32, defaultp> fmat2x3; + + /// Single-qualifier floating-point 2x4 matrix. + /// @see gtc_type_precision + typedef mat<2, 4, f32, defaultp> fmat2x4; + + /// Single-qualifier floating-point 3x2 matrix. + /// @see gtc_type_precision + typedef mat<3, 2, f32, defaultp> fmat3x2; + + /// Single-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef mat<3, 3, f32, defaultp> fmat3x3; + + /// Single-qualifier floating-point 3x4 matrix. + /// @see gtc_type_precision + typedef mat<3, 4, f32, defaultp> fmat3x4; + + /// Single-qualifier floating-point 4x2 matrix. + /// @see gtc_type_precision + typedef mat<4, 2, f32, defaultp> fmat4x2; + + /// Single-qualifier floating-point 4x3 matrix. + /// @see gtc_type_precision + typedef mat<4, 3, f32, defaultp> fmat4x3; + + /// Single-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef mat<4, 4, f32, defaultp> fmat4x4; + + + /// Single-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef detail::tmat1x1 f32mat1; + + /// Single-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef mat<2, 2, f32, defaultp> f32mat2; + + /// Single-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef mat<3, 3, f32, defaultp> f32mat3; + + /// Single-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef mat<4, 4, f32, defaultp> f32mat4; + + + /// Single-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef f32 f32mat1x1; + + /// Single-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef mat<2, 2, f32, defaultp> f32mat2x2; + + /// Single-qualifier floating-point 2x3 matrix. + /// @see gtc_type_precision + typedef mat<2, 3, f32, defaultp> f32mat2x3; + + /// Single-qualifier floating-point 2x4 matrix. + /// @see gtc_type_precision + typedef mat<2, 4, f32, defaultp> f32mat2x4; + + /// Single-qualifier floating-point 3x2 matrix. + /// @see gtc_type_precision + typedef mat<3, 2, f32, defaultp> f32mat3x2; + + /// Single-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef mat<3, 3, f32, defaultp> f32mat3x3; + + /// Single-qualifier floating-point 3x4 matrix. + /// @see gtc_type_precision + typedef mat<3, 4, f32, defaultp> f32mat3x4; + + /// Single-qualifier floating-point 4x2 matrix. + /// @see gtc_type_precision + typedef mat<4, 2, f32, defaultp> f32mat4x2; + + /// Single-qualifier floating-point 4x3 matrix. + /// @see gtc_type_precision + typedef mat<4, 3, f32, defaultp> f32mat4x3; + + /// Single-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef mat<4, 4, f32, defaultp> f32mat4x4; + + +# ifndef GLM_FORCE_SINGLE_ONLY + + /// Double-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef detail::tmat1x1 f64mat1; + + /// Double-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef mat<2, 2, f64, defaultp> f64mat2; + + /// Double-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef mat<3, 3, f64, defaultp> f64mat3; + + /// Double-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef mat<4, 4, f64, defaultp> f64mat4; + + + /// Double-qualifier floating-point 1x1 matrix. + /// @see gtc_type_precision + //typedef f64 f64mat1x1; + + /// Double-qualifier floating-point 2x2 matrix. + /// @see gtc_type_precision + typedef mat<2, 2, f64, defaultp> f64mat2x2; + + /// Double-qualifier floating-point 2x3 matrix. + /// @see gtc_type_precision + typedef mat<2, 3, f64, defaultp> f64mat2x3; + + /// Double-qualifier floating-point 2x4 matrix. + /// @see gtc_type_precision + typedef mat<2, 4, f64, defaultp> f64mat2x4; + + /// Double-qualifier floating-point 3x2 matrix. + /// @see gtc_type_precision + typedef mat<3, 2, f64, defaultp> f64mat3x2; + + /// Double-qualifier floating-point 3x3 matrix. + /// @see gtc_type_precision + typedef mat<3, 3, f64, defaultp> f64mat3x3; + + /// Double-qualifier floating-point 3x4 matrix. + /// @see gtc_type_precision + typedef mat<3, 4, f64, defaultp> f64mat3x4; + + /// Double-qualifier floating-point 4x2 matrix. + /// @see gtc_type_precision + typedef mat<4, 2, f64, defaultp> f64mat4x2; + + /// Double-qualifier floating-point 4x3 matrix. + /// @see gtc_type_precision + typedef mat<4, 3, f64, defaultp> f64mat4x3; + + /// Double-qualifier floating-point 4x4 matrix. + /// @see gtc_type_precision + typedef mat<4, 4, f64, defaultp> f64mat4x4; + +# endif//GLM_FORCE_SINGLE_ONLY + + ////////////////////////// + // Quaternion types + + /// Single-qualifier floating-point quaternion. + /// @see gtc_type_precision + typedef qua f32quat; + + /// Low single-qualifier floating-point quaternion. + /// @see gtc_type_precision + typedef qua lowp_f32quat; + + /// Low double-qualifier floating-point quaternion. + /// @see gtc_type_precision + typedef qua lowp_f64quat; + + /// Medium single-qualifier floating-point quaternion. + /// @see gtc_type_precision + typedef qua mediump_f32quat; + +# ifndef GLM_FORCE_SINGLE_ONLY + + /// Medium double-qualifier floating-point quaternion. + /// @see gtc_type_precision + typedef qua mediump_f64quat; + + /// High single-qualifier floating-point quaternion. + /// @see gtc_type_precision + typedef qua highp_f32quat; + + /// High double-qualifier floating-point quaternion. + /// @see gtc_type_precision + typedef qua highp_f64quat; + + /// Double-qualifier floating-point quaternion. + /// @see gtc_type_precision + typedef qua f64quat; + +# endif//GLM_FORCE_SINGLE_ONLY + + /// @} +}//namespace glm + +#include "type_precision.inl" diff --git a/thirdparty/glm/glm/gtc/type_precision.inl b/thirdparty/glm/glm/gtc/type_precision.inl new file mode 100644 index 000000000000..ae8091206bd4 --- /dev/null +++ b/thirdparty/glm/glm/gtc/type_precision.inl @@ -0,0 +1,6 @@ +/// @ref gtc_precision + +namespace glm +{ + +} diff --git a/thirdparty/glm/glm/gtc/type_ptr.hpp b/thirdparty/glm/glm/gtc/type_ptr.hpp new file mode 100644 index 000000000000..d7e625aa5917 --- /dev/null +++ b/thirdparty/glm/glm/gtc/type_ptr.hpp @@ -0,0 +1,230 @@ +/// @ref gtc_type_ptr +/// @file glm/gtc/type_ptr.hpp +/// +/// @see core (dependence) +/// @see gtc_quaternion (dependence) +/// +/// @defgroup gtc_type_ptr GLM_GTC_type_ptr +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// Handles the interaction between pointers and vector, matrix types. +/// +/// This extension defines an overloaded function, glm::value_ptr. It returns +/// a pointer to the memory layout of the object. Matrix types store their values +/// in column-major order. +/// +/// This is useful for uploading data to matrices or copying data to buffer objects. +/// +/// Example: +/// @code +/// #include +/// #include +/// +/// glm::vec3 aVector(3); +/// glm::mat4 someMatrix(1.0); +/// +/// glUniform3fv(uniformLoc, 1, glm::value_ptr(aVector)); +/// glUniformMatrix4fv(uniformMatrixLoc, 1, GL_FALSE, glm::value_ptr(someMatrix)); +/// @endcode +/// +/// need to be included to use the features of this extension. + +#pragma once + +// Dependency: +#include "../gtc/quaternion.hpp" +#include "../gtc/vec1.hpp" +#include "../vec2.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" +#include "../mat2x2.hpp" +#include "../mat2x3.hpp" +#include "../mat2x4.hpp" +#include "../mat3x2.hpp" +#include "../mat3x3.hpp" +#include "../mat3x4.hpp" +#include "../mat4x2.hpp" +#include "../mat4x3.hpp" +#include "../mat4x4.hpp" +#include + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_type_ptr extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_type_ptr + /// @{ + + /// Return the constant address to the data of the input parameter. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL typename genType::value_type const * value_ptr(genType const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<1, T, Q> make_vec1(vec<1, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<1, T, Q> make_vec1(vec<2, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<1, T, Q> make_vec1(vec<3, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<1, T, Q> make_vec1(vec<4, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<2, T, Q> make_vec2(vec<1, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<2, T, Q> make_vec2(vec<2, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<2, T, Q> make_vec2(vec<3, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<2, T, Q> make_vec2(vec<4, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<3, T, Q> make_vec3(vec<1, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<3, T, Q> make_vec3(vec<2, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<3, T, Q> make_vec3(vec<3, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<3, T, Q> make_vec3(vec<4, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<4, T, Q> make_vec4(vec<1, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<4, T, Q> make_vec4(vec<2, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<4, T, Q> make_vec4(vec<3, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<4, T, Q> make_vec4(vec<4, T, Q> const& v); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<2, T, defaultp> make_vec2(T const * const ptr); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<3, T, defaultp> make_vec3(T const * const ptr); + + /// Build a vector from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL vec<4, T, defaultp> make_vec4(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL mat<2, 2, T, defaultp> make_mat2x2(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL mat<2, 3, T, defaultp> make_mat2x3(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL mat<2, 4, T, defaultp> make_mat2x4(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL mat<3, 2, T, defaultp> make_mat3x2(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL mat<3, 3, T, defaultp> make_mat3x3(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL mat<3, 4, T, defaultp> make_mat3x4(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL mat<4, 2, T, defaultp> make_mat4x2(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL mat<4, 3, T, defaultp> make_mat4x3(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> make_mat4x4(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL mat<2, 2, T, defaultp> make_mat2(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL mat<3, 3, T, defaultp> make_mat3(T const * const ptr); + + /// Build a matrix from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> make_mat4(T const * const ptr); + + /// Build a quaternion from a pointer. + /// @see gtc_type_ptr + template + GLM_FUNC_DECL qua make_quat(T const * const ptr); + + /// @} +}//namespace glm + +#include "type_ptr.inl" diff --git a/thirdparty/glm/glm/gtc/type_ptr.inl b/thirdparty/glm/glm/gtc/type_ptr.inl new file mode 100644 index 000000000000..26b20b52e9a9 --- /dev/null +++ b/thirdparty/glm/glm/gtc/type_ptr.inl @@ -0,0 +1,386 @@ +/// @ref gtc_type_ptr + +#include + +namespace glm +{ + /// @addtogroup gtc_type_ptr + /// @{ + + template + GLM_FUNC_QUALIFIER T const* value_ptr(vec<2, T, Q> const& v) + { + return &(v.x); + } + + template + GLM_FUNC_QUALIFIER T* value_ptr(vec<2, T, Q>& v) + { + return &(v.x); + } + + template + GLM_FUNC_QUALIFIER T const * value_ptr(vec<3, T, Q> const& v) + { + return &(v.x); + } + + template + GLM_FUNC_QUALIFIER T* value_ptr(vec<3, T, Q>& v) + { + return &(v.x); + } + + template + GLM_FUNC_QUALIFIER T const* value_ptr(vec<4, T, Q> const& v) + { + return &(v.x); + } + + template + GLM_FUNC_QUALIFIER T* value_ptr(vec<4, T, Q>& v) + { + return &(v.x); + } + + template + GLM_FUNC_QUALIFIER T const* value_ptr(mat<2, 2, T, Q> const& m) + { + return &(m[0].x); + } + + template + GLM_FUNC_QUALIFIER T* value_ptr(mat<2, 2, T, Q>& m) + { + return &(m[0].x); + } + + template + GLM_FUNC_QUALIFIER T const* value_ptr(mat<3, 3, T, Q> const& m) + { + return &(m[0].x); + } + + template + GLM_FUNC_QUALIFIER T* value_ptr(mat<3, 3, T, Q>& m) + { + return &(m[0].x); + } + + template + GLM_FUNC_QUALIFIER T const* value_ptr(mat<4, 4, T, Q> const& m) + { + return &(m[0].x); + } + + template + GLM_FUNC_QUALIFIER T* value_ptr(mat<4, 4, T, Q>& m) + { + return &(m[0].x); + } + + template + GLM_FUNC_QUALIFIER T const* value_ptr(mat<2, 3, T, Q> const& m) + { + return &(m[0].x); + } + + template + GLM_FUNC_QUALIFIER T* value_ptr(mat<2, 3, T, Q>& m) + { + return &(m[0].x); + } + + template + GLM_FUNC_QUALIFIER T const* value_ptr(mat<3, 2, T, Q> const& m) + { + return &(m[0].x); + } + + template + GLM_FUNC_QUALIFIER T* value_ptr(mat<3, 2, T, Q>& m) + { + return &(m[0].x); + } + + template + GLM_FUNC_QUALIFIER T const* value_ptr(mat<2, 4, T, Q> const& m) + { + return &(m[0].x); + } + + template + GLM_FUNC_QUALIFIER T* value_ptr(mat<2, 4, T, Q>& m) + { + return &(m[0].x); + } + + template + GLM_FUNC_QUALIFIER T const* value_ptr(mat<4, 2, T, Q> const& m) + { + return &(m[0].x); + } + + template + GLM_FUNC_QUALIFIER T* value_ptr(mat<4, 2, T, Q>& m) + { + return &(m[0].x); + } + + template + GLM_FUNC_QUALIFIER T const* value_ptr(mat<3, 4, T, Q> const& m) + { + return &(m[0].x); + } + + template + GLM_FUNC_QUALIFIER T* value_ptr(mat<3, 4, T, Q>& m) + { + return &(m[0].x); + } + + template + GLM_FUNC_QUALIFIER T const* value_ptr(mat<4, 3, T, Q> const& m) + { + return &(m[0].x); + } + + template + GLM_FUNC_QUALIFIER T * value_ptr(mat<4, 3, T, Q>& m) + { + return &(m[0].x); + } + + template + GLM_FUNC_QUALIFIER T const * value_ptr(qua const& q) + { + return &(q[0]); + } + + template + GLM_FUNC_QUALIFIER T* value_ptr(qua& q) + { + return &(q[0]); + } + + template + GLM_FUNC_DECL vec<1, T, Q> make_vec1(vec<1, T, Q> const& v) + { + return v; + } + + template + GLM_FUNC_DECL vec<1, T, Q> make_vec1(vec<2, T, Q> const& v) + { + return vec<1, T, Q>(v); + } + + template + GLM_FUNC_DECL vec<1, T, Q> make_vec1(vec<3, T, Q> const& v) + { + return vec<1, T, Q>(v); + } + + template + GLM_FUNC_DECL vec<1, T, Q> make_vec1(vec<4, T, Q> const& v) + { + return vec<1, T, Q>(v); + } + + template + GLM_FUNC_DECL vec<2, T, Q> make_vec2(vec<1, T, Q> const& v) + { + return vec<2, T, Q>(v.x, static_cast(0)); + } + + template + GLM_FUNC_DECL vec<2, T, Q> make_vec2(vec<2, T, Q> const& v) + { + return v; + } + + template + GLM_FUNC_DECL vec<2, T, Q> make_vec2(vec<3, T, Q> const& v) + { + return vec<2, T, Q>(v); + } + + template + GLM_FUNC_DECL vec<2, T, Q> make_vec2(vec<4, T, Q> const& v) + { + return vec<2, T, Q>(v); + } + + template + GLM_FUNC_DECL vec<3, T, Q> make_vec3(vec<1, T, Q> const& v) + { + return vec<3, T, Q>(v.x, static_cast(0), static_cast(0)); + } + + template + GLM_FUNC_DECL vec<3, T, Q> make_vec3(vec<2, T, Q> const& v) + { + return vec<3, T, Q>(v.x, v.y, static_cast(0)); + } + + template + GLM_FUNC_DECL vec<3, T, Q> make_vec3(vec<3, T, Q> const& v) + { + return v; + } + + template + GLM_FUNC_DECL vec<3, T, Q> make_vec3(vec<4, T, Q> const& v) + { + return vec<3, T, Q>(v); + } + + template + GLM_FUNC_DECL vec<4, T, Q> make_vec4(vec<1, T, Q> const& v) + { + return vec<4, T, Q>(v.x, static_cast(0), static_cast(0), static_cast(1)); + } + + template + GLM_FUNC_DECL vec<4, T, Q> make_vec4(vec<2, T, Q> const& v) + { + return vec<4, T, Q>(v.x, v.y, static_cast(0), static_cast(1)); + } + + template + GLM_FUNC_DECL vec<4, T, Q> make_vec4(vec<3, T, Q> const& v) + { + return vec<4, T, Q>(v.x, v.y, v.z, static_cast(1)); + } + + template + GLM_FUNC_DECL vec<4, T, Q> make_vec4(vec<4, T, Q> const& v) + { + return v; + } + + template + GLM_FUNC_QUALIFIER vec<2, T, defaultp> make_vec2(T const *const ptr) + { + vec<2, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(vec<2, T, defaultp>)); + return Result; + } + + template + GLM_FUNC_QUALIFIER vec<3, T, defaultp> make_vec3(T const *const ptr) + { + vec<3, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(vec<3, T, defaultp>)); + return Result; + } + + template + GLM_FUNC_QUALIFIER vec<4, T, defaultp> make_vec4(T const *const ptr) + { + vec<4, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(vec<4, T, defaultp>)); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<2, 2, T, defaultp> make_mat2x2(T const *const ptr) + { + mat<2, 2, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(mat<2, 2, T, defaultp>)); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<2, 3, T, defaultp> make_mat2x3(T const *const ptr) + { + mat<2, 3, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(mat<2, 3, T, defaultp>)); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<2, 4, T, defaultp> make_mat2x4(T const *const ptr) + { + mat<2, 4, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(mat<2, 4, T, defaultp>)); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<3, 2, T, defaultp> make_mat3x2(T const *const ptr) + { + mat<3, 2, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(mat<3, 2, T, defaultp>)); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, defaultp> make_mat3x3(T const *const ptr) + { + mat<3, 3, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(mat<3, 3, T, defaultp>)); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<3, 4, T, defaultp> make_mat3x4(T const *const ptr) + { + mat<3, 4, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(mat<3, 4, T, defaultp>)); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 2, T, defaultp> make_mat4x2(T const *const ptr) + { + mat<4, 2, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(mat<4, 2, T, defaultp>)); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 3, T, defaultp> make_mat4x3(T const *const ptr) + { + mat<4, 3, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(mat<4, 3, T, defaultp>)); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> make_mat4x4(T const *const ptr) + { + mat<4, 4, T, defaultp> Result; + memcpy(value_ptr(Result), ptr, sizeof(mat<4, 4, T, defaultp>)); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<2, 2, T, defaultp> make_mat2(T const *const ptr) + { + return make_mat2x2(ptr); + } + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, defaultp> make_mat3(T const *const ptr) + { + return make_mat3x3(ptr); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> make_mat4(T const *const ptr) + { + return make_mat4x4(ptr); + } + + template + GLM_FUNC_QUALIFIER qua make_quat(T const *const ptr) + { + qua Result; + memcpy(value_ptr(Result), ptr, sizeof(qua)); + return Result; + } + + /// @} +}//namespace glm + diff --git a/thirdparty/glm/glm/gtc/ulp.hpp b/thirdparty/glm/glm/gtc/ulp.hpp new file mode 100644 index 000000000000..7b918f0fa764 --- /dev/null +++ b/thirdparty/glm/glm/gtc/ulp.hpp @@ -0,0 +1,155 @@ +/// @ref gtc_ulp +/// @file glm/gtc/ulp.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_ulp GLM_GTC_ulp +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// Allow the measurement of the accuracy of a function against a reference +/// implementation. This extension works on floating-point data and provide results +/// in ULP. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/qualifier.hpp" +#include "../detail/_vectorize.hpp" +#include "../ext/scalar_int_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_ulp extension included") +#endif + +namespace glm +{ + /// @addtogroup gtc_ulp + /// @{ + + /// Return the next ULP value(s) after the input value(s). + /// + /// @tparam genType A floating-point scalar type. + /// + /// @see gtc_ulp + template + GLM_FUNC_DECL genType next_float(genType x); + + /// Return the previous ULP value(s) before the input value(s). + /// + /// @tparam genType A floating-point scalar type. + /// + /// @see gtc_ulp + template + GLM_FUNC_DECL genType prev_float(genType x); + + /// Return the value(s) ULP distance after the input value(s). + /// + /// @tparam genType A floating-point scalar type. + /// + /// @see gtc_ulp + template + GLM_FUNC_DECL genType next_float(genType x, int ULPs); + + /// Return the value(s) ULP distance before the input value(s). + /// + /// @tparam genType A floating-point scalar type. + /// + /// @see gtc_ulp + template + GLM_FUNC_DECL genType prev_float(genType x, int ULPs); + + /// Return the distance in the number of ULP between 2 single-precision floating-point scalars. + /// + /// @see gtc_ulp + GLM_FUNC_DECL int float_distance(float x, float y); + + /// Return the distance in the number of ULP between 2 double-precision floating-point scalars. + /// + /// @see gtc_ulp + GLM_FUNC_DECL int64 float_distance(double x, double y); + + /// Return the next ULP value(s) after the input value(s). + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + /// + /// @see gtc_ulp + template + GLM_FUNC_DECL vec next_float(vec const& x); + + /// Return the value(s) ULP distance after the input value(s). + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + /// + /// @see gtc_ulp + template + GLM_FUNC_DECL vec next_float(vec const& x, int ULPs); + + /// Return the value(s) ULP distance after the input value(s). + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + /// + /// @see gtc_ulp + template + GLM_FUNC_DECL vec next_float(vec const& x, vec const& ULPs); + + /// Return the previous ULP value(s) before the input value(s). + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + /// + /// @see gtc_ulp + template + GLM_FUNC_DECL vec prev_float(vec const& x); + + /// Return the value(s) ULP distance before the input value(s). + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + /// + /// @see gtc_ulp + template + GLM_FUNC_DECL vec prev_float(vec const& x, int ULPs); + + /// Return the value(s) ULP distance before the input value(s). + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point + /// @tparam Q Value from qualifier enum + /// + /// @see gtc_ulp + template + GLM_FUNC_DECL vec prev_float(vec const& x, vec const& ULPs); + + /// Return the distance in the number of ULP between 2 single-precision floating-point scalars. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam Q Value from qualifier enum + /// + /// @see gtc_ulp + template + GLM_FUNC_DECL vec float_distance(vec const& x, vec const& y); + + /// Return the distance in the number of ULP between 2 double-precision floating-point scalars. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam Q Value from qualifier enum + /// + /// @see gtc_ulp + template + GLM_FUNC_DECL vec float_distance(vec const& x, vec const& y); + + /// @} +}//namespace glm + +#include "ulp.inl" diff --git a/thirdparty/glm/glm/gtc/ulp.inl b/thirdparty/glm/glm/gtc/ulp.inl new file mode 100644 index 000000000000..836c84b4a250 --- /dev/null +++ b/thirdparty/glm/glm/gtc/ulp.inl @@ -0,0 +1,173 @@ +/// @ref gtc_ulp + +#include "../ext/scalar_ulp.hpp" + +namespace glm +{ + template<> + GLM_FUNC_QUALIFIER float next_float(float x) + { +# if GLM_HAS_CXX11_STL + return std::nextafter(x, std::numeric_limits::max()); +# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) + return detail::nextafterf(x, FLT_MAX); +# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) + return __builtin_nextafterf(x, FLT_MAX); +# else + return nextafterf(x, FLT_MAX); +# endif + } + + template<> + GLM_FUNC_QUALIFIER double next_float(double x) + { +# if GLM_HAS_CXX11_STL + return std::nextafter(x, std::numeric_limits::max()); +# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) + return detail::nextafter(x, std::numeric_limits::max()); +# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) + return __builtin_nextafter(x, DBL_MAX); +# else + return nextafter(x, DBL_MAX); +# endif + } + + template + GLM_FUNC_QUALIFIER T next_float(T x, int ULPs) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'next_float' only accept floating-point input"); + assert(ULPs >= 0); + + T temp = x; + for (int i = 0; i < ULPs; ++i) + temp = next_float(temp); + return temp; + } + + GLM_FUNC_QUALIFIER float prev_float(float x) + { +# if GLM_HAS_CXX11_STL + return std::nextafter(x, std::numeric_limits::min()); +# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) + return detail::nextafterf(x, FLT_MIN); +# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) + return __builtin_nextafterf(x, FLT_MIN); +# else + return nextafterf(x, FLT_MIN); +# endif + } + + GLM_FUNC_QUALIFIER double prev_float(double x) + { +# if GLM_HAS_CXX11_STL + return std::nextafter(x, std::numeric_limits::min()); +# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) + return _nextafter(x, DBL_MIN); +# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) + return __builtin_nextafter(x, DBL_MIN); +# else + return nextafter(x, DBL_MIN); +# endif + } + + template + GLM_FUNC_QUALIFIER T prev_float(T x, int ULPs) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'prev_float' only accept floating-point input"); + assert(ULPs >= 0); + + T temp = x; + for (int i = 0; i < ULPs; ++i) + temp = prev_float(temp); + return temp; + } + + GLM_FUNC_QUALIFIER int float_distance(float x, float y) + { + detail::float_t const a(x); + detail::float_t const b(y); + + return abs(a.i - b.i); + } + + GLM_FUNC_QUALIFIER int64 float_distance(double x, double y) + { + detail::float_t const a(x); + detail::float_t const b(y); + + return abs(a.i - b.i); + } + + template + GLM_FUNC_QUALIFIER vec next_float(vec const& x) + { + vec Result; + for (length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = next_float(x[i]); + return Result; + } + + template + GLM_FUNC_QUALIFIER vec next_float(vec const& x, int ULPs) + { + vec Result; + for (length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = next_float(x[i], ULPs); + return Result; + } + + template + GLM_FUNC_QUALIFIER vec next_float(vec const& x, vec const& ULPs) + { + vec Result; + for (length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = next_float(x[i], ULPs[i]); + return Result; + } + + template + GLM_FUNC_QUALIFIER vec prev_float(vec const& x) + { + vec Result; + for (length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = prev_float(x[i]); + return Result; + } + + template + GLM_FUNC_QUALIFIER vec prev_float(vec const& x, int ULPs) + { + vec Result; + for (length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = prev_float(x[i], ULPs); + return Result; + } + + template + GLM_FUNC_QUALIFIER vec prev_float(vec const& x, vec const& ULPs) + { + vec Result; + for (length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = prev_float(x[i], ULPs[i]); + return Result; + } + + template + GLM_FUNC_QUALIFIER vec float_distance(vec const& x, vec const& y) + { + vec Result; + for (length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = float_distance(x[i], y[i]); + return Result; + } + + template + GLM_FUNC_QUALIFIER vec float_distance(vec const& x, vec const& y) + { + vec Result; + for (length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = float_distance(x[i], y[i]); + return Result; + } +}//namespace glm + diff --git a/thirdparty/glm/glm/gtc/vec1.hpp b/thirdparty/glm/glm/gtc/vec1.hpp new file mode 100644 index 000000000000..63697a215750 --- /dev/null +++ b/thirdparty/glm/glm/gtc/vec1.hpp @@ -0,0 +1,30 @@ +/// @ref gtc_vec1 +/// @file glm/gtc/vec1.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtc_vec1 GLM_GTC_vec1 +/// @ingroup gtc +/// +/// Include to use the features of this extension. +/// +/// Add vec1, ivec1, uvec1 and bvec1 types. + +#pragma once + +// Dependency: +#include "../ext/vector_bool1.hpp" +#include "../ext/vector_bool1_precision.hpp" +#include "../ext/vector_float1.hpp" +#include "../ext/vector_float1_precision.hpp" +#include "../ext/vector_double1.hpp" +#include "../ext/vector_double1_precision.hpp" +#include "../ext/vector_int1.hpp" +#include "../ext/vector_int1_sized.hpp" +#include "../ext/vector_uint1.hpp" +#include "../ext/vector_uint1_sized.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_GTC_vec1 extension included") +#endif + diff --git a/thirdparty/glm/glm/gtx/associated_min_max.hpp b/thirdparty/glm/glm/gtx/associated_min_max.hpp new file mode 100644 index 000000000000..4c036add2186 --- /dev/null +++ b/thirdparty/glm/glm/gtx/associated_min_max.hpp @@ -0,0 +1,207 @@ +/// @ref gtx_associated_min_max +/// @file glm/gtx/associated_min_max.hpp +/// +/// @see core (dependence) +/// @see gtx_extented_min_max (dependence) +/// +/// @defgroup gtx_associated_min_max GLM_GTX_associated_min_max +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// @brief Min and max functions that return associated values not the compared ones. + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_associated_min_max is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_associated_min_max extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_associated_min_max + /// @{ + + /// Minimum comparison between 2 variables and returns 2 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL U associatedMin(T x, U a, T y, U b); + + /// Minimum comparison between 2 variables and returns 2 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL vec associatedMin( + vec const& x, vec const& a, + vec const& y, vec const& b); + + /// Minimum comparison between 2 variables and returns 2 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL vec associatedMin( + T x, const vec& a, + T y, const vec& b); + + /// Minimum comparison between 2 variables and returns 2 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL vec associatedMin( + vec const& x, U a, + vec const& y, U b); + + /// Minimum comparison between 3 variables and returns 3 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL U associatedMin( + T x, U a, + T y, U b, + T z, U c); + + /// Minimum comparison between 3 variables and returns 3 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL vec associatedMin( + vec const& x, vec const& a, + vec const& y, vec const& b, + vec const& z, vec const& c); + + /// Minimum comparison between 4 variables and returns 4 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL U associatedMin( + T x, U a, + T y, U b, + T z, U c, + T w, U d); + + /// Minimum comparison between 4 variables and returns 4 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL vec associatedMin( + vec const& x, vec const& a, + vec const& y, vec const& b, + vec const& z, vec const& c, + vec const& w, vec const& d); + + /// Minimum comparison between 4 variables and returns 4 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL vec associatedMin( + T x, vec const& a, + T y, vec const& b, + T z, vec const& c, + T w, vec const& d); + + /// Minimum comparison between 4 variables and returns 4 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL vec associatedMin( + vec const& x, U a, + vec const& y, U b, + vec const& z, U c, + vec const& w, U d); + + /// Maximum comparison between 2 variables and returns 2 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL U associatedMax(T x, U a, T y, U b); + + /// Maximum comparison between 2 variables and returns 2 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL vec associatedMax( + vec const& x, vec const& a, + vec const& y, vec const& b); + + /// Maximum comparison between 2 variables and returns 2 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL vec associatedMax( + T x, vec const& a, + T y, vec const& b); + + /// Maximum comparison between 2 variables and returns 2 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL vec associatedMax( + vec const& x, U a, + vec const& y, U b); + + /// Maximum comparison between 3 variables and returns 3 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL U associatedMax( + T x, U a, + T y, U b, + T z, U c); + + /// Maximum comparison between 3 variables and returns 3 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL vec associatedMax( + vec const& x, vec const& a, + vec const& y, vec const& b, + vec const& z, vec const& c); + + /// Maximum comparison between 3 variables and returns 3 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL vec associatedMax( + T x, vec const& a, + T y, vec const& b, + T z, vec const& c); + + /// Maximum comparison between 3 variables and returns 3 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL vec associatedMax( + vec const& x, U a, + vec const& y, U b, + vec const& z, U c); + + /// Maximum comparison between 4 variables and returns 4 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL U associatedMax( + T x, U a, + T y, U b, + T z, U c, + T w, U d); + + /// Maximum comparison between 4 variables and returns 4 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL vec associatedMax( + vec const& x, vec const& a, + vec const& y, vec const& b, + vec const& z, vec const& c, + vec const& w, vec const& d); + + /// Maximum comparison between 4 variables and returns 4 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL vec associatedMax( + T x, vec const& a, + T y, vec const& b, + T z, vec const& c, + T w, vec const& d); + + /// Maximum comparison between 4 variables and returns 4 associated variable values + /// @see gtx_associated_min_max + template + GLM_FUNC_DECL vec associatedMax( + vec const& x, U a, + vec const& y, U b, + vec const& z, U c, + vec const& w, U d); + + /// @} +} //namespace glm + +#include "associated_min_max.inl" diff --git a/thirdparty/glm/glm/gtx/associated_min_max.inl b/thirdparty/glm/glm/gtx/associated_min_max.inl new file mode 100644 index 000000000000..f09f5bb74c25 --- /dev/null +++ b/thirdparty/glm/glm/gtx/associated_min_max.inl @@ -0,0 +1,354 @@ +/// @ref gtx_associated_min_max + +namespace glm{ + +// Min comparison between 2 variables +template +GLM_FUNC_QUALIFIER U associatedMin(T x, U a, T y, U b) +{ + return x < y ? a : b; +} + +template +GLM_FUNC_QUALIFIER vec associatedMin +( + vec const& x, vec const& a, + vec const& y, vec const& b +) +{ + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = x[i] < y[i] ? a[i] : b[i]; + return Result; +} + +template +GLM_FUNC_QUALIFIER vec associatedMin +( + T x, const vec& a, + T y, const vec& b +) +{ + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = x < y ? a[i] : b[i]; + return Result; +} + +template +GLM_FUNC_QUALIFIER vec associatedMin +( + vec const& x, U a, + vec const& y, U b +) +{ + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = x[i] < y[i] ? a : b; + return Result; +} + +// Min comparison between 3 variables +template +GLM_FUNC_QUALIFIER U associatedMin +( + T x, U a, + T y, U b, + T z, U c +) +{ + U Result = x < y ? (x < z ? a : c) : (y < z ? b : c); + return Result; +} + +template +GLM_FUNC_QUALIFIER vec associatedMin +( + vec const& x, vec const& a, + vec const& y, vec const& b, + vec const& z, vec const& c +) +{ + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = x[i] < y[i] ? (x[i] < z[i] ? a[i] : c[i]) : (y[i] < z[i] ? b[i] : c[i]); + return Result; +} + +// Min comparison between 4 variables +template +GLM_FUNC_QUALIFIER U associatedMin +( + T x, U a, + T y, U b, + T z, U c, + T w, U d +) +{ + T Test1 = min(x, y); + T Test2 = min(z, w); + U Result1 = x < y ? a : b; + U Result2 = z < w ? c : d; + U Result = Test1 < Test2 ? Result1 : Result2; + return Result; +} + +// Min comparison between 4 variables +template +GLM_FUNC_QUALIFIER vec associatedMin +( + vec const& x, vec const& a, + vec const& y, vec const& b, + vec const& z, vec const& c, + vec const& w, vec const& d +) +{ + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + { + T Test1 = min(x[i], y[i]); + T Test2 = min(z[i], w[i]); + U Result1 = x[i] < y[i] ? a[i] : b[i]; + U Result2 = z[i] < w[i] ? c[i] : d[i]; + Result[i] = Test1 < Test2 ? Result1 : Result2; + } + return Result; +} + +// Min comparison between 4 variables +template +GLM_FUNC_QUALIFIER vec associatedMin +( + T x, vec const& a, + T y, vec const& b, + T z, vec const& c, + T w, vec const& d +) +{ + T Test1 = min(x, y); + T Test2 = min(z, w); + + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + { + U Result1 = x < y ? a[i] : b[i]; + U Result2 = z < w ? c[i] : d[i]; + Result[i] = Test1 < Test2 ? Result1 : Result2; + } + return Result; +} + +// Min comparison between 4 variables +template +GLM_FUNC_QUALIFIER vec associatedMin +( + vec const& x, U a, + vec const& y, U b, + vec const& z, U c, + vec const& w, U d +) +{ + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + { + T Test1 = min(x[i], y[i]); + T Test2 = min(z[i], w[i]); + U Result1 = x[i] < y[i] ? a : b; + U Result2 = z[i] < w[i] ? c : d; + Result[i] = Test1 < Test2 ? Result1 : Result2; + } + return Result; +} + +// Max comparison between 2 variables +template +GLM_FUNC_QUALIFIER U associatedMax(T x, U a, T y, U b) +{ + return x > y ? a : b; +} + +// Max comparison between 2 variables +template +GLM_FUNC_QUALIFIER vec associatedMax +( + vec const& x, vec const& a, + vec const& y, vec const& b +) +{ + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = x[i] > y[i] ? a[i] : b[i]; + return Result; +} + +// Max comparison between 2 variables +template +GLM_FUNC_QUALIFIER vec associatedMax +( + T x, vec const& a, + T y, vec const& b +) +{ + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = x > y ? a[i] : b[i]; + return Result; +} + +// Max comparison between 2 variables +template +GLM_FUNC_QUALIFIER vec associatedMax +( + vec const& x, U a, + vec const& y, U b +) +{ + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = x[i] > y[i] ? a : b; + return Result; +} + +// Max comparison between 3 variables +template +GLM_FUNC_QUALIFIER U associatedMax +( + T x, U a, + T y, U b, + T z, U c +) +{ + U Result = x > y ? (x > z ? a : c) : (y > z ? b : c); + return Result; +} + +// Max comparison between 3 variables +template +GLM_FUNC_QUALIFIER vec associatedMax +( + vec const& x, vec const& a, + vec const& y, vec const& b, + vec const& z, vec const& c +) +{ + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = x[i] > y[i] ? (x[i] > z[i] ? a[i] : c[i]) : (y[i] > z[i] ? b[i] : c[i]); + return Result; +} + +// Max comparison between 3 variables +template +GLM_FUNC_QUALIFIER vec associatedMax +( + T x, vec const& a, + T y, vec const& b, + T z, vec const& c +) +{ + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = x > y ? (x > z ? a[i] : c[i]) : (y > z ? b[i] : c[i]); + return Result; +} + +// Max comparison between 3 variables +template +GLM_FUNC_QUALIFIER vec associatedMax +( + vec const& x, U a, + vec const& y, U b, + vec const& z, U c +) +{ + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + Result[i] = x[i] > y[i] ? (x[i] > z[i] ? a : c) : (y[i] > z[i] ? b : c); + return Result; +} + +// Max comparison between 4 variables +template +GLM_FUNC_QUALIFIER U associatedMax +( + T x, U a, + T y, U b, + T z, U c, + T w, U d +) +{ + T Test1 = max(x, y); + T Test2 = max(z, w); + U Result1 = x > y ? a : b; + U Result2 = z > w ? c : d; + U Result = Test1 > Test2 ? Result1 : Result2; + return Result; +} + +// Max comparison between 4 variables +template +GLM_FUNC_QUALIFIER vec associatedMax +( + vec const& x, vec const& a, + vec const& y, vec const& b, + vec const& z, vec const& c, + vec const& w, vec const& d +) +{ + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + { + T Test1 = max(x[i], y[i]); + T Test2 = max(z[i], w[i]); + U Result1 = x[i] > y[i] ? a[i] : b[i]; + U Result2 = z[i] > w[i] ? c[i] : d[i]; + Result[i] = Test1 > Test2 ? Result1 : Result2; + } + return Result; +} + +// Max comparison between 4 variables +template +GLM_FUNC_QUALIFIER vec associatedMax +( + T x, vec const& a, + T y, vec const& b, + T z, vec const& c, + T w, vec const& d +) +{ + T Test1 = max(x, y); + T Test2 = max(z, w); + + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + { + U Result1 = x > y ? a[i] : b[i]; + U Result2 = z > w ? c[i] : d[i]; + Result[i] = Test1 > Test2 ? Result1 : Result2; + } + return Result; +} + +// Max comparison between 4 variables +template +GLM_FUNC_QUALIFIER vec associatedMax +( + vec const& x, U a, + vec const& y, U b, + vec const& z, U c, + vec const& w, U d +) +{ + vec Result; + for(length_t i = 0, n = Result.length(); i < n; ++i) + { + T Test1 = max(x[i], y[i]); + T Test2 = max(z[i], w[i]); + U Result1 = x[i] > y[i] ? a : b; + U Result2 = z[i] > w[i] ? c : d; + Result[i] = Test1 > Test2 ? Result1 : Result2; + } + return Result; +} +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/bit.hpp b/thirdparty/glm/glm/gtx/bit.hpp new file mode 100644 index 000000000000..60a7aef1b463 --- /dev/null +++ b/thirdparty/glm/glm/gtx/bit.hpp @@ -0,0 +1,98 @@ +/// @ref gtx_bit +/// @file glm/gtx/bit.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_bit GLM_GTX_bit +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Allow to perform bit operations on integer values + +#pragma once + +// Dependencies +#include "../gtc/bitfield.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_bit is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_bit extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_bit + /// @{ + + /// @see gtx_bit + template + GLM_FUNC_DECL genIUType highestBitValue(genIUType Value); + + /// @see gtx_bit + template + GLM_FUNC_DECL genIUType lowestBitValue(genIUType Value); + + /// Find the highest bit set to 1 in a integer variable and return its value. + /// + /// @see gtx_bit + template + GLM_FUNC_DECL vec highestBitValue(vec const& value); + + /// Return the power of two number which value is just higher the input value. + /// Deprecated, use ceilPowerOfTwo from GTC_round instead + /// + /// @see gtc_round + /// @see gtx_bit + template + GLM_DEPRECATED GLM_FUNC_DECL genIUType powerOfTwoAbove(genIUType Value); + + /// Return the power of two number which value is just higher the input value. + /// Deprecated, use ceilPowerOfTwo from GTC_round instead + /// + /// @see gtc_round + /// @see gtx_bit + template + GLM_DEPRECATED GLM_FUNC_DECL vec powerOfTwoAbove(vec const& value); + + /// Return the power of two number which value is just lower the input value. + /// Deprecated, use floorPowerOfTwo from GTC_round instead + /// + /// @see gtc_round + /// @see gtx_bit + template + GLM_DEPRECATED GLM_FUNC_DECL genIUType powerOfTwoBelow(genIUType Value); + + /// Return the power of two number which value is just lower the input value. + /// Deprecated, use floorPowerOfTwo from GTC_round instead + /// + /// @see gtc_round + /// @see gtx_bit + template + GLM_DEPRECATED GLM_FUNC_DECL vec powerOfTwoBelow(vec const& value); + + /// Return the power of two number which value is the closet to the input value. + /// Deprecated, use roundPowerOfTwo from GTC_round instead + /// + /// @see gtc_round + /// @see gtx_bit + template + GLM_DEPRECATED GLM_FUNC_DECL genIUType powerOfTwoNearest(genIUType Value); + + /// Return the power of two number which value is the closet to the input value. + /// Deprecated, use roundPowerOfTwo from GTC_round instead + /// + /// @see gtc_round + /// @see gtx_bit + template + GLM_DEPRECATED GLM_FUNC_DECL vec powerOfTwoNearest(vec const& value); + + /// @} +} //namespace glm + + +#include "bit.inl" + diff --git a/thirdparty/glm/glm/gtx/bit.inl b/thirdparty/glm/glm/gtx/bit.inl new file mode 100644 index 000000000000..621b6262406d --- /dev/null +++ b/thirdparty/glm/glm/gtx/bit.inl @@ -0,0 +1,92 @@ +/// @ref gtx_bit + +namespace glm +{ + /////////////////// + // highestBitValue + + template + GLM_FUNC_QUALIFIER genIUType highestBitValue(genIUType Value) + { + genIUType tmp = Value; + genIUType result = genIUType(0); + while(tmp) + { + result = (tmp & (~tmp + 1)); // grab lowest bit + tmp &= ~result; // clear lowest bit + } + return result; + } + + template + GLM_FUNC_QUALIFIER vec highestBitValue(vec const& v) + { + return detail::functor1::call(highestBitValue, v); + } + + /////////////////// + // lowestBitValue + + template + GLM_FUNC_QUALIFIER genIUType lowestBitValue(genIUType Value) + { + return (Value & (~Value + 1)); + } + + template + GLM_FUNC_QUALIFIER vec lowestBitValue(vec const& v) + { + return detail::functor1::call(lowestBitValue, v); + } + + /////////////////// + // powerOfTwoAbove + + template + GLM_FUNC_QUALIFIER genType powerOfTwoAbove(genType value) + { + return isPowerOfTwo(value) ? value : highestBitValue(value) << 1; + } + + template + GLM_FUNC_QUALIFIER vec powerOfTwoAbove(vec const& v) + { + return detail::functor1::call(powerOfTwoAbove, v); + } + + /////////////////// + // powerOfTwoBelow + + template + GLM_FUNC_QUALIFIER genType powerOfTwoBelow(genType value) + { + return isPowerOfTwo(value) ? value : highestBitValue(value); + } + + template + GLM_FUNC_QUALIFIER vec powerOfTwoBelow(vec const& v) + { + return detail::functor1::call(powerOfTwoBelow, v); + } + + ///////////////////// + // powerOfTwoNearest + + template + GLM_FUNC_QUALIFIER genType powerOfTwoNearest(genType value) + { + if(isPowerOfTwo(value)) + return value; + + genType const prev = highestBitValue(value); + genType const next = prev << 1; + return (next - value) < (value - prev) ? next : prev; + } + + template + GLM_FUNC_QUALIFIER vec powerOfTwoNearest(vec const& v) + { + return detail::functor1::call(powerOfTwoNearest, v); + } + +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/closest_point.hpp b/thirdparty/glm/glm/gtx/closest_point.hpp new file mode 100644 index 000000000000..de6dbbff9447 --- /dev/null +++ b/thirdparty/glm/glm/gtx/closest_point.hpp @@ -0,0 +1,49 @@ +/// @ref gtx_closest_point +/// @file glm/gtx/closest_point.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_closest_point GLM_GTX_closest_point +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Find the point on a straight line which is the closet of a point. + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_closest_point is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_closest_point extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_closest_point + /// @{ + + /// Find the point on a straight line which is the closet of a point. + /// @see gtx_closest_point + template + GLM_FUNC_DECL vec<3, T, Q> closestPointOnLine( + vec<3, T, Q> const& point, + vec<3, T, Q> const& a, + vec<3, T, Q> const& b); + + /// 2d lines work as well + template + GLM_FUNC_DECL vec<2, T, Q> closestPointOnLine( + vec<2, T, Q> const& point, + vec<2, T, Q> const& a, + vec<2, T, Q> const& b); + + /// @} +}// namespace glm + +#include "closest_point.inl" diff --git a/thirdparty/glm/glm/gtx/closest_point.inl b/thirdparty/glm/glm/gtx/closest_point.inl new file mode 100644 index 000000000000..0a39b042b88c --- /dev/null +++ b/thirdparty/glm/glm/gtx/closest_point.inl @@ -0,0 +1,45 @@ +/// @ref gtx_closest_point + +namespace glm +{ + template + GLM_FUNC_QUALIFIER vec<3, T, Q> closestPointOnLine + ( + vec<3, T, Q> const& point, + vec<3, T, Q> const& a, + vec<3, T, Q> const& b + ) + { + T LineLength = distance(a, b); + vec<3, T, Q> Vector = point - a; + vec<3, T, Q> LineDirection = (b - a) / LineLength; + + // Project Vector to LineDirection to get the distance of point from a + T Distance = dot(Vector, LineDirection); + + if(Distance <= T(0)) return a; + if(Distance >= LineLength) return b; + return a + LineDirection * Distance; + } + + template + GLM_FUNC_QUALIFIER vec<2, T, Q> closestPointOnLine + ( + vec<2, T, Q> const& point, + vec<2, T, Q> const& a, + vec<2, T, Q> const& b + ) + { + T LineLength = distance(a, b); + vec<2, T, Q> Vector = point - a; + vec<2, T, Q> LineDirection = (b - a) / LineLength; + + // Project Vector to LineDirection to get the distance of point from a + T Distance = dot(Vector, LineDirection); + + if(Distance <= T(0)) return a; + if(Distance >= LineLength) return b; + return a + LineDirection * Distance; + } + +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/color_encoding.hpp b/thirdparty/glm/glm/gtx/color_encoding.hpp new file mode 100644 index 000000000000..96ded2a2770f --- /dev/null +++ b/thirdparty/glm/glm/gtx/color_encoding.hpp @@ -0,0 +1,54 @@ +/// @ref gtx_color_encoding +/// @file glm/gtx/color_encoding.hpp +/// +/// @see core (dependence) +/// @see gtx_color_encoding (dependence) +/// +/// @defgroup gtx_color_encoding GLM_GTX_color_encoding +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// @brief Allow to perform bit operations on integer values + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/qualifier.hpp" +#include "../vec3.hpp" +#include + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTC_color_encoding is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTC_color_encoding extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_color_encoding + /// @{ + + /// Convert a linear sRGB color to D65 YUV. + template + GLM_FUNC_DECL vec<3, T, Q> convertLinearSRGBToD65XYZ(vec<3, T, Q> const& ColorLinearSRGB); + + /// Convert a linear sRGB color to D50 YUV. + template + GLM_FUNC_DECL vec<3, T, Q> convertLinearSRGBToD50XYZ(vec<3, T, Q> const& ColorLinearSRGB); + + /// Convert a D65 YUV color to linear sRGB. + template + GLM_FUNC_DECL vec<3, T, Q> convertD65XYZToLinearSRGB(vec<3, T, Q> const& ColorD65XYZ); + + /// Convert a D65 YUV color to D50 YUV. + template + GLM_FUNC_DECL vec<3, T, Q> convertD65XYZToD50XYZ(vec<3, T, Q> const& ColorD65XYZ); + + /// @} +} //namespace glm + +#include "color_encoding.inl" diff --git a/thirdparty/glm/glm/gtx/color_encoding.inl b/thirdparty/glm/glm/gtx/color_encoding.inl new file mode 100644 index 000000000000..e50fa3efa42c --- /dev/null +++ b/thirdparty/glm/glm/gtx/color_encoding.inl @@ -0,0 +1,45 @@ +/// @ref gtx_color_encoding + +namespace glm +{ + template + GLM_FUNC_QUALIFIER vec<3, T, Q> convertLinearSRGBToD65XYZ(vec<3, T, Q> const& ColorLinearSRGB) + { + vec<3, T, Q> const M(0.490f, 0.17697f, 0.2f); + vec<3, T, Q> const N(0.31f, 0.8124f, 0.01063f); + vec<3, T, Q> const O(0.490f, 0.01f, 0.99f); + + return (M * ColorLinearSRGB + N * ColorLinearSRGB + O * ColorLinearSRGB) * static_cast(5.650675255693055f); + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> convertLinearSRGBToD50XYZ(vec<3, T, Q> const& ColorLinearSRGB) + { + vec<3, T, Q> const M(0.436030342570117f, 0.222438466210245f, 0.013897440074263f); + vec<3, T, Q> const N(0.385101860087134f, 0.716942745571917f, 0.097076381494207f); + vec<3, T, Q> const O(0.143067806654203f, 0.060618777416563f, 0.713926257896652f); + + return M * ColorLinearSRGB + N * ColorLinearSRGB + O * ColorLinearSRGB; + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> convertD65XYZToLinearSRGB(vec<3, T, Q> const& ColorD65XYZ) + { + vec<3, T, Q> const M(0.41847f, -0.091169f, 0.0009209f); + vec<3, T, Q> const N(-0.15866f, 0.25243f, 0.015708f); + vec<3, T, Q> const O(0.0009209f, -0.0025498f, 0.1786f); + + return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ; + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> convertD65XYZToD50XYZ(vec<3, T, Q> const& ColorD65XYZ) + { + vec<3, T, Q> const M(+1.047844353856414f, +0.029549007606644f, -0.009250984365223f); + vec<3, T, Q> const N(+0.022898981050086f, +0.990508028941971f, +0.015072338237051f); + vec<3, T, Q> const O(-0.050206647741605f, -0.017074711360960f, +0.751717835079977f); + + return M * ColorD65XYZ + N * ColorD65XYZ + O * ColorD65XYZ; + } + +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/color_space.hpp b/thirdparty/glm/glm/gtx/color_space.hpp new file mode 100644 index 000000000000..a63439214908 --- /dev/null +++ b/thirdparty/glm/glm/gtx/color_space.hpp @@ -0,0 +1,72 @@ +/// @ref gtx_color_space +/// @file glm/gtx/color_space.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_color_space GLM_GTX_color_space +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Related to RGB to HSV conversions and operations. + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_color_space is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_color_space extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_color_space + /// @{ + + /// Converts a color from HSV color space to its color in RGB color space. + /// @see gtx_color_space + template + GLM_FUNC_DECL vec<3, T, Q> rgbColor( + vec<3, T, Q> const& hsvValue); + + /// Converts a color from RGB color space to its color in HSV color space. + /// @see gtx_color_space + template + GLM_FUNC_DECL vec<3, T, Q> hsvColor( + vec<3, T, Q> const& rgbValue); + + /// Build a saturation matrix. + /// @see gtx_color_space + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> saturation( + T const s); + + /// Modify the saturation of a color. + /// @see gtx_color_space + template + GLM_FUNC_DECL vec<3, T, Q> saturation( + T const s, + vec<3, T, Q> const& color); + + /// Modify the saturation of a color. + /// @see gtx_color_space + template + GLM_FUNC_DECL vec<4, T, Q> saturation( + T const s, + vec<4, T, Q> const& color); + + /// Compute color luminosity associating ratios (0.33, 0.59, 0.11) to RGB canals. + /// @see gtx_color_space + template + GLM_FUNC_DECL T luminosity( + vec<3, T, Q> const& color); + + /// @} +}//namespace glm + +#include "color_space.inl" diff --git a/thirdparty/glm/glm/gtx/color_space.inl b/thirdparty/glm/glm/gtx/color_space.inl new file mode 100644 index 000000000000..0a7059fabb7b --- /dev/null +++ b/thirdparty/glm/glm/gtx/color_space.inl @@ -0,0 +1,141 @@ +/// @ref gtx_color_space + +namespace glm +{ + template + GLM_FUNC_QUALIFIER vec<3, T, Q> rgbColor(const vec<3, T, Q>& hsvColor) + { + vec<3, T, Q> hsv = hsvColor; + vec<3, T, Q> rgbColor; + + if(hsv.y == static_cast(0)) + // achromatic (grey) + rgbColor = vec<3, T, Q>(hsv.z); + else + { + T sector = floor(hsv.x * (T(1) / T(60))); + T frac = (hsv.x * (T(1) / T(60))) - sector; + // factorial part of h + T o = hsv.z * (T(1) - hsv.y); + T p = hsv.z * (T(1) - hsv.y * frac); + T q = hsv.z * (T(1) - hsv.y * (T(1) - frac)); + + switch(int(sector)) + { + default: + case 0: + rgbColor.r = hsv.z; + rgbColor.g = q; + rgbColor.b = o; + break; + case 1: + rgbColor.r = p; + rgbColor.g = hsv.z; + rgbColor.b = o; + break; + case 2: + rgbColor.r = o; + rgbColor.g = hsv.z; + rgbColor.b = q; + break; + case 3: + rgbColor.r = o; + rgbColor.g = p; + rgbColor.b = hsv.z; + break; + case 4: + rgbColor.r = q; + rgbColor.g = o; + rgbColor.b = hsv.z; + break; + case 5: + rgbColor.r = hsv.z; + rgbColor.g = o; + rgbColor.b = p; + break; + } + } + + return rgbColor; + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> hsvColor(const vec<3, T, Q>& rgbColor) + { + vec<3, T, Q> hsv = rgbColor; + T Min = min(min(rgbColor.r, rgbColor.g), rgbColor.b); + T Max = max(max(rgbColor.r, rgbColor.g), rgbColor.b); + T Delta = Max - Min; + + hsv.z = Max; + + if(Max != static_cast(0)) + { + hsv.y = Delta / hsv.z; + T h = static_cast(0); + + if(rgbColor.r == Max) + // between yellow & magenta + h = static_cast(0) + T(60) * (rgbColor.g - rgbColor.b) / Delta; + else if(rgbColor.g == Max) + // between cyan & yellow + h = static_cast(120) + T(60) * (rgbColor.b - rgbColor.r) / Delta; + else + // between magenta & cyan + h = static_cast(240) + T(60) * (rgbColor.r - rgbColor.g) / Delta; + + if(h < T(0)) + hsv.x = h + T(360); + else + hsv.x = h; + } + else + { + // If r = g = b = 0 then s = 0, h is undefined + hsv.y = static_cast(0); + hsv.x = static_cast(0); + } + + return hsv; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> saturation(T const s) + { + vec<3, T, defaultp> rgbw = vec<3, T, defaultp>(T(0.2126), T(0.7152), T(0.0722)); + + vec<3, T, defaultp> const col((T(1) - s) * rgbw); + + mat<4, 4, T, defaultp> result(T(1)); + result[0][0] = col.x + s; + result[0][1] = col.x; + result[0][2] = col.x; + result[1][0] = col.y; + result[1][1] = col.y + s; + result[1][2] = col.y; + result[2][0] = col.z; + result[2][1] = col.z; + result[2][2] = col.z + s; + + return result; + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> saturation(const T s, const vec<3, T, Q>& color) + { + return vec<3, T, Q>(saturation(s) * vec<4, T, Q>(color, T(0))); + } + + template + GLM_FUNC_QUALIFIER vec<4, T, Q> saturation(const T s, const vec<4, T, Q>& color) + { + return saturation(s) * color; + } + + template + GLM_FUNC_QUALIFIER T luminosity(const vec<3, T, Q>& color) + { + const vec<3, T, Q> tmp = vec<3, T, Q>(0.33, 0.59, 0.11); + return dot(color, tmp); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/color_space_YCoCg.hpp b/thirdparty/glm/glm/gtx/color_space_YCoCg.hpp new file mode 100644 index 000000000000..dd2b771693f6 --- /dev/null +++ b/thirdparty/glm/glm/gtx/color_space_YCoCg.hpp @@ -0,0 +1,60 @@ +/// @ref gtx_color_space_YCoCg +/// @file glm/gtx/color_space_YCoCg.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_color_space_YCoCg GLM_GTX_color_space_YCoCg +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// RGB to YCoCg conversions and operations + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_color_space_YCoCg is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_color_space_YCoCg extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_color_space_YCoCg + /// @{ + + /// Convert a color from RGB color space to YCoCg color space. + /// @see gtx_color_space_YCoCg + template + GLM_FUNC_DECL vec<3, T, Q> rgb2YCoCg( + vec<3, T, Q> const& rgbColor); + + /// Convert a color from YCoCg color space to RGB color space. + /// @see gtx_color_space_YCoCg + template + GLM_FUNC_DECL vec<3, T, Q> YCoCg2rgb( + vec<3, T, Q> const& YCoCgColor); + + /// Convert a color from RGB color space to YCoCgR color space. + /// @see "YCoCg-R: A Color Space with RGB Reversibility and Low Dynamic Range" + /// @see gtx_color_space_YCoCg + template + GLM_FUNC_DECL vec<3, T, Q> rgb2YCoCgR( + vec<3, T, Q> const& rgbColor); + + /// Convert a color from YCoCgR color space to RGB color space. + /// @see "YCoCg-R: A Color Space with RGB Reversibility and Low Dynamic Range" + /// @see gtx_color_space_YCoCg + template + GLM_FUNC_DECL vec<3, T, Q> YCoCgR2rgb( + vec<3, T, Q> const& YCoCgColor); + + /// @} +}//namespace glm + +#include "color_space_YCoCg.inl" diff --git a/thirdparty/glm/glm/gtx/color_space_YCoCg.inl b/thirdparty/glm/glm/gtx/color_space_YCoCg.inl new file mode 100644 index 000000000000..83ba857c08bd --- /dev/null +++ b/thirdparty/glm/glm/gtx/color_space_YCoCg.inl @@ -0,0 +1,107 @@ +/// @ref gtx_color_space_YCoCg + +namespace glm +{ + template + GLM_FUNC_QUALIFIER vec<3, T, Q> rgb2YCoCg + ( + vec<3, T, Q> const& rgbColor + ) + { + vec<3, T, Q> result; + result.x/*Y */ = rgbColor.r / T(4) + rgbColor.g / T(2) + rgbColor.b / T(4); + result.y/*Co*/ = rgbColor.r / T(2) + rgbColor.g * T(0) - rgbColor.b / T(2); + result.z/*Cg*/ = - rgbColor.r / T(4) + rgbColor.g / T(2) - rgbColor.b / T(4); + return result; + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> YCoCg2rgb + ( + vec<3, T, Q> const& YCoCgColor + ) + { + vec<3, T, Q> result; + result.r = YCoCgColor.x + YCoCgColor.y - YCoCgColor.z; + result.g = YCoCgColor.x + YCoCgColor.z; + result.b = YCoCgColor.x - YCoCgColor.y - YCoCgColor.z; + return result; + } + + template + class compute_YCoCgR { + public: + static GLM_FUNC_QUALIFIER vec<3, T, Q> rgb2YCoCgR + ( + vec<3, T, Q> const& rgbColor + ) + { + vec<3, T, Q> result; + result.x/*Y */ = rgbColor.g * static_cast(0.5) + (rgbColor.r + rgbColor.b) * static_cast(0.25); + result.y/*Co*/ = rgbColor.r - rgbColor.b; + result.z/*Cg*/ = rgbColor.g - (rgbColor.r + rgbColor.b) * static_cast(0.5); + return result; + } + + static GLM_FUNC_QUALIFIER vec<3, T, Q> YCoCgR2rgb + ( + vec<3, T, Q> const& YCoCgRColor + ) + { + vec<3, T, Q> result; + T tmp = YCoCgRColor.x - (YCoCgRColor.z * static_cast(0.5)); + result.g = YCoCgRColor.z + tmp; + result.b = tmp - (YCoCgRColor.y * static_cast(0.5)); + result.r = result.b + YCoCgRColor.y; + return result; + } + }; + + template + class compute_YCoCgR { + public: + static GLM_FUNC_QUALIFIER vec<3, T, Q> rgb2YCoCgR + ( + vec<3, T, Q> const& rgbColor + ) + { + vec<3, T, Q> result; + result.y/*Co*/ = rgbColor.r - rgbColor.b; + T tmp = rgbColor.b + (result.y >> 1); + result.z/*Cg*/ = rgbColor.g - tmp; + result.x/*Y */ = tmp + (result.z >> 1); + return result; + } + + static GLM_FUNC_QUALIFIER vec<3, T, Q> YCoCgR2rgb + ( + vec<3, T, Q> const& YCoCgRColor + ) + { + vec<3, T, Q> result; + T tmp = YCoCgRColor.x - (YCoCgRColor.z >> 1); + result.g = YCoCgRColor.z + tmp; + result.b = tmp - (YCoCgRColor.y >> 1); + result.r = result.b + YCoCgRColor.y; + return result; + } + }; + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> rgb2YCoCgR + ( + vec<3, T, Q> const& rgbColor + ) + { + return compute_YCoCgR::is_integer>::rgb2YCoCgR(rgbColor); + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> YCoCgR2rgb + ( + vec<3, T, Q> const& YCoCgRColor + ) + { + return compute_YCoCgR::is_integer>::YCoCgR2rgb(YCoCgRColor); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/common.hpp b/thirdparty/glm/glm/gtx/common.hpp new file mode 100644 index 000000000000..254ada2d7695 --- /dev/null +++ b/thirdparty/glm/glm/gtx/common.hpp @@ -0,0 +1,76 @@ +/// @ref gtx_common +/// @file glm/gtx/common.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_common GLM_GTX_common +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// @brief Provide functions to increase the compatibility with Cg and HLSL languages + +#pragma once + +// Dependencies: +#include "../vec2.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" +#include "../gtc/vec1.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_common is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_common extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_common + /// @{ + + /// Returns true if x is a denormalized number + /// Numbers whose absolute value is too small to be represented in the normal format are represented in an alternate, denormalized format. + /// This format is less precise but can represent values closer to zero. + /// + /// @tparam genType Floating-point scalar or vector types. + /// + /// @see GLSL isnan man page + /// @see GLSL 4.20.8 specification, section 8.3 Common Functions + template + GLM_FUNC_DECL typename genType::bool_type isdenormal(genType const& x); + + /// Similar to 'mod' but with a different rounding and integer support. + /// Returns 'x - y * trunc(x/y)' instead of 'x - y * floor(x/y)' + /// + /// @see GLSL mod vs HLSL fmod + /// @see GLSL mod man page + template + GLM_FUNC_DECL vec fmod(vec const& v); + + /// Returns whether vector components values are within an interval. A open interval excludes its endpoints, and is denoted with square brackets. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see ext_vector_relational + template + GLM_FUNC_DECL vec openBounded(vec const& Value, vec const& Min, vec const& Max); + + /// Returns whether vector components values are within an interval. A closed interval includes its endpoints, and is denoted with square brackets. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or integer scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see ext_vector_relational + template + GLM_FUNC_DECL vec closeBounded(vec const& Value, vec const& Min, vec const& Max); + + /// @} +}//namespace glm + +#include "common.inl" diff --git a/thirdparty/glm/glm/gtx/common.inl b/thirdparty/glm/glm/gtx/common.inl new file mode 100644 index 000000000000..4575b20752f8 --- /dev/null +++ b/thirdparty/glm/glm/gtx/common.inl @@ -0,0 +1,125 @@ +/// @ref gtx_common + +#include +#include "../gtc/epsilon.hpp" +#include "../gtc/constants.hpp" + +namespace glm{ +namespace detail +{ + template + struct compute_fmod + { + GLM_FUNC_QUALIFIER static vec call(vec const& a, vec const& b) + { + return detail::functor2::call(std::fmod, a, b); + } + }; + + template + struct compute_fmod + { + GLM_FUNC_QUALIFIER static vec call(vec const& a, vec const& b) + { + return a % b; + } + }; +}//namespace detail + + template + GLM_FUNC_QUALIFIER bool isdenormal(T const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'isdenormal' only accept floating-point inputs"); + +# if GLM_HAS_CXX11_STL + return std::fpclassify(x) == FP_SUBNORMAL; +# else + return epsilonNotEqual(x, static_cast(0), epsilon()) && std::fabs(x) < std::numeric_limits::min(); +# endif + } + + template + GLM_FUNC_QUALIFIER typename vec<1, T, Q>::bool_type isdenormal + ( + vec<1, T, Q> const& x + ) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'isdenormal' only accept floating-point inputs"); + + return typename vec<1, T, Q>::bool_type( + isdenormal(x.x)); + } + + template + GLM_FUNC_QUALIFIER typename vec<2, T, Q>::bool_type isdenormal + ( + vec<2, T, Q> const& x + ) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'isdenormal' only accept floating-point inputs"); + + return typename vec<2, T, Q>::bool_type( + isdenormal(x.x), + isdenormal(x.y)); + } + + template + GLM_FUNC_QUALIFIER typename vec<3, T, Q>::bool_type isdenormal + ( + vec<3, T, Q> const& x + ) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'isdenormal' only accept floating-point inputs"); + + return typename vec<3, T, Q>::bool_type( + isdenormal(x.x), + isdenormal(x.y), + isdenormal(x.z)); + } + + template + GLM_FUNC_QUALIFIER typename vec<4, T, Q>::bool_type isdenormal + ( + vec<4, T, Q> const& x + ) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'isdenormal' only accept floating-point inputs"); + + return typename vec<4, T, Q>::bool_type( + isdenormal(x.x), + isdenormal(x.y), + isdenormal(x.z), + isdenormal(x.w)); + } + + // fmod + template + GLM_FUNC_QUALIFIER genType fmod(genType x, genType y) + { + return fmod(vec<1, genType>(x), y).x; + } + + template + GLM_FUNC_QUALIFIER vec fmod(vec const& x, T y) + { + return detail::compute_fmod::is_iec559>::call(x, vec(y)); + } + + template + GLM_FUNC_QUALIFIER vec fmod(vec const& x, vec const& y) + { + return detail::compute_fmod::is_iec559>::call(x, y); + } + + template + GLM_FUNC_QUALIFIER vec openBounded(vec const& Value, vec const& Min, vec const& Max) + { + return greaterThan(Value, Min) && lessThan(Value, Max); + } + + template + GLM_FUNC_QUALIFIER vec closeBounded(vec const& Value, vec const& Min, vec const& Max) + { + return greaterThanEqual(Value, Min) && lessThanEqual(Value, Max); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/compatibility.hpp b/thirdparty/glm/glm/gtx/compatibility.hpp new file mode 100644 index 000000000000..0af75583b96a --- /dev/null +++ b/thirdparty/glm/glm/gtx/compatibility.hpp @@ -0,0 +1,133 @@ +/// @ref gtx_compatibility +/// @file glm/gtx/compatibility.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_compatibility GLM_GTX_compatibility +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Provide functions to increase the compatibility with Cg and HLSL languages + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../gtc/quaternion.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_compatibility is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_compatibility extension included") +# endif +#endif + +#if GLM_COMPILER & GLM_COMPILER_VC +# include +#elif GLM_COMPILER & GLM_COMPILER_GCC +# include +# if(GLM_PLATFORM & GLM_PLATFORM_ANDROID) +# undef isfinite +# endif +#endif//GLM_COMPILER + +namespace glm +{ + /// @addtogroup gtx_compatibility + /// @{ + + template GLM_FUNC_QUALIFIER T lerp(T x, T y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) + template GLM_FUNC_QUALIFIER vec<2, T, Q> lerp(const vec<2, T, Q>& x, const vec<2, T, Q>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) + + template GLM_FUNC_QUALIFIER vec<3, T, Q> lerp(const vec<3, T, Q>& x, const vec<3, T, Q>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) + template GLM_FUNC_QUALIFIER vec<4, T, Q> lerp(const vec<4, T, Q>& x, const vec<4, T, Q>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) + template GLM_FUNC_QUALIFIER vec<2, T, Q> lerp(const vec<2, T, Q>& x, const vec<2, T, Q>& y, const vec<2, T, Q>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) + template GLM_FUNC_QUALIFIER vec<3, T, Q> lerp(const vec<3, T, Q>& x, const vec<3, T, Q>& y, const vec<3, T, Q>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) + template GLM_FUNC_QUALIFIER vec<4, T, Q> lerp(const vec<4, T, Q>& x, const vec<4, T, Q>& y, const vec<4, T, Q>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility) + + template GLM_FUNC_QUALIFIER T saturate(T x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) + template GLM_FUNC_QUALIFIER vec<2, T, Q> saturate(const vec<2, T, Q>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) + template GLM_FUNC_QUALIFIER vec<3, T, Q> saturate(const vec<3, T, Q>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) + template GLM_FUNC_QUALIFIER vec<4, T, Q> saturate(const vec<4, T, Q>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility) + + template GLM_FUNC_QUALIFIER T atan2(T y, T x){return atan(y, x);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) + template GLM_FUNC_QUALIFIER vec<2, T, Q> atan2(const vec<2, T, Q>& y, const vec<2, T, Q>& x){return atan(y, x);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) + template GLM_FUNC_QUALIFIER vec<3, T, Q> atan2(const vec<3, T, Q>& y, const vec<3, T, Q>& x){return atan(y, x);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) + template GLM_FUNC_QUALIFIER vec<4, T, Q> atan2(const vec<4, T, Q>& y, const vec<4, T, Q>& x){return atan(y, x);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility) + + template GLM_FUNC_DECL bool isfinite(genType const& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) + template GLM_FUNC_DECL vec<1, bool, Q> isfinite(const vec<1, T, Q>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) + template GLM_FUNC_DECL vec<2, bool, Q> isfinite(const vec<2, T, Q>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) + template GLM_FUNC_DECL vec<3, bool, Q> isfinite(const vec<3, T, Q>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) + template GLM_FUNC_DECL vec<4, bool, Q> isfinite(const vec<4, T, Q>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility) + + typedef bool bool1; //!< \brief boolean type with 1 component. (From GLM_GTX_compatibility extension) + typedef vec<2, bool, highp> bool2; //!< \brief boolean type with 2 components. (From GLM_GTX_compatibility extension) + typedef vec<3, bool, highp> bool3; //!< \brief boolean type with 3 components. (From GLM_GTX_compatibility extension) + typedef vec<4, bool, highp> bool4; //!< \brief boolean type with 4 components. (From GLM_GTX_compatibility extension) + + typedef bool bool1x1; //!< \brief boolean matrix with 1 x 1 component. (From GLM_GTX_compatibility extension) + typedef mat<2, 2, bool, highp> bool2x2; //!< \brief boolean matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) + typedef mat<2, 3, bool, highp> bool2x3; //!< \brief boolean matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) + typedef mat<2, 4, bool, highp> bool2x4; //!< \brief boolean matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) + typedef mat<3, 2, bool, highp> bool3x2; //!< \brief boolean matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) + typedef mat<3, 3, bool, highp> bool3x3; //!< \brief boolean matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) + typedef mat<3, 4, bool, highp> bool3x4; //!< \brief boolean matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) + typedef mat<4, 2, bool, highp> bool4x2; //!< \brief boolean matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) + typedef mat<4, 3, bool, highp> bool4x3; //!< \brief boolean matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) + typedef mat<4, 4, bool, highp> bool4x4; //!< \brief boolean matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) + + typedef int int1; //!< \brief integer vector with 1 component. (From GLM_GTX_compatibility extension) + typedef vec<2, int, highp> int2; //!< \brief integer vector with 2 components. (From GLM_GTX_compatibility extension) + typedef vec<3, int, highp> int3; //!< \brief integer vector with 3 components. (From GLM_GTX_compatibility extension) + typedef vec<4, int, highp> int4; //!< \brief integer vector with 4 components. (From GLM_GTX_compatibility extension) + + typedef int int1x1; //!< \brief integer matrix with 1 component. (From GLM_GTX_compatibility extension) + typedef mat<2, 2, int, highp> int2x2; //!< \brief integer matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) + typedef mat<2, 3, int, highp> int2x3; //!< \brief integer matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) + typedef mat<2, 4, int, highp> int2x4; //!< \brief integer matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) + typedef mat<3, 2, int, highp> int3x2; //!< \brief integer matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) + typedef mat<3, 3, int, highp> int3x3; //!< \brief integer matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) + typedef mat<3, 4, int, highp> int3x4; //!< \brief integer matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) + typedef mat<4, 2, int, highp> int4x2; //!< \brief integer matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) + typedef mat<4, 3, int, highp> int4x3; //!< \brief integer matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) + typedef mat<4, 4, int, highp> int4x4; //!< \brief integer matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) + + typedef float float1; //!< \brief single-qualifier floating-point vector with 1 component. (From GLM_GTX_compatibility extension) + typedef vec<2, float, highp> float2; //!< \brief single-qualifier floating-point vector with 2 components. (From GLM_GTX_compatibility extension) + typedef vec<3, float, highp> float3; //!< \brief single-qualifier floating-point vector with 3 components. (From GLM_GTX_compatibility extension) + typedef vec<4, float, highp> float4; //!< \brief single-qualifier floating-point vector with 4 components. (From GLM_GTX_compatibility extension) + + typedef float float1x1; //!< \brief single-qualifier floating-point matrix with 1 component. (From GLM_GTX_compatibility extension) + typedef mat<2, 2, float, highp> float2x2; //!< \brief single-qualifier floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) + typedef mat<2, 3, float, highp> float2x3; //!< \brief single-qualifier floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) + typedef mat<2, 4, float, highp> float2x4; //!< \brief single-qualifier floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) + typedef mat<3, 2, float, highp> float3x2; //!< \brief single-qualifier floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) + typedef mat<3, 3, float, highp> float3x3; //!< \brief single-qualifier floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) + typedef mat<3, 4, float, highp> float3x4; //!< \brief single-qualifier floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) + typedef mat<4, 2, float, highp> float4x2; //!< \brief single-qualifier floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) + typedef mat<4, 3, float, highp> float4x3; //!< \brief single-qualifier floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) + typedef mat<4, 4, float, highp> float4x4; //!< \brief single-qualifier floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) + + typedef double double1; //!< \brief double-qualifier floating-point vector with 1 component. (From GLM_GTX_compatibility extension) + typedef vec<2, double, highp> double2; //!< \brief double-qualifier floating-point vector with 2 components. (From GLM_GTX_compatibility extension) + typedef vec<3, double, highp> double3; //!< \brief double-qualifier floating-point vector with 3 components. (From GLM_GTX_compatibility extension) + typedef vec<4, double, highp> double4; //!< \brief double-qualifier floating-point vector with 4 components. (From GLM_GTX_compatibility extension) + + typedef double double1x1; //!< \brief double-qualifier floating-point matrix with 1 component. (From GLM_GTX_compatibility extension) + typedef mat<2, 2, double, highp> double2x2; //!< \brief double-qualifier floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension) + typedef mat<2, 3, double, highp> double2x3; //!< \brief double-qualifier floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension) + typedef mat<2, 4, double, highp> double2x4; //!< \brief double-qualifier floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension) + typedef mat<3, 2, double, highp> double3x2; //!< \brief double-qualifier floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension) + typedef mat<3, 3, double, highp> double3x3; //!< \brief double-qualifier floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension) + typedef mat<3, 4, double, highp> double3x4; //!< \brief double-qualifier floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension) + typedef mat<4, 2, double, highp> double4x2; //!< \brief double-qualifier floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension) + typedef mat<4, 3, double, highp> double4x3; //!< \brief double-qualifier floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension) + typedef mat<4, 4, double, highp> double4x4; //!< \brief double-qualifier floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension) + + /// @} +}//namespace glm + +#include "compatibility.inl" diff --git a/thirdparty/glm/glm/gtx/compatibility.inl b/thirdparty/glm/glm/gtx/compatibility.inl new file mode 100644 index 000000000000..1d49496b6c6e --- /dev/null +++ b/thirdparty/glm/glm/gtx/compatibility.inl @@ -0,0 +1,62 @@ +#include + +namespace glm +{ + // isfinite + template + GLM_FUNC_QUALIFIER bool isfinite( + genType const& x) + { +# if GLM_HAS_CXX11_STL + return std::isfinite(x) != 0; +# elif GLM_COMPILER & GLM_COMPILER_VC + return _finite(x) != 0; +# elif GLM_COMPILER & GLM_COMPILER_GCC && GLM_PLATFORM & GLM_PLATFORM_ANDROID + return _isfinite(x) != 0; +# else + if (std::numeric_limits::is_integer || std::denorm_absent == std::numeric_limits::has_denorm) + return std::numeric_limits::min() <= x && std::numeric_limits::max() >= x; + else + return -std::numeric_limits::max() <= x && std::numeric_limits::max() >= x; +# endif + } + + template + GLM_FUNC_QUALIFIER vec<1, bool, Q> isfinite( + vec<1, T, Q> const& x) + { + return vec<1, bool, Q>( + isfinite(x.x)); + } + + template + GLM_FUNC_QUALIFIER vec<2, bool, Q> isfinite( + vec<2, T, Q> const& x) + { + return vec<2, bool, Q>( + isfinite(x.x), + isfinite(x.y)); + } + + template + GLM_FUNC_QUALIFIER vec<3, bool, Q> isfinite( + vec<3, T, Q> const& x) + { + return vec<3, bool, Q>( + isfinite(x.x), + isfinite(x.y), + isfinite(x.z)); + } + + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> isfinite( + vec<4, T, Q> const& x) + { + return vec<4, bool, Q>( + isfinite(x.x), + isfinite(x.y), + isfinite(x.z), + isfinite(x.w)); + } + +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/component_wise.hpp b/thirdparty/glm/glm/gtx/component_wise.hpp new file mode 100644 index 000000000000..34a2b0a37517 --- /dev/null +++ b/thirdparty/glm/glm/gtx/component_wise.hpp @@ -0,0 +1,69 @@ +/// @ref gtx_component_wise +/// @file glm/gtx/component_wise.hpp +/// @date 2007-05-21 / 2011-06-07 +/// @author Christophe Riccio +/// +/// @see core (dependence) +/// +/// @defgroup gtx_component_wise GLM_GTX_component_wise +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Operations between components of a type + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/qualifier.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_component_wise is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_component_wise extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_component_wise + /// @{ + + /// Convert an integer vector to a normalized float vector. + /// If the parameter value type is already a floating qualifier type, the value is passed through. + /// @see gtx_component_wise + template + GLM_FUNC_DECL vec compNormalize(vec const& v); + + /// Convert a normalized float vector to an integer vector. + /// If the parameter value type is already a floating qualifier type, the value is passed through. + /// @see gtx_component_wise + template + GLM_FUNC_DECL vec compScale(vec const& v); + + /// Add all vector components together. + /// @see gtx_component_wise + template + GLM_FUNC_DECL typename genType::value_type compAdd(genType const& v); + + /// Multiply all vector components together. + /// @see gtx_component_wise + template + GLM_FUNC_DECL typename genType::value_type compMul(genType const& v); + + /// Find the minimum value between single vector components. + /// @see gtx_component_wise + template + GLM_FUNC_DECL typename genType::value_type compMin(genType const& v); + + /// Find the maximum value between single vector components. + /// @see gtx_component_wise + template + GLM_FUNC_DECL typename genType::value_type compMax(genType const& v); + + /// @} +}//namespace glm + +#include "component_wise.inl" diff --git a/thirdparty/glm/glm/gtx/component_wise.inl b/thirdparty/glm/glm/gtx/component_wise.inl new file mode 100644 index 000000000000..cbbc7d41ec00 --- /dev/null +++ b/thirdparty/glm/glm/gtx/component_wise.inl @@ -0,0 +1,127 @@ +/// @ref gtx_component_wise + +#include + +namespace glm{ +namespace detail +{ + template + struct compute_compNormalize + {}; + + template + struct compute_compNormalize + { + GLM_FUNC_QUALIFIER static vec call(vec const& v) + { + floatType const Min = static_cast(std::numeric_limits::min()); + floatType const Max = static_cast(std::numeric_limits::max()); + return (vec(v) - Min) / (Max - Min) * static_cast(2) - static_cast(1); + } + }; + + template + struct compute_compNormalize + { + GLM_FUNC_QUALIFIER static vec call(vec const& v) + { + return vec(v) / static_cast(std::numeric_limits::max()); + } + }; + + template + struct compute_compNormalize + { + GLM_FUNC_QUALIFIER static vec call(vec const& v) + { + return v; + } + }; + + template + struct compute_compScale + {}; + + template + struct compute_compScale + { + GLM_FUNC_QUALIFIER static vec call(vec const& v) + { + floatType const Max = static_cast(std::numeric_limits::max()) + static_cast(0.5); + vec const Scaled(v * Max); + vec const Result(Scaled - static_cast(0.5)); + return Result; + } + }; + + template + struct compute_compScale + { + GLM_FUNC_QUALIFIER static vec call(vec const& v) + { + return vec(vec(v) * static_cast(std::numeric_limits::max())); + } + }; + + template + struct compute_compScale + { + GLM_FUNC_QUALIFIER static vec call(vec const& v) + { + return v; + } + }; +}//namespace detail + + template + GLM_FUNC_QUALIFIER vec compNormalize(vec const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'compNormalize' accepts only floating-point types for 'floatType' template parameter"); + + return detail::compute_compNormalize::is_integer, std::numeric_limits::is_signed>::call(v); + } + + template + GLM_FUNC_QUALIFIER vec compScale(vec const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'compScale' accepts only floating-point types for 'floatType' template parameter"); + + return detail::compute_compScale::is_integer, std::numeric_limits::is_signed>::call(v); + } + + template + GLM_FUNC_QUALIFIER T compAdd(vec const& v) + { + T Result(0); + for(length_t i = 0, n = v.length(); i < n; ++i) + Result += v[i]; + return Result; + } + + template + GLM_FUNC_QUALIFIER T compMul(vec const& v) + { + T Result(1); + for(length_t i = 0, n = v.length(); i < n; ++i) + Result *= v[i]; + return Result; + } + + template + GLM_FUNC_QUALIFIER T compMin(vec const& v) + { + T Result(v[0]); + for(length_t i = 1, n = v.length(); i < n; ++i) + Result = min(Result, v[i]); + return Result; + } + + template + GLM_FUNC_QUALIFIER T compMax(vec const& v) + { + T Result(v[0]); + for(length_t i = 1, n = v.length(); i < n; ++i) + Result = max(Result, v[i]); + return Result; + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/dual_quaternion.hpp b/thirdparty/glm/glm/gtx/dual_quaternion.hpp new file mode 100644 index 000000000000..a6f57613db1b --- /dev/null +++ b/thirdparty/glm/glm/gtx/dual_quaternion.hpp @@ -0,0 +1,274 @@ +/// @ref gtx_dual_quaternion +/// @file glm/gtx/dual_quaternion.hpp +/// @author Maksim Vorobiev (msomeone@gmail.com) +/// +/// @see core (dependence) +/// @see gtc_constants (dependence) +/// @see gtc_quaternion (dependence) +/// +/// @defgroup gtx_dual_quaternion GLM_GTX_dual_quaternion +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Defines a templated dual-quaternion type and several dual-quaternion operations. + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../gtc/constants.hpp" +#include "../gtc/quaternion.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_dual_quaternion is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_dual_quaternion extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_dual_quaternion + /// @{ + + template + struct tdualquat + { + // -- Implementation detail -- + + typedef T value_type; + typedef qua part_type; + + // -- Data -- + + qua real, dual; + + // -- Component accesses -- + + typedef length_t length_type; + /// Return the count of components of a dual quaternion + GLM_FUNC_DECL static GLM_CONSTEXPR length_type length(){return 2;} + + GLM_FUNC_DECL part_type & operator[](length_type i); + GLM_FUNC_DECL part_type const& operator[](length_type i) const; + + // -- Implicit basic constructors -- + + GLM_DEFAULTED_FUNC_DECL GLM_CONSTEXPR tdualquat() GLM_DEFAULT; + GLM_DEFAULTED_FUNC_DECL GLM_CONSTEXPR tdualquat(tdualquat const& d) GLM_DEFAULT; + template + GLM_FUNC_DECL GLM_CONSTEXPR tdualquat(tdualquat const& d); + + // -- Explicit basic constructors -- + + GLM_FUNC_DECL GLM_CONSTEXPR tdualquat(qua const& real); + GLM_FUNC_DECL GLM_CONSTEXPR tdualquat(qua const& orientation, vec<3, T, Q> const& translation); + GLM_FUNC_DECL GLM_CONSTEXPR tdualquat(qua const& real, qua const& dual); + + // -- Conversion constructors -- + + template + GLM_FUNC_DECL GLM_CONSTEXPR GLM_EXPLICIT tdualquat(tdualquat const& q); + + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR tdualquat(mat<2, 4, T, Q> const& holder_mat); + GLM_FUNC_DECL GLM_EXPLICIT GLM_CONSTEXPR tdualquat(mat<3, 4, T, Q> const& aug_mat); + + // -- Unary arithmetic operators -- + + GLM_DEFAULTED_FUNC_DECL tdualquat & operator=(tdualquat const& m) GLM_DEFAULT; + + template + GLM_FUNC_DECL tdualquat & operator=(tdualquat const& m); + template + GLM_FUNC_DECL tdualquat & operator*=(U s); + template + GLM_FUNC_DECL tdualquat & operator/=(U s); + }; + + // -- Unary bit operators -- + + template + GLM_FUNC_DECL tdualquat operator+(tdualquat const& q); + + template + GLM_FUNC_DECL tdualquat operator-(tdualquat const& q); + + // -- Binary operators -- + + template + GLM_FUNC_DECL tdualquat operator+(tdualquat const& q, tdualquat const& p); + + template + GLM_FUNC_DECL tdualquat operator*(tdualquat const& q, tdualquat const& p); + + template + GLM_FUNC_DECL vec<3, T, Q> operator*(tdualquat const& q, vec<3, T, Q> const& v); + + template + GLM_FUNC_DECL vec<3, T, Q> operator*(vec<3, T, Q> const& v, tdualquat const& q); + + template + GLM_FUNC_DECL vec<4, T, Q> operator*(tdualquat const& q, vec<4, T, Q> const& v); + + template + GLM_FUNC_DECL vec<4, T, Q> operator*(vec<4, T, Q> const& v, tdualquat const& q); + + template + GLM_FUNC_DECL tdualquat operator*(tdualquat const& q, T const& s); + + template + GLM_FUNC_DECL tdualquat operator*(T const& s, tdualquat const& q); + + template + GLM_FUNC_DECL tdualquat operator/(tdualquat const& q, T const& s); + + // -- Boolean operators -- + + template + GLM_FUNC_DECL bool operator==(tdualquat const& q1, tdualquat const& q2); + + template + GLM_FUNC_DECL bool operator!=(tdualquat const& q1, tdualquat const& q2); + + /// Creates an identity dual quaternion. + /// + /// @see gtx_dual_quaternion + template + GLM_FUNC_DECL tdualquat dual_quat_identity(); + + /// Returns the normalized quaternion. + /// + /// @see gtx_dual_quaternion + template + GLM_FUNC_DECL tdualquat normalize(tdualquat const& q); + + /// Returns the linear interpolation of two dual quaternion. + /// + /// @see gtc_dual_quaternion + template + GLM_FUNC_DECL tdualquat lerp(tdualquat const& x, tdualquat const& y, T const& a); + + /// Returns the q inverse. + /// + /// @see gtx_dual_quaternion + template + GLM_FUNC_DECL tdualquat inverse(tdualquat const& q); + + /// Converts a quaternion to a 2 * 4 matrix. + /// + /// @see gtx_dual_quaternion + template + GLM_FUNC_DECL mat<2, 4, T, Q> mat2x4_cast(tdualquat const& x); + + /// Converts a quaternion to a 3 * 4 matrix. + /// + /// @see gtx_dual_quaternion + template + GLM_FUNC_DECL mat<3, 4, T, Q> mat3x4_cast(tdualquat const& x); + + /// Converts a 2 * 4 matrix (matrix which holds real and dual parts) to a quaternion. + /// + /// @see gtx_dual_quaternion + template + GLM_FUNC_DECL tdualquat dualquat_cast(mat<2, 4, T, Q> const& x); + + /// Converts a 3 * 4 matrix (augmented matrix rotation + translation) to a quaternion. + /// + /// @see gtx_dual_quaternion + template + GLM_FUNC_DECL tdualquat dualquat_cast(mat<3, 4, T, Q> const& x); + + + /// Dual-quaternion of low single-qualifier floating-point numbers. + /// + /// @see gtx_dual_quaternion + typedef tdualquat lowp_dualquat; + + /// Dual-quaternion of medium single-qualifier floating-point numbers. + /// + /// @see gtx_dual_quaternion + typedef tdualquat mediump_dualquat; + + /// Dual-quaternion of high single-qualifier floating-point numbers. + /// + /// @see gtx_dual_quaternion + typedef tdualquat highp_dualquat; + + + /// Dual-quaternion of low single-qualifier floating-point numbers. + /// + /// @see gtx_dual_quaternion + typedef tdualquat lowp_fdualquat; + + /// Dual-quaternion of medium single-qualifier floating-point numbers. + /// + /// @see gtx_dual_quaternion + typedef tdualquat mediump_fdualquat; + + /// Dual-quaternion of high single-qualifier floating-point numbers. + /// + /// @see gtx_dual_quaternion + typedef tdualquat highp_fdualquat; + + + /// Dual-quaternion of low double-qualifier floating-point numbers. + /// + /// @see gtx_dual_quaternion + typedef tdualquat lowp_ddualquat; + + /// Dual-quaternion of medium double-qualifier floating-point numbers. + /// + /// @see gtx_dual_quaternion + typedef tdualquat mediump_ddualquat; + + /// Dual-quaternion of high double-qualifier floating-point numbers. + /// + /// @see gtx_dual_quaternion + typedef tdualquat highp_ddualquat; + + +#if(!defined(GLM_PRECISION_HIGHP_FLOAT) && !defined(GLM_PRECISION_MEDIUMP_FLOAT) && !defined(GLM_PRECISION_LOWP_FLOAT)) + /// Dual-quaternion of floating-point numbers. + /// + /// @see gtx_dual_quaternion + typedef highp_fdualquat dualquat; + + /// Dual-quaternion of single-qualifier floating-point numbers. + /// + /// @see gtx_dual_quaternion + typedef highp_fdualquat fdualquat; +#elif(defined(GLM_PRECISION_HIGHP_FLOAT) && !defined(GLM_PRECISION_MEDIUMP_FLOAT) && !defined(GLM_PRECISION_LOWP_FLOAT)) + typedef highp_fdualquat dualquat; + typedef highp_fdualquat fdualquat; +#elif(!defined(GLM_PRECISION_HIGHP_FLOAT) && defined(GLM_PRECISION_MEDIUMP_FLOAT) && !defined(GLM_PRECISION_LOWP_FLOAT)) + typedef mediump_fdualquat dualquat; + typedef mediump_fdualquat fdualquat; +#elif(!defined(GLM_PRECISION_HIGHP_FLOAT) && !defined(GLM_PRECISION_MEDIUMP_FLOAT) && defined(GLM_PRECISION_LOWP_FLOAT)) + typedef lowp_fdualquat dualquat; + typedef lowp_fdualquat fdualquat; +#else +# error "GLM error: multiple default precision requested for single-precision floating-point types" +#endif + + +#if(!defined(GLM_PRECISION_HIGHP_DOUBLE) && !defined(GLM_PRECISION_MEDIUMP_DOUBLE) && !defined(GLM_PRECISION_LOWP_DOUBLE)) + /// Dual-quaternion of default double-qualifier floating-point numbers. + /// + /// @see gtx_dual_quaternion + typedef highp_ddualquat ddualquat; +#elif(defined(GLM_PRECISION_HIGHP_DOUBLE) && !defined(GLM_PRECISION_MEDIUMP_DOUBLE) && !defined(GLM_PRECISION_LOWP_DOUBLE)) + typedef highp_ddualquat ddualquat; +#elif(!defined(GLM_PRECISION_HIGHP_DOUBLE) && defined(GLM_PRECISION_MEDIUMP_DOUBLE) && !defined(GLM_PRECISION_LOWP_DOUBLE)) + typedef mediump_ddualquat ddualquat; +#elif(!defined(GLM_PRECISION_HIGHP_DOUBLE) && !defined(GLM_PRECISION_MEDIUMP_DOUBLE) && defined(GLM_PRECISION_LOWP_DOUBLE)) + typedef lowp_ddualquat ddualquat; +#else +# error "GLM error: Multiple default precision requested for double-precision floating-point types" +#endif + + /// @} +} //namespace glm + +#include "dual_quaternion.inl" diff --git a/thirdparty/glm/glm/gtx/dual_quaternion.inl b/thirdparty/glm/glm/gtx/dual_quaternion.inl new file mode 100644 index 000000000000..3a04160e3a16 --- /dev/null +++ b/thirdparty/glm/glm/gtx/dual_quaternion.inl @@ -0,0 +1,352 @@ +/// @ref gtx_dual_quaternion + +#include "../geometric.hpp" +#include + +namespace glm +{ + // -- Component accesses -- + + template + GLM_FUNC_QUALIFIER typename tdualquat::part_type & tdualquat::operator[](typename tdualquat::length_type i) + { + assert(i >= 0 && i < this->length()); + return (&real)[i]; + } + + template + GLM_FUNC_QUALIFIER typename tdualquat::part_type const& tdualquat::operator[](typename tdualquat::length_type i) const + { + assert(i >= 0 && i < this->length()); + return (&real)[i]; + } + + // -- Implicit basic constructors -- + +# if GLM_CONFIG_DEFAULTED_FUNCTIONS == GLM_DISABLE + template + GLM_DEFAULTED_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat::tdualquat() +# if GLM_CONFIG_DEFAULTED_FUNCTIONS != GLM_DISABLE + : real(qua()) + , dual(qua::wxyz(0, 0, 0, 0)) +# endif + {} + + template + GLM_DEFAULTED_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat::tdualquat(tdualquat const& d) + : real(d.real) + , dual(d.dual) + {} +# endif + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat::tdualquat(tdualquat const& d) + : real(d.real) + , dual(d.dual) + {} + + // -- Explicit basic constructors -- + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat::tdualquat(qua const& r) + : real(r), dual(qua::wxyz(0, 0, 0, 0)) + {} + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat::tdualquat(qua const& q, vec<3, T, Q> const& p) + : real(q), dual(qua::wxyz( + T(-0.5) * ( p.x*q.x + p.y*q.y + p.z*q.z), + T(+0.5) * ( p.x*q.w + p.y*q.z - p.z*q.y), + T(+0.5) * (-p.x*q.z + p.y*q.w + p.z*q.x), + T(+0.5) * ( p.x*q.y - p.y*q.x + p.z*q.w))) + {} + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat::tdualquat(qua const& r, qua const& d) + : real(r), dual(d) + {} + + // -- Conversion constructors -- + + template + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat::tdualquat(tdualquat const& q) + : real(q.real) + , dual(q.dual) + {} + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat::tdualquat(mat<2, 4, T, Q> const& m) + { + *this = dualquat_cast(m); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat::tdualquat(mat<3, 4, T, Q> const& m) + { + *this = dualquat_cast(m); + } + + // -- Unary arithmetic operators -- + +# if GLM_CONFIG_DEFAULTED_FUNCTIONS == GLM_DISABLE + template + GLM_DEFAULTED_FUNC_QUALIFIER tdualquat & tdualquat::operator=(tdualquat const& q) + { + this->real = q.real; + this->dual = q.dual; + return *this; + } +# endif + + template + template + GLM_FUNC_QUALIFIER tdualquat & tdualquat::operator=(tdualquat const& q) + { + this->real = q.real; + this->dual = q.dual; + return *this; + } + + template + template + GLM_FUNC_QUALIFIER tdualquat & tdualquat::operator*=(U s) + { + this->real *= static_cast(s); + this->dual *= static_cast(s); + return *this; + } + + template + template + GLM_FUNC_QUALIFIER tdualquat & tdualquat::operator/=(U s) + { + this->real /= static_cast(s); + this->dual /= static_cast(s); + return *this; + } + + // -- Unary bit operators -- + + template + GLM_FUNC_QUALIFIER tdualquat operator+(tdualquat const& q) + { + return q; + } + + template + GLM_FUNC_QUALIFIER tdualquat operator-(tdualquat const& q) + { + return tdualquat(-q.real, -q.dual); + } + + // -- Binary operators -- + + template + GLM_FUNC_QUALIFIER tdualquat operator+(tdualquat const& q, tdualquat const& p) + { + return tdualquat(q.real + p.real,q.dual + p.dual); + } + + template + GLM_FUNC_QUALIFIER tdualquat operator*(tdualquat const& p, tdualquat const& o) + { + return tdualquat(p.real * o.real,p.real * o.dual + p.dual * o.real); + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> operator*(tdualquat const& q, vec<3, T, Q> const& v) + { + vec<3, T, Q> const real_v3(q.real.x,q.real.y,q.real.z); + vec<3, T, Q> const dual_v3(q.dual.x,q.dual.y,q.dual.z); + return (cross(real_v3, cross(real_v3,v) + v * q.real.w + dual_v3) + dual_v3 * q.real.w - real_v3 * q.dual.w) * T(2) + v; + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> operator*(vec<3, T, Q> const& v, tdualquat const& q) + { + return glm::inverse(q) * v; + } + + template + GLM_FUNC_QUALIFIER vec<4, T, Q> operator*(tdualquat const& q, vec<4, T, Q> const& v) + { + return vec<4, T, Q>(q * vec<3, T, Q>(v), v.w); + } + + template + GLM_FUNC_QUALIFIER vec<4, T, Q> operator*(vec<4, T, Q> const& v, tdualquat const& q) + { + return glm::inverse(q) * v; + } + + template + GLM_FUNC_QUALIFIER tdualquat operator*(tdualquat const& q, T const& s) + { + return tdualquat(q.real * s, q.dual * s); + } + + template + GLM_FUNC_QUALIFIER tdualquat operator*(T const& s, tdualquat const& q) + { + return q * s; + } + + template + GLM_FUNC_QUALIFIER tdualquat operator/(tdualquat const& q, T const& s) + { + return tdualquat(q.real / s, q.dual / s); + } + + // -- Boolean operators -- + + template + GLM_FUNC_QUALIFIER bool operator==(tdualquat const& q1, tdualquat const& q2) + { + return (q1.real == q2.real) && (q1.dual == q2.dual); + } + + template + GLM_FUNC_QUALIFIER bool operator!=(tdualquat const& q1, tdualquat const& q2) + { + return (q1.real != q2.real) || (q1.dual != q2.dual); + } + + // -- Operations -- + + template + GLM_FUNC_QUALIFIER tdualquat dual_quat_identity() + { + return tdualquat( + qua::wxyz(static_cast(1), static_cast(0), static_cast(0), static_cast(0)), + qua::wxyz(static_cast(0), static_cast(0), static_cast(0), static_cast(0))); + } + + template + GLM_FUNC_QUALIFIER tdualquat normalize(tdualquat const& q) + { + return q / length(q.real); + } + + template + GLM_FUNC_QUALIFIER tdualquat lerp(tdualquat const& x, tdualquat const& y, T const& a) + { + // Dual Quaternion Linear blend aka DLB: + // Lerp is only defined in [0, 1] + assert(a >= static_cast(0)); + assert(a <= static_cast(1)); + T const k = dot(x.real,y.real) < static_cast(0) ? -a : a; + T const one(1); + return tdualquat(x * (one - a) + y * k); + } + + template + GLM_FUNC_QUALIFIER tdualquat inverse(tdualquat const& q) + { + const glm::qua real = conjugate(q.real); + const glm::qua dual = conjugate(q.dual); + return tdualquat(real, dual + (real * (-2.0f * dot(real,dual)))); + } + + template + GLM_FUNC_QUALIFIER mat<2, 4, T, Q> mat2x4_cast(tdualquat const& x) + { + return mat<2, 4, T, Q>( x[0].x, x[0].y, x[0].z, x[0].w, x[1].x, x[1].y, x[1].z, x[1].w ); + } + + template + GLM_FUNC_QUALIFIER mat<3, 4, T, Q> mat3x4_cast(tdualquat const& x) + { + qua r = x.real / length2(x.real); + + qua const rr(r.w * x.real.w, r.x * x.real.x, r.y * x.real.y, r.z * x.real.z); + r *= static_cast(2); + + T const xy = r.x * x.real.y; + T const xz = r.x * x.real.z; + T const yz = r.y * x.real.z; + T const wx = r.w * x.real.x; + T const wy = r.w * x.real.y; + T const wz = r.w * x.real.z; + + vec<4, T, Q> const a( + rr.w + rr.x - rr.y - rr.z, + xy - wz, + xz + wy, + -(x.dual.w * r.x - x.dual.x * r.w + x.dual.y * r.z - x.dual.z * r.y)); + + vec<4, T, Q> const b( + xy + wz, + rr.w + rr.y - rr.x - rr.z, + yz - wx, + -(x.dual.w * r.y - x.dual.x * r.z - x.dual.y * r.w + x.dual.z * r.x)); + + vec<4, T, Q> const c( + xz - wy, + yz + wx, + rr.w + rr.z - rr.x - rr.y, + -(x.dual.w * r.z + x.dual.x * r.y - x.dual.y * r.x - x.dual.z * r.w)); + + return mat<3, 4, T, Q>(a, b, c); + } + + template + GLM_FUNC_QUALIFIER tdualquat dualquat_cast(mat<2, 4, T, Q> const& x) + { + return tdualquat( + qua::wxyz( x[0].w, x[0].x, x[0].y, x[0].z ), + qua::wxyz( x[1].w, x[1].x, x[1].y, x[1].z )); + } + + template + GLM_FUNC_QUALIFIER tdualquat dualquat_cast(mat<3, 4, T, Q> const& x) + { + qua real; + + T const trace = x[0].x + x[1].y + x[2].z; + if(trace > static_cast(0)) + { + T const r = sqrt(T(1) + trace); + T const invr = static_cast(0.5) / r; + real.w = static_cast(0.5) * r; + real.x = (x[2].y - x[1].z) * invr; + real.y = (x[0].z - x[2].x) * invr; + real.z = (x[1].x - x[0].y) * invr; + } + else if(x[0].x > x[1].y && x[0].x > x[2].z) + { + T const r = sqrt(T(1) + x[0].x - x[1].y - x[2].z); + T const invr = static_cast(0.5) / r; + real.x = static_cast(0.5)*r; + real.y = (x[1].x + x[0].y) * invr; + real.z = (x[0].z + x[2].x) * invr; + real.w = (x[2].y - x[1].z) * invr; + } + else if(x[1].y > x[2].z) + { + T const r = sqrt(T(1) + x[1].y - x[0].x - x[2].z); + T const invr = static_cast(0.5) / r; + real.x = (x[1].x + x[0].y) * invr; + real.y = static_cast(0.5) * r; + real.z = (x[2].y + x[1].z) * invr; + real.w = (x[0].z - x[2].x) * invr; + } + else + { + T const r = sqrt(T(1) + x[2].z - x[0].x - x[1].y); + T const invr = static_cast(0.5) / r; + real.x = (x[0].z + x[2].x) * invr; + real.y = (x[2].y + x[1].z) * invr; + real.z = static_cast(0.5) * r; + real.w = (x[1].x - x[0].y) * invr; + } + + qua dual; + dual.x = static_cast(0.5) * ( x[0].w * real.w + x[1].w * real.z - x[2].w * real.y); + dual.y = static_cast(0.5) * (-x[0].w * real.z + x[1].w * real.w + x[2].w * real.x); + dual.z = static_cast(0.5) * ( x[0].w * real.y - x[1].w * real.x + x[2].w * real.w); + dual.w = -static_cast(0.5) * ( x[0].w * real.x + x[1].w * real.y + x[2].w * real.z); + return tdualquat(real, dual); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/easing.hpp b/thirdparty/glm/glm/gtx/easing.hpp new file mode 100644 index 000000000000..da89826a90eb --- /dev/null +++ b/thirdparty/glm/glm/gtx/easing.hpp @@ -0,0 +1,219 @@ +/// @ref gtx_easing +/// @file glm/gtx/easing.hpp +/// @author Robert Chisholm +/// +/// @see core (dependence) +/// +/// @defgroup gtx_easing GLM_GTX_easing +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Easing functions for animations and transitions +/// All functions take a parameter x in the range [0.0,1.0] +/// +/// Based on the AHEasing project of Warren Moore (https://github.com/warrenm/AHEasing) + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../gtc/constants.hpp" +#include "../detail/qualifier.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_easing is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_easing extension included") +# endif +#endif + +namespace glm{ + /// @addtogroup gtx_easing + /// @{ + + /// Modelled after the line y = x + /// @see gtx_easing + template + GLM_FUNC_DECL genType linearInterpolation(genType const & a); + + /// Modelled after the parabola y = x^2 + /// @see gtx_easing + template + GLM_FUNC_DECL genType quadraticEaseIn(genType const & a); + + /// Modelled after the parabola y = -x^2 + 2x + /// @see gtx_easing + template + GLM_FUNC_DECL genType quadraticEaseOut(genType const & a); + + /// Modelled after the piecewise quadratic + /// y = (1/2)((2x)^2) ; [0, 0.5) + /// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1] + /// @see gtx_easing + template + GLM_FUNC_DECL genType quadraticEaseInOut(genType const & a); + + /// Modelled after the cubic y = x^3 + template + GLM_FUNC_DECL genType cubicEaseIn(genType const & a); + + /// Modelled after the cubic y = (x - 1)^3 + 1 + /// @see gtx_easing + template + GLM_FUNC_DECL genType cubicEaseOut(genType const & a); + + /// Modelled after the piecewise cubic + /// y = (1/2)((2x)^3) ; [0, 0.5) + /// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1] + /// @see gtx_easing + template + GLM_FUNC_DECL genType cubicEaseInOut(genType const & a); + + /// Modelled after the quartic x^4 + /// @see gtx_easing + template + GLM_FUNC_DECL genType quarticEaseIn(genType const & a); + + /// Modelled after the quartic y = 1 - (x - 1)^4 + /// @see gtx_easing + template + GLM_FUNC_DECL genType quarticEaseOut(genType const & a); + + /// Modelled after the piecewise quartic + /// y = (1/2)((2x)^4) ; [0, 0.5) + /// y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1] + /// @see gtx_easing + template + GLM_FUNC_DECL genType quarticEaseInOut(genType const & a); + + /// Modelled after the quintic y = x^5 + /// @see gtx_easing + template + GLM_FUNC_DECL genType quinticEaseIn(genType const & a); + + /// Modelled after the quintic y = (x - 1)^5 + 1 + /// @see gtx_easing + template + GLM_FUNC_DECL genType quinticEaseOut(genType const & a); + + /// Modelled after the piecewise quintic + /// y = (1/2)((2x)^5) ; [0, 0.5) + /// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1] + /// @see gtx_easing + template + GLM_FUNC_DECL genType quinticEaseInOut(genType const & a); + + /// Modelled after quarter-cycle of sine wave + /// @see gtx_easing + template + GLM_FUNC_DECL genType sineEaseIn(genType const & a); + + /// Modelled after quarter-cycle of sine wave (different phase) + /// @see gtx_easing + template + GLM_FUNC_DECL genType sineEaseOut(genType const & a); + + /// Modelled after half sine wave + /// @see gtx_easing + template + GLM_FUNC_DECL genType sineEaseInOut(genType const & a); + + /// Modelled after shifted quadrant IV of unit circle + /// @see gtx_easing + template + GLM_FUNC_DECL genType circularEaseIn(genType const & a); + + /// Modelled after shifted quadrant II of unit circle + /// @see gtx_easing + template + GLM_FUNC_DECL genType circularEaseOut(genType const & a); + + /// Modelled after the piecewise circular function + /// y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5) + /// y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1] + /// @see gtx_easing + template + GLM_FUNC_DECL genType circularEaseInOut(genType const & a); + + /// Modelled after the exponential function y = 2^(10(x - 1)) + /// @see gtx_easing + template + GLM_FUNC_DECL genType exponentialEaseIn(genType const & a); + + /// Modelled after the exponential function y = -2^(-10x) + 1 + /// @see gtx_easing + template + GLM_FUNC_DECL genType exponentialEaseOut(genType const & a); + + /// Modelled after the piecewise exponential + /// y = (1/2)2^(10(2x - 1)) ; [0,0.5) + /// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1] + /// @see gtx_easing + template + GLM_FUNC_DECL genType exponentialEaseInOut(genType const & a); + + /// Modelled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1)) + /// @see gtx_easing + template + GLM_FUNC_DECL genType elasticEaseIn(genType const & a); + + /// Modelled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1 + /// @see gtx_easing + template + GLM_FUNC_DECL genType elasticEaseOut(genType const & a); + + /// Modelled after the piecewise exponentially-damped sine wave: + /// y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5) + /// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1] + /// @see gtx_easing + template + GLM_FUNC_DECL genType elasticEaseInOut(genType const & a); + + /// @see gtx_easing + template + GLM_FUNC_DECL genType backEaseIn(genType const& a); + + /// @see gtx_easing + template + GLM_FUNC_DECL genType backEaseOut(genType const& a); + + /// @see gtx_easing + template + GLM_FUNC_DECL genType backEaseInOut(genType const& a); + + /// @param a parameter + /// @param o Optional overshoot modifier + /// @see gtx_easing + template + GLM_FUNC_DECL genType backEaseIn(genType const& a, genType const& o); + + /// @param a parameter + /// @param o Optional overshoot modifier + /// @see gtx_easing + template + GLM_FUNC_DECL genType backEaseOut(genType const& a, genType const& o); + + /// @param a parameter + /// @param o Optional overshoot modifier + /// @see gtx_easing + template + GLM_FUNC_DECL genType backEaseInOut(genType const& a, genType const& o); + + /// @see gtx_easing + template + GLM_FUNC_DECL genType bounceEaseIn(genType const& a); + + /// @see gtx_easing + template + GLM_FUNC_DECL genType bounceEaseOut(genType const& a); + + /// @see gtx_easing + template + GLM_FUNC_DECL genType bounceEaseInOut(genType const& a); + + /// @} +}//namespace glm + +#include "easing.inl" diff --git a/thirdparty/glm/glm/gtx/easing.inl b/thirdparty/glm/glm/gtx/easing.inl new file mode 100644 index 000000000000..b599c30664af --- /dev/null +++ b/thirdparty/glm/glm/gtx/easing.inl @@ -0,0 +1,436 @@ +/// @ref gtx_easing + +#include + +namespace glm{ + + template + GLM_FUNC_QUALIFIER genType linearInterpolation(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + return a; + } + + template + GLM_FUNC_QUALIFIER genType quadraticEaseIn(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + return a * a; + } + + template + GLM_FUNC_QUALIFIER genType quadraticEaseOut(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + return -(a * (a - static_cast(2))); + } + + template + GLM_FUNC_QUALIFIER genType quadraticEaseInOut(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + if(a < static_cast(0.5)) + { + return static_cast(2) * a * a; + } + else + { + return (-static_cast(2) * a * a) + (4 * a) - one(); + } + } + + template + GLM_FUNC_QUALIFIER genType cubicEaseIn(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + return a * a * a; + } + + template + GLM_FUNC_QUALIFIER genType cubicEaseOut(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + genType const f = a - one(); + return f * f * f + one(); + } + + template + GLM_FUNC_QUALIFIER genType cubicEaseInOut(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + if (a < static_cast(0.5)) + { + return static_cast(4) * a * a * a; + } + else + { + genType const f = ((static_cast(2) * a) - static_cast(2)); + return static_cast(0.5) * f * f * f + one(); + } + } + + template + GLM_FUNC_QUALIFIER genType quarticEaseIn(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + return a * a * a * a; + } + + template + GLM_FUNC_QUALIFIER genType quarticEaseOut(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + genType const f = (a - one()); + return f * f * f * (one() - a) + one(); + } + + template + GLM_FUNC_QUALIFIER genType quarticEaseInOut(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + if(a < static_cast(0.5)) + { + return static_cast(8) * a * a * a * a; + } + else + { + genType const f = (a - one()); + return -static_cast(8) * f * f * f * f + one(); + } + } + + template + GLM_FUNC_QUALIFIER genType quinticEaseIn(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + return a * a * a * a * a; + } + + template + GLM_FUNC_QUALIFIER genType quinticEaseOut(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + genType const f = (a - one()); + return f * f * f * f * f + one(); + } + + template + GLM_FUNC_QUALIFIER genType quinticEaseInOut(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + if(a < static_cast(0.5)) + { + return static_cast(16) * a * a * a * a * a; + } + else + { + genType const f = ((static_cast(2) * a) - static_cast(2)); + return static_cast(0.5) * f * f * f * f * f + one(); + } + } + + template + GLM_FUNC_QUALIFIER genType sineEaseIn(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + return sin((a - one()) * half_pi()) + one(); + } + + template + GLM_FUNC_QUALIFIER genType sineEaseOut(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + return sin(a * half_pi()); + } + + template + GLM_FUNC_QUALIFIER genType sineEaseInOut(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + return static_cast(0.5) * (one() - cos(a * pi())); + } + + template + GLM_FUNC_QUALIFIER genType circularEaseIn(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + return one() - sqrt(one() - (a * a)); + } + + template + GLM_FUNC_QUALIFIER genType circularEaseOut(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + return sqrt((static_cast(2) - a) * a); + } + + template + GLM_FUNC_QUALIFIER genType circularEaseInOut(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + if(a < static_cast(0.5)) + { + return static_cast(0.5) * (one() - std::sqrt(one() - static_cast(4) * (a * a))); + } + else + { + return static_cast(0.5) * (std::sqrt(-((static_cast(2) * a) - static_cast(3)) * ((static_cast(2) * a) - one())) + one()); + } + } + + template + GLM_FUNC_QUALIFIER genType exponentialEaseIn(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + if(a <= zero()) + return a; + else + { + genType const Complementary = a - one(); + genType const Two = static_cast(2); + + return glm::pow(Two, Complementary * static_cast(10)); + } + } + + template + GLM_FUNC_QUALIFIER genType exponentialEaseOut(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + if(a >= one()) + return a; + else + { + return one() - glm::pow(static_cast(2), -static_cast(10) * a); + } + } + + template + GLM_FUNC_QUALIFIER genType exponentialEaseInOut(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + if(a < static_cast(0.5)) + return static_cast(0.5) * glm::pow(static_cast(2), (static_cast(20) * a) - static_cast(10)); + else + return -static_cast(0.5) * glm::pow(static_cast(2), (-static_cast(20) * a) + static_cast(10)) + one(); + } + + template + GLM_FUNC_QUALIFIER genType elasticEaseIn(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + return std::sin(static_cast(13) * half_pi() * a) * glm::pow(static_cast(2), static_cast(10) * (a - one())); + } + + template + GLM_FUNC_QUALIFIER genType elasticEaseOut(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + return std::sin(-static_cast(13) * half_pi() * (a + one())) * glm::pow(static_cast(2), -static_cast(10) * a) + one(); + } + + template + GLM_FUNC_QUALIFIER genType elasticEaseInOut(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + if(a < static_cast(0.5)) + return static_cast(0.5) * std::sin(static_cast(13) * half_pi() * (static_cast(2) * a)) * glm::pow(static_cast(2), static_cast(10) * ((static_cast(2) * a) - one())); + else + return static_cast(0.5) * (std::sin(-static_cast(13) * half_pi() * ((static_cast(2) * a - one()) + one())) * glm::pow(static_cast(2), -static_cast(10) * (static_cast(2) * a - one())) + static_cast(2)); + } + + template + GLM_FUNC_QUALIFIER genType backEaseIn(genType const& a, genType const& o) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + genType z = ((o + one()) * a) - o; + return (a * a * z); + } + + template + GLM_FUNC_QUALIFIER genType backEaseOut(genType const& a, genType const& o) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + genType n = a - one(); + genType z = ((o + one()) * n) + o; + return (n * n * z) + one(); + } + + template + GLM_FUNC_QUALIFIER genType backEaseInOut(genType const& a, genType const& o) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + genType s = o * static_cast(1.525); + genType x = static_cast(0.5); + genType n = a / static_cast(0.5); + + if (n < static_cast(1)) + { + genType z = ((s + static_cast(1)) * n) - s; + genType m = n * n * z; + return x * m; + } + else + { + n -= static_cast(2); + genType z = ((s + static_cast(1)) * n) + s; + genType m = (n*n*z) + static_cast(2); + return x * m; + } + } + + template + GLM_FUNC_QUALIFIER genType backEaseIn(genType const& a) + { + return backEaseIn(a, static_cast(1.70158)); + } + + template + GLM_FUNC_QUALIFIER genType backEaseOut(genType const& a) + { + return backEaseOut(a, static_cast(1.70158)); + } + + template + GLM_FUNC_QUALIFIER genType backEaseInOut(genType const& a) + { + return backEaseInOut(a, static_cast(1.70158)); + } + + template + GLM_FUNC_QUALIFIER genType bounceEaseOut(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + if(a < static_cast(4.0 / 11.0)) + { + return (static_cast(121) * a * a) / static_cast(16); + } + else if(a < static_cast(8.0 / 11.0)) + { + return (static_cast(363.0 / 40.0) * a * a) - (static_cast(99.0 / 10.0) * a) + static_cast(17.0 / 5.0); + } + else if(a < static_cast(9.0 / 10.0)) + { + return (static_cast(4356.0 / 361.0) * a * a) - (static_cast(35442.0 / 1805.0) * a) + static_cast(16061.0 / 1805.0); + } + else + { + return (static_cast(54.0 / 5.0) * a * a) - (static_cast(513.0 / 25.0) * a) + static_cast(268.0 / 25.0); + } + } + + template + GLM_FUNC_QUALIFIER genType bounceEaseIn(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + return one() - bounceEaseOut(one() - a); + } + + template + GLM_FUNC_QUALIFIER genType bounceEaseInOut(genType const& a) + { + // Only defined in [0, 1] + assert(a >= zero()); + assert(a <= one()); + + if(a < static_cast(0.5)) + { + return static_cast(0.5) * (one() - bounceEaseOut(one() - a * static_cast(2))); + } + else + { + return static_cast(0.5) * bounceEaseOut(a * static_cast(2) - one()) + static_cast(0.5); + } + } + +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/euler_angles.hpp b/thirdparty/glm/glm/gtx/euler_angles.hpp new file mode 100644 index 000000000000..27236973af60 --- /dev/null +++ b/thirdparty/glm/glm/gtx/euler_angles.hpp @@ -0,0 +1,335 @@ +/// @ref gtx_euler_angles +/// @file glm/gtx/euler_angles.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_euler_angles GLM_GTX_euler_angles +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Build matrices from Euler angles. +/// +/// Extraction of Euler angles from rotation matrix. +/// Based on the original paper 2014 Mike Day - Extracting Euler Angles from a Rotation Matrix. + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_euler_angles is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_euler_angles extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_euler_angles + /// @{ + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from an euler angle X. + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleX( + T const& angleX); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from an euler angle Y. + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleY( + T const& angleY); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from an euler angle Z. + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleZ( + T const& angleZ); + + /// Creates a 3D 4 * 4 homogeneous derived matrix from the rotation matrix about X-axis. + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> derivedEulerAngleX( + T const & angleX, T const & angularVelocityX); + + /// Creates a 3D 4 * 4 homogeneous derived matrix from the rotation matrix about Y-axis. + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> derivedEulerAngleY( + T const & angleY, T const & angularVelocityY); + + /// Creates a 3D 4 * 4 homogeneous derived matrix from the rotation matrix about Z-axis. + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> derivedEulerAngleZ( + T const & angleZ, T const & angularVelocityZ); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (X * Y). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleXY( + T const& angleX, + T const& angleY); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * X). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleYX( + T const& angleY, + T const& angleX); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (X * Z). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleXZ( + T const& angleX, + T const& angleZ); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Z * X). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleZX( + T const& angle, + T const& angleX); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * Z). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleYZ( + T const& angleY, + T const& angleZ); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Z * Y). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleZY( + T const& angleZ, + T const& angleY); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (X * Y * Z). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleXYZ( + T const& t1, + T const& t2, + T const& t3); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * X * Z). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleYXZ( + T const& yaw, + T const& pitch, + T const& roll); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (X * Z * X). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleXZX( + T const & t1, + T const & t2, + T const & t3); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (X * Y * X). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleXYX( + T const & t1, + T const & t2, + T const & t3); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * X * Y). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleYXY( + T const & t1, + T const & t2, + T const & t3); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * Z * Y). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleYZY( + T const & t1, + T const & t2, + T const & t3); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Z * Y * Z). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleZYZ( + T const & t1, + T const & t2, + T const & t3); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Z * X * Z). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleZXZ( + T const & t1, + T const & t2, + T const & t3); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (X * Z * Y). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleXZY( + T const & t1, + T const & t2, + T const & t3); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * Z * X). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleYZX( + T const & t1, + T const & t2, + T const & t3); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Z * Y * X). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleZYX( + T const & t1, + T const & t2, + T const & t3); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Z * X * Y). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> eulerAngleZXY( + T const & t1, + T const & t2, + T const & t3); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * X * Z). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, defaultp> yawPitchRoll( + T const& yaw, + T const& pitch, + T const& roll); + + /// Creates a 2D 2 * 2 rotation matrix from an euler angle. + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<2, 2, T, defaultp> orientate2(T const& angle); + + /// Creates a 2D 4 * 4 homogeneous rotation matrix from an euler angle. + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<3, 3, T, defaultp> orientate3(T const& angle); + + /// Creates a 3D 3 * 3 rotation matrix from euler angles (Y * X * Z). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<3, 3, T, Q> orientate3(vec<3, T, Q> const& angles); + + /// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * X * Z). + /// @see gtx_euler_angles + template + GLM_FUNC_DECL mat<4, 4, T, Q> orientate4(vec<3, T, Q> const& angles); + + /// Extracts the (X * Y * Z) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleXYZ(mat<4, 4, T, defaultp> const& M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (Y * X * Z) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleYXZ(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (X * Z * X) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleXZX(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (X * Y * X) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleXYX(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (Y * X * Y) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleYXY(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (Y * Z * Y) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleYZY(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (Z * Y * Z) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleZYZ(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (Z * X * Z) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleZXZ(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (X * Z * Y) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleXZY(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (Y * Z * X) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleYZX(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (Z * Y * X) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleZYX(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (Z * X * Y) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleZXY(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// @} +}//namespace glm + +#include "euler_angles.inl" diff --git a/thirdparty/glm/glm/gtx/euler_angles.inl b/thirdparty/glm/glm/gtx/euler_angles.inl new file mode 100644 index 000000000000..134d499d91fc --- /dev/null +++ b/thirdparty/glm/glm/gtx/euler_angles.inl @@ -0,0 +1,899 @@ +/// @ref gtx_euler_angles + +#include "compatibility.hpp" // glm::atan2 + +namespace glm +{ + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleX + ( + T const& angleX + ) + { + T cosX = glm::cos(angleX); + T sinX = glm::sin(angleX); + + return mat<4, 4, T, defaultp>( + T(1), T(0), T(0), T(0), + T(0), cosX, sinX, T(0), + T(0),-sinX, cosX, T(0), + T(0), T(0), T(0), T(1)); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleY + ( + T const& angleY + ) + { + T cosY = glm::cos(angleY); + T sinY = glm::sin(angleY); + + return mat<4, 4, T, defaultp>( + cosY, T(0), -sinY, T(0), + T(0), T(1), T(0), T(0), + sinY, T(0), cosY, T(0), + T(0), T(0), T(0), T(1)); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZ + ( + T const& angleZ + ) + { + T cosZ = glm::cos(angleZ); + T sinZ = glm::sin(angleZ); + + return mat<4, 4, T, defaultp>( + cosZ, sinZ, T(0), T(0), + -sinZ, cosZ, T(0), T(0), + T(0), T(0), T(1), T(0), + T(0), T(0), T(0), T(1)); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> derivedEulerAngleX + ( + T const & angleX, + T const & angularVelocityX + ) + { + T cosX = glm::cos(angleX) * angularVelocityX; + T sinX = glm::sin(angleX) * angularVelocityX; + + return mat<4, 4, T, defaultp>( + T(0), T(0), T(0), T(0), + T(0),-sinX, cosX, T(0), + T(0),-cosX,-sinX, T(0), + T(0), T(0), T(0), T(0)); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> derivedEulerAngleY + ( + T const & angleY, + T const & angularVelocityY + ) + { + T cosY = glm::cos(angleY) * angularVelocityY; + T sinY = glm::sin(angleY) * angularVelocityY; + + return mat<4, 4, T, defaultp>( + -sinY, T(0), -cosY, T(0), + T(0), T(0), T(0), T(0), + cosY, T(0), -sinY, T(0), + T(0), T(0), T(0), T(0)); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> derivedEulerAngleZ + ( + T const & angleZ, + T const & angularVelocityZ + ) + { + T cosZ = glm::cos(angleZ) * angularVelocityZ; + T sinZ = glm::sin(angleZ) * angularVelocityZ; + + return mat<4, 4, T, defaultp>( + -sinZ, cosZ, T(0), T(0), + -cosZ, -sinZ, T(0), T(0), + T(0), T(0), T(0), T(0), + T(0), T(0), T(0), T(0)); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXY + ( + T const& angleX, + T const& angleY + ) + { + T cosX = glm::cos(angleX); + T sinX = glm::sin(angleX); + T cosY = glm::cos(angleY); + T sinY = glm::sin(angleY); + + return mat<4, 4, T, defaultp>( + cosY, -sinX * -sinY, cosX * -sinY, T(0), + T(0), cosX, sinX, T(0), + sinY, -sinX * cosY, cosX * cosY, T(0), + T(0), T(0), T(0), T(1)); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYX + ( + T const& angleY, + T const& angleX + ) + { + T cosX = glm::cos(angleX); + T sinX = glm::sin(angleX); + T cosY = glm::cos(angleY); + T sinY = glm::sin(angleY); + + return mat<4, 4, T, defaultp>( + cosY, 0, -sinY, T(0), + sinY * sinX, cosX, cosY * sinX, T(0), + sinY * cosX, -sinX, cosY * cosX, T(0), + T(0), T(0), T(0), T(1)); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXZ + ( + T const& angleX, + T const& angleZ + ) + { + return eulerAngleX(angleX) * eulerAngleZ(angleZ); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZX + ( + T const& angleZ, + T const& angleX + ) + { + return eulerAngleZ(angleZ) * eulerAngleX(angleX); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYZ + ( + T const& angleY, + T const& angleZ + ) + { + return eulerAngleY(angleY) * eulerAngleZ(angleZ); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZY + ( + T const& angleZ, + T const& angleY + ) + { + return eulerAngleZ(angleZ) * eulerAngleY(angleY); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXYZ + ( + T const& t1, + T const& t2, + T const& t3 + ) + { + T c1 = glm::cos(-t1); + T c2 = glm::cos(-t2); + T c3 = glm::cos(-t3); + T s1 = glm::sin(-t1); + T s2 = glm::sin(-t2); + T s3 = glm::sin(-t3); + + mat<4, 4, T, defaultp> Result; + Result[0][0] = c2 * c3; + Result[0][1] =-c1 * s3 + s1 * s2 * c3; + Result[0][2] = s1 * s3 + c1 * s2 * c3; + Result[0][3] = static_cast(0); + Result[1][0] = c2 * s3; + Result[1][1] = c1 * c3 + s1 * s2 * s3; + Result[1][2] =-s1 * c3 + c1 * s2 * s3; + Result[1][3] = static_cast(0); + Result[2][0] =-s2; + Result[2][1] = s1 * c2; + Result[2][2] = c1 * c2; + Result[2][3] = static_cast(0); + Result[3][0] = static_cast(0); + Result[3][1] = static_cast(0); + Result[3][2] = static_cast(0); + Result[3][3] = static_cast(1); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYXZ + ( + T const& yaw, + T const& pitch, + T const& roll + ) + { + T tmp_ch = glm::cos(yaw); + T tmp_sh = glm::sin(yaw); + T tmp_cp = glm::cos(pitch); + T tmp_sp = glm::sin(pitch); + T tmp_cb = glm::cos(roll); + T tmp_sb = glm::sin(roll); + + mat<4, 4, T, defaultp> Result; + Result[0][0] = tmp_ch * tmp_cb + tmp_sh * tmp_sp * tmp_sb; + Result[0][1] = tmp_sb * tmp_cp; + Result[0][2] = -tmp_sh * tmp_cb + tmp_ch * tmp_sp * tmp_sb; + Result[0][3] = static_cast(0); + Result[1][0] = -tmp_ch * tmp_sb + tmp_sh * tmp_sp * tmp_cb; + Result[1][1] = tmp_cb * tmp_cp; + Result[1][2] = tmp_sb * tmp_sh + tmp_ch * tmp_sp * tmp_cb; + Result[1][3] = static_cast(0); + Result[2][0] = tmp_sh * tmp_cp; + Result[2][1] = -tmp_sp; + Result[2][2] = tmp_ch * tmp_cp; + Result[2][3] = static_cast(0); + Result[3][0] = static_cast(0); + Result[3][1] = static_cast(0); + Result[3][2] = static_cast(0); + Result[3][3] = static_cast(1); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXZX + ( + T const & t1, + T const & t2, + T const & t3 + ) + { + T c1 = glm::cos(t1); + T s1 = glm::sin(t1); + T c2 = glm::cos(t2); + T s2 = glm::sin(t2); + T c3 = glm::cos(t3); + T s3 = glm::sin(t3); + + mat<4, 4, T, defaultp> Result; + Result[0][0] = c2; + Result[0][1] = c1 * s2; + Result[0][2] = s1 * s2; + Result[0][3] = static_cast(0); + Result[1][0] =-c3 * s2; + Result[1][1] = c1 * c2 * c3 - s1 * s3; + Result[1][2] = c1 * s3 + c2 * c3 * s1; + Result[1][3] = static_cast(0); + Result[2][0] = s2 * s3; + Result[2][1] =-c3 * s1 - c1 * c2 * s3; + Result[2][2] = c1 * c3 - c2 * s1 * s3; + Result[2][3] = static_cast(0); + Result[3][0] = static_cast(0); + Result[3][1] = static_cast(0); + Result[3][2] = static_cast(0); + Result[3][3] = static_cast(1); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXYX + ( + T const & t1, + T const & t2, + T const & t3 + ) + { + T c1 = glm::cos(t1); + T s1 = glm::sin(t1); + T c2 = glm::cos(t2); + T s2 = glm::sin(t2); + T c3 = glm::cos(t3); + T s3 = glm::sin(t3); + + mat<4, 4, T, defaultp> Result; + Result[0][0] = c2; + Result[0][1] = s1 * s2; + Result[0][2] =-c1 * s2; + Result[0][3] = static_cast(0); + Result[1][0] = s2 * s3; + Result[1][1] = c1 * c3 - c2 * s1 * s3; + Result[1][2] = c3 * s1 + c1 * c2 * s3; + Result[1][3] = static_cast(0); + Result[2][0] = c3 * s2; + Result[2][1] =-c1 * s3 - c2 * c3 * s1; + Result[2][2] = c1 * c2 * c3 - s1 * s3; + Result[2][3] = static_cast(0); + Result[3][0] = static_cast(0); + Result[3][1] = static_cast(0); + Result[3][2] = static_cast(0); + Result[3][3] = static_cast(1); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYXY + ( + T const & t1, + T const & t2, + T const & t3 + ) + { + T c1 = glm::cos(t1); + T s1 = glm::sin(t1); + T c2 = glm::cos(t2); + T s2 = glm::sin(t2); + T c3 = glm::cos(t3); + T s3 = glm::sin(t3); + + mat<4, 4, T, defaultp> Result; + Result[0][0] = c1 * c3 - c2 * s1 * s3; + Result[0][1] = s2* s3; + Result[0][2] =-c3 * s1 - c1 * c2 * s3; + Result[0][3] = static_cast(0); + Result[1][0] = s1 * s2; + Result[1][1] = c2; + Result[1][2] = c1 * s2; + Result[1][3] = static_cast(0); + Result[2][0] = c1 * s3 + c2 * c3 * s1; + Result[2][1] =-c3 * s2; + Result[2][2] = c1 * c2 * c3 - s1 * s3; + Result[2][3] = static_cast(0); + Result[3][0] = static_cast(0); + Result[3][1] = static_cast(0); + Result[3][2] = static_cast(0); + Result[3][3] = static_cast(1); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYZY + ( + T const & t1, + T const & t2, + T const & t3 + ) + { + T c1 = glm::cos(t1); + T s1 = glm::sin(t1); + T c2 = glm::cos(t2); + T s2 = glm::sin(t2); + T c3 = glm::cos(t3); + T s3 = glm::sin(t3); + + mat<4, 4, T, defaultp> Result; + Result[0][0] = c1 * c2 * c3 - s1 * s3; + Result[0][1] = c3 * s2; + Result[0][2] =-c1 * s3 - c2 * c3 * s1; + Result[0][3] = static_cast(0); + Result[1][0] =-c1 * s2; + Result[1][1] = c2; + Result[1][2] = s1 * s2; + Result[1][3] = static_cast(0); + Result[2][0] = c3 * s1 + c1 * c2 * s3; + Result[2][1] = s2 * s3; + Result[2][2] = c1 * c3 - c2 * s1 * s3; + Result[2][3] = static_cast(0); + Result[3][0] = static_cast(0); + Result[3][1] = static_cast(0); + Result[3][2] = static_cast(0); + Result[3][3] = static_cast(1); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZYZ + ( + T const & t1, + T const & t2, + T const & t3 + ) + { + T c1 = glm::cos(t1); + T s1 = glm::sin(t1); + T c2 = glm::cos(t2); + T s2 = glm::sin(t2); + T c3 = glm::cos(t3); + T s3 = glm::sin(t3); + + mat<4, 4, T, defaultp> Result; + Result[0][0] = c1 * c2 * c3 - s1 * s3; + Result[0][1] = c1 * s3 + c2 * c3 * s1; + Result[0][2] =-c3 * s2; + Result[0][3] = static_cast(0); + Result[1][0] =-c3 * s1 - c1 * c2 * s3; + Result[1][1] = c1 * c3 - c2 * s1 * s3; + Result[1][2] = s2 * s3; + Result[1][3] = static_cast(0); + Result[2][0] = c1 * s2; + Result[2][1] = s1 * s2; + Result[2][2] = c2; + Result[2][3] = static_cast(0); + Result[3][0] = static_cast(0); + Result[3][1] = static_cast(0); + Result[3][2] = static_cast(0); + Result[3][3] = static_cast(1); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZXZ + ( + T const & t1, + T const & t2, + T const & t3 + ) + { + T c1 = glm::cos(t1); + T s1 = glm::sin(t1); + T c2 = glm::cos(t2); + T s2 = glm::sin(t2); + T c3 = glm::cos(t3); + T s3 = glm::sin(t3); + + mat<4, 4, T, defaultp> Result; + Result[0][0] = c1 * c3 - c2 * s1 * s3; + Result[0][1] = c3 * s1 + c1 * c2 * s3; + Result[0][2] = s2 *s3; + Result[0][3] = static_cast(0); + Result[1][0] =-c1 * s3 - c2 * c3 * s1; + Result[1][1] = c1 * c2 * c3 - s1 * s3; + Result[1][2] = c3 * s2; + Result[1][3] = static_cast(0); + Result[2][0] = s1 * s2; + Result[2][1] =-c1 * s2; + Result[2][2] = c2; + Result[2][3] = static_cast(0); + Result[3][0] = static_cast(0); + Result[3][1] = static_cast(0); + Result[3][2] = static_cast(0); + Result[3][3] = static_cast(1); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXZY + ( + T const & t1, + T const & t2, + T const & t3 + ) + { + T c1 = glm::cos(t1); + T s1 = glm::sin(t1); + T c2 = glm::cos(t2); + T s2 = glm::sin(t2); + T c3 = glm::cos(t3); + T s3 = glm::sin(t3); + + mat<4, 4, T, defaultp> Result; + Result[0][0] = c2 * c3; + Result[0][1] = s1 * s3 + c1 * c3 * s2; + Result[0][2] = c3 * s1 * s2 - c1 * s3; + Result[0][3] = static_cast(0); + Result[1][0] =-s2; + Result[1][1] = c1 * c2; + Result[1][2] = c2 * s1; + Result[1][3] = static_cast(0); + Result[2][0] = c2 * s3; + Result[2][1] = c1 * s2 * s3 - c3 * s1; + Result[2][2] = c1 * c3 + s1 * s2 *s3; + Result[2][3] = static_cast(0); + Result[3][0] = static_cast(0); + Result[3][1] = static_cast(0); + Result[3][2] = static_cast(0); + Result[3][3] = static_cast(1); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleYZX + ( + T const & t1, + T const & t2, + T const & t3 + ) + { + T c1 = glm::cos(t1); + T s1 = glm::sin(t1); + T c2 = glm::cos(t2); + T s2 = glm::sin(t2); + T c3 = glm::cos(t3); + T s3 = glm::sin(t3); + + mat<4, 4, T, defaultp> Result; + Result[0][0] = c1 * c2; + Result[0][1] = s2; + Result[0][2] =-c2 * s1; + Result[0][3] = static_cast(0); + Result[1][0] = s1 * s3 - c1 * c3 * s2; + Result[1][1] = c2 * c3; + Result[1][2] = c1 * s3 + c3 * s1 * s2; + Result[1][3] = static_cast(0); + Result[2][0] = c3 * s1 + c1 * s2 * s3; + Result[2][1] =-c2 * s3; + Result[2][2] = c1 * c3 - s1 * s2 * s3; + Result[2][3] = static_cast(0); + Result[3][0] = static_cast(0); + Result[3][1] = static_cast(0); + Result[3][2] = static_cast(0); + Result[3][3] = static_cast(1); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZYX + ( + T const & t1, + T const & t2, + T const & t3 + ) + { + T c1 = glm::cos(t1); + T s1 = glm::sin(t1); + T c2 = glm::cos(t2); + T s2 = glm::sin(t2); + T c3 = glm::cos(t3); + T s3 = glm::sin(t3); + + mat<4, 4, T, defaultp> Result; + Result[0][0] = c1 * c2; + Result[0][1] = c2 * s1; + Result[0][2] =-s2; + Result[0][3] = static_cast(0); + Result[1][0] = c1 * s2 * s3 - c3 * s1; + Result[1][1] = c1 * c3 + s1 * s2 * s3; + Result[1][2] = c2 * s3; + Result[1][3] = static_cast(0); + Result[2][0] = s1 * s3 + c1 * c3 * s2; + Result[2][1] = c3 * s1 * s2 - c1 * s3; + Result[2][2] = c2 * c3; + Result[2][3] = static_cast(0); + Result[3][0] = static_cast(0); + Result[3][1] = static_cast(0); + Result[3][2] = static_cast(0); + Result[3][3] = static_cast(1); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleZXY + ( + T const & t1, + T const & t2, + T const & t3 + ) + { + T c1 = glm::cos(t1); + T s1 = glm::sin(t1); + T c2 = glm::cos(t2); + T s2 = glm::sin(t2); + T c3 = glm::cos(t3); + T s3 = glm::sin(t3); + + mat<4, 4, T, defaultp> Result; + Result[0][0] = c1 * c3 - s1 * s2 * s3; + Result[0][1] = c3 * s1 + c1 * s2 * s3; + Result[0][2] =-c2 * s3; + Result[0][3] = static_cast(0); + Result[1][0] =-c2 * s1; + Result[1][1] = c1 * c2; + Result[1][2] = s2; + Result[1][3] = static_cast(0); + Result[2][0] = c1 * s3 + c3 * s1 * s2; + Result[2][1] = s1 * s3 - c1 * c3 * s2; + Result[2][2] = c2 * c3; + Result[2][3] = static_cast(0); + Result[3][0] = static_cast(0); + Result[3][1] = static_cast(0); + Result[3][2] = static_cast(0); + Result[3][3] = static_cast(1); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> yawPitchRoll + ( + T const& yaw, + T const& pitch, + T const& roll + ) + { + T tmp_ch = glm::cos(yaw); + T tmp_sh = glm::sin(yaw); + T tmp_cp = glm::cos(pitch); + T tmp_sp = glm::sin(pitch); + T tmp_cb = glm::cos(roll); + T tmp_sb = glm::sin(roll); + + mat<4, 4, T, defaultp> Result; + Result[0][0] = tmp_ch * tmp_cb + tmp_sh * tmp_sp * tmp_sb; + Result[0][1] = tmp_sb * tmp_cp; + Result[0][2] = -tmp_sh * tmp_cb + tmp_ch * tmp_sp * tmp_sb; + Result[0][3] = static_cast(0); + Result[1][0] = -tmp_ch * tmp_sb + tmp_sh * tmp_sp * tmp_cb; + Result[1][1] = tmp_cb * tmp_cp; + Result[1][2] = tmp_sb * tmp_sh + tmp_ch * tmp_sp * tmp_cb; + Result[1][3] = static_cast(0); + Result[2][0] = tmp_sh * tmp_cp; + Result[2][1] = -tmp_sp; + Result[2][2] = tmp_ch * tmp_cp; + Result[2][3] = static_cast(0); + Result[3][0] = static_cast(0); + Result[3][1] = static_cast(0); + Result[3][2] = static_cast(0); + Result[3][3] = static_cast(1); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<2, 2, T, defaultp> orientate2 + ( + T const& angle + ) + { + T c = glm::cos(angle); + T s = glm::sin(angle); + + mat<2, 2, T, defaultp> Result; + Result[0][0] = c; + Result[0][1] = s; + Result[1][0] = -s; + Result[1][1] = c; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, defaultp> orientate3 + ( + T const& angle + ) + { + T c = glm::cos(angle); + T s = glm::sin(angle); + + mat<3, 3, T, defaultp> Result; + Result[0][0] = c; + Result[0][1] = s; + Result[0][2] = T(0.0); + Result[1][0] = -s; + Result[1][1] = c; + Result[1][2] = T(0.0); + Result[2][0] = T(0.0); + Result[2][1] = T(0.0); + Result[2][2] = T(1.0); + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> orientate3 + ( + vec<3, T, Q> const& angles + ) + { + return mat<3, 3, T, Q>(yawPitchRoll(angles.z, angles.x, angles.y)); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> orientate4 + ( + vec<3, T, Q> const& angles + ) + { + return yawPitchRoll(angles.z, angles.x, angles.y); + } + + template + GLM_FUNC_DECL void extractEulerAngleXYZ(mat<4, 4, T, defaultp> const& M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[2][1], M[2][2]); + T C2 = glm::sqrt(M[0][0]*M[0][0] + M[1][0]*M[1][0]); + T T2 = glm::atan2(-M[2][0], C2); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(S1*M[0][2] - C1*M[0][1], C1*M[1][1] - S1*M[1][2 ]); + t1 = -T1; + t2 = -T2; + t3 = -T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleYXZ(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[2][0], M[2][2]); + T C2 = glm::sqrt(M[0][1]*M[0][1] + M[1][1]*M[1][1]); + T T2 = glm::atan2(-M[2][1], C2); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(S1*M[1][2] - C1*M[1][0], C1*M[0][0] - S1*M[0][2]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleXZX(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[0][2], M[0][1]); + T S2 = glm::sqrt(M[1][0]*M[1][0] + M[2][0]*M[2][0]); + T T2 = glm::atan2(S2, M[0][0]); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(C1*M[1][2] - S1*M[1][1], C1*M[2][2] - S1*M[2][1]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleXYX(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[0][1], -M[0][2]); + T S2 = glm::sqrt(M[1][0]*M[1][0] + M[2][0]*M[2][0]); + T T2 = glm::atan2(S2, M[0][0]); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(-C1*M[2][1] - S1*M[2][2], C1*M[1][1] + S1*M[1][2]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleYXY(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[1][0], M[1][2]); + T S2 = glm::sqrt(M[0][1]*M[0][1] + M[2][1]*M[2][1]); + T T2 = glm::atan2(S2, M[1][1]); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(C1*M[2][0] - S1*M[2][2], C1*M[0][0] - S1*M[0][2]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleYZY(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[1][2], -M[1][0]); + T S2 = glm::sqrt(M[0][1]*M[0][1] + M[2][1]*M[2][1]); + T T2 = glm::atan2(S2, M[1][1]); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(-S1*M[0][0] - C1*M[0][2], S1*M[2][0] + C1*M[2][2]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleZYZ(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[2][1], M[2][0]); + T S2 = glm::sqrt(M[0][2]*M[0][2] + M[1][2]*M[1][2]); + T T2 = glm::atan2(S2, M[2][2]); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(C1*M[0][1] - S1*M[0][0], C1*M[1][1] - S1*M[1][0]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleZXZ(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[2][0], -M[2][1]); + T S2 = glm::sqrt(M[0][2]*M[0][2] + M[1][2]*M[1][2]); + T T2 = glm::atan2(S2, M[2][2]); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(-C1*M[1][0] - S1*M[1][1], C1*M[0][0] + S1*M[0][1]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleXZY(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[1][2], M[1][1]); + T C2 = glm::sqrt(M[0][0]*M[0][0] + M[2][0]*M[2][0]); + T T2 = glm::atan2(-M[1][0], C2); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(S1*M[0][1] - C1*M[0][2], C1*M[2][2] - S1*M[2][1]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleYZX(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(-M[0][2], M[0][0]); + T C2 = glm::sqrt(M[1][1]*M[1][1] + M[2][1]*M[2][1]); + T T2 = glm::atan2(M[0][1], C2); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(S1*M[1][0] + C1*M[1][2], S1*M[2][0] + C1*M[2][2]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleZYX(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[0][1], M[0][0]); + T C2 = glm::sqrt(M[1][2]*M[1][2] + M[2][2]*M[2][2]); + T T2 = glm::atan2(-M[0][2], C2); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(S1*M[2][0] - C1*M[2][1], C1*M[1][1] - S1*M[1][0]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleZXY(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(-M[1][0], M[1][1]); + T C2 = glm::sqrt(M[0][2]*M[0][2] + M[2][2]*M[2][2]); + T T2 = glm::atan2(M[1][2], C2); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(C1*M[2][0] + S1*M[2][1], C1*M[0][0] + S1*M[0][1]); + t1 = T1; + t2 = T2; + t3 = T3; + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/extend.hpp b/thirdparty/glm/glm/gtx/extend.hpp new file mode 100644 index 000000000000..28b7c5c014a4 --- /dev/null +++ b/thirdparty/glm/glm/gtx/extend.hpp @@ -0,0 +1,42 @@ +/// @ref gtx_extend +/// @file glm/gtx/extend.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_extend GLM_GTX_extend +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Extend a position from a source to a position at a defined length. + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_extend is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_extend extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_extend + /// @{ + + /// Extends of Length the Origin position using the (Source - Origin) direction. + /// @see gtx_extend + template + GLM_FUNC_DECL genType extend( + genType const& Origin, + genType const& Source, + typename genType::value_type const Length); + + /// @} +}//namespace glm + +#include "extend.inl" diff --git a/thirdparty/glm/glm/gtx/extend.inl b/thirdparty/glm/glm/gtx/extend.inl new file mode 100644 index 000000000000..32128eb209ac --- /dev/null +++ b/thirdparty/glm/glm/gtx/extend.inl @@ -0,0 +1,48 @@ +/// @ref gtx_extend + +namespace glm +{ + template + GLM_FUNC_QUALIFIER genType extend + ( + genType const& Origin, + genType const& Source, + genType const& Distance + ) + { + return Origin + (Source - Origin) * Distance; + } + + template + GLM_FUNC_QUALIFIER vec<2, T, Q> extend + ( + vec<2, T, Q> const& Origin, + vec<2, T, Q> const& Source, + T const& Distance + ) + { + return Origin + (Source - Origin) * Distance; + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> extend + ( + vec<3, T, Q> const& Origin, + vec<3, T, Q> const& Source, + T const& Distance + ) + { + return Origin + (Source - Origin) * Distance; + } + + template + GLM_FUNC_QUALIFIER vec<4, T, Q> extend + ( + vec<4, T, Q> const& Origin, + vec<4, T, Q> const& Source, + T const& Distance + ) + { + return Origin + (Source - Origin) * Distance; + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/extended_min_max.hpp b/thirdparty/glm/glm/gtx/extended_min_max.hpp new file mode 100644 index 000000000000..20cd89b0d519 --- /dev/null +++ b/thirdparty/glm/glm/gtx/extended_min_max.hpp @@ -0,0 +1,137 @@ +/// @ref gtx_extended_min_max +/// @file glm/gtx/extended_min_max.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_extended_min_max GLM_GTX_extended_min_max +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Min and max functions for 3 to 4 parameters. + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../ext/vector_common.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_extended_min_max is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_extended_min_max extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_extended_min_max + /// @{ + + /// Return the minimum component-wise values of 3 inputs + /// @see gtx_extented_min_max + template + GLM_FUNC_DECL T min( + T const& x, + T const& y, + T const& z); + + /// Return the minimum component-wise values of 3 inputs + /// @see gtx_extented_min_max + template class C> + GLM_FUNC_DECL C min( + C const& x, + typename C::T const& y, + typename C::T const& z); + + /// Return the minimum component-wise values of 3 inputs + /// @see gtx_extented_min_max + template class C> + GLM_FUNC_DECL C min( + C const& x, + C const& y, + C const& z); + + /// Return the minimum component-wise values of 4 inputs + /// @see gtx_extented_min_max + template + GLM_FUNC_DECL T min( + T const& x, + T const& y, + T const& z, + T const& w); + + /// Return the minimum component-wise values of 4 inputs + /// @see gtx_extented_min_max + template class C> + GLM_FUNC_DECL C min( + C const& x, + typename C::T const& y, + typename C::T const& z, + typename C::T const& w); + + /// Return the minimum component-wise values of 4 inputs + /// @see gtx_extented_min_max + template class C> + GLM_FUNC_DECL C min( + C const& x, + C const& y, + C const& z, + C const& w); + + /// Return the maximum component-wise values of 3 inputs + /// @see gtx_extented_min_max + template + GLM_FUNC_DECL T max( + T const& x, + T const& y, + T const& z); + + /// Return the maximum component-wise values of 3 inputs + /// @see gtx_extented_min_max + template class C> + GLM_FUNC_DECL C max( + C const& x, + typename C::T const& y, + typename C::T const& z); + + /// Return the maximum component-wise values of 3 inputs + /// @see gtx_extented_min_max + template class C> + GLM_FUNC_DECL C max( + C const& x, + C const& y, + C const& z); + + /// Return the maximum component-wise values of 4 inputs + /// @see gtx_extented_min_max + template + GLM_FUNC_DECL T max( + T const& x, + T const& y, + T const& z, + T const& w); + + /// Return the maximum component-wise values of 4 inputs + /// @see gtx_extented_min_max + template class C> + GLM_FUNC_DECL C max( + C const& x, + typename C::T const& y, + typename C::T const& z, + typename C::T const& w); + + /// Return the maximum component-wise values of 4 inputs + /// @see gtx_extented_min_max + template class C> + GLM_FUNC_DECL C max( + C const& x, + C const& y, + C const& z, + C const& w); + + /// @} +}//namespace glm + +#include "extended_min_max.inl" diff --git a/thirdparty/glm/glm/gtx/extended_min_max.inl b/thirdparty/glm/glm/gtx/extended_min_max.inl new file mode 100644 index 000000000000..de5998fadd65 --- /dev/null +++ b/thirdparty/glm/glm/gtx/extended_min_max.inl @@ -0,0 +1,138 @@ +/// @ref gtx_extended_min_max + +namespace glm +{ + template + GLM_FUNC_QUALIFIER T min( + T const& x, + T const& y, + T const& z) + { + return glm::min(glm::min(x, y), z); + } + + template class C> + GLM_FUNC_QUALIFIER C min + ( + C const& x, + typename C::T const& y, + typename C::T const& z + ) + { + return glm::min(glm::min(x, y), z); + } + + template class C> + GLM_FUNC_QUALIFIER C min + ( + C const& x, + C const& y, + C const& z + ) + { + return glm::min(glm::min(x, y), z); + } + + template + GLM_FUNC_QUALIFIER T min + ( + T const& x, + T const& y, + T const& z, + T const& w + ) + { + return glm::min(glm::min(x, y), glm::min(z, w)); + } + + template class C> + GLM_FUNC_QUALIFIER C min + ( + C const& x, + typename C::T const& y, + typename C::T const& z, + typename C::T const& w + ) + { + return glm::min(glm::min(x, y), glm::min(z, w)); + } + + template class C> + GLM_FUNC_QUALIFIER C min + ( + C const& x, + C const& y, + C const& z, + C const& w + ) + { + return glm::min(glm::min(x, y), glm::min(z, w)); + } + + template + GLM_FUNC_QUALIFIER T max( + T const& x, + T const& y, + T const& z) + { + return glm::max(glm::max(x, y), z); + } + + template class C> + GLM_FUNC_QUALIFIER C max + ( + C const& x, + typename C::T const& y, + typename C::T const& z + ) + { + return glm::max(glm::max(x, y), z); + } + + template class C> + GLM_FUNC_QUALIFIER C max + ( + C const& x, + C const& y, + C const& z + ) + { + return glm::max(glm::max(x, y), z); + } + + template + GLM_FUNC_QUALIFIER T max + ( + T const& x, + T const& y, + T const& z, + T const& w + ) + { + return glm::max(glm::max(x, y), glm::max(z, w)); + } + + template class C> + GLM_FUNC_QUALIFIER C max + ( + C const& x, + typename C::T const& y, + typename C::T const& z, + typename C::T const& w + ) + { + return glm::max(glm::max(x, y), glm::max(z, w)); + } + + template class C> + GLM_FUNC_QUALIFIER C max + ( + C const& x, + C const& y, + C const& z, + C const& w + ) + { + return glm::max(glm::max(x, y), glm::max(z, w)); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/exterior_product.hpp b/thirdparty/glm/glm/gtx/exterior_product.hpp new file mode 100644 index 000000000000..7d6c2e19b112 --- /dev/null +++ b/thirdparty/glm/glm/gtx/exterior_product.hpp @@ -0,0 +1,45 @@ +/// @ref gtx_exterior_product +/// @file glm/gtx/exterior_product.hpp +/// +/// @see core (dependence) +/// @see gtx_exterior_product (dependence) +/// +/// @defgroup gtx_exterior_product GLM_GTX_exterior_product +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// @brief Allow to perform bit operations on integer values + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/qualifier.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_exterior_product is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_exterior_product extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_exterior_product + /// @{ + + /// Returns the cross product of x and y. + /// + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see Exterior product + template + GLM_FUNC_DECL GLM_CONSTEXPR T cross(vec<2, T, Q> const& v, vec<2, T, Q> const& u); + + /// @} +} //namespace glm + +#include "exterior_product.inl" diff --git a/thirdparty/glm/glm/gtx/exterior_product.inl b/thirdparty/glm/glm/gtx/exterior_product.inl new file mode 100644 index 000000000000..690085d6f669 --- /dev/null +++ b/thirdparty/glm/glm/gtx/exterior_product.inl @@ -0,0 +1,26 @@ +/// @ref gtx_exterior_product + +#include + +namespace glm { +namespace detail +{ + template + struct compute_cross_vec2 + { + GLM_FUNC_QUALIFIER GLM_CONSTEXPR static T call(vec<2, T, Q> const& v, vec<2, T, Q> const& u) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'cross' accepts only floating-point inputs"); + + return v.x * u.y - u.x * v.y; + } + }; +}//namespace detail + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR T cross(vec<2, T, Q> const& x, vec<2, T, Q> const& y) + { + return detail::compute_cross_vec2::value>::call(x, y); + } +}//namespace glm + diff --git a/thirdparty/glm/glm/gtx/fast_exponential.hpp b/thirdparty/glm/glm/gtx/fast_exponential.hpp new file mode 100644 index 000000000000..6fb7286528cf --- /dev/null +++ b/thirdparty/glm/glm/gtx/fast_exponential.hpp @@ -0,0 +1,95 @@ +/// @ref gtx_fast_exponential +/// @file glm/gtx/fast_exponential.hpp +/// +/// @see core (dependence) +/// @see gtx_half_float (dependence) +/// +/// @defgroup gtx_fast_exponential GLM_GTX_fast_exponential +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Fast but less accurate implementations of exponential based functions. + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_fast_exponential is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_fast_exponential extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_fast_exponential + /// @{ + + /// Faster than the common pow function but less accurate. + /// @see gtx_fast_exponential + template + GLM_FUNC_DECL genType fastPow(genType x, genType y); + + /// Faster than the common pow function but less accurate. + /// @see gtx_fast_exponential + template + GLM_FUNC_DECL vec fastPow(vec const& x, vec const& y); + + /// Faster than the common pow function but less accurate. + /// @see gtx_fast_exponential + template + GLM_FUNC_DECL genTypeT fastPow(genTypeT x, genTypeU y); + + /// Faster than the common pow function but less accurate. + /// @see gtx_fast_exponential + template + GLM_FUNC_DECL vec fastPow(vec const& x); + + /// Faster than the common exp function but less accurate. + /// @see gtx_fast_exponential + template + GLM_FUNC_DECL T fastExp(T x); + + /// Faster than the common exp function but less accurate. + /// @see gtx_fast_exponential + template + GLM_FUNC_DECL vec fastExp(vec const& x); + + /// Faster than the common log function but less accurate. + /// @see gtx_fast_exponential + template + GLM_FUNC_DECL T fastLog(T x); + + /// Faster than the common exp2 function but less accurate. + /// @see gtx_fast_exponential + template + GLM_FUNC_DECL vec fastLog(vec const& x); + + /// Faster than the common exp2 function but less accurate. + /// @see gtx_fast_exponential + template + GLM_FUNC_DECL T fastExp2(T x); + + /// Faster than the common exp2 function but less accurate. + /// @see gtx_fast_exponential + template + GLM_FUNC_DECL vec fastExp2(vec const& x); + + /// Faster than the common log2 function but less accurate. + /// @see gtx_fast_exponential + template + GLM_FUNC_DECL T fastLog2(T x); + + /// Faster than the common log2 function but less accurate. + /// @see gtx_fast_exponential + template + GLM_FUNC_DECL vec fastLog2(vec const& x); + + /// @} +}//namespace glm + +#include "fast_exponential.inl" diff --git a/thirdparty/glm/glm/gtx/fast_exponential.inl b/thirdparty/glm/glm/gtx/fast_exponential.inl new file mode 100644 index 000000000000..5b1174246bbc --- /dev/null +++ b/thirdparty/glm/glm/gtx/fast_exponential.inl @@ -0,0 +1,136 @@ +/// @ref gtx_fast_exponential + +namespace glm +{ + // fastPow: + template + GLM_FUNC_QUALIFIER genType fastPow(genType x, genType y) + { + return exp(y * log(x)); + } + + template + GLM_FUNC_QUALIFIER vec fastPow(vec const& x, vec const& y) + { + return exp(y * log(x)); + } + + template + GLM_FUNC_QUALIFIER T fastPow(T x, int y) + { + T f = static_cast(1); + for(int i = 0; i < y; ++i) + f *= x; + return f; + } + + template + GLM_FUNC_QUALIFIER vec fastPow(vec const& x, vec const& y) + { + vec Result; + for(length_t i = 0, n = x.length(); i < n; ++i) + Result[i] = fastPow(x[i], y[i]); + return Result; + } + + // fastExp + // Note: This function provides accurate results only for value between -1 and 1, else avoid it. + template + GLM_FUNC_QUALIFIER T fastExp(T x) + { + // This has a better looking and same performance in release mode than the following code. However, in debug mode it's slower. + // return 1.0f + x * (1.0f + x * 0.5f * (1.0f + x * 0.3333333333f * (1.0f + x * 0.25 * (1.0f + x * 0.2f)))); + T x2 = x * x; + T x3 = x2 * x; + T x4 = x3 * x; + T x5 = x4 * x; + return T(1) + x + (x2 * T(0.5)) + (x3 * T(0.1666666667)) + (x4 * T(0.041666667)) + (x5 * T(0.008333333333)); + } + /* // Try to handle all values of float... but often shower than std::exp, glm::floor and the loop kill the performance + GLM_FUNC_QUALIFIER float fastExp(float x) + { + const float e = 2.718281828f; + const float IntegerPart = floor(x); + const float FloatPart = x - IntegerPart; + float z = 1.f; + + for(int i = 0; i < int(IntegerPart); ++i) + z *= e; + + const float x2 = FloatPart * FloatPart; + const float x3 = x2 * FloatPart; + const float x4 = x3 * FloatPart; + const float x5 = x4 * FloatPart; + return z * (1.0f + FloatPart + (x2 * 0.5f) + (x3 * 0.1666666667f) + (x4 * 0.041666667f) + (x5 * 0.008333333333f)); + } + + // Increase accuracy on number bigger that 1 and smaller than -1 but it's not enough for high and negative numbers + GLM_FUNC_QUALIFIER float fastExp(float x) + { + // This has a better looking and same performance in release mode than the following code. However, in debug mode it's slower. + // return 1.0f + x * (1.0f + x * 0.5f * (1.0f + x * 0.3333333333f * (1.0f + x * 0.25 * (1.0f + x * 0.2f)))); + float x2 = x * x; + float x3 = x2 * x; + float x4 = x3 * x; + float x5 = x4 * x; + float x6 = x5 * x; + float x7 = x6 * x; + float x8 = x7 * x; + return 1.0f + x + (x2 * 0.5f) + (x3 * 0.1666666667f) + (x4 * 0.041666667f) + (x5 * 0.008333333333f)+ (x6 * 0.00138888888888f) + (x7 * 0.000198412698f) + (x8 * 0.0000248015873f);; + } + */ + + template + GLM_FUNC_QUALIFIER vec fastExp(vec const& x) + { + return detail::functor1::call(fastExp, x); + } + + // fastLog + template + GLM_FUNC_QUALIFIER genType fastLog(genType x) + { + return std::log(x); + } + + /* Slower than the VC7.1 function... + GLM_FUNC_QUALIFIER float fastLog(float x) + { + float y1 = (x - 1.0f) / (x + 1.0f); + float y2 = y1 * y1; + return 2.0f * y1 * (1.0f + y2 * (0.3333333333f + y2 * (0.2f + y2 * 0.1428571429f))); + } + */ + + template + GLM_FUNC_QUALIFIER vec fastLog(vec const& x) + { + return detail::functor1::call(fastLog, x); + } + + //fastExp2, ln2 = 0.69314718055994530941723212145818f + template + GLM_FUNC_QUALIFIER genType fastExp2(genType x) + { + return fastExp(static_cast(0.69314718055994530941723212145818) * x); + } + + template + GLM_FUNC_QUALIFIER vec fastExp2(vec const& x) + { + return detail::functor1::call(fastExp2, x); + } + + // fastLog2, ln2 = 0.69314718055994530941723212145818f + template + GLM_FUNC_QUALIFIER genType fastLog2(genType x) + { + return fastLog(x) / static_cast(0.69314718055994530941723212145818); + } + + template + GLM_FUNC_QUALIFIER vec fastLog2(vec const& x) + { + return detail::functor1::call(fastLog2, x); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/fast_square_root.hpp b/thirdparty/glm/glm/gtx/fast_square_root.hpp new file mode 100644 index 000000000000..ac42a9c006cb --- /dev/null +++ b/thirdparty/glm/glm/gtx/fast_square_root.hpp @@ -0,0 +1,98 @@ +/// @ref gtx_fast_square_root +/// @file glm/gtx/fast_square_root.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_fast_square_root GLM_GTX_fast_square_root +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Fast but less accurate implementations of square root based functions. +/// - Sqrt optimisation based on Newton's method, +/// www.gamedev.net/community/forums/topic.asp?topic id=139956 + +#pragma once + +// Dependency: +#include "../common.hpp" +#include "../exponential.hpp" +#include "../geometric.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_fast_square_root is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_fast_square_root extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_fast_square_root + /// @{ + + /// Faster than the common sqrt function but less accurate. + /// + /// @see gtx_fast_square_root extension. + template + GLM_FUNC_DECL genType fastSqrt(genType x); + + /// Faster than the common sqrt function but less accurate. + /// + /// @see gtx_fast_square_root extension. + template + GLM_FUNC_DECL vec fastSqrt(vec const& x); + + /// Faster than the common inversesqrt function but less accurate. + /// + /// @see gtx_fast_square_root extension. + template + GLM_FUNC_DECL genType fastInverseSqrt(genType x); + + /// Faster than the common inversesqrt function but less accurate. + /// + /// @see gtx_fast_square_root extension. + template + GLM_FUNC_DECL vec fastInverseSqrt(vec const& x); + + /// Faster than the common length function but less accurate. + /// + /// @see gtx_fast_square_root extension. + template + GLM_FUNC_DECL genType fastLength(genType x); + + /// Faster than the common length function but less accurate. + /// + /// @see gtx_fast_square_root extension. + template + GLM_FUNC_DECL T fastLength(vec const& x); + + /// Faster than the common distance function but less accurate. + /// + /// @see gtx_fast_square_root extension. + template + GLM_FUNC_DECL genType fastDistance(genType x, genType y); + + /// Faster than the common distance function but less accurate. + /// + /// @see gtx_fast_square_root extension. + template + GLM_FUNC_DECL T fastDistance(vec const& x, vec const& y); + + /// Faster than the common normalize function but less accurate. + /// + /// @see gtx_fast_square_root extension. + template + GLM_FUNC_DECL genType fastNormalize(genType x); + + /// Faster than the common normalize function but less accurate. + /// + /// @see gtx_fast_square_root extension. + template + GLM_FUNC_DECL vec fastNormalize(vec const& x); + + /// @} +}// namespace glm + +#include "fast_square_root.inl" diff --git a/thirdparty/glm/glm/gtx/fast_square_root.inl b/thirdparty/glm/glm/gtx/fast_square_root.inl new file mode 100644 index 000000000000..60fdb7a5ac7c --- /dev/null +++ b/thirdparty/glm/glm/gtx/fast_square_root.inl @@ -0,0 +1,75 @@ +/// @ref gtx_fast_square_root + +namespace glm +{ + // fastSqrt + template + GLM_FUNC_QUALIFIER genType fastSqrt(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'fastSqrt' only accept floating-point input"); + + return genType(1) / fastInverseSqrt(x); + } + + template + GLM_FUNC_QUALIFIER vec fastSqrt(vec const& x) + { + return detail::functor1::call(fastSqrt, x); + } + + // fastInversesqrt + template + GLM_FUNC_QUALIFIER genType fastInverseSqrt(genType x) + { + return detail::compute_inversesqrt<1, genType, lowp, detail::is_aligned::value>::call(vec<1, genType, lowp>(x)).x; + } + + template + GLM_FUNC_QUALIFIER vec fastInverseSqrt(vec const& x) + { + return detail::compute_inversesqrt::value>::call(x); + } + + // fastLength + template + GLM_FUNC_QUALIFIER genType fastLength(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'fastLength' only accept floating-point inputs"); + + return abs(x); + } + + template + GLM_FUNC_QUALIFIER T fastLength(vec const& x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'fastLength' only accept floating-point inputs"); + + return fastSqrt(dot(x, x)); + } + + // fastDistance + template + GLM_FUNC_QUALIFIER genType fastDistance(genType x, genType y) + { + return fastLength(y - x); + } + + template + GLM_FUNC_QUALIFIER T fastDistance(vec const& x, vec const& y) + { + return fastLength(y - x); + } + + // fastNormalize + template + GLM_FUNC_QUALIFIER genType fastNormalize(genType x) + { + return x > genType(0) ? genType(1) : -genType(1); + } + + template + GLM_FUNC_QUALIFIER vec fastNormalize(vec const& x) + { + return x * fastInverseSqrt(dot(x, x)); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/fast_trigonometry.hpp b/thirdparty/glm/glm/gtx/fast_trigonometry.hpp new file mode 100644 index 000000000000..2650d6e4d6e3 --- /dev/null +++ b/thirdparty/glm/glm/gtx/fast_trigonometry.hpp @@ -0,0 +1,79 @@ +/// @ref gtx_fast_trigonometry +/// @file glm/gtx/fast_trigonometry.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_fast_trigonometry GLM_GTX_fast_trigonometry +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Fast but less accurate implementations of trigonometric functions. + +#pragma once + +// Dependency: +#include "../gtc/constants.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_fast_trigonometry is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_fast_trigonometry extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_fast_trigonometry + /// @{ + + /// Wrap an angle to [0 2pi[ + /// From GLM_GTX_fast_trigonometry extension. + template + GLM_FUNC_DECL T wrapAngle(T angle); + + /// Faster than the common sin function but less accurate. + /// From GLM_GTX_fast_trigonometry extension. + template + GLM_FUNC_DECL T fastSin(T angle); + + /// Faster than the common cos function but less accurate. + /// From GLM_GTX_fast_trigonometry extension. + template + GLM_FUNC_DECL T fastCos(T angle); + + /// Faster than the common tan function but less accurate. + /// Defined between -2pi and 2pi. + /// From GLM_GTX_fast_trigonometry extension. + template + GLM_FUNC_DECL T fastTan(T angle); + + /// Faster than the common asin function but less accurate. + /// Defined between -2pi and 2pi. + /// From GLM_GTX_fast_trigonometry extension. + template + GLM_FUNC_DECL T fastAsin(T angle); + + /// Faster than the common acos function but less accurate. + /// Defined between -2pi and 2pi. + /// From GLM_GTX_fast_trigonometry extension. + template + GLM_FUNC_DECL T fastAcos(T angle); + + /// Faster than the common atan function but less accurate. + /// Defined between -2pi and 2pi. + /// From GLM_GTX_fast_trigonometry extension. + template + GLM_FUNC_DECL T fastAtan(T y, T x); + + /// Faster than the common atan function but less accurate. + /// Defined between -2pi and 2pi. + /// From GLM_GTX_fast_trigonometry extension. + template + GLM_FUNC_DECL T fastAtan(T angle); + + /// @} +}//namespace glm + +#include "fast_trigonometry.inl" diff --git a/thirdparty/glm/glm/gtx/fast_trigonometry.inl b/thirdparty/glm/glm/gtx/fast_trigonometry.inl new file mode 100644 index 000000000000..1a710cbcd08d --- /dev/null +++ b/thirdparty/glm/glm/gtx/fast_trigonometry.inl @@ -0,0 +1,142 @@ +/// @ref gtx_fast_trigonometry + +namespace glm{ +namespace detail +{ + template + GLM_FUNC_QUALIFIER vec taylorCos(vec const& x) + { + return static_cast(1) + - (x * x) * (1.f / 2.f) + + ((x * x) * (x * x)) * (1.f / 24.f) + - (((x * x) * (x * x)) * (x * x)) * (1.f / 720.f) + + (((x * x) * (x * x)) * ((x * x) * (x * x))) * (1.f / 40320.f); + } + + template + GLM_FUNC_QUALIFIER T cos_52s(T x) + { + T const xx(x * x); + return (T(0.9999932946) + xx * (T(-0.4999124376) + xx * (T(0.0414877472) + xx * T(-0.0012712095)))); + } + + template + GLM_FUNC_QUALIFIER vec cos_52s(vec const& x) + { + return detail::functor1::call(cos_52s, x); + } +}//namespace detail + + // wrapAngle + template + GLM_FUNC_QUALIFIER T wrapAngle(T angle) + { + return abs(mod(angle, two_pi())); + } + + template + GLM_FUNC_QUALIFIER vec wrapAngle(vec const& x) + { + return detail::functor1::call(wrapAngle, x); + } + + // cos + template + GLM_FUNC_QUALIFIER T fastCos(T x) + { + T const angle(wrapAngle(x)); + + if(angle < half_pi()) + return detail::cos_52s(angle); + if(angle < pi()) + return -detail::cos_52s(pi() - angle); + if(angle < (T(3) * half_pi())) + return -detail::cos_52s(angle - pi()); + + return detail::cos_52s(two_pi() - angle); + } + + template + GLM_FUNC_QUALIFIER vec fastCos(vec const& x) + { + return detail::functor1::call(fastCos, x); + } + + // sin + template + GLM_FUNC_QUALIFIER T fastSin(T x) + { + return fastCos(half_pi() - x); + } + + template + GLM_FUNC_QUALIFIER vec fastSin(vec const& x) + { + return detail::functor1::call(fastSin, x); + } + + // tan + template + GLM_FUNC_QUALIFIER T fastTan(T x) + { + return x + (x * x * x * T(0.3333333333)) + (x * x * x * x * x * T(0.1333333333333)) + (x * x * x * x * x * x * x * T(0.0539682539)); + } + + template + GLM_FUNC_QUALIFIER vec fastTan(vec const& x) + { + return detail::functor1::call(fastTan, x); + } + + // asin + template + GLM_FUNC_QUALIFIER T fastAsin(T x) + { + return x + (x * x * x * T(0.166666667)) + (x * x * x * x * x * T(0.075)) + (x * x * x * x * x * x * x * T(0.0446428571)) + (x * x * x * x * x * x * x * x * x * T(0.0303819444));// + (x * x * x * x * x * x * x * x * x * x * x * T(0.022372159)); + } + + template + GLM_FUNC_QUALIFIER vec fastAsin(vec const& x) + { + return detail::functor1::call(fastAsin, x); + } + + // acos + template + GLM_FUNC_QUALIFIER T fastAcos(T x) + { + return T(1.5707963267948966192313216916398) - fastAsin(x); //(PI / 2) + } + + template + GLM_FUNC_QUALIFIER vec fastAcos(vec const& x) + { + return detail::functor1::call(fastAcos, x); + } + + // atan + template + GLM_FUNC_QUALIFIER T fastAtan(T y, T x) + { + T sgn = sign(y) * sign(x); + return abs(fastAtan(y / x)) * sgn; + } + + template + GLM_FUNC_QUALIFIER vec fastAtan(vec const& y, vec const& x) + { + return detail::functor2::call(fastAtan, y, x); + } + + template + GLM_FUNC_QUALIFIER T fastAtan(T x) + { + return x - (x * x * x * T(0.333333333333)) + (x * x * x * x * x * T(0.2)) - (x * x * x * x * x * x * x * T(0.1428571429)) + (x * x * x * x * x * x * x * x * x * T(0.111111111111)) - (x * x * x * x * x * x * x * x * x * x * x * T(0.0909090909)); + } + + template + GLM_FUNC_QUALIFIER vec fastAtan(vec const& x) + { + return detail::functor1::call(fastAtan, x); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/float_notmalize.inl b/thirdparty/glm/glm/gtx/float_notmalize.inl new file mode 100644 index 000000000000..8cdbc5aaa9c3 --- /dev/null +++ b/thirdparty/glm/glm/gtx/float_notmalize.inl @@ -0,0 +1,13 @@ +/// @ref gtx_float_normalize + +#include + +namespace glm +{ + template + GLM_FUNC_QUALIFIER vec floatNormalize(vec const& v) + { + return vec(v) / static_cast(std::numeric_limits::max()); + } + +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/functions.hpp b/thirdparty/glm/glm/gtx/functions.hpp new file mode 100644 index 000000000000..9f4166c4c1c8 --- /dev/null +++ b/thirdparty/glm/glm/gtx/functions.hpp @@ -0,0 +1,56 @@ +/// @ref gtx_functions +/// @file glm/gtx/functions.hpp +/// +/// @see core (dependence) +/// @see gtc_quaternion (dependence) +/// +/// @defgroup gtx_functions GLM_GTX_functions +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// List of useful common functions. + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" +#include "../detail/qualifier.hpp" +#include "../detail/type_vec2.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_functions is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_functions extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_functions + /// @{ + + /// 1D gauss function + /// + /// @see gtc_epsilon + template + GLM_FUNC_DECL T gauss( + T x, + T ExpectedValue, + T StandardDeviation); + + /// 2D gauss function + /// + /// @see gtc_epsilon + template + GLM_FUNC_DECL T gauss( + vec<2, T, Q> const& Coord, + vec<2, T, Q> const& ExpectedValue, + vec<2, T, Q> const& StandardDeviation); + + /// @} +}//namespace glm + +#include "functions.inl" + diff --git a/thirdparty/glm/glm/gtx/functions.inl b/thirdparty/glm/glm/gtx/functions.inl new file mode 100644 index 000000000000..29cbb20b80fa --- /dev/null +++ b/thirdparty/glm/glm/gtx/functions.inl @@ -0,0 +1,30 @@ +/// @ref gtx_functions + +#include "../exponential.hpp" + +namespace glm +{ + template + GLM_FUNC_QUALIFIER T gauss + ( + T x, + T ExpectedValue, + T StandardDeviation + ) + { + return exp(-((x - ExpectedValue) * (x - ExpectedValue)) / (static_cast(2) * StandardDeviation * StandardDeviation)) / (StandardDeviation * sqrt(static_cast(6.28318530717958647692528676655900576))); + } + + template + GLM_FUNC_QUALIFIER T gauss + ( + vec<2, T, Q> const& Coord, + vec<2, T, Q> const& ExpectedValue, + vec<2, T, Q> const& StandardDeviation + ) + { + vec<2, T, Q> const Squared = ((Coord - ExpectedValue) * (Coord - ExpectedValue)) / (static_cast(2) * StandardDeviation * StandardDeviation); + return exp(-(Squared.x + Squared.y)); + } +}//namespace glm + diff --git a/thirdparty/glm/glm/gtx/gradient_paint.hpp b/thirdparty/glm/glm/gtx/gradient_paint.hpp new file mode 100644 index 000000000000..6f85bf482d9f --- /dev/null +++ b/thirdparty/glm/glm/gtx/gradient_paint.hpp @@ -0,0 +1,53 @@ +/// @ref gtx_gradient_paint +/// @file glm/gtx/gradient_paint.hpp +/// +/// @see core (dependence) +/// @see gtx_optimum_pow (dependence) +/// +/// @defgroup gtx_gradient_paint GLM_GTX_gradient_paint +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Functions that return the color of procedural gradient for specific coordinates. + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../gtx/optimum_pow.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_gradient_paint is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_gradient_paint extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_gradient_paint + /// @{ + + /// Return a color from a radial gradient. + /// @see - gtx_gradient_paint + template + GLM_FUNC_DECL T radialGradient( + vec<2, T, Q> const& Center, + T const& Radius, + vec<2, T, Q> const& Focal, + vec<2, T, Q> const& Position); + + /// Return a color from a linear gradient. + /// @see - gtx_gradient_paint + template + GLM_FUNC_DECL T linearGradient( + vec<2, T, Q> const& Point0, + vec<2, T, Q> const& Point1, + vec<2, T, Q> const& Position); + + /// @} +}// namespace glm + +#include "gradient_paint.inl" diff --git a/thirdparty/glm/glm/gtx/gradient_paint.inl b/thirdparty/glm/glm/gtx/gradient_paint.inl new file mode 100644 index 000000000000..4c495e62cbff --- /dev/null +++ b/thirdparty/glm/glm/gtx/gradient_paint.inl @@ -0,0 +1,36 @@ +/// @ref gtx_gradient_paint + +namespace glm +{ + template + GLM_FUNC_QUALIFIER T radialGradient + ( + vec<2, T, Q> const& Center, + T const& Radius, + vec<2, T, Q> const& Focal, + vec<2, T, Q> const& Position + ) + { + vec<2, T, Q> F = Focal - Center; + vec<2, T, Q> D = Position - Focal; + T Radius2 = pow2(Radius); + T Fx2 = pow2(F.x); + T Fy2 = pow2(F.y); + + T Numerator = (D.x * F.x + D.y * F.y) + sqrt(Radius2 * (pow2(D.x) + pow2(D.y)) - pow2(D.x * F.y - D.y * F.x)); + T Denominator = Radius2 - (Fx2 + Fy2); + return Numerator / Denominator; + } + + template + GLM_FUNC_QUALIFIER T linearGradient + ( + vec<2, T, Q> const& Point0, + vec<2, T, Q> const& Point1, + vec<2, T, Q> const& Position + ) + { + vec<2, T, Q> Dist = Point1 - Point0; + return (Dist.x * (Position.x - Point0.x) + Dist.y * (Position.y - Point0.y)) / glm::dot(Dist, Dist); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/handed_coordinate_space.hpp b/thirdparty/glm/glm/gtx/handed_coordinate_space.hpp new file mode 100644 index 000000000000..e59e3e2ac273 --- /dev/null +++ b/thirdparty/glm/glm/gtx/handed_coordinate_space.hpp @@ -0,0 +1,50 @@ +/// @ref gtx_handed_coordinate_space +/// @file glm/gtx/handed_coordinate_space.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_handed_coordinate_space GLM_GTX_handed_coordinate_space +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// To know if a set of three basis vectors defines a right or left-handed coordinate system. + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_handed_coordinate_space is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_handed_coordinate_space extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_handed_coordinate_space + /// @{ + + //! Return if a trihedron right handed or not. + //! From GLM_GTX_handed_coordinate_space extension. + template + GLM_FUNC_DECL bool rightHanded( + vec<3, T, Q> const& tangent, + vec<3, T, Q> const& binormal, + vec<3, T, Q> const& normal); + + //! Return if a trihedron left handed or not. + //! From GLM_GTX_handed_coordinate_space extension. + template + GLM_FUNC_DECL bool leftHanded( + vec<3, T, Q> const& tangent, + vec<3, T, Q> const& binormal, + vec<3, T, Q> const& normal); + + /// @} +}// namespace glm + +#include "handed_coordinate_space.inl" diff --git a/thirdparty/glm/glm/gtx/handed_coordinate_space.inl b/thirdparty/glm/glm/gtx/handed_coordinate_space.inl new file mode 100644 index 000000000000..e43c17bd3120 --- /dev/null +++ b/thirdparty/glm/glm/gtx/handed_coordinate_space.inl @@ -0,0 +1,26 @@ +/// @ref gtx_handed_coordinate_space + +namespace glm +{ + template + GLM_FUNC_QUALIFIER bool rightHanded + ( + vec<3, T, Q> const& tangent, + vec<3, T, Q> const& binormal, + vec<3, T, Q> const& normal + ) + { + return dot(cross(normal, tangent), binormal) > T(0); + } + + template + GLM_FUNC_QUALIFIER bool leftHanded + ( + vec<3, T, Q> const& tangent, + vec<3, T, Q> const& binormal, + vec<3, T, Q> const& normal + ) + { + return dot(cross(normal, tangent), binormal) < T(0); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/hash.hpp b/thirdparty/glm/glm/gtx/hash.hpp new file mode 100644 index 000000000000..ef89290b439f --- /dev/null +++ b/thirdparty/glm/glm/gtx/hash.hpp @@ -0,0 +1,146 @@ +/// @ref gtx_hash +/// @file glm/gtx/hash.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_hash GLM_GTX_hash +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Add std::hash support for glm types + +#pragma once + +#if defined(GLM_FORCE_MESSAGES) && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_hash is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_hash extension included") +# endif +#endif + +#include "../vec2.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" +#include "../gtc/vec1.hpp" + +#include "../gtc/quaternion.hpp" +#include "../gtx/dual_quaternion.hpp" + +#include "../mat2x2.hpp" +#include "../mat2x3.hpp" +#include "../mat2x4.hpp" + +#include "../mat3x2.hpp" +#include "../mat3x3.hpp" +#include "../mat3x4.hpp" + +#include "../mat4x2.hpp" +#include "../mat4x3.hpp" +#include "../mat4x4.hpp" + +#if __cplusplus < 201103L +#pragma message("GLM_GTX_hash requires C++11 standard library support") +#endif + +#if GLM_LANG & GLM_LANG_CXX11 +#define GLM_GTX_hash 1 +#include + +namespace std +{ + template + struct hash > + { + GLM_FUNC_DECL size_t operator()(glm::vec<1, T, Q> const& v) const GLM_NOEXCEPT; + }; + + template + struct hash > + { + GLM_FUNC_DECL size_t operator()(glm::vec<2, T, Q> const& v) const GLM_NOEXCEPT; + }; + + template + struct hash > + { + GLM_FUNC_DECL size_t operator()(glm::vec<3, T, Q> const& v) const GLM_NOEXCEPT; + }; + + template + struct hash > + { + GLM_FUNC_DECL size_t operator()(glm::vec<4, T, Q> const& v) const GLM_NOEXCEPT; + }; + + template + struct hash > + { + GLM_FUNC_DECL size_t operator()(glm::qua const& q) const GLM_NOEXCEPT; + }; + + template + struct hash > + { + GLM_FUNC_DECL size_t operator()(glm::tdualquat const& q) const GLM_NOEXCEPT; + }; + + template + struct hash > + { + GLM_FUNC_DECL size_t operator()(glm::mat<2, 2, T,Q> const& m) const GLM_NOEXCEPT; + }; + + template + struct hash > + { + GLM_FUNC_DECL size_t operator()(glm::mat<2, 3, T,Q> const& m) const GLM_NOEXCEPT; + }; + + template + struct hash > + { + GLM_FUNC_DECL size_t operator()(glm::mat<2, 4, T,Q> const& m) const GLM_NOEXCEPT; + }; + + template + struct hash > + { + GLM_FUNC_DECL size_t operator()(glm::mat<3, 2, T,Q> const& m) const GLM_NOEXCEPT; + }; + + template + struct hash > + { + GLM_FUNC_DECL size_t operator()(glm::mat<3, 3, T,Q> const& m) const GLM_NOEXCEPT; + }; + + template + struct hash > + { + GLM_FUNC_DECL size_t operator()(glm::mat<3, 4, T,Q> const& m) const GLM_NOEXCEPT; + }; + + template + struct hash > + { + GLM_FUNC_DECL size_t operator()(glm::mat<4, 2, T,Q> const& m) const GLM_NOEXCEPT; + }; + + template + struct hash > + { + GLM_FUNC_DECL size_t operator()(glm::mat<4, 3, T,Q> const& m) const GLM_NOEXCEPT; + }; + + template + struct hash > + { + GLM_FUNC_DECL size_t operator()(glm::mat<4, 4, T,Q> const& m) const GLM_NOEXCEPT; + }; +} // namespace std + +#include "hash.inl" + +#endif //GLM_LANG & GLM_LANG_CXX11 diff --git a/thirdparty/glm/glm/gtx/hash.inl b/thirdparty/glm/glm/gtx/hash.inl new file mode 100644 index 000000000000..bcadfe53e558 --- /dev/null +++ b/thirdparty/glm/glm/gtx/hash.inl @@ -0,0 +1,175 @@ +/// @ref gtx_hash + +namespace glm { +namespace detail +{ + GLM_INLINE void hash_combine(size_t &seed, size_t hash) + { + hash += 0x9e3779b9 + (seed << 6) + (seed >> 2); + seed ^= hash; + } +}} + +namespace std +{ + template + GLM_FUNC_QUALIFIER size_t hash >::operator()(glm::vec<1, T, Q> const& v) const GLM_NOEXCEPT + { + hash hasher; + return hasher(v.x); + } + + template + GLM_FUNC_QUALIFIER size_t hash >::operator()(glm::vec<2, T, Q> const& v) const GLM_NOEXCEPT + { + size_t seed = 0; + hash hasher; + glm::detail::hash_combine(seed, hasher(v.x)); + glm::detail::hash_combine(seed, hasher(v.y)); + return seed; + } + + template + GLM_FUNC_QUALIFIER size_t hash >::operator()(glm::vec<3, T, Q> const& v) const GLM_NOEXCEPT + { + size_t seed = 0; + hash hasher; + glm::detail::hash_combine(seed, hasher(v.x)); + glm::detail::hash_combine(seed, hasher(v.y)); + glm::detail::hash_combine(seed, hasher(v.z)); + return seed; + } + + template + GLM_FUNC_QUALIFIER size_t hash >::operator()(glm::vec<4, T, Q> const& v) const GLM_NOEXCEPT + { + size_t seed = 0; + hash hasher; + glm::detail::hash_combine(seed, hasher(v.x)); + glm::detail::hash_combine(seed, hasher(v.y)); + glm::detail::hash_combine(seed, hasher(v.z)); + glm::detail::hash_combine(seed, hasher(v.w)); + return seed; + } + + template + GLM_FUNC_QUALIFIER size_t hash >::operator()(glm::qua const& q) const GLM_NOEXCEPT + { + size_t seed = 0; + hash hasher; + glm::detail::hash_combine(seed, hasher(q.x)); + glm::detail::hash_combine(seed, hasher(q.y)); + glm::detail::hash_combine(seed, hasher(q.z)); + glm::detail::hash_combine(seed, hasher(q.w)); + return seed; + } + + template + GLM_FUNC_QUALIFIER size_t hash >::operator()(glm::tdualquat const& q) const GLM_NOEXCEPT + { + size_t seed = 0; + hash > hasher; + glm::detail::hash_combine(seed, hasher(q.real)); + glm::detail::hash_combine(seed, hasher(q.dual)); + return seed; + } + + template + GLM_FUNC_QUALIFIER size_t hash >::operator()(glm::mat<2, 2, T, Q> const& m) const GLM_NOEXCEPT + { + size_t seed = 0; + hash > hasher; + glm::detail::hash_combine(seed, hasher(m[0])); + glm::detail::hash_combine(seed, hasher(m[1])); + return seed; + } + + template + GLM_FUNC_QUALIFIER size_t hash >::operator()(glm::mat<2, 3, T, Q> const& m) const GLM_NOEXCEPT + { + size_t seed = 0; + hash > hasher; + glm::detail::hash_combine(seed, hasher(m[0])); + glm::detail::hash_combine(seed, hasher(m[1])); + return seed; + } + + template + GLM_FUNC_QUALIFIER size_t hash >::operator()(glm::mat<2, 4, T, Q> const& m) const GLM_NOEXCEPT + { + size_t seed = 0; + hash > hasher; + glm::detail::hash_combine(seed, hasher(m[0])); + glm::detail::hash_combine(seed, hasher(m[1])); + return seed; + } + + template + GLM_FUNC_QUALIFIER size_t hash >::operator()(glm::mat<3, 2, T, Q> const& m) const GLM_NOEXCEPT + { + size_t seed = 0; + hash > hasher; + glm::detail::hash_combine(seed, hasher(m[0])); + glm::detail::hash_combine(seed, hasher(m[1])); + glm::detail::hash_combine(seed, hasher(m[2])); + return seed; + } + + template + GLM_FUNC_QUALIFIER size_t hash >::operator()(glm::mat<3, 3, T, Q> const& m) const GLM_NOEXCEPT + { + size_t seed = 0; + hash > hasher; + glm::detail::hash_combine(seed, hasher(m[0])); + glm::detail::hash_combine(seed, hasher(m[1])); + glm::detail::hash_combine(seed, hasher(m[2])); + return seed; + } + + template + GLM_FUNC_QUALIFIER size_t hash >::operator()(glm::mat<3, 4, T, Q> const& m) const GLM_NOEXCEPT + { + size_t seed = 0; + hash > hasher; + glm::detail::hash_combine(seed, hasher(m[0])); + glm::detail::hash_combine(seed, hasher(m[1])); + glm::detail::hash_combine(seed, hasher(m[2])); + return seed; + } + + template + GLM_FUNC_QUALIFIER size_t hash >::operator()(glm::mat<4, 2, T,Q> const& m) const GLM_NOEXCEPT + { + size_t seed = 0; + hash > hasher; + glm::detail::hash_combine(seed, hasher(m[0])); + glm::detail::hash_combine(seed, hasher(m[1])); + glm::detail::hash_combine(seed, hasher(m[2])); + glm::detail::hash_combine(seed, hasher(m[3])); + return seed; + } + + template + GLM_FUNC_QUALIFIER size_t hash >::operator()(glm::mat<4, 3, T,Q> const& m) const GLM_NOEXCEPT + { + size_t seed = 0; + hash > hasher; + glm::detail::hash_combine(seed, hasher(m[0])); + glm::detail::hash_combine(seed, hasher(m[1])); + glm::detail::hash_combine(seed, hasher(m[2])); + glm::detail::hash_combine(seed, hasher(m[3])); + return seed; + } + + template + GLM_FUNC_QUALIFIER size_t hash >::operator()(glm::mat<4, 4, T, Q> const& m) const GLM_NOEXCEPT + { + size_t seed = 0; + hash > hasher; + glm::detail::hash_combine(seed, hasher(m[0])); + glm::detail::hash_combine(seed, hasher(m[1])); + glm::detail::hash_combine(seed, hasher(m[2])); + glm::detail::hash_combine(seed, hasher(m[3])); + return seed; + } +} diff --git a/thirdparty/glm/glm/gtx/integer.hpp b/thirdparty/glm/glm/gtx/integer.hpp new file mode 100644 index 000000000000..d0b4c61a3fd4 --- /dev/null +++ b/thirdparty/glm/glm/gtx/integer.hpp @@ -0,0 +1,76 @@ +/// @ref gtx_integer +/// @file glm/gtx/integer.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_integer GLM_GTX_integer +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Add support for integer for core functions + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../gtc/integer.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_integer is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_integer extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_integer + /// @{ + + //! Returns x raised to the y power. + //! From GLM_GTX_integer extension. + GLM_FUNC_DECL int pow(int x, uint y); + + //! Returns the positive square root of x. + //! From GLM_GTX_integer extension. + GLM_FUNC_DECL int sqrt(int x); + + //! Returns the floor log2 of x. + //! From GLM_GTX_integer extension. + GLM_FUNC_DECL unsigned int floor_log2(unsigned int x); + + //! Modulus. Returns x - y * floor(x / y) for each component in x using the floating point value y. + //! From GLM_GTX_integer extension. + GLM_FUNC_DECL int mod(int x, int y); + + //! Return the factorial value of a number (!12 max, integer only) + //! From GLM_GTX_integer extension. + template + GLM_FUNC_DECL genType factorial(genType const& x); + + //! 32bit signed integer. + //! From GLM_GTX_integer extension. + typedef signed int sint; + + //! Returns x raised to the y power. + //! From GLM_GTX_integer extension. + GLM_FUNC_DECL uint pow(uint x, uint y); + + //! Returns the positive square root of x. + //! From GLM_GTX_integer extension. + GLM_FUNC_DECL uint sqrt(uint x); + + //! Modulus. Returns x - y * floor(x / y) for each component in x using the floating point value y. + //! From GLM_GTX_integer extension. + GLM_FUNC_DECL uint mod(uint x, uint y); + + //! Returns the number of leading zeros. + //! From GLM_GTX_integer extension. + GLM_FUNC_DECL uint nlz(uint x); + + /// @} +}//namespace glm + +#include "integer.inl" diff --git a/thirdparty/glm/glm/gtx/integer.inl b/thirdparty/glm/glm/gtx/integer.inl new file mode 100644 index 000000000000..956366b250f8 --- /dev/null +++ b/thirdparty/glm/glm/gtx/integer.inl @@ -0,0 +1,185 @@ +/// @ref gtx_integer + +namespace glm +{ + // pow + GLM_FUNC_QUALIFIER int pow(int x, uint y) + { + if(y == 0) + return x >= 0 ? 1 : -1; + + int result = x; + for(uint i = 1; i < y; ++i) + result *= x; + return result; + } + + // sqrt: From Christopher J. Musial, An integer square root, Graphics Gems, 1990, page 387 + GLM_FUNC_QUALIFIER int sqrt(int x) + { + if(x <= 1) return x; + + int NextTrial = x >> 1; + int CurrentAnswer; + + do + { + CurrentAnswer = NextTrial; + NextTrial = (NextTrial + x / NextTrial) >> 1; + } while(NextTrial < CurrentAnswer); + + return CurrentAnswer; + } + +// Henry Gordon Dietz: http://aggregate.org/MAGIC/ +namespace detail +{ + GLM_FUNC_QUALIFIER unsigned int ones32(unsigned int x) + { + /* 32-bit recursive reduction using SWAR... + but first step is mapping 2-bit values + into sum of 2 1-bit values in sneaky way + */ + x -= ((x >> 1) & 0x55555555); + x = (((x >> 2) & 0x33333333) + (x & 0x33333333)); + x = (((x >> 4) + x) & 0x0f0f0f0f); + x += (x >> 8); + x += (x >> 16); + return(x & 0x0000003f); + } +}//namespace detail + + // Henry Gordon Dietz: http://aggregate.org/MAGIC/ +/* + GLM_FUNC_QUALIFIER unsigned int floor_log2(unsigned int x) + { + x |= (x >> 1); + x |= (x >> 2); + x |= (x >> 4); + x |= (x >> 8); + x |= (x >> 16); + + return _detail::ones32(x) >> 1; + } +*/ + // mod + GLM_FUNC_QUALIFIER int mod(int x, int y) + { + return ((x % y) + y) % y; + } + + // factorial (!12 max, integer only) + template + GLM_FUNC_QUALIFIER genType factorial(genType const& x) + { + genType Temp = x; + genType Result; + for(Result = 1; Temp > 1; --Temp) + Result *= Temp; + return Result; + } + + template + GLM_FUNC_QUALIFIER vec<2, T, Q> factorial( + vec<2, T, Q> const& x) + { + return vec<2, T, Q>( + factorial(x.x), + factorial(x.y)); + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> factorial( + vec<3, T, Q> const& x) + { + return vec<3, T, Q>( + factorial(x.x), + factorial(x.y), + factorial(x.z)); + } + + template + GLM_FUNC_QUALIFIER vec<4, T, Q> factorial( + vec<4, T, Q> const& x) + { + return vec<4, T, Q>( + factorial(x.x), + factorial(x.y), + factorial(x.z), + factorial(x.w)); + } + + GLM_FUNC_QUALIFIER uint pow(uint x, uint y) + { + if (y == 0) + return 1u; + + uint result = x; + for(uint i = 1; i < y; ++i) + result *= x; + return result; + } + + GLM_FUNC_QUALIFIER uint sqrt(uint x) + { + if(x <= 1) return x; + + uint NextTrial = x >> 1; + uint CurrentAnswer; + + do + { + CurrentAnswer = NextTrial; + NextTrial = (NextTrial + x / NextTrial) >> 1; + } while(NextTrial < CurrentAnswer); + + return CurrentAnswer; + } + + GLM_FUNC_QUALIFIER uint mod(uint x, uint y) + { + return x - y * (x / y); + } + +#if(GLM_COMPILER & (GLM_COMPILER_VC | GLM_COMPILER_GCC)) + + GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x) + { + return 31u - findMSB(x); + } + +#else + + // Hackers Delight: http://www.hackersdelight.org/HDcode/nlz.c.txt + GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x) + { + int y, m, n; + + y = -int(x >> 16); // If left half of x is 0, + m = (y >> 16) & 16; // set n = 16. If left half + n = 16 - m; // is nonzero, set n = 0 and + x = x >> m; // shift x right 16. + // Now x is of the form 0000xxxx. + y = x - 0x100; // If positions 8-15 are 0, + m = (y >> 16) & 8; // add 8 to n and shift x left 8. + n = n + m; + x = x << m; + + y = x - 0x1000; // If positions 12-15 are 0, + m = (y >> 16) & 4; // add 4 to n and shift x left 4. + n = n + m; + x = x << m; + + y = x - 0x4000; // If positions 14-15 are 0, + m = (y >> 16) & 2; // add 2 to n and shift x left 2. + n = n + m; + x = x << m; + + y = x >> 14; // Set y = 0, 1, 2, or 3. + m = y & ~(y >> 1); // Set m = 0, 1, 2, or 2 resp. + return unsigned(n + 2 - m); + } + +#endif//(GLM_COMPILER) + +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/intersect.hpp b/thirdparty/glm/glm/gtx/intersect.hpp new file mode 100644 index 000000000000..f5c0621deb1a --- /dev/null +++ b/thirdparty/glm/glm/gtx/intersect.hpp @@ -0,0 +1,92 @@ +/// @ref gtx_intersect +/// @file glm/gtx/intersect.hpp +/// +/// @see core (dependence) +/// @see gtx_closest_point (dependence) +/// +/// @defgroup gtx_intersect GLM_GTX_intersect +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Add intersection functions + +#pragma once + +// Dependency: +#include +#include +#include "../glm.hpp" +#include "../geometric.hpp" +#include "../gtx/closest_point.hpp" +#include "../gtx/vector_query.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_closest_point is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_closest_point extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_intersect + /// @{ + + //! Compute the intersection of a ray and a plane. + //! Ray direction and plane normal must be unit length. + //! From GLM_GTX_intersect extension. + template + GLM_FUNC_DECL bool intersectRayPlane( + genType const& orig, genType const& dir, + genType const& planeOrig, genType const& planeNormal, + typename genType::value_type & intersectionDistance); + + //! Compute the intersection of a ray and a triangle. + /// Based om Tomas Möller implementation http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/raytri/ + //! From GLM_GTX_intersect extension. + template + GLM_FUNC_DECL bool intersectRayTriangle( + vec<3, T, Q> const& orig, vec<3, T, Q> const& dir, + vec<3, T, Q> const& v0, vec<3, T, Q> const& v1, vec<3, T, Q> const& v2, + vec<2, T, Q>& baryPosition, T& distance); + + //! Compute the intersection of a line and a triangle. + //! From GLM_GTX_intersect extension. + template + GLM_FUNC_DECL bool intersectLineTriangle( + genType const& orig, genType const& dir, + genType const& vert0, genType const& vert1, genType const& vert2, + genType & position); + + //! Compute the intersection distance of a ray and a sphere. + //! The ray direction vector is unit length. + //! From GLM_GTX_intersect extension. + template + GLM_FUNC_DECL bool intersectRaySphere( + genType const& rayStarting, genType const& rayNormalizedDirection, + genType const& sphereCenter, typename genType::value_type const sphereRadiusSquared, + typename genType::value_type & intersectionDistance); + + //! Compute the intersection of a ray and a sphere. + //! From GLM_GTX_intersect extension. + template + GLM_FUNC_DECL bool intersectRaySphere( + genType const& rayStarting, genType const& rayNormalizedDirection, + genType const& sphereCenter, const typename genType::value_type sphereRadius, + genType & intersectionPosition, genType & intersectionNormal); + + //! Compute the intersection of a line and a sphere. + //! From GLM_GTX_intersect extension + template + GLM_FUNC_DECL bool intersectLineSphere( + genType const& point0, genType const& point1, + genType const& sphereCenter, typename genType::value_type sphereRadius, + genType & intersectionPosition1, genType & intersectionNormal1, + genType & intersectionPosition2 = genType(), genType & intersectionNormal2 = genType()); + + /// @} +}//namespace glm + +#include "intersect.inl" diff --git a/thirdparty/glm/glm/gtx/intersect.inl b/thirdparty/glm/glm/gtx/intersect.inl new file mode 100644 index 000000000000..925a903d4a02 --- /dev/null +++ b/thirdparty/glm/glm/gtx/intersect.inl @@ -0,0 +1,200 @@ +/// @ref gtx_intersect + +namespace glm +{ + template + GLM_FUNC_QUALIFIER bool intersectRayPlane + ( + genType const& orig, genType const& dir, + genType const& planeOrig, genType const& planeNormal, + typename genType::value_type & intersectionDistance + ) + { + typename genType::value_type d = glm::dot(dir, planeNormal); + typename genType::value_type Epsilon = std::numeric_limits::epsilon(); + + if(glm::abs(d) > Epsilon) // if dir and planeNormal are not perpendicular + { + typename genType::value_type const tmp_intersectionDistance = glm::dot(planeOrig - orig, planeNormal) / d; + if (tmp_intersectionDistance > static_cast(0)) { // allow only intersections + intersectionDistance = tmp_intersectionDistance; + return true; + } + } + + return false; + } + + template + GLM_FUNC_QUALIFIER bool intersectRayTriangle + ( + vec<3, T, Q> const& orig, vec<3, T, Q> const& dir, + vec<3, T, Q> const& vert0, vec<3, T, Q> const& vert1, vec<3, T, Q> const& vert2, + vec<2, T, Q>& baryPosition, T& distance + ) + { + // find vectors for two edges sharing vert0 + vec<3, T, Q> const edge1 = vert1 - vert0; + vec<3, T, Q> const edge2 = vert2 - vert0; + + // begin calculating determinant - also used to calculate U parameter + vec<3, T, Q> const p = glm::cross(dir, edge2); + + // if determinant is near zero, ray lies in plane of triangle + T const det = glm::dot(edge1, p); + + vec<3, T, Q> Perpendicular(0); + + if (det > static_cast(0)) + { + // calculate distance from vert0 to ray origin + vec<3, T, Q> const dist = orig - vert0; + + // calculate U parameter and test bounds + baryPosition.x = glm::dot(dist, p); + if(baryPosition.x < static_cast(0) || baryPosition.x > det) + return false; + + // prepare to test V parameter + Perpendicular = glm::cross(dist, edge1); + + // calculate V parameter and test bounds + baryPosition.y = glm::dot(dir, Perpendicular); + if((baryPosition.y < static_cast(0)) || ((baryPosition.x + baryPosition.y) > det)) + return false; + } + else if(det < static_cast(0)) + { + // calculate distance from vert0 to ray origin + vec<3, T, Q> const dist = orig - vert0; + + // calculate U parameter and test bounds + baryPosition.x = glm::dot(dist, p); + if((baryPosition.x > static_cast(0)) || (baryPosition.x < det)) + return false; + + // prepare to test V parameter + Perpendicular = glm::cross(dist, edge1); + + // calculate V parameter and test bounds + baryPosition.y = glm::dot(dir, Perpendicular); + if((baryPosition.y > static_cast(0)) || (baryPosition.x + baryPosition.y < det)) + return false; + } + else + return false; // ray is parallel to the plane of the triangle + + T inv_det = static_cast(1) / det; + + // calculate distance, ray intersects triangle + distance = glm::dot(edge2, Perpendicular) * inv_det; + baryPosition *= inv_det; + + return true; + } + + template + GLM_FUNC_QUALIFIER bool intersectLineTriangle + ( + genType const& orig, genType const& dir, + genType const& vert0, genType const& vert1, genType const& vert2, + genType & position + ) + { + typename genType::value_type Epsilon = std::numeric_limits::epsilon(); + + genType edge1 = vert1 - vert0; + genType edge2 = vert2 - vert0; + + genType Perpendicular = cross(dir, edge2); + + typename genType::value_type det = dot(edge1, Perpendicular); + + if (det > -Epsilon && det < Epsilon) + return false; + typename genType::value_type inv_det = typename genType::value_type(1) / det; + + genType Tangent = orig - vert0; + + position.y = dot(Tangent, Perpendicular) * inv_det; + if (position.y < typename genType::value_type(0) || position.y > typename genType::value_type(1)) + return false; + + genType Cotangent = cross(Tangent, edge1); + + position.z = dot(dir, Cotangent) * inv_det; + if (position.z < typename genType::value_type(0) || position.y + position.z > typename genType::value_type(1)) + return false; + + position.x = dot(edge2, Cotangent) * inv_det; + + return true; + } + + template + GLM_FUNC_QUALIFIER bool intersectRaySphere + ( + genType const& rayStarting, genType const& rayNormalizedDirection, + genType const& sphereCenter, const typename genType::value_type sphereRadiusSquared, + typename genType::value_type & intersectionDistance + ) + { + typename genType::value_type Epsilon = std::numeric_limits::epsilon(); + genType diff = sphereCenter - rayStarting; + typename genType::value_type t0 = dot(diff, rayNormalizedDirection); + typename genType::value_type dSquared = dot(diff, diff) - t0 * t0; + if( dSquared > sphereRadiusSquared ) + { + return false; + } + typename genType::value_type t1 = sqrt( sphereRadiusSquared - dSquared ); + intersectionDistance = t0 > t1 + Epsilon ? t0 - t1 : t0 + t1; + return intersectionDistance > Epsilon; + } + + template + GLM_FUNC_QUALIFIER bool intersectRaySphere + ( + genType const& rayStarting, genType const& rayNormalizedDirection, + genType const& sphereCenter, const typename genType::value_type sphereRadius, + genType & intersectionPosition, genType & intersectionNormal + ) + { + typename genType::value_type distance; + if( intersectRaySphere( rayStarting, rayNormalizedDirection, sphereCenter, sphereRadius * sphereRadius, distance ) ) + { + intersectionPosition = rayStarting + rayNormalizedDirection * distance; + intersectionNormal = (intersectionPosition - sphereCenter) / sphereRadius; + return true; + } + return false; + } + + template + GLM_FUNC_QUALIFIER bool intersectLineSphere + ( + genType const& point0, genType const& point1, + genType const& sphereCenter, typename genType::value_type sphereRadius, + genType & intersectionPoint1, genType & intersectionNormal1, + genType & intersectionPoint2, genType & intersectionNormal2 + ) + { + typename genType::value_type Epsilon = std::numeric_limits::epsilon(); + genType dir = normalize(point1 - point0); + genType diff = sphereCenter - point0; + typename genType::value_type t0 = dot(diff, dir); + typename genType::value_type dSquared = dot(diff, diff) - t0 * t0; + if( dSquared > sphereRadius * sphereRadius ) + { + return false; + } + typename genType::value_type t1 = sqrt( sphereRadius * sphereRadius - dSquared ); + if( t0 < t1 + Epsilon ) + t1 = -t1; + intersectionPoint1 = point0 + dir * (t0 - t1); + intersectionNormal1 = (intersectionPoint1 - sphereCenter) / sphereRadius; + intersectionPoint2 = point0 + dir * (t0 + t1); + intersectionNormal2 = (intersectionPoint2 - sphereCenter) / sphereRadius; + return true; + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/io.hpp b/thirdparty/glm/glm/gtx/io.hpp new file mode 100644 index 000000000000..68b5499bfbe7 --- /dev/null +++ b/thirdparty/glm/glm/gtx/io.hpp @@ -0,0 +1,201 @@ +/// @ref gtx_io +/// @file glm/gtx/io.hpp +/// @author Jan P Springer (regnirpsj@gmail.com) +/// +/// @see core (dependence) +/// @see gtc_matrix_access (dependence) +/// @see gtc_quaternion (dependence) +/// +/// @defgroup gtx_io GLM_GTX_io +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// std::[w]ostream support for glm types +/// +/// std::[w]ostream support for glm types + qualifier/width/etc. manipulators +/// based on howard hinnant's std::chrono io proposal +/// [http://home.roadrunner.com/~hinnant/bloomington/chrono_io.html] + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../gtx/quaternion.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_io is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_io extension included") +# endif +#endif + +#include // std::basic_ostream<> (fwd) +#include // std::locale, std::locale::facet, std::locale::id +#include // std::pair<> + +namespace glm +{ + /// @addtogroup gtx_io + /// @{ + + namespace io + { + enum order_type { column_major, row_major}; + + template + class format_punct : public std::locale::facet + { + typedef CTy char_type; + + public: + + static std::locale::id id; + + bool formatted; + unsigned precision; + unsigned width; + char_type separator; + char_type delim_left; + char_type delim_right; + char_type space; + char_type newline; + order_type order; + + GLM_FUNC_DECL explicit format_punct(size_t a = 0); + GLM_FUNC_DECL explicit format_punct(format_punct const&); + }; + + template > + class basic_state_saver { + + public: + + GLM_FUNC_DECL explicit basic_state_saver(std::basic_ios&); + GLM_FUNC_DECL ~basic_state_saver(); + + private: + + typedef ::std::basic_ios state_type; + typedef typename state_type::char_type char_type; + typedef ::std::ios_base::fmtflags flags_type; + typedef ::std::streamsize streamsize_type; + typedef ::std::locale const locale_type; + + state_type& state_; + flags_type flags_; + streamsize_type precision_; + streamsize_type width_; + char_type fill_; + locale_type locale_; + + GLM_FUNC_DECL basic_state_saver& operator=(basic_state_saver const&); + }; + + typedef basic_state_saver state_saver; + typedef basic_state_saver wstate_saver; + + template > + class basic_format_saver + { + public: + + GLM_FUNC_DECL explicit basic_format_saver(std::basic_ios&); + GLM_FUNC_DECL ~basic_format_saver(); + + private: + + basic_state_saver const bss_; + + GLM_FUNC_DECL basic_format_saver& operator=(basic_format_saver const&); + }; + + typedef basic_format_saver format_saver; + typedef basic_format_saver wformat_saver; + + struct precision + { + unsigned value; + + GLM_FUNC_DECL explicit precision(unsigned); + }; + + struct width + { + unsigned value; + + GLM_FUNC_DECL explicit width(unsigned); + }; + + template + struct delimeter + { + CTy value[3]; + + GLM_FUNC_DECL explicit delimeter(CTy /* left */, CTy /* right */, CTy /* separator */ = ','); + }; + + struct order + { + order_type value; + + GLM_FUNC_DECL explicit order(order_type); + }; + + // functions, inlined (inline) + + template + FTy const& get_facet(std::basic_ios&); + template + std::basic_ios& formatted(std::basic_ios&); + template + std::basic_ios& unformatted(std::basic_ios&); + + template + std::basic_ostream& operator<<(std::basic_ostream&, precision const&); + template + std::basic_ostream& operator<<(std::basic_ostream&, width const&); + template + std::basic_ostream& operator<<(std::basic_ostream&, delimeter const&); + template + std::basic_ostream& operator<<(std::basic_ostream&, order const&); + }//namespace io + + template + GLM_FUNC_DECL std::basic_ostream& operator<<(std::basic_ostream&, qua const&); + template + GLM_FUNC_DECL std::basic_ostream& operator<<(std::basic_ostream&, vec<1, T, Q> const&); + template + GLM_FUNC_DECL std::basic_ostream& operator<<(std::basic_ostream&, vec<2, T, Q> const&); + template + GLM_FUNC_DECL std::basic_ostream& operator<<(std::basic_ostream&, vec<3, T, Q> const&); + template + GLM_FUNC_DECL std::basic_ostream& operator<<(std::basic_ostream&, vec<4, T, Q> const&); + template + GLM_FUNC_DECL std::basic_ostream& operator<<(std::basic_ostream&, mat<2, 2, T, Q> const&); + template + GLM_FUNC_DECL std::basic_ostream& operator<<(std::basic_ostream&, mat<2, 3, T, Q> const&); + template + GLM_FUNC_DECL std::basic_ostream& operator<<(std::basic_ostream&, mat<2, 4, T, Q> const&); + template + GLM_FUNC_DECL std::basic_ostream& operator<<(std::basic_ostream&, mat<3, 2, T, Q> const&); + template + GLM_FUNC_DECL std::basic_ostream& operator<<(std::basic_ostream&, mat<3, 3, T, Q> const&); + template + GLM_FUNC_DECL std::basic_ostream& operator<<(std::basic_ostream&, mat<3, 4, T, Q> const&); + template + GLM_FUNC_DECL std::basic_ostream& operator<<(std::basic_ostream&, mat<4, 2, T, Q> const&); + template + GLM_FUNC_DECL std::basic_ostream& operator<<(std::basic_ostream&, mat<4, 3, T, Q> const&); + template + GLM_FUNC_DECL std::basic_ostream& operator<<(std::basic_ostream&, mat<4, 4, T, Q> const&); + + template + GLM_FUNC_DECL std::basic_ostream & operator<<(std::basic_ostream &, + std::pair const, mat<4, 4, T, Q> const> const&); + + /// @} +}//namespace glm + +#include "io.inl" diff --git a/thirdparty/glm/glm/gtx/io.inl b/thirdparty/glm/glm/gtx/io.inl new file mode 100644 index 000000000000..a3a1bb6c26b4 --- /dev/null +++ b/thirdparty/glm/glm/gtx/io.inl @@ -0,0 +1,440 @@ +/// @ref gtx_io +/// @author Jan P Springer (regnirpsj@gmail.com) + +#include // std::fixed, std::setfill<>, std::setprecision, std::right, std::setw +#include // std::basic_ostream<> +#include "../gtc/matrix_access.hpp" // glm::col, glm::row +#include "../gtx/type_trait.hpp" // glm::type<> + +namespace glm{ +namespace io +{ + template + GLM_FUNC_QUALIFIER format_punct::format_punct(size_t a) + : std::locale::facet(a) + , formatted(true) + , precision(3) + , width(1 + 4 + 1 + precision) + , separator(',') + , delim_left('[') + , delim_right(']') + , space(' ') + , newline('\n') + , order(column_major) + {} + + template + GLM_FUNC_QUALIFIER format_punct::format_punct(format_punct const& a) + : std::locale::facet(0) + , formatted(a.formatted) + , precision(a.precision) + , width(a.width) + , separator(a.separator) + , delim_left(a.delim_left) + , delim_right(a.delim_right) + , space(a.space) + , newline(a.newline) + , order(a.order) + {} + + template std::locale::id format_punct::id; + + template + GLM_FUNC_QUALIFIER basic_state_saver::basic_state_saver(std::basic_ios& a) + : state_(a) + , flags_(a.flags()) + , precision_(a.precision()) + , width_(a.width()) + , fill_(a.fill()) + , locale_(a.getloc()) + {} + + template + GLM_FUNC_QUALIFIER basic_state_saver::~basic_state_saver() + { + state_.imbue(locale_); + state_.fill(fill_); + state_.width(width_); + state_.precision(precision_); + state_.flags(flags_); + } + + template + GLM_FUNC_QUALIFIER basic_format_saver::basic_format_saver(std::basic_ios& a) + : bss_(a) + { + a.imbue(std::locale(a.getloc(), new format_punct(get_facet >(a)))); + } + + template + GLM_FUNC_QUALIFIER + basic_format_saver::~basic_format_saver() + {} + + GLM_FUNC_QUALIFIER precision::precision(unsigned a) + : value(a) + {} + + GLM_FUNC_QUALIFIER width::width(unsigned a) + : value(a) + {} + + template + GLM_FUNC_QUALIFIER delimeter::delimeter(CTy a, CTy b, CTy c) + : value() + { + value[0] = a; + value[1] = b; + value[2] = c; + } + + GLM_FUNC_QUALIFIER order::order(order_type a) + : value(a) + {} + + template + GLM_FUNC_QUALIFIER FTy const& get_facet(std::basic_ios& ios) + { + if(!std::has_facet(ios.getloc())) + ios.imbue(std::locale(ios.getloc(), new FTy)); + + return std::use_facet(ios.getloc()); + } + + template + GLM_FUNC_QUALIFIER std::basic_ios& formatted(std::basic_ios& ios) + { + const_cast&>(get_facet >(ios)).formatted = true; + return ios; + } + + template + GLM_FUNC_QUALIFIER std::basic_ios& unformatted(std::basic_ios& ios) + { + const_cast&>(get_facet >(ios)).formatted = false; + return ios; + } + + template + GLM_FUNC_QUALIFIER std::basic_ostream& operator<<(std::basic_ostream& os, precision const& a) + { + const_cast&>(get_facet >(os)).precision = a.value; + return os; + } + + template + GLM_FUNC_QUALIFIER std::basic_ostream& operator<<(std::basic_ostream& os, width const& a) + { + const_cast&>(get_facet >(os)).width = a.value; + return os; + } + + template + GLM_FUNC_QUALIFIER std::basic_ostream& operator<<(std::basic_ostream& os, delimeter const& a) + { + format_punct & fmt(const_cast&>(get_facet >(os))); + + fmt.delim_left = a.value[0]; + fmt.delim_right = a.value[1]; + fmt.separator = a.value[2]; + + return os; + } + + template + GLM_FUNC_QUALIFIER std::basic_ostream& operator<<(std::basic_ostream& os, order const& a) + { + const_cast&>(get_facet >(os)).order = a.value; + return os; + } +} // namespace io + +namespace detail +{ + template + GLM_FUNC_QUALIFIER std::basic_ostream& + print_vector_on(std::basic_ostream& os, V const& a) + { + typename std::basic_ostream::sentry const cerberus(os); + + if(cerberus) + { + io::format_punct const& fmt(io::get_facet >(os)); + + length_t const& components(type::components); + + if(fmt.formatted) + { + io::basic_state_saver const bss(os); + + os << std::fixed << std::right << std::setprecision(fmt.precision) << std::setfill(fmt.space) << fmt.delim_left; + + for(length_t i(0); i < components; ++i) + { + os << std::setw(fmt.width) << a[i]; + if(components-1 != i) + os << fmt.separator; + } + + os << fmt.delim_right; + } + else + { + for(length_t i(0); i < components; ++i) + { + os << a[i]; + + if(components-1 != i) + os << fmt.space; + } + } + } + + return os; + } +}//namespace detail + + template + GLM_FUNC_QUALIFIER std::basic_ostream& operator<<(std::basic_ostream& os, qua const& a) + { + return detail::print_vector_on(os, a); + } + + template + GLM_FUNC_QUALIFIER std::basic_ostream& operator<<(std::basic_ostream& os, vec<1, T, Q> const& a) + { + return detail::print_vector_on(os, a); + } + + template + GLM_FUNC_QUALIFIER std::basic_ostream& operator<<(std::basic_ostream& os, vec<2, T, Q> const& a) + { + return detail::print_vector_on(os, a); + } + + template + GLM_FUNC_QUALIFIER std::basic_ostream& operator<<(std::basic_ostream& os, vec<3, T, Q> const& a) + { + return detail::print_vector_on(os, a); + } + + template + GLM_FUNC_QUALIFIER std::basic_ostream& operator<<(std::basic_ostream& os, vec<4, T, Q> const& a) + { + return detail::print_vector_on(os, a); + } + +namespace detail +{ + template class M, length_t C, length_t R, typename T, qualifier Q> + GLM_FUNC_QUALIFIER std::basic_ostream& print_matrix_on(std::basic_ostream& os, M const& a) + { + typename std::basic_ostream::sentry const cerberus(os); + + if(cerberus) + { + io::format_punct const& fmt(io::get_facet >(os)); + + length_t const& cols(type >::cols); + length_t const& rows(type >::rows); + + if(fmt.formatted) + { + os << fmt.newline << fmt.delim_left; + + switch(fmt.order) + { + case io::column_major: + { + for(length_t i(0); i < rows; ++i) + { + if (0 != i) + os << fmt.space; + + os << row(a, i); + + if(rows-1 != i) + os << fmt.newline; + } + } + break; + + case io::row_major: + { + for(length_t i(0); i < cols; ++i) + { + if(0 != i) + os << fmt.space; + + os << column(a, i); + + if(cols-1 != i) + os << fmt.newline; + } + } + break; + } + + os << fmt.delim_right; + } + else + { + switch (fmt.order) + { + case io::column_major: + { + for(length_t i(0); i < cols; ++i) + { + os << column(a, i); + + if(cols - 1 != i) + os << fmt.space; + } + } + break; + + case io::row_major: + { + for (length_t i(0); i < rows; ++i) + { + os << row(a, i); + + if (rows-1 != i) + os << fmt.space; + } + } + break; + } + } + } + + return os; + } +}//namespace detail + + template + GLM_FUNC_QUALIFIER std::basic_ostream& operator<<(std::basic_ostream& os, mat<2, 2, T, Q> const& a) + { + return detail::print_matrix_on(os, a); + } + + template + GLM_FUNC_QUALIFIER std::basic_ostream& operator<<(std::basic_ostream& os, mat<2, 3, T, Q> const& a) + { + return detail::print_matrix_on(os, a); + } + + template + GLM_FUNC_QUALIFIER std::basic_ostream& operator<<(std::basic_ostream& os, mat<2, 4, T, Q> const& a) + { + return detail::print_matrix_on(os, a); + } + + template + GLM_FUNC_QUALIFIER std::basic_ostream& operator<<(std::basic_ostream& os, mat<3, 2, T, Q> const& a) + { + return detail::print_matrix_on(os, a); + } + + template + GLM_FUNC_QUALIFIER std::basic_ostream& operator<<(std::basic_ostream& os, mat<3, 3, T, Q> const& a) + { + return detail::print_matrix_on(os, a); + } + + template + GLM_FUNC_QUALIFIER std::basic_ostream & operator<<(std::basic_ostream& os, mat<3, 4, T, Q> const& a) + { + return detail::print_matrix_on(os, a); + } + + template + GLM_FUNC_QUALIFIER std::basic_ostream & operator<<(std::basic_ostream& os, mat<4, 2, T, Q> const& a) + { + return detail::print_matrix_on(os, a); + } + + template + GLM_FUNC_QUALIFIER std::basic_ostream & operator<<(std::basic_ostream& os, mat<4, 3, T, Q> const& a) + { + return detail::print_matrix_on(os, a); + } + + template + GLM_FUNC_QUALIFIER std::basic_ostream & operator<<(std::basic_ostream& os, mat<4, 4, T, Q> const& a) + { + return detail::print_matrix_on(os, a); + } + +namespace detail +{ + template class M, length_t C, length_t R, typename T, qualifier Q> + GLM_FUNC_QUALIFIER std::basic_ostream& print_matrix_pair_on(std::basic_ostream& os, std::pair const, M const> const& a) + { + typename std::basic_ostream::sentry const cerberus(os); + + if(cerberus) + { + io::format_punct const& fmt(io::get_facet >(os)); + M const& ml(a.first); + M const& mr(a.second); + length_t const& cols(type >::cols); + length_t const& rows(type >::rows); + + if(fmt.formatted) + { + os << fmt.newline << fmt.delim_left; + + switch(fmt.order) + { + case io::column_major: + { + for(length_t i(0); i < rows; ++i) + { + if(0 != i) + os << fmt.space; + + os << row(ml, i) << ((rows-1 != i) ? fmt.space : fmt.delim_right) << fmt.space << ((0 != i) ? fmt.space : fmt.delim_left) << row(mr, i); + + if(rows-1 != i) + os << fmt.newline; + } + } + break; + case io::row_major: + { + for(length_t i(0); i < cols; ++i) + { + if(0 != i) + os << fmt.space; + + os << column(ml, i) << ((cols-1 != i) ? fmt.space : fmt.delim_right) << fmt.space << ((0 != i) ? fmt.space : fmt.delim_left) << column(mr, i); + + if(cols-1 != i) + os << fmt.newline; + } + } + break; + } + + os << fmt.delim_right; + } + else + { + os << ml << fmt.space << mr; + } + } + + return os; + } +}//namespace detail + + template + GLM_FUNC_QUALIFIER std::basic_ostream& operator<<( + std::basic_ostream & os, + std::pair const, + mat<4, 4, T, Q> const> const& a) + { + return detail::print_matrix_pair_on(os, a); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/log_base.hpp b/thirdparty/glm/glm/gtx/log_base.hpp new file mode 100644 index 000000000000..ba28c9d7bffc --- /dev/null +++ b/thirdparty/glm/glm/gtx/log_base.hpp @@ -0,0 +1,48 @@ +/// @ref gtx_log_base +/// @file glm/gtx/log_base.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_log_base GLM_GTX_log_base +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Logarithm for any base. base can be a vector or a scalar. + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_log_base is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_log_base extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_log_base + /// @{ + + /// Logarithm for any base. + /// From GLM_GTX_log_base. + template + GLM_FUNC_DECL genType log( + genType const& x, + genType const& base); + + /// Logarithm for any base. + /// From GLM_GTX_log_base. + template + GLM_FUNC_DECL vec sign( + vec const& x, + vec const& base); + + /// @} +}//namespace glm + +#include "log_base.inl" diff --git a/thirdparty/glm/glm/gtx/log_base.inl b/thirdparty/glm/glm/gtx/log_base.inl new file mode 100644 index 000000000000..4bbb8e895abb --- /dev/null +++ b/thirdparty/glm/glm/gtx/log_base.inl @@ -0,0 +1,16 @@ +/// @ref gtx_log_base + +namespace glm +{ + template + GLM_FUNC_QUALIFIER genType log(genType const& x, genType const& base) + { + return glm::log(x) / glm::log(base); + } + + template + GLM_FUNC_QUALIFIER vec log(vec const& x, vec const& base) + { + return glm::log(x) / glm::log(base); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/matrix_cross_product.hpp b/thirdparty/glm/glm/gtx/matrix_cross_product.hpp new file mode 100644 index 000000000000..1e585f9a4ffe --- /dev/null +++ b/thirdparty/glm/glm/gtx/matrix_cross_product.hpp @@ -0,0 +1,47 @@ +/// @ref gtx_matrix_cross_product +/// @file glm/gtx/matrix_cross_product.hpp +/// +/// @see core (dependence) +/// @see gtx_extented_min_max (dependence) +/// +/// @defgroup gtx_matrix_cross_product GLM_GTX_matrix_cross_product +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Build cross product matrices + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_matrix_cross_product is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_matrix_cross_product extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_matrix_cross_product + /// @{ + + //! Build a cross product matrix. + //! From GLM_GTX_matrix_cross_product extension. + template + GLM_FUNC_DECL mat<3, 3, T, Q> matrixCross3( + vec<3, T, Q> const& x); + + //! Build a cross product matrix. + //! From GLM_GTX_matrix_cross_product extension. + template + GLM_FUNC_DECL mat<4, 4, T, Q> matrixCross4( + vec<3, T, Q> const& x); + + /// @} +}//namespace glm + +#include "matrix_cross_product.inl" diff --git a/thirdparty/glm/glm/gtx/matrix_cross_product.inl b/thirdparty/glm/glm/gtx/matrix_cross_product.inl new file mode 100644 index 000000000000..3a153977cf59 --- /dev/null +++ b/thirdparty/glm/glm/gtx/matrix_cross_product.inl @@ -0,0 +1,37 @@ +/// @ref gtx_matrix_cross_product + +namespace glm +{ + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> matrixCross3 + ( + vec<3, T, Q> const& x + ) + { + mat<3, 3, T, Q> Result(T(0)); + Result[0][1] = x.z; + Result[1][0] = -x.z; + Result[0][2] = -x.y; + Result[2][0] = x.y; + Result[1][2] = x.x; + Result[2][1] = -x.x; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> matrixCross4 + ( + vec<3, T, Q> const& x + ) + { + mat<4, 4, T, Q> Result(T(0)); + Result[0][1] = x.z; + Result[1][0] = -x.z; + Result[0][2] = -x.y; + Result[2][0] = x.y; + Result[1][2] = x.x; + Result[2][1] = -x.x; + return Result; + } + +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/matrix_decompose.hpp b/thirdparty/glm/glm/gtx/matrix_decompose.hpp new file mode 100644 index 000000000000..8ab38e6b36a5 --- /dev/null +++ b/thirdparty/glm/glm/gtx/matrix_decompose.hpp @@ -0,0 +1,52 @@ +/// @ref gtx_matrix_decompose +/// @file glm/gtx/matrix_decompose.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_matrix_decompose GLM_GTX_matrix_decompose +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Decomposes a model matrix to translations, rotation and scale components + +#pragma once + +// Dependencies +#include "../mat4x4.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" +#include "../geometric.hpp" +#include "../gtc/quaternion.hpp" +#include "../gtc/matrix_transform.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_matrix_decompose is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_matrix_decompose extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_matrix_decompose + /// @{ + + /// Decomposes a model matrix to translations, rotation and scale components + /// @see gtx_matrix_decompose + template + GLM_FUNC_DECL bool decompose( + mat<4, 4, T, Q> const& modelMatrix, + vec<3, T, Q> & scale, qua & orientation, vec<3, T, Q> & translation, vec<3, T, Q> & skew, vec<4, T, Q> & perspective); + + // Recomposes a model matrix from a previously-decomposed matrix + template + GLM_FUNC_DECL mat<4, 4, T, Q> recompose( + vec<3, T, Q> const& scale, qua const& orientation, vec<3, T, Q> const& translation, + vec<3, T, Q> const& skew, vec<4, T, Q> const& perspective); + + /// @} +}//namespace glm + +#include "matrix_decompose.inl" diff --git a/thirdparty/glm/glm/gtx/matrix_decompose.inl b/thirdparty/glm/glm/gtx/matrix_decompose.inl new file mode 100644 index 000000000000..1b587e2a1b00 --- /dev/null +++ b/thirdparty/glm/glm/gtx/matrix_decompose.inl @@ -0,0 +1,234 @@ +/// @ref gtx_matrix_decompose + +#include "../gtc/constants.hpp" +#include "../gtc/epsilon.hpp" +#include "../gtx/transform.hpp" + +namespace glm{ +namespace detail +{ + /// Make a linear combination of two vectors and return the result. + // result = (a * ascl) + (b * bscl) + template + GLM_FUNC_QUALIFIER vec<3, T, Q> combine( + vec<3, T, Q> const& a, + vec<3, T, Q> const& b, + T ascl, T bscl) + { + return (a * ascl) + (b * bscl); + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> scale(vec<3, T, Q> const& v, T desiredLength) + { + return v * desiredLength / length(v); + } +}//namespace detail + + // Matrix decompose + // http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp + // Decomposes the mode matrix to translations,rotation scale components + + template + GLM_FUNC_QUALIFIER bool decompose(mat<4, 4, T, Q> const& ModelMatrix, vec<3, T, Q> & Scale, qua & Orientation, vec<3, T, Q> & Translation, vec<3, T, Q> & Skew, vec<4, T, Q> & Perspective) + { + mat<4, 4, T, Q> LocalMatrix(ModelMatrix); + + // Normalize the matrix. + if(epsilonEqual(LocalMatrix[3][3], static_cast(0), epsilon())) + return false; + + for(length_t i = 0; i < 4; ++i) + for(length_t j = 0; j < 4; ++j) + LocalMatrix[i][j] /= LocalMatrix[3][3]; + + // perspectiveMatrix is used to solve for perspective, but it also provides + // an easy way to test for singularity of the upper 3x3 component. + mat<4, 4, T, Q> PerspectiveMatrix(LocalMatrix); + + for(length_t i = 0; i < 3; i++) + PerspectiveMatrix[i][3] = static_cast(0); + PerspectiveMatrix[3][3] = static_cast(1); + + /// TODO: Fixme! + if(epsilonEqual(determinant(PerspectiveMatrix), static_cast(0), epsilon())) + return false; + + // First, isolate perspective. This is the messiest. + if( + epsilonNotEqual(LocalMatrix[0][3], static_cast(0), epsilon()) || + epsilonNotEqual(LocalMatrix[1][3], static_cast(0), epsilon()) || + epsilonNotEqual(LocalMatrix[2][3], static_cast(0), epsilon())) + { + // rightHandSide is the right hand side of the equation. + vec<4, T, Q> RightHandSide; + RightHandSide[0] = LocalMatrix[0][3]; + RightHandSide[1] = LocalMatrix[1][3]; + RightHandSide[2] = LocalMatrix[2][3]; + RightHandSide[3] = LocalMatrix[3][3]; + + // Solve the equation by inverting PerspectiveMatrix and multiplying + // rightHandSide by the inverse. (This is the easiest way, not + // necessarily the best.) + mat<4, 4, T, Q> InversePerspectiveMatrix = glm::inverse(PerspectiveMatrix);// inverse(PerspectiveMatrix, inversePerspectiveMatrix); + mat<4, 4, T, Q> TransposedInversePerspectiveMatrix = glm::transpose(InversePerspectiveMatrix);// transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix); + + Perspective = TransposedInversePerspectiveMatrix * RightHandSide; + // v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint); + + // Clear the perspective partition + LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = static_cast(0); + LocalMatrix[3][3] = static_cast(1); + } + else + { + // No perspective. + Perspective = vec<4, T, Q>(0, 0, 0, 1); + } + + // Next take care of translation (easy). + Translation = vec<3, T, Q>(LocalMatrix[3]); + LocalMatrix[3] = vec<4, T, Q>(0, 0, 0, LocalMatrix[3].w); + + vec<3, T, Q> Row[3], Pdum3; + + // Now get scale and shear. + for(length_t i = 0; i < 3; ++i) + for(length_t j = 0; j < 3; ++j) + Row[i][j] = LocalMatrix[i][j]; + + // Compute X scale factor and normalize first row. + Scale.x = length(Row[0]);// v3Length(Row[0]); + + Row[0] = detail::scale(Row[0], static_cast(1)); + + // Compute XY shear factor and make 2nd row orthogonal to 1st. + Skew.z = dot(Row[0], Row[1]); + Row[1] = detail::combine(Row[1], Row[0], static_cast(1), -Skew.z); + + // Now, compute Y scale and normalize 2nd row. + Scale.y = length(Row[1]); + Row[1] = detail::scale(Row[1], static_cast(1)); + Skew.z /= Scale.y; + + // Compute XZ and YZ shears, orthogonalize 3rd row. + Skew.y = glm::dot(Row[0], Row[2]); + Row[2] = detail::combine(Row[2], Row[0], static_cast(1), -Skew.y); + Skew.x = glm::dot(Row[1], Row[2]); + Row[2] = detail::combine(Row[2], Row[1], static_cast(1), -Skew.x); + + // Next, get Z scale and normalize 3rd row. + Scale.z = length(Row[2]); + Row[2] = detail::scale(Row[2], static_cast(1)); + Skew.y /= Scale.z; + Skew.x /= Scale.z; + + // At this point, the matrix (in rows[]) is orthonormal. + // Check for a coordinate system flip. If the determinant + // is -1, then negate the matrix and the scaling factors. + Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3); + if(dot(Row[0], Pdum3) < 0) + { + for(length_t i = 0; i < 3; i++) + { + Scale[i] *= static_cast(-1); + Row[i] *= static_cast(-1); + } + } + + // Now, get the rotations out, as described in the gem. + + // FIXME - Add the ability to return either quaternions (which are + // easier to recompose with) or Euler angles (rx, ry, rz), which + // are easier for authors to deal with. The latter will only be useful + // when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I + // will leave the Euler angle code here for now. + + // ret.rotateY = asin(-Row[0][2]); + // if (cos(ret.rotateY) != 0) { + // ret.rotateX = atan2(Row[1][2], Row[2][2]); + // ret.rotateZ = atan2(Row[0][1], Row[0][0]); + // } else { + // ret.rotateX = atan2(-Row[2][0], Row[1][1]); + // ret.rotateZ = 0; + // } + + int i, j, k = 0; + T root, trace = Row[0].x + Row[1].y + Row[2].z; + if(trace > static_cast(0)) + { + root = sqrt(trace + static_cast(1.0)); + Orientation.w = static_cast(0.5) * root; + root = static_cast(0.5) / root; + Orientation.x = root * (Row[1].z - Row[2].y); + Orientation.y = root * (Row[2].x - Row[0].z); + Orientation.z = root * (Row[0].y - Row[1].x); + } // End if > 0 + else + { + static int Next[3] = {1, 2, 0}; + i = 0; + if(Row[1].y > Row[0].x) i = 1; + if(Row[2].z > Row[i][i]) i = 2; + j = Next[i]; + k = Next[j]; + +# ifdef GLM_FORCE_QUAT_DATA_WXYZ + int off = 1; +# else + int off = 0; +# endif + + root = sqrt(Row[i][i] - Row[j][j] - Row[k][k] + static_cast(1.0)); + + Orientation[i + off] = static_cast(0.5) * root; + root = static_cast(0.5) / root; + Orientation[j + off] = root * (Row[i][j] + Row[j][i]); + Orientation[k + off] = root * (Row[i][k] + Row[k][i]); + Orientation.w = root * (Row[j][k] - Row[k][j]); + } // End if <= 0 + + return true; + } + + // Recomposes a model matrix from a previously-decomposed matrix + // http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp + // https://stackoverflow.com/a/75573092/1047040 + template + GLM_FUNC_DECL mat<4, 4, T, Q> recompose( + vec<3, T, Q> const& scale, qua const& orientation, vec<3, T, Q> const& translation, + vec<3, T, Q> const& skew, vec<4, T, Q> const& perspective) + { + glm::mat4 m = glm::mat4(1.f); + + m[0][3] = perspective.x; + m[1][3] = perspective.y; + m[2][3] = perspective.z; + m[3][3] = perspective.w; + + m *= glm::translate(translation); + m *= glm::mat4_cast(orientation); + + if (abs(skew.x) > static_cast(0)) { + glm::mat4 tmp(1.f); + tmp[2][1] = skew.x; + m *= tmp; + } + + if (abs(skew.y) > static_cast(0)) { + glm::mat4 tmp(1.f); + tmp[2][0] = skew.y; + m *= tmp; + } + + if (abs(skew.z) > static_cast(0)) { + glm::mat4 tmp(1.f); + tmp[1][0] = skew.z; + m *= tmp; + } + + m *= glm::scale(scale); + + return m; + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/matrix_factorisation.hpp b/thirdparty/glm/glm/gtx/matrix_factorisation.hpp new file mode 100644 index 000000000000..5a975d60b6c2 --- /dev/null +++ b/thirdparty/glm/glm/gtx/matrix_factorisation.hpp @@ -0,0 +1,69 @@ +/// @ref gtx_matrix_factorisation +/// @file glm/gtx/matrix_factorisation.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_matrix_factorisation GLM_GTX_matrix_factorisation +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Functions to factor matrices in various forms + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_matrix_factorisation is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_matrix_factorisation extension included") +# endif +#endif + +/* +Suggestions: + - Move helper functions flipud and fliplr to another file: They may be helpful in more general circumstances. + - Implement other types of matrix factorisation, such as: QL and LQ, L(D)U, eigendecompositions, etc... +*/ + +namespace glm +{ + /// @addtogroup gtx_matrix_factorisation + /// @{ + + /// Flips the matrix rows up and down. + /// + /// From GLM_GTX_matrix_factorisation extension. + template + GLM_FUNC_DECL mat flipud(mat const& in); + + /// Flips the matrix columns right and left. + /// + /// From GLM_GTX_matrix_factorisation extension. + template + GLM_FUNC_DECL mat fliplr(mat const& in); + + /// Performs QR factorisation of a matrix. + /// Returns 2 matrices, q and r, such that the columns of q are orthonormal and span the same subspace than those of the input matrix, r is an upper triangular matrix, and q*r=in. + /// Given an n-by-m input matrix, q has dimensions min(n,m)-by-m, and r has dimensions n-by-min(n,m). + /// + /// From GLM_GTX_matrix_factorisation extension. + template + GLM_FUNC_DECL void qr_decompose(mat const& in, mat<(C < R ? C : R), R, T, Q>& q, mat& r); + + /// Performs RQ factorisation of a matrix. + /// Returns 2 matrices, r and q, such that r is an upper triangular matrix, the rows of q are orthonormal and span the same subspace than those of the input matrix, and r*q=in. + /// Note that in the context of RQ factorisation, the diagonal is seen as starting in the lower-right corner of the matrix, instead of the usual upper-left. + /// Given an n-by-m input matrix, r has dimensions min(n,m)-by-m, and q has dimensions n-by-min(n,m). + /// + /// From GLM_GTX_matrix_factorisation extension. + template + GLM_FUNC_DECL void rq_decompose(mat const& in, mat<(C < R ? C : R), R, T, Q>& r, mat& q); + + /// @} +} + +#include "matrix_factorisation.inl" diff --git a/thirdparty/glm/glm/gtx/matrix_factorisation.inl b/thirdparty/glm/glm/gtx/matrix_factorisation.inl new file mode 100644 index 000000000000..6f1683c00780 --- /dev/null +++ b/thirdparty/glm/glm/gtx/matrix_factorisation.inl @@ -0,0 +1,84 @@ +/// @ref gtx_matrix_factorisation + +namespace glm +{ + template + GLM_FUNC_QUALIFIER mat flipud(mat const& in) + { + mat tin = transpose(in); + tin = fliplr(tin); + mat out = transpose(tin); + + return out; + } + + template + GLM_FUNC_QUALIFIER mat fliplr(mat const& in) + { + mat out; + for (length_t i = 0; i < C; i++) + { + out[i] = in[(C - i) - 1]; + } + + return out; + } + + template + GLM_FUNC_QUALIFIER void qr_decompose(mat const& in, mat<(C < R ? C : R), R, T, Q>& q, mat& r) + { + // Uses modified Gram-Schmidt method + // Source: https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process + // And https://en.wikipedia.org/wiki/QR_decomposition + + //For all the linearly independs columns of the input... + // (there can be no more linearly independents columns than there are rows.) + for (length_t i = 0; i < (C < R ? C : R); i++) + { + //Copy in Q the input's i-th column. + q[i] = in[i]; + + //j = [0,i[ + // Make that column orthogonal to all the previous ones by substracting to it the non-orthogonal projection of all the previous columns. + // Also: Fill the zero elements of R + for (length_t j = 0; j < i; j++) + { + q[i] -= dot(q[i], q[j])*q[j]; + r[j][i] = 0; + } + + //Now, Q i-th column is orthogonal to all the previous columns. Normalize it. + q[i] = normalize(q[i]); + + //j = [i,C[ + //Finally, compute the corresponding coefficients of R by computing the projection of the resulting column on the other columns of the input. + for (length_t j = i; j < C; j++) + { + r[j][i] = dot(in[j], q[i]); + } + } + } + + template + GLM_FUNC_QUALIFIER void rq_decompose(mat const& in, mat<(C < R ? C : R), R, T, Q>& r, mat& q) + { + // From https://en.wikipedia.org/wiki/QR_decomposition: + // The RQ decomposition transforms a matrix A into the product of an upper triangular matrix R (also known as right-triangular) and an orthogonal matrix Q. The only difference from QR decomposition is the order of these matrices. + // QR decomposition is Gram-Schmidt orthogonalization of columns of A, started from the first column. + // RQ decomposition is Gram-Schmidt orthogonalization of rows of A, started from the last row. + + mat tin = transpose(in); + tin = fliplr(tin); + + mat tr; + mat<(C < R ? C : R), C, T, Q> tq; + qr_decompose(tin, tq, tr); + + tr = fliplr(tr); + r = transpose(tr); + r = fliplr(r); + + tq = fliplr(tq); + q = transpose(tq); + } +} //namespace glm diff --git a/thirdparty/glm/glm/gtx/matrix_interpolation.hpp b/thirdparty/glm/glm/gtx/matrix_interpolation.hpp new file mode 100644 index 000000000000..7d5ad4cd9ad9 --- /dev/null +++ b/thirdparty/glm/glm/gtx/matrix_interpolation.hpp @@ -0,0 +1,60 @@ +/// @ref gtx_matrix_interpolation +/// @file glm/gtx/matrix_interpolation.hpp +/// @author Ghenadii Ursachi (the.asteroth@gmail.com) +/// +/// @see core (dependence) +/// +/// @defgroup gtx_matrix_interpolation GLM_GTX_matrix_interpolation +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Allows to directly interpolate two matrices. + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_matrix_interpolation is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_matrix_interpolation extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_matrix_interpolation + /// @{ + + /// Get the axis and angle of the rotation from a matrix. + /// From GLM_GTX_matrix_interpolation extension. + template + GLM_FUNC_DECL void axisAngle( + mat<4, 4, T, Q> const& Mat, vec<3, T, Q> & Axis, T & Angle); + + /// Build a matrix from axis and angle. + /// From GLM_GTX_matrix_interpolation extension. + template + GLM_FUNC_DECL mat<4, 4, T, Q> axisAngleMatrix( + vec<3, T, Q> const& Axis, T const Angle); + + /// Extracts the rotation part of a matrix. + /// From GLM_GTX_matrix_interpolation extension. + template + GLM_FUNC_DECL mat<4, 4, T, Q> extractMatrixRotation( + mat<4, 4, T, Q> const& Mat); + + /// Build a interpolation of 4 * 4 matrixes. + /// From GLM_GTX_matrix_interpolation extension. + /// Warning! works only with rotation and/or translation matrixes, scale will generate unexpected results. + template + GLM_FUNC_DECL mat<4, 4, T, Q> interpolate( + mat<4, 4, T, Q> const& m1, mat<4, 4, T, Q> const& m2, T const Delta); + + /// @} +}//namespace glm + +#include "matrix_interpolation.inl" diff --git a/thirdparty/glm/glm/gtx/matrix_interpolation.inl b/thirdparty/glm/glm/gtx/matrix_interpolation.inl new file mode 100644 index 000000000000..f4ba3a6f3ac6 --- /dev/null +++ b/thirdparty/glm/glm/gtx/matrix_interpolation.inl @@ -0,0 +1,146 @@ +/// @ref gtx_matrix_interpolation + +#include "../ext/scalar_constants.hpp" + +#include + +namespace glm +{ + template + GLM_FUNC_QUALIFIER void axisAngle(mat<4, 4, T, Q> const& m, vec<3, T, Q>& axis, T& angle) + { + T const epsilon = + std::numeric_limits::epsilon() * static_cast(1e2); + + bool const nearSymmetrical = + abs(m[1][0] - m[0][1]) < epsilon && + abs(m[2][0] - m[0][2]) < epsilon && + abs(m[2][1] - m[1][2]) < epsilon; + + if(nearSymmetrical) + { + bool const nearIdentity = + abs(m[1][0] + m[0][1]) < epsilon && + abs(m[2][0] + m[0][2]) < epsilon && + abs(m[2][1] + m[1][2]) < epsilon && + abs(m[0][0] + m[1][1] + m[2][2] - T(3.0)) < epsilon; + if (nearIdentity) + { + angle = static_cast(0.0); + axis = vec<3, T, Q>( + static_cast(1.0), static_cast(0.0), static_cast(0.0)); + return; + } + angle = pi(); + T xx = (m[0][0] + static_cast(1.0)) * static_cast(0.5); + T yy = (m[1][1] + static_cast(1.0)) * static_cast(0.5); + T zz = (m[2][2] + static_cast(1.0)) * static_cast(0.5); + T xy = (m[1][0] + m[0][1]) * static_cast(0.25); + T xz = (m[2][0] + m[0][2]) * static_cast(0.25); + T yz = (m[2][1] + m[1][2]) * static_cast(0.25); + if((xx > yy) && (xx > zz)) + { + if(xx < epsilon) + { + axis.x = static_cast(0.0); + axis.y = static_cast(0.7071); + axis.z = static_cast(0.7071); + } + else + { + axis.x = sqrt(xx); + axis.y = xy / axis.x; + axis.z = xz / axis.x; + } + } + else if (yy > zz) + { + if(yy < epsilon) + { + axis.x = static_cast(0.7071); + axis.y = static_cast(0.0); + axis.z = static_cast(0.7071); + } + else + { + axis.y = sqrt(yy); + axis.x = xy / axis.y; + axis.z = yz / axis.y; + } + } + else + { + if (zz < epsilon) + { + axis.x = static_cast(0.7071); + axis.y = static_cast(0.7071); + axis.z = static_cast(0.0); + } + else + { + axis.z = sqrt(zz); + axis.x = xz / axis.z; + axis.y = yz / axis.z; + } + } + return; + } + + T const angleCos = (m[0][0] + m[1][1] + m[2][2] - static_cast(1)) * static_cast(0.5); + if(angleCos >= static_cast(1.0)) + { + angle = static_cast(0.0); + } + else if (angleCos <= static_cast(-1.0)) + { + angle = pi(); + } + else + { + angle = acos(angleCos); + } + + axis = glm::normalize(glm::vec<3, T, Q>( + m[1][2] - m[2][1], m[2][0] - m[0][2], m[0][1] - m[1][0])); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> axisAngleMatrix(vec<3, T, Q> const& axis, T const angle) + { + T c = cos(angle); + T s = sin(angle); + T t = static_cast(1) - c; + vec<3, T, Q> n = normalize(axis); + + return mat<4, 4, T, Q>( + t * n.x * n.x + c, t * n.x * n.y + n.z * s, t * n.x * n.z - n.y * s, static_cast(0.0), + t * n.x * n.y - n.z * s, t * n.y * n.y + c, t * n.y * n.z + n.x * s, static_cast(0.0), + t * n.x * n.z + n.y * s, t * n.y * n.z - n.x * s, t * n.z * n.z + c, static_cast(0.0), + static_cast(0.0), static_cast(0.0), static_cast(0.0), static_cast(1.0)); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> extractMatrixRotation(mat<4, 4, T, Q> const& m) + { + return mat<4, 4, T, Q>( + m[0][0], m[0][1], m[0][2], static_cast(0.0), + m[1][0], m[1][1], m[1][2], static_cast(0.0), + m[2][0], m[2][1], m[2][2], static_cast(0.0), + static_cast(0.0), static_cast(0.0), static_cast(0.0), static_cast(1.0)); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> interpolate(mat<4, 4, T, Q> const& m1, mat<4, 4, T, Q> const& m2, T const delta) + { + mat<4, 4, T, Q> m1rot = extractMatrixRotation(m1); + mat<4, 4, T, Q> dltRotation = m2 * transpose(m1rot); + vec<3, T, Q> dltAxis; + T dltAngle; + axisAngle(dltRotation, dltAxis, dltAngle); + mat<4, 4, T, Q> out = axisAngleMatrix(dltAxis, dltAngle * delta) * m1rot; + out[3][0] = m1[3][0] + delta * (m2[3][0] - m1[3][0]); + out[3][1] = m1[3][1] + delta * (m2[3][1] - m1[3][1]); + out[3][2] = m1[3][2] + delta * (m2[3][2] - m1[3][2]); + return out; + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/matrix_major_storage.hpp b/thirdparty/glm/glm/gtx/matrix_major_storage.hpp new file mode 100644 index 000000000000..8c6bc22d14e9 --- /dev/null +++ b/thirdparty/glm/glm/gtx/matrix_major_storage.hpp @@ -0,0 +1,119 @@ +/// @ref gtx_matrix_major_storage +/// @file glm/gtx/matrix_major_storage.hpp +/// +/// @see core (dependence) +/// @see gtx_extented_min_max (dependence) +/// +/// @defgroup gtx_matrix_major_storage GLM_GTX_matrix_major_storage +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Build matrices with specific matrix order, row or column + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_matrix_major_storage is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_matrix_major_storage extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_matrix_major_storage + /// @{ + + //! Build a row major matrix from row vectors. + //! From GLM_GTX_matrix_major_storage extension. + template + GLM_FUNC_DECL mat<2, 2, T, Q> rowMajor2( + vec<2, T, Q> const& v1, + vec<2, T, Q> const& v2); + + //! Build a row major matrix from other matrix. + //! From GLM_GTX_matrix_major_storage extension. + template + GLM_FUNC_DECL mat<2, 2, T, Q> rowMajor2( + mat<2, 2, T, Q> const& m); + + //! Build a row major matrix from row vectors. + //! From GLM_GTX_matrix_major_storage extension. + template + GLM_FUNC_DECL mat<3, 3, T, Q> rowMajor3( + vec<3, T, Q> const& v1, + vec<3, T, Q> const& v2, + vec<3, T, Q> const& v3); + + //! Build a row major matrix from other matrix. + //! From GLM_GTX_matrix_major_storage extension. + template + GLM_FUNC_DECL mat<3, 3, T, Q> rowMajor3( + mat<3, 3, T, Q> const& m); + + //! Build a row major matrix from row vectors. + //! From GLM_GTX_matrix_major_storage extension. + template + GLM_FUNC_DECL mat<4, 4, T, Q> rowMajor4( + vec<4, T, Q> const& v1, + vec<4, T, Q> const& v2, + vec<4, T, Q> const& v3, + vec<4, T, Q> const& v4); + + //! Build a row major matrix from other matrix. + //! From GLM_GTX_matrix_major_storage extension. + template + GLM_FUNC_DECL mat<4, 4, T, Q> rowMajor4( + mat<4, 4, T, Q> const& m); + + //! Build a column major matrix from column vectors. + //! From GLM_GTX_matrix_major_storage extension. + template + GLM_FUNC_DECL mat<2, 2, T, Q> colMajor2( + vec<2, T, Q> const& v1, + vec<2, T, Q> const& v2); + + //! Build a column major matrix from other matrix. + //! From GLM_GTX_matrix_major_storage extension. + template + GLM_FUNC_DECL mat<2, 2, T, Q> colMajor2( + mat<2, 2, T, Q> const& m); + + //! Build a column major matrix from column vectors. + //! From GLM_GTX_matrix_major_storage extension. + template + GLM_FUNC_DECL mat<3, 3, T, Q> colMajor3( + vec<3, T, Q> const& v1, + vec<3, T, Q> const& v2, + vec<3, T, Q> const& v3); + + //! Build a column major matrix from other matrix. + //! From GLM_GTX_matrix_major_storage extension. + template + GLM_FUNC_DECL mat<3, 3, T, Q> colMajor3( + mat<3, 3, T, Q> const& m); + + //! Build a column major matrix from column vectors. + //! From GLM_GTX_matrix_major_storage extension. + template + GLM_FUNC_DECL mat<4, 4, T, Q> colMajor4( + vec<4, T, Q> const& v1, + vec<4, T, Q> const& v2, + vec<4, T, Q> const& v3, + vec<4, T, Q> const& v4); + + //! Build a column major matrix from other matrix. + //! From GLM_GTX_matrix_major_storage extension. + template + GLM_FUNC_DECL mat<4, 4, T, Q> colMajor4( + mat<4, 4, T, Q> const& m); + + /// @} +}//namespace glm + +#include "matrix_major_storage.inl" diff --git a/thirdparty/glm/glm/gtx/matrix_major_storage.inl b/thirdparty/glm/glm/gtx/matrix_major_storage.inl new file mode 100644 index 000000000000..279dd3433d0b --- /dev/null +++ b/thirdparty/glm/glm/gtx/matrix_major_storage.inl @@ -0,0 +1,166 @@ +/// @ref gtx_matrix_major_storage + +namespace glm +{ + template + GLM_FUNC_QUALIFIER mat<2, 2, T, Q> rowMajor2 + ( + vec<2, T, Q> const& v1, + vec<2, T, Q> const& v2 + ) + { + mat<2, 2, T, Q> Result; + Result[0][0] = v1.x; + Result[1][0] = v1.y; + Result[0][1] = v2.x; + Result[1][1] = v2.y; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<2, 2, T, Q> rowMajor2( + const mat<2, 2, T, Q>& m) + { + mat<2, 2, T, Q> Result; + Result[0][0] = m[0][0]; + Result[0][1] = m[1][0]; + Result[1][0] = m[0][1]; + Result[1][1] = m[1][1]; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> rowMajor3( + const vec<3, T, Q>& v1, + const vec<3, T, Q>& v2, + const vec<3, T, Q>& v3) + { + mat<3, 3, T, Q> Result; + Result[0][0] = v1.x; + Result[1][0] = v1.y; + Result[2][0] = v1.z; + Result[0][1] = v2.x; + Result[1][1] = v2.y; + Result[2][1] = v2.z; + Result[0][2] = v3.x; + Result[1][2] = v3.y; + Result[2][2] = v3.z; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> rowMajor3( + const mat<3, 3, T, Q>& m) + { + mat<3, 3, T, Q> Result; + Result[0][0] = m[0][0]; + Result[0][1] = m[1][0]; + Result[0][2] = m[2][0]; + Result[1][0] = m[0][1]; + Result[1][1] = m[1][1]; + Result[1][2] = m[2][1]; + Result[2][0] = m[0][2]; + Result[2][1] = m[1][2]; + Result[2][2] = m[2][2]; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> rowMajor4( + const vec<4, T, Q>& v1, + const vec<4, T, Q>& v2, + const vec<4, T, Q>& v3, + const vec<4, T, Q>& v4) + { + mat<4, 4, T, Q> Result; + Result[0][0] = v1.x; + Result[1][0] = v1.y; + Result[2][0] = v1.z; + Result[3][0] = v1.w; + Result[0][1] = v2.x; + Result[1][1] = v2.y; + Result[2][1] = v2.z; + Result[3][1] = v2.w; + Result[0][2] = v3.x; + Result[1][2] = v3.y; + Result[2][2] = v3.z; + Result[3][2] = v3.w; + Result[0][3] = v4.x; + Result[1][3] = v4.y; + Result[2][3] = v4.z; + Result[3][3] = v4.w; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> rowMajor4( + const mat<4, 4, T, Q>& m) + { + mat<4, 4, T, Q> Result; + Result[0][0] = m[0][0]; + Result[0][1] = m[1][0]; + Result[0][2] = m[2][0]; + Result[0][3] = m[3][0]; + Result[1][0] = m[0][1]; + Result[1][1] = m[1][1]; + Result[1][2] = m[2][1]; + Result[1][3] = m[3][1]; + Result[2][0] = m[0][2]; + Result[2][1] = m[1][2]; + Result[2][2] = m[2][2]; + Result[2][3] = m[3][2]; + Result[3][0] = m[0][3]; + Result[3][1] = m[1][3]; + Result[3][2] = m[2][3]; + Result[3][3] = m[3][3]; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<2, 2, T, Q> colMajor2( + const vec<2, T, Q>& v1, + const vec<2, T, Q>& v2) + { + return mat<2, 2, T, Q>(v1, v2); + } + + template + GLM_FUNC_QUALIFIER mat<2, 2, T, Q> colMajor2( + const mat<2, 2, T, Q>& m) + { + return mat<2, 2, T, Q>(m); + } + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> colMajor3( + const vec<3, T, Q>& v1, + const vec<3, T, Q>& v2, + const vec<3, T, Q>& v3) + { + return mat<3, 3, T, Q>(v1, v2, v3); + } + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> colMajor3( + const mat<3, 3, T, Q>& m) + { + return mat<3, 3, T, Q>(m); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> colMajor4( + const vec<4, T, Q>& v1, + const vec<4, T, Q>& v2, + const vec<4, T, Q>& v3, + const vec<4, T, Q>& v4) + { + return mat<4, 4, T, Q>(v1, v2, v3, v4); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> colMajor4( + const mat<4, 4, T, Q>& m) + { + return mat<4, 4, T, Q>(m); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/matrix_operation.hpp b/thirdparty/glm/glm/gtx/matrix_operation.hpp new file mode 100644 index 000000000000..de6ff1f86f47 --- /dev/null +++ b/thirdparty/glm/glm/gtx/matrix_operation.hpp @@ -0,0 +1,103 @@ +/// @ref gtx_matrix_operation +/// @file glm/gtx/matrix_operation.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_matrix_operation GLM_GTX_matrix_operation +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Build diagonal matrices from vectors. + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_matrix_operation is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_matrix_operation extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_matrix_operation + /// @{ + + //! Build a diagonal matrix. + //! From GLM_GTX_matrix_operation extension. + template + GLM_FUNC_DECL mat<2, 2, T, Q> diagonal2x2( + vec<2, T, Q> const& v); + + //! Build a diagonal matrix. + //! From GLM_GTX_matrix_operation extension. + template + GLM_FUNC_DECL mat<2, 3, T, Q> diagonal2x3( + vec<2, T, Q> const& v); + + //! Build a diagonal matrix. + //! From GLM_GTX_matrix_operation extension. + template + GLM_FUNC_DECL mat<2, 4, T, Q> diagonal2x4( + vec<2, T, Q> const& v); + + //! Build a diagonal matrix. + //! From GLM_GTX_matrix_operation extension. + template + GLM_FUNC_DECL mat<3, 2, T, Q> diagonal3x2( + vec<2, T, Q> const& v); + + //! Build a diagonal matrix. + //! From GLM_GTX_matrix_operation extension. + template + GLM_FUNC_DECL mat<3, 3, T, Q> diagonal3x3( + vec<3, T, Q> const& v); + + //! Build a diagonal matrix. + //! From GLM_GTX_matrix_operation extension. + template + GLM_FUNC_DECL mat<3, 4, T, Q> diagonal3x4( + vec<3, T, Q> const& v); + + //! Build a diagonal matrix. + //! From GLM_GTX_matrix_operation extension. + template + GLM_FUNC_DECL mat<4, 2, T, Q> diagonal4x2( + vec<2, T, Q> const& v); + + //! Build a diagonal matrix. + //! From GLM_GTX_matrix_operation extension. + template + GLM_FUNC_DECL mat<4, 3, T, Q> diagonal4x3( + vec<3, T, Q> const& v); + + //! Build a diagonal matrix. + //! From GLM_GTX_matrix_operation extension. + template + GLM_FUNC_DECL mat<4, 4, T, Q> diagonal4x4( + vec<4, T, Q> const& v); + + /// Build an adjugate matrix. + /// From GLM_GTX_matrix_operation extension. + template + GLM_FUNC_DECL mat<2, 2, T, Q> adjugate(mat<2, 2, T, Q> const& m); + + /// Build an adjugate matrix. + /// From GLM_GTX_matrix_operation extension. + template + GLM_FUNC_DECL mat<3, 3, T, Q> adjugate(mat<3, 3, T, Q> const& m); + + /// Build an adjugate matrix. + /// From GLM_GTX_matrix_operation extension. + template + GLM_FUNC_DECL mat<4, 4, T, Q> adjugate(mat<4, 4, T, Q> const& m); + + /// @} +}//namespace glm + +#include "matrix_operation.inl" diff --git a/thirdparty/glm/glm/gtx/matrix_operation.inl b/thirdparty/glm/glm/gtx/matrix_operation.inl new file mode 100644 index 000000000000..a4f4a850002f --- /dev/null +++ b/thirdparty/glm/glm/gtx/matrix_operation.inl @@ -0,0 +1,176 @@ +/// @ref gtx_matrix_operation + +namespace glm +{ + template + GLM_FUNC_QUALIFIER mat<2, 2, T, Q> diagonal2x2 + ( + vec<2, T, Q> const& v + ) + { + mat<2, 2, T, Q> Result(static_cast(1)); + Result[0][0] = v[0]; + Result[1][1] = v[1]; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<2, 3, T, Q> diagonal2x3 + ( + vec<2, T, Q> const& v + ) + { + mat<2, 3, T, Q> Result(static_cast(1)); + Result[0][0] = v[0]; + Result[1][1] = v[1]; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<2, 4, T, Q> diagonal2x4 + ( + vec<2, T, Q> const& v + ) + { + mat<2, 4, T, Q> Result(static_cast(1)); + Result[0][0] = v[0]; + Result[1][1] = v[1]; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<3, 2, T, Q> diagonal3x2 + ( + vec<2, T, Q> const& v + ) + { + mat<3, 2, T, Q> Result(static_cast(1)); + Result[0][0] = v[0]; + Result[1][1] = v[1]; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> diagonal3x3 + ( + vec<3, T, Q> const& v + ) + { + mat<3, 3, T, Q> Result(static_cast(1)); + Result[0][0] = v[0]; + Result[1][1] = v[1]; + Result[2][2] = v[2]; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<3, 4, T, Q> diagonal3x4 + ( + vec<3, T, Q> const& v + ) + { + mat<3, 4, T, Q> Result(static_cast(1)); + Result[0][0] = v[0]; + Result[1][1] = v[1]; + Result[2][2] = v[2]; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> diagonal4x4 + ( + vec<4, T, Q> const& v + ) + { + mat<4, 4, T, Q> Result(static_cast(1)); + Result[0][0] = v[0]; + Result[1][1] = v[1]; + Result[2][2] = v[2]; + Result[3][3] = v[3]; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 3, T, Q> diagonal4x3 + ( + vec<3, T, Q> const& v + ) + { + mat<4, 3, T, Q> Result(static_cast(1)); + Result[0][0] = v[0]; + Result[1][1] = v[1]; + Result[2][2] = v[2]; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 2, T, Q> diagonal4x2 + ( + vec<2, T, Q> const& v + ) + { + mat<4, 2, T, Q> Result(static_cast(1)); + Result[0][0] = v[0]; + Result[1][1] = v[1]; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<2, 2, T, Q> adjugate(mat<2, 2, T, Q> const& m) + { + return mat<2, 2, T, Q>( + +m[1][1], -m[0][1], + -m[1][0], +m[0][0]); + } + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> adjugate(mat<3, 3, T, Q> const& m) + { + T const m00 = determinant(mat<2, 2, T, Q>(m[1][1], m[2][1], m[1][2], m[2][2])); + T const m01 = determinant(mat<2, 2, T, Q>(m[0][1], m[2][1], m[0][2], m[2][2])); + T const m02 = determinant(mat<2, 2, T, Q>(m[0][1], m[1][1], m[0][2], m[1][2])); + + T const m10 = determinant(mat<2, 2, T, Q>(m[1][0], m[2][0], m[1][2], m[2][2])); + T const m11 = determinant(mat<2, 2, T, Q>(m[0][0], m[2][0], m[0][2], m[2][2])); + T const m12 = determinant(mat<2, 2, T, Q>(m[0][0], m[1][0], m[0][2], m[1][2])); + + T const m20 = determinant(mat<2, 2, T, Q>(m[1][0], m[2][0], m[1][1], m[2][1])); + T const m21 = determinant(mat<2, 2, T, Q>(m[0][0], m[2][0], m[0][1], m[2][1])); + T const m22 = determinant(mat<2, 2, T, Q>(m[0][0], m[1][0], m[0][1], m[1][1])); + + return mat<3, 3, T, Q>( + +m00, -m01, +m02, + -m10, +m11, -m12, + +m20, -m21, +m22); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> adjugate(mat<4, 4, T, Q> const& m) + { + T const m00 = determinant(mat<3, 3, T, Q>(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3])); + T const m01 = determinant(mat<3, 3, T, Q>(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3])); + T const m02 = determinant(mat<3, 3, T, Q>(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3])); + T const m03 = determinant(mat<3, 3, T, Q>(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2])); + + T const m10 = determinant(mat<3, 3, T, Q>(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3])); + T const m11 = determinant(mat<3, 3, T, Q>(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3])); + T const m12 = determinant(mat<3, 3, T, Q>(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3])); + T const m13 = determinant(mat<3, 3, T, Q>(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2])); + + T const m20 = determinant(mat<3, 3, T, Q>(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], m[3][3])); + T const m21 = determinant(mat<3, 3, T, Q>(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], m[3][3])); + T const m22 = determinant(mat<3, 3, T, Q>(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], m[3][3])); + T const m23 = determinant(mat<3, 3, T, Q>(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], m[3][2])); + + T const m30 = determinant(mat<3, 3, T, Q>(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3])); + T const m31 = determinant(mat<3, 3, T, Q>(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3])); + T const m32 = determinant(mat<3, 3, T, Q>(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3])); + T const m33 = determinant(mat<3, 3, T, Q>(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2])); + + return mat<4, 4, T, Q>( + +m00, -m10, +m20, -m30, + -m01, +m11, -m21, +m31, + +m02, -m12, +m22, -m32, + -m03, +m13, -m23, +m33); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/matrix_query.hpp b/thirdparty/glm/glm/gtx/matrix_query.hpp new file mode 100644 index 000000000000..8011b2b1d469 --- /dev/null +++ b/thirdparty/glm/glm/gtx/matrix_query.hpp @@ -0,0 +1,77 @@ +/// @ref gtx_matrix_query +/// @file glm/gtx/matrix_query.hpp +/// +/// @see core (dependence) +/// @see gtx_vector_query (dependence) +/// +/// @defgroup gtx_matrix_query GLM_GTX_matrix_query +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Query to evaluate matrix properties + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../gtx/vector_query.hpp" +#include + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_matrix_query is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_matrix_query extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_matrix_query + /// @{ + + /// Return whether a matrix a null matrix. + /// From GLM_GTX_matrix_query extension. + template + GLM_FUNC_DECL bool isNull(mat<2, 2, T, Q> const& m, T const& epsilon); + + /// Return whether a matrix a null matrix. + /// From GLM_GTX_matrix_query extension. + template + GLM_FUNC_DECL bool isNull(mat<3, 3, T, Q> const& m, T const& epsilon); + + /// Return whether a matrix is a null matrix. + /// From GLM_GTX_matrix_query extension. + template + GLM_FUNC_DECL bool isNull(mat<4, 4, T, Q> const& m, T const& epsilon); + + /// Return whether a matrix is an identity matrix. + /// From GLM_GTX_matrix_query extension. + template class matType> + GLM_FUNC_DECL bool isIdentity(matType const& m, T const& epsilon); + + /// Return whether a matrix is a normalized matrix. + /// From GLM_GTX_matrix_query extension. + template + GLM_FUNC_DECL bool isNormalized(mat<2, 2, T, Q> const& m, T const& epsilon); + + /// Return whether a matrix is a normalized matrix. + /// From GLM_GTX_matrix_query extension. + template + GLM_FUNC_DECL bool isNormalized(mat<3, 3, T, Q> const& m, T const& epsilon); + + /// Return whether a matrix is a normalized matrix. + /// From GLM_GTX_matrix_query extension. + template + GLM_FUNC_DECL bool isNormalized(mat<4, 4, T, Q> const& m, T const& epsilon); + + /// Return whether a matrix is an orthonormalized matrix. + /// From GLM_GTX_matrix_query extension. + template class matType> + GLM_FUNC_DECL bool isOrthogonal(matType const& m, T const& epsilon); + + /// @} +}//namespace glm + +#include "matrix_query.inl" diff --git a/thirdparty/glm/glm/gtx/matrix_query.inl b/thirdparty/glm/glm/gtx/matrix_query.inl new file mode 100644 index 000000000000..dc3ec8453b68 --- /dev/null +++ b/thirdparty/glm/glm/gtx/matrix_query.inl @@ -0,0 +1,119 @@ +/// @ref gtx_matrix_query + +namespace glm +{ + template + GLM_FUNC_QUALIFIER bool isNull(mat<2, 2, T, Q> const& m, T const& epsilon) + { + bool result = true; + for(length_t i = 0; result && i < m.length() ; ++i) + result = isNull(m[i], epsilon); + return result; + } + + template + GLM_FUNC_QUALIFIER bool isNull(mat<3, 3, T, Q> const& m, T const& epsilon) + { + bool result = true; + for(length_t i = 0; result && i < m.length() ; ++i) + result = isNull(m[i], epsilon); + return result; + } + + template + GLM_FUNC_QUALIFIER bool isNull(mat<4, 4, T, Q> const& m, T const& epsilon) + { + bool result = true; + for(length_t i = 0; result && i < m.length() ; ++i) + result = isNull(m[i], epsilon); + return result; + } + + template + GLM_FUNC_QUALIFIER bool isIdentity(mat const& m, T const& epsilon) + { + bool result = true; + for(length_t i = 0; result && i < m.length(); ++i) + { + for(length_t j = 0; result && j < glm::min(i, m[0].length()); ++j) + result = abs(m[i][j]) <= epsilon; + if(result && i < m[0].length()) + result = abs(m[i][i] - 1) <= epsilon; + for(length_t j = i + 1; result && j < m[0].length(); ++j) + result = abs(m[i][j]) <= epsilon; + } + return result; + } + + template + GLM_FUNC_QUALIFIER bool isNormalized(mat<2, 2, T, Q> const& m, T const& epsilon) + { + bool result(true); + for(length_t i = 0; result && i < m.length(); ++i) + result = isNormalized(m[i], epsilon); + for(length_t i = 0; result && i < m.length(); ++i) + { + typename mat<2, 2, T, Q>::col_type v; + for(length_t j = 0; j < m.length(); ++j) + v[j] = m[j][i]; + result = isNormalized(v, epsilon); + } + return result; + } + + template + GLM_FUNC_QUALIFIER bool isNormalized(mat<3, 3, T, Q> const& m, T const& epsilon) + { + bool result(true); + for(length_t i = 0; result && i < m.length(); ++i) + result = isNormalized(m[i], epsilon); + for(length_t i = 0; result && i < m.length(); ++i) + { + typename mat<3, 3, T, Q>::col_type v; + for(length_t j = 0; j < m.length(); ++j) + v[j] = m[j][i]; + result = isNormalized(v, epsilon); + } + return result; + } + + template + GLM_FUNC_QUALIFIER bool isNormalized(mat<4, 4, T, Q> const& m, T const& epsilon) + { + bool result(true); + for(length_t i = 0; result && i < m.length(); ++i) + result = isNormalized(m[i], epsilon); + for(length_t i = 0; result && i < m.length(); ++i) + { + typename mat<4, 4, T, Q>::col_type v; + for(length_t j = 0; j < m.length(); ++j) + v[j] = m[j][i]; + result = isNormalized(v, epsilon); + } + return result; + } + + template + GLM_FUNC_QUALIFIER bool isOrthogonal(mat const& m, T const& epsilon) + { + bool result = true; + for(length_t i(0); result && i < m.length(); ++i) + { + result = isNormalized(m[i], epsilon); + for(length_t j(i + 1); result && j < m.length(); ++j) + result = abs(dot(m[i], m[j])) <= epsilon; + } + + if(result) + { + mat tmp = transpose(m); + for(length_t i(0); result && i < m.length(); ++i) + { + result = isNormalized(tmp[i], epsilon); + for(length_t j(i + 1); result && j < m.length(); ++j) + result = abs(dot(tmp[i], tmp[j])) <= epsilon; + } + } + return result; + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/matrix_transform_2d.hpp b/thirdparty/glm/glm/gtx/matrix_transform_2d.hpp new file mode 100644 index 000000000000..5f9c54021851 --- /dev/null +++ b/thirdparty/glm/glm/gtx/matrix_transform_2d.hpp @@ -0,0 +1,81 @@ +/// @ref gtx_matrix_transform_2d +/// @file glm/gtx/matrix_transform_2d.hpp +/// @author Miguel Ángel Pérez Martínez +/// +/// @see core (dependence) +/// +/// @defgroup gtx_matrix_transform_2d GLM_GTX_matrix_transform_2d +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Defines functions that generate common 2d transformation matrices. + +#pragma once + +// Dependency: +#include "../mat3x3.hpp" +#include "../vec2.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_matrix_transform_2d is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_matrix_transform_2d extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_matrix_transform_2d + /// @{ + + /// Builds a translation 3 * 3 matrix created from a vector of 2 components. + /// + /// @param m Input matrix multiplied by this translation matrix. + /// @param v Coordinates of a translation vector. + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> translate( + mat<3, 3, T, Q> const& m, + vec<2, T, Q> const& v); + + /// Builds a rotation 3 * 3 matrix created from an angle. + /// + /// @param m Input matrix multiplied by this translation matrix. + /// @param angle Rotation angle expressed in radians. + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> rotate( + mat<3, 3, T, Q> const& m, + T angle); + + /// Builds a scale 3 * 3 matrix created from a vector of 2 components. + /// + /// @param m Input matrix multiplied by this translation matrix. + /// @param v Coordinates of a scale vector. + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> scale( + mat<3, 3, T, Q> const& m, + vec<2, T, Q> const& v); + + /// Builds an horizontal (parallel to the x axis) shear 3 * 3 matrix. + /// + /// @param m Input matrix multiplied by this translation matrix. + /// @param y Shear factor. + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> shearX( + mat<3, 3, T, Q> const& m, + T y); + + /// Builds a vertical (parallel to the y axis) shear 3 * 3 matrix. + /// + /// @param m Input matrix multiplied by this translation matrix. + /// @param x Shear factor. + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> shearY( + mat<3, 3, T, Q> const& m, + T x); + + /// @} +}//namespace glm + +#include "matrix_transform_2d.inl" diff --git a/thirdparty/glm/glm/gtx/matrix_transform_2d.inl b/thirdparty/glm/glm/gtx/matrix_transform_2d.inl new file mode 100644 index 000000000000..a68d24dc9825 --- /dev/null +++ b/thirdparty/glm/glm/gtx/matrix_transform_2d.inl @@ -0,0 +1,68 @@ +/// @ref gtx_matrix_transform_2d +/// @author Miguel Ángel Pérez Martínez + +#include "../trigonometric.hpp" + +namespace glm +{ + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> translate( + mat<3, 3, T, Q> const& m, + vec<2, T, Q> const& v) + { + mat<3, 3, T, Q> Result(m); + Result[2] = m[0] * v[0] + m[1] * v[1] + m[2]; + return Result; + } + + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> rotate( + mat<3, 3, T, Q> const& m, + T angle) + { + T const a = angle; + T const c = cos(a); + T const s = sin(a); + + mat<3, 3, T, Q> Result; + Result[0] = m[0] * c + m[1] * s; + Result[1] = m[0] * -s + m[1] * c; + Result[2] = m[2]; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> scale( + mat<3, 3, T, Q> const& m, + vec<2, T, Q> const& v) + { + mat<3, 3, T, Q> Result; + Result[0] = m[0] * v[0]; + Result[1] = m[1] * v[1]; + Result[2] = m[2]; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> shearX( + mat<3, 3, T, Q> const& m, + T y) + { + mat<3, 3, T, Q> Result(1); + Result[0][1] = y; + return m * Result; + } + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> shearY( + mat<3, 3, T, Q> const& m, + T x) + { + mat<3, 3, T, Q> Result(1); + Result[1][0] = x; + return m * Result; + } + +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/mixed_product.hpp b/thirdparty/glm/glm/gtx/mixed_product.hpp new file mode 100644 index 000000000000..b242e357e57a --- /dev/null +++ b/thirdparty/glm/glm/gtx/mixed_product.hpp @@ -0,0 +1,41 @@ +/// @ref gtx_mixed_product +/// @file glm/gtx/mixed_product.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_mixed_product GLM_GTX_mixed_producte +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Mixed product of 3 vectors. + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_mixed_product is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_mixed_product extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_mixed_product + /// @{ + + /// @brief Mixed product of 3 vectors (from GLM_GTX_mixed_product extension) + template + GLM_FUNC_DECL T mixedProduct( + vec<3, T, Q> const& v1, + vec<3, T, Q> const& v2, + vec<3, T, Q> const& v3); + + /// @} +}// namespace glm + +#include "mixed_product.inl" diff --git a/thirdparty/glm/glm/gtx/mixed_product.inl b/thirdparty/glm/glm/gtx/mixed_product.inl new file mode 100644 index 000000000000..e5cdbdb49a2b --- /dev/null +++ b/thirdparty/glm/glm/gtx/mixed_product.inl @@ -0,0 +1,15 @@ +/// @ref gtx_mixed_product + +namespace glm +{ + template + GLM_FUNC_QUALIFIER T mixedProduct + ( + vec<3, T, Q> const& v1, + vec<3, T, Q> const& v2, + vec<3, T, Q> const& v3 + ) + { + return dot(cross(v1, v2), v3); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/norm.hpp b/thirdparty/glm/glm/gtx/norm.hpp new file mode 100644 index 000000000000..dfaebb7a8be2 --- /dev/null +++ b/thirdparty/glm/glm/gtx/norm.hpp @@ -0,0 +1,88 @@ +/// @ref gtx_norm +/// @file glm/gtx/norm.hpp +/// +/// @see core (dependence) +/// @see gtx_quaternion (dependence) +/// @see gtx_component_wise (dependence) +/// +/// @defgroup gtx_norm GLM_GTX_norm +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Various ways to compute vector norms. + +#pragma once + +// Dependency: +#include "../geometric.hpp" +#include "../gtx/quaternion.hpp" +#include "../gtx/component_wise.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_norm is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_norm extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_norm + /// @{ + + /// Returns the squared length of x. + /// From GLM_GTX_norm extension. + template + GLM_FUNC_DECL T length2(vec const& x); + + /// Returns the squared distance between p0 and p1, i.e., length2(p0 - p1). + /// From GLM_GTX_norm extension. + template + GLM_FUNC_DECL T distance2(vec const& p0, vec const& p1); + + //! Returns the L1 norm between x and y. + //! From GLM_GTX_norm extension. + template + GLM_FUNC_DECL T l1Norm(vec<3, T, Q> const& x, vec<3, T, Q> const& y); + + //! Returns the L1 norm of v. + //! From GLM_GTX_norm extension. + template + GLM_FUNC_DECL T l1Norm(vec<3, T, Q> const& v); + + //! Returns the L2 norm between x and y. + //! From GLM_GTX_norm extension. + template + GLM_FUNC_DECL T l2Norm(vec<3, T, Q> const& x, vec<3, T, Q> const& y); + + //! Returns the L2 norm of v. + //! From GLM_GTX_norm extension. + template + GLM_FUNC_DECL T l2Norm(vec<3, T, Q> const& x); + + //! Returns the L norm between x and y. + //! From GLM_GTX_norm extension. + template + GLM_FUNC_DECL T lxNorm(vec<3, T, Q> const& x, vec<3, T, Q> const& y, unsigned int Depth); + + //! Returns the L norm of v. + //! From GLM_GTX_norm extension. + template + GLM_FUNC_DECL T lxNorm(vec<3, T, Q> const& x, unsigned int Depth); + + //! Returns the LMax norm between x and y. + //! From GLM_GTX_norm extension. + template + GLM_FUNC_DECL T lMaxNorm(vec<3, T, Q> const& x, vec<3, T, Q> const& y); + + //! Returns the LMax norm of v. + //! From GLM_GTX_norm extension. + template + GLM_FUNC_DECL T lMaxNorm(vec<3, T, Q> const& x); + + /// @} +}//namespace glm + +#include "norm.inl" diff --git a/thirdparty/glm/glm/gtx/norm.inl b/thirdparty/glm/glm/gtx/norm.inl new file mode 100644 index 000000000000..4a9f796451fd --- /dev/null +++ b/thirdparty/glm/glm/gtx/norm.inl @@ -0,0 +1,95 @@ +/// @ref gtx_norm + +#include "../detail/qualifier.hpp" + +namespace glm{ +namespace detail +{ + template + struct compute_length2 + { + GLM_FUNC_QUALIFIER static T call(vec const& v) + { + return dot(v, v); + } + }; +}//namespace detail + + template + GLM_FUNC_QUALIFIER genType length2(genType x) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'length2' accepts only floating-point inputs"); + return x * x; + } + + template + GLM_FUNC_QUALIFIER T length2(vec const& v) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'length2' accepts only floating-point inputs"); + return detail::compute_length2::value>::call(v); + } + + template + GLM_FUNC_QUALIFIER T distance2(T p0, T p1) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'distance2' accepts only floating-point inputs"); + return length2(p1 - p0); + } + + template + GLM_FUNC_QUALIFIER T distance2(vec const& p0, vec const& p1) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'distance2' accepts only floating-point inputs"); + return length2(p1 - p0); + } + + template + GLM_FUNC_QUALIFIER T l1Norm(vec<3, T, Q> const& a, vec<3, T, Q> const& b) + { + return abs(b.x - a.x) + abs(b.y - a.y) + abs(b.z - a.z); + } + + template + GLM_FUNC_QUALIFIER T l1Norm(vec<3, T, Q> const& v) + { + return abs(v.x) + abs(v.y) + abs(v.z); + } + + template + GLM_FUNC_QUALIFIER T l2Norm(vec<3, T, Q> const& a, vec<3, T, Q> const& b + ) + { + return length(b - a); + } + + template + GLM_FUNC_QUALIFIER T l2Norm(vec<3, T, Q> const& v) + { + return length(v); + } + + template + GLM_FUNC_QUALIFIER T lxNorm(vec<3, T, Q> const& x, vec<3, T, Q> const& y, unsigned int Depth) + { + return pow(pow(abs(y.x - x.x), T(Depth)) + pow(abs(y.y - x.y), T(Depth)) + pow(abs(y.z - x.z), T(Depth)), T(1) / T(Depth)); + } + + template + GLM_FUNC_QUALIFIER T lxNorm(vec<3, T, Q> const& v, unsigned int Depth) + { + return pow(pow(abs(v.x), T(Depth)) + pow(abs(v.y), T(Depth)) + pow(abs(v.z), T(Depth)), T(1) / T(Depth)); + } + + template + GLM_FUNC_QUALIFIER T lMaxNorm(vec<3, T, Q> const& a, vec<3, T, Q> const& b) + { + return compMax(abs(b - a)); + } + + template + GLM_FUNC_QUALIFIER T lMaxNorm(vec<3, T, Q> const& v) + { + return compMax(abs(v)); + } + +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/normal.hpp b/thirdparty/glm/glm/gtx/normal.hpp new file mode 100644 index 000000000000..068682f75f2d --- /dev/null +++ b/thirdparty/glm/glm/gtx/normal.hpp @@ -0,0 +1,41 @@ +/// @ref gtx_normal +/// @file glm/gtx/normal.hpp +/// +/// @see core (dependence) +/// @see gtx_extented_min_max (dependence) +/// +/// @defgroup gtx_normal GLM_GTX_normal +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Compute the normal of a triangle. + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_normal is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_normal extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_normal + /// @{ + + /// Computes triangle normal from triangle points. + /// + /// @see gtx_normal + template + GLM_FUNC_DECL vec<3, T, Q> triangleNormal(vec<3, T, Q> const& p1, vec<3, T, Q> const& p2, vec<3, T, Q> const& p3); + + /// @} +}//namespace glm + +#include "normal.inl" diff --git a/thirdparty/glm/glm/gtx/normal.inl b/thirdparty/glm/glm/gtx/normal.inl new file mode 100644 index 000000000000..74f9fc994585 --- /dev/null +++ b/thirdparty/glm/glm/gtx/normal.inl @@ -0,0 +1,15 @@ +/// @ref gtx_normal + +namespace glm +{ + template + GLM_FUNC_QUALIFIER vec<3, T, Q> triangleNormal + ( + vec<3, T, Q> const& p1, + vec<3, T, Q> const& p2, + vec<3, T, Q> const& p3 + ) + { + return normalize(cross(p1 - p2, p1 - p3)); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/normalize_dot.hpp b/thirdparty/glm/glm/gtx/normalize_dot.hpp new file mode 100644 index 000000000000..127aa1f65a85 --- /dev/null +++ b/thirdparty/glm/glm/gtx/normalize_dot.hpp @@ -0,0 +1,49 @@ +/// @ref gtx_normalize_dot +/// @file glm/gtx/normalize_dot.hpp +/// +/// @see core (dependence) +/// @see gtx_fast_square_root (dependence) +/// +/// @defgroup gtx_normalize_dot GLM_GTX_normalize_dot +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Dot product of vectors that need to be normalize with a single square root. + +#pragma once + +// Dependency: +#include "../gtx/fast_square_root.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_normalize_dot is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_normalize_dot extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_normalize_dot + /// @{ + + /// Normalize parameters and returns the dot product of x and y. + /// It's faster that dot(normalize(x), normalize(y)). + /// + /// @see gtx_normalize_dot extension. + template + GLM_FUNC_DECL T normalizeDot(vec const& x, vec const& y); + + /// Normalize parameters and returns the dot product of x and y. + /// Faster that dot(fastNormalize(x), fastNormalize(y)). + /// + /// @see gtx_normalize_dot extension. + template + GLM_FUNC_DECL T fastNormalizeDot(vec const& x, vec const& y); + + /// @} +}//namespace glm + +#include "normalize_dot.inl" diff --git a/thirdparty/glm/glm/gtx/normalize_dot.inl b/thirdparty/glm/glm/gtx/normalize_dot.inl new file mode 100644 index 000000000000..7bcd9a534a8f --- /dev/null +++ b/thirdparty/glm/glm/gtx/normalize_dot.inl @@ -0,0 +1,16 @@ +/// @ref gtx_normalize_dot + +namespace glm +{ + template + GLM_FUNC_QUALIFIER T normalizeDot(vec const& x, vec const& y) + { + return glm::dot(x, y) * glm::inversesqrt(glm::dot(x, x) * glm::dot(y, y)); + } + + template + GLM_FUNC_QUALIFIER T fastNormalizeDot(vec const& x, vec const& y) + { + return glm::dot(x, y) * glm::fastInverseSqrt(glm::dot(x, x) * glm::dot(y, y)); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/number_precision.hpp b/thirdparty/glm/glm/gtx/number_precision.hpp new file mode 100644 index 000000000000..3bf0ad68bdd0 --- /dev/null +++ b/thirdparty/glm/glm/gtx/number_precision.hpp @@ -0,0 +1,47 @@ +/// @ref gtx_number_precision +/// @file glm/gtx/number_precision.hpp +/// +/// @see core (dependence) +/// @see gtc_type_precision (dependence) +/// @see gtc_quaternion (dependence) +/// +/// @defgroup gtx_number_precision GLM_GTX_number_precision +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Defined size types. + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../gtc/type_precision.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_number_precision is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_number_precision extension included") +# endif +#endif + +namespace glm{ + ///////////////////////////// + // Unsigned int vector types + + /// @addtogroup gtx_number_precision + /// @{ + + ////////////////////// + // Float matrix types + + typedef f32 f32mat1; //!< \brief Single-qualifier floating-point scalar. (from GLM_GTX_number_precision extension) + typedef f32 f32mat1x1; //!< \brief Single-qualifier floating-point scalar. (from GLM_GTX_number_precision extension) + typedef f64 f64mat1; //!< \brief Double-qualifier floating-point scalar. (from GLM_GTX_number_precision extension) + typedef f64 f64mat1x1; //!< \brief Double-qualifier floating-point scalar. (from GLM_GTX_number_precision extension) + + /// @} +}//namespace glm + +#include "number_precision.inl" diff --git a/thirdparty/glm/glm/gtx/optimum_pow.hpp b/thirdparty/glm/glm/gtx/optimum_pow.hpp new file mode 100644 index 000000000000..a8ff6002f123 --- /dev/null +++ b/thirdparty/glm/glm/gtx/optimum_pow.hpp @@ -0,0 +1,52 @@ +/// @ref gtx_optimum_pow +/// @file glm/gtx/optimum_pow.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_optimum_pow GLM_GTX_optimum_pow +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Integer exponentiation of power functions. + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_optimum_pow is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_optimum_pow extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_optimum_pow + /// @{ + + /// Returns x raised to the power of 2. + /// + /// @see gtx_optimum_pow + template + GLM_FUNC_DECL genType pow2(genType const& x); + + /// Returns x raised to the power of 3. + /// + /// @see gtx_optimum_pow + template + GLM_FUNC_DECL genType pow3(genType const& x); + + /// Returns x raised to the power of 4. + /// + /// @see gtx_optimum_pow + template + GLM_FUNC_DECL genType pow4(genType const& x); + + /// @} +}//namespace glm + +#include "optimum_pow.inl" diff --git a/thirdparty/glm/glm/gtx/optimum_pow.inl b/thirdparty/glm/glm/gtx/optimum_pow.inl new file mode 100644 index 000000000000..a26c19c18bfb --- /dev/null +++ b/thirdparty/glm/glm/gtx/optimum_pow.inl @@ -0,0 +1,22 @@ +/// @ref gtx_optimum_pow + +namespace glm +{ + template + GLM_FUNC_QUALIFIER genType pow2(genType const& x) + { + return x * x; + } + + template + GLM_FUNC_QUALIFIER genType pow3(genType const& x) + { + return x * x * x; + } + + template + GLM_FUNC_QUALIFIER genType pow4(genType const& x) + { + return (x * x) * (x * x); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/orthonormalize.hpp b/thirdparty/glm/glm/gtx/orthonormalize.hpp new file mode 100644 index 000000000000..3e004fb06f9c --- /dev/null +++ b/thirdparty/glm/glm/gtx/orthonormalize.hpp @@ -0,0 +1,49 @@ +/// @ref gtx_orthonormalize +/// @file glm/gtx/orthonormalize.hpp +/// +/// @see core (dependence) +/// @see gtx_extented_min_max (dependence) +/// +/// @defgroup gtx_orthonormalize GLM_GTX_orthonormalize +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Orthonormalize matrices. + +#pragma once + +// Dependency: +#include "../vec3.hpp" +#include "../mat3x3.hpp" +#include "../geometric.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_orthonormalize is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_orthonormalize extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_orthonormalize + /// @{ + + /// Returns the orthonormalized matrix of m. + /// + /// @see gtx_orthonormalize + template + GLM_FUNC_DECL mat<3, 3, T, Q> orthonormalize(mat<3, 3, T, Q> const& m); + + /// Orthonormalizes x according y. + /// + /// @see gtx_orthonormalize + template + GLM_FUNC_DECL vec<3, T, Q> orthonormalize(vec<3, T, Q> const& x, vec<3, T, Q> const& y); + + /// @} +}//namespace glm + +#include "orthonormalize.inl" diff --git a/thirdparty/glm/glm/gtx/orthonormalize.inl b/thirdparty/glm/glm/gtx/orthonormalize.inl new file mode 100644 index 000000000000..cb553ba62157 --- /dev/null +++ b/thirdparty/glm/glm/gtx/orthonormalize.inl @@ -0,0 +1,29 @@ +/// @ref gtx_orthonormalize + +namespace glm +{ + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> orthonormalize(mat<3, 3, T, Q> const& m) + { + mat<3, 3, T, Q> r = m; + + r[0] = normalize(r[0]); + + T d0 = dot(r[0], r[1]); + r[1] -= r[0] * d0; + r[1] = normalize(r[1]); + + T d1 = dot(r[1], r[2]); + d0 = dot(r[0], r[2]); + r[2] -= r[0] * d0 + r[1] * d1; + r[2] = normalize(r[2]); + + return r; + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> orthonormalize(vec<3, T, Q> const& x, vec<3, T, Q> const& y) + { + return normalize(x - y * dot(y, x)); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/pca.hpp b/thirdparty/glm/glm/gtx/pca.hpp new file mode 100644 index 000000000000..d89c408e36ef --- /dev/null +++ b/thirdparty/glm/glm/gtx/pca.hpp @@ -0,0 +1,115 @@ +/// @ref gtx_pca +/// @file glm/gtx/pca.hpp +/// +/// @see core (dependence) +/// @see ext_scalar_relational (dependence) +/// +/// @defgroup gtx_pca GLM_GTX_pca +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Implements functions required for fundamental 'princple component analysis' in 2D, 3D, and 4D: +/// 1) Computing a covariance matrics from a list of _relative_ position vectors +/// 2) Compute the eigenvalues and eigenvectors of the covariance matrics +/// This is useful, e.g., to compute an object-aligned bounding box from vertices of an object. +/// https://en.wikipedia.org/wiki/Principal_component_analysis +/// +/// Example: +/// ``` +/// std::vector ptData; +/// // ... fill ptData with some point data, e.g. vertices +/// +/// glm::dvec3 center = computeCenter(ptData); +/// +/// glm::dmat3 covarMat = glm::computeCovarianceMatrix(ptData.data(), ptData.size(), center); +/// +/// glm::dvec3 evals; +/// glm::dmat3 evecs; +/// int evcnt = glm::findEigenvaluesSymReal(covarMat, evals, evecs); +/// +/// if(evcnt != 3) +/// // ... error handling +/// +/// glm::sortEigenvalues(evals, evecs); +/// +/// // ... now evecs[0] points in the direction (symmetric) of the largest spatial distribution within ptData +/// ``` + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../ext/scalar_relational.hpp" + + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_pca is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_pca extension included") +# endif +#endif + +namespace glm { + /// @addtogroup gtx_pca + /// @{ + + /// Compute a covariance matrix form an array of relative coordinates `v` (e.g., relative to the center of gravity of the object) + /// @param v Points to a memory holding `n` times vectors + /// @param n Number of points in v + template + GLM_INLINE mat computeCovarianceMatrix(vec const* v, size_t n); + + /// Compute a covariance matrix form an array of absolute coordinates `v` and a precomputed center of gravity `c` + /// @param v Points to a memory holding `n` times vectors + /// @param n Number of points in v + /// @param c Precomputed center of gravity + template + GLM_INLINE mat computeCovarianceMatrix(vec const* v, size_t n, vec const& c); + + /// Compute a covariance matrix form a pair of iterators `b` (begin) and `e` (end) of a container with relative coordinates (e.g., relative to the center of gravity of the object) + /// Dereferencing an iterator of type I must yield a `vec<D, T, Q%gt;` + template + GLM_FUNC_DECL mat computeCovarianceMatrix(I const& b, I const& e); + + /// Compute a covariance matrix form a pair of iterators `b` (begin) and `e` (end) of a container with absolute coordinates and a precomputed center of gravity `c` + /// Dereferencing an iterator of type I must yield a `vec<D, T, Q%gt;` + template + GLM_FUNC_DECL mat computeCovarianceMatrix(I const& b, I const& e, vec const& c); + + /// Assuming the provided covariance matrix `covarMat` is symmetric and real-valued, this function find the `D` Eigenvalues of the matrix, and also provides the corresponding Eigenvectors. + /// Note: the data in `outEigenvalues` and `outEigenvectors` are in matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`. + /// This is a numeric implementation to find the Eigenvalues, using 'QL decomposition` (variant of QR decomposition: https://en.wikipedia.org/wiki/QR_decomposition). + /// + /// @param[in] covarMat A symmetric, real-valued covariance matrix, e.g. computed from computeCovarianceMatrix + /// @param[out] outEigenvalues Vector to receive the found eigenvalues + /// @param[out] outEigenvectors Matrix to receive the found eigenvectors corresponding to the found eigenvalues, as column vectors + /// @return The number of eigenvalues found, usually D if the precondition of the covariance matrix is met. + template + GLM_FUNC_DECL unsigned int findEigenvaluesSymReal + ( + mat const& covarMat, + vec& outEigenvalues, + mat& outEigenvectors + ); + + /// Sorts a group of Eigenvalues&Eigenvectors, for largest Eigenvalue to smallest Eigenvalue. + /// The data in `outEigenvalues` and `outEigenvectors` are assumed to be matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`. + template + GLM_FUNC_DECL void sortEigenvalues(vec<2, T, Q>& eigenvalues, mat<2, 2, T, Q>& eigenvectors); + + /// Sorts a group of Eigenvalues&Eigenvectors, for largest Eigenvalue to smallest Eigenvalue. + /// The data in `outEigenvalues` and `outEigenvectors` are assumed to be matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`. + template + GLM_FUNC_DECL void sortEigenvalues(vec<3, T, Q>& eigenvalues, mat<3, 3, T, Q>& eigenvectors); + + /// Sorts a group of Eigenvalues&Eigenvectors, for largest Eigenvalue to smallest Eigenvalue. + /// The data in `outEigenvalues` and `outEigenvectors` are assumed to be matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`. + template + GLM_FUNC_DECL void sortEigenvalues(vec<4, T, Q>& eigenvalues, mat<4, 4, T, Q>& eigenvectors); + + /// @} +}//namespace glm + +#include "pca.inl" diff --git a/thirdparty/glm/glm/gtx/pca.inl b/thirdparty/glm/glm/gtx/pca.inl new file mode 100644 index 000000000000..94cae946e8a2 --- /dev/null +++ b/thirdparty/glm/glm/gtx/pca.inl @@ -0,0 +1,343 @@ +/// @ref gtx_pca + +#ifndef GLM_HAS_CXX11_STL +#include +#else +#include +#endif + +namespace glm { + + + template + GLM_FUNC_QUALIFIER mat computeCovarianceMatrix(vec const* v, size_t n) + { + return computeCovarianceMatrix const*>(v, v + n); + } + + + template + GLM_FUNC_QUALIFIER mat computeCovarianceMatrix(vec const* v, size_t n, vec const& c) + { + return computeCovarianceMatrix const*>(v, v + n, c); + } + + + template + GLM_FUNC_QUALIFIER mat computeCovarianceMatrix(I const& b, I const& e) + { + glm::mat m(0); + + size_t cnt = 0; + for(I i = b; i != e; i++) + { + vec const& v = *i; + for(length_t x = 0; x < D; ++x) + for(length_t y = 0; y < D; ++y) + m[x][y] += static_cast(v[x] * v[y]); + cnt++; + } + if(cnt > 0) + m /= static_cast(cnt); + + return m; + } + + + template + GLM_FUNC_QUALIFIER mat computeCovarianceMatrix(I const& b, I const& e, vec const& c) + { + glm::mat m(0); + glm::vec v; + + size_t cnt = 0; + for(I i = b; i != e; i++) + { + v = *i - c; + for(length_t x = 0; x < D; ++x) + for(length_t y = 0; y < D; ++y) + m[x][y] += static_cast(v[x] * v[y]); + cnt++; + } + if(cnt > 0) + m /= static_cast(cnt); + + return m; + } + + namespace _internal_ + { + + template + GLM_FUNC_QUALIFIER static T transferSign(T const& v, T const& s) + { + return ((s) >= 0 ? glm::abs(v) : -glm::abs(v)); + } + + template + GLM_FUNC_QUALIFIER static T pythag(T const& a, T const& b) { + static const T epsilon = static_cast(0.0000001); + T absa = glm::abs(a); + T absb = glm::abs(b); + if(absa > absb) { + absb /= absa; + absb *= absb; + return absa * glm::sqrt(static_cast(1) + absb); + } + if(glm::equal(absb, 0, epsilon)) return static_cast(0); + absa /= absb; + absa *= absa; + return absb * glm::sqrt(static_cast(1) + absa); + } + + } + + template + GLM_FUNC_QUALIFIER unsigned int findEigenvaluesSymReal + ( + mat const& covarMat, + vec& outEigenvalues, + mat& outEigenvectors + ) + { + using _internal_::transferSign; + using _internal_::pythag; + + T a[D * D]; // matrix -- input and workspace for algorithm (will be changed inplace) + T d[D]; // diagonal elements + T e[D]; // off-diagonal elements + + for(length_t r = 0; r < D; r++) + for(length_t c = 0; c < D; c++) + a[(r) * D + (c)] = covarMat[c][r]; + + // 1. Householder reduction. + length_t l, k, j, i; + T scale, hh, h, g, f; + static const T epsilon = static_cast(0.0000001); + + for(i = D; i >= 2; i--) + { + l = i - 1; + h = scale = 0; + if(l > 1) + { + for(k = 1; k <= l; k++) + { + scale += glm::abs(a[(i - 1) * D + (k - 1)]); + } + if(glm::equal(scale, 0, epsilon)) + { + e[i - 1] = a[(i - 1) * D + (l - 1)]; + } + else + { + for(k = 1; k <= l; k++) + { + a[(i - 1) * D + (k - 1)] /= scale; + h += a[(i - 1) * D + (k - 1)] * a[(i - 1) * D + (k - 1)]; + } + f = a[(i - 1) * D + (l - 1)]; + g = ((f >= 0) ? -glm::sqrt(h) : glm::sqrt(h)); + e[i - 1] = scale * g; + h -= f * g; + a[(i - 1) * D + (l - 1)] = f - g; + f = 0; + for(j = 1; j <= l; j++) + { + a[(j - 1) * D + (i - 1)] = a[(i - 1) * D + (j - 1)] / h; + g = 0; + for(k = 1; k <= j; k++) + { + g += a[(j - 1) * D + (k - 1)] * a[(i - 1) * D + (k - 1)]; + } + for(k = j + 1; k <= l; k++) + { + g += a[(k - 1) * D + (j - 1)] * a[(i - 1) * D + (k - 1)]; + } + e[j - 1] = g / h; + f += e[j - 1] * a[(i - 1) * D + (j - 1)]; + } + hh = f / (h + h); + for(j = 1; j <= l; j++) + { + f = a[(i - 1) * D + (j - 1)]; + e[j - 1] = g = e[j - 1] - hh * f; + for(k = 1; k <= j; k++) + { + a[(j - 1) * D + (k - 1)] -= (f * e[k - 1] + g * a[(i - 1) * D + (k - 1)]); + } + } + } + } + else + { + e[i - 1] = a[(i - 1) * D + (l - 1)]; + } + d[i - 1] = h; + } + d[0] = 0; + e[0] = 0; + for(i = 1; i <= D; i++) + { + l = i - 1; + if(!glm::equal(d[i - 1], 0, epsilon)) + { + for(j = 1; j <= l; j++) + { + g = 0; + for(k = 1; k <= l; k++) + { + g += a[(i - 1) * D + (k - 1)] * a[(k - 1) * D + (j - 1)]; + } + for(k = 1; k <= l; k++) + { + a[(k - 1) * D + (j - 1)] -= g * a[(k - 1) * D + (i - 1)]; + } + } + } + d[i - 1] = a[(i - 1) * D + (i - 1)]; + a[(i - 1) * D + (i - 1)] = 1; + for(j = 1; j <= l; j++) + { + a[(j - 1) * D + (i - 1)] = a[(i - 1) * D + (j - 1)] = 0; + } + } + + // 2. Calculation of eigenvalues and eigenvectors (QL algorithm) + length_t m, iter; + T s, r, p, dd, c, b; + const length_t MAX_ITER = 30; + + for(i = 2; i <= D; i++) + { + e[i - 2] = e[i - 1]; + } + e[D - 1] = 0; + + for(l = 1; l <= D; l++) + { + iter = 0; + do + { + for(m = l; m <= D - 1; m++) + { + dd = glm::abs(d[m - 1]) + glm::abs(d[m - 1 + 1]); + if(glm::equal(glm::abs(e[m - 1]) + dd, dd, epsilon)) + break; + } + if(m != l) + { + if(iter++ == MAX_ITER) + { + return 0; // Too many iterations in FindEigenvalues + } + g = (d[l - 1 + 1] - d[l - 1]) / (2 * e[l - 1]); + r = pythag(g, 1); + g = d[m - 1] - d[l - 1] + e[l - 1] / (g + transferSign(r, g)); + s = c = 1; + p = 0; + for(i = m - 1; i >= l; i--) + { + f = s * e[i - 1]; + b = c * e[i - 1]; + e[i - 1 + 1] = r = pythag(f, g); + if(glm::equal(r, 0, epsilon)) + { + d[i - 1 + 1] -= p; + e[m - 1] = 0; + break; + } + s = f / r; + c = g / r; + g = d[i - 1 + 1] - p; + r = (d[i - 1] - g) * s + 2 * c * b; + d[i - 1 + 1] = g + (p = s * r); + g = c * r - b; + for(k = 1; k <= D; k++) + { + f = a[(k - 1) * D + (i - 1 + 1)]; + a[(k - 1) * D + (i - 1 + 1)] = s * a[(k - 1) * D + (i - 1)] + c * f; + a[(k - 1) * D + (i - 1)] = c * a[(k - 1) * D + (i - 1)] - s * f; + } + } + if(glm::equal(r, 0, epsilon) && (i >= l)) + continue; + d[l - 1] -= p; + e[l - 1] = g; + e[m - 1] = 0; + } + } while(m != l); + } + + // 3. output + for(i = 0; i < D; i++) + outEigenvalues[i] = d[i]; + for(i = 0; i < D; i++) + for(j = 0; j < D; j++) + outEigenvectors[i][j] = a[(j) * D + (i)]; + + return D; + } + + template + GLM_FUNC_QUALIFIER void sortEigenvalues(vec<2, T, Q>& eigenvalues, mat<2, 2, T, Q>& eigenvectors) + { + if (eigenvalues[0] < eigenvalues[1]) + { + std::swap(eigenvalues[0], eigenvalues[1]); + std::swap(eigenvectors[0], eigenvectors[1]); + } + } + + template + GLM_FUNC_QUALIFIER void sortEigenvalues(vec<3, T, Q>& eigenvalues, mat<3, 3, T, Q>& eigenvectors) + { + if (eigenvalues[0] < eigenvalues[1]) + { + std::swap(eigenvalues[0], eigenvalues[1]); + std::swap(eigenvectors[0], eigenvectors[1]); + } + if (eigenvalues[0] < eigenvalues[2]) + { + std::swap(eigenvalues[0], eigenvalues[2]); + std::swap(eigenvectors[0], eigenvectors[2]); + } + if (eigenvalues[1] < eigenvalues[2]) + { + std::swap(eigenvalues[1], eigenvalues[2]); + std::swap(eigenvectors[1], eigenvectors[2]); + } + } + + template + GLM_FUNC_QUALIFIER void sortEigenvalues(vec<4, T, Q>& eigenvalues, mat<4, 4, T, Q>& eigenvectors) + { + if (eigenvalues[0] < eigenvalues[2]) + { + std::swap(eigenvalues[0], eigenvalues[2]); + std::swap(eigenvectors[0], eigenvectors[2]); + } + if (eigenvalues[1] < eigenvalues[3]) + { + std::swap(eigenvalues[1], eigenvalues[3]); + std::swap(eigenvectors[1], eigenvectors[3]); + } + if (eigenvalues[0] < eigenvalues[1]) + { + std::swap(eigenvalues[0], eigenvalues[1]); + std::swap(eigenvectors[0], eigenvectors[1]); + } + if (eigenvalues[2] < eigenvalues[3]) + { + std::swap(eigenvalues[2], eigenvalues[3]); + std::swap(eigenvectors[2], eigenvectors[3]); + } + if (eigenvalues[1] < eigenvalues[2]) + { + std::swap(eigenvalues[1], eigenvalues[2]); + std::swap(eigenvectors[1], eigenvectors[2]); + } + } + +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/perpendicular.hpp b/thirdparty/glm/glm/gtx/perpendicular.hpp new file mode 100644 index 000000000000..72b77b6e2388 --- /dev/null +++ b/thirdparty/glm/glm/gtx/perpendicular.hpp @@ -0,0 +1,41 @@ +/// @ref gtx_perpendicular +/// @file glm/gtx/perpendicular.hpp +/// +/// @see core (dependence) +/// @see gtx_projection (dependence) +/// +/// @defgroup gtx_perpendicular GLM_GTX_perpendicular +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Perpendicular of a vector from other one + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../gtx/projection.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_perpendicular is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_perpendicular extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_perpendicular + /// @{ + + //! Projects x a perpendicular axis of Normal. + //! From GLM_GTX_perpendicular extension. + template + GLM_FUNC_DECL genType perp(genType const& x, genType const& Normal); + + /// @} +}//namespace glm + +#include "perpendicular.inl" diff --git a/thirdparty/glm/glm/gtx/perpendicular.inl b/thirdparty/glm/glm/gtx/perpendicular.inl new file mode 100644 index 000000000000..1e72f334230d --- /dev/null +++ b/thirdparty/glm/glm/gtx/perpendicular.inl @@ -0,0 +1,10 @@ +/// @ref gtx_perpendicular + +namespace glm +{ + template + GLM_FUNC_QUALIFIER genType perp(genType const& x, genType const& Normal) + { + return x - proj(x, Normal); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/polar_coordinates.hpp b/thirdparty/glm/glm/gtx/polar_coordinates.hpp new file mode 100644 index 000000000000..76beb82bd57c --- /dev/null +++ b/thirdparty/glm/glm/gtx/polar_coordinates.hpp @@ -0,0 +1,48 @@ +/// @ref gtx_polar_coordinates +/// @file glm/gtx/polar_coordinates.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_polar_coordinates GLM_GTX_polar_coordinates +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Conversion from Euclidean space to polar space and revert. + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_polar_coordinates is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_polar_coordinates extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_polar_coordinates + /// @{ + + /// Convert Euclidean to Polar coordinates, x is the latitude, y the longitude and z the xz distance. + /// + /// @see gtx_polar_coordinates + template + GLM_FUNC_DECL vec<3, T, Q> polar( + vec<3, T, Q> const& euclidean); + + /// Convert Polar to Euclidean coordinates. + /// + /// @see gtx_polar_coordinates + template + GLM_FUNC_DECL vec<3, T, Q> euclidean( + vec<2, T, Q> const& polar); + + /// @} +}//namespace glm + +#include "polar_coordinates.inl" diff --git a/thirdparty/glm/glm/gtx/polar_coordinates.inl b/thirdparty/glm/glm/gtx/polar_coordinates.inl new file mode 100644 index 000000000000..371c8dddebd1 --- /dev/null +++ b/thirdparty/glm/glm/gtx/polar_coordinates.inl @@ -0,0 +1,36 @@ +/// @ref gtx_polar_coordinates + +namespace glm +{ + template + GLM_FUNC_QUALIFIER vec<3, T, Q> polar + ( + vec<3, T, Q> const& euclidean + ) + { + T const Length(length(euclidean)); + vec<3, T, Q> const tmp(euclidean / Length); + T const xz_dist(sqrt(tmp.x * tmp.x + tmp.z * tmp.z)); + + return vec<3, T, Q>( + asin(tmp.y), // latitude + atan(tmp.x, tmp.z), // longitude + xz_dist); // xz distance + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> euclidean + ( + vec<2, T, Q> const& polar + ) + { + T const latitude(polar.x); + T const longitude(polar.y); + + return vec<3, T, Q>( + cos(latitude) * sin(longitude), + sin(latitude), + cos(latitude) * cos(longitude)); + } + +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/projection.hpp b/thirdparty/glm/glm/gtx/projection.hpp new file mode 100644 index 000000000000..678f3ad5a585 --- /dev/null +++ b/thirdparty/glm/glm/gtx/projection.hpp @@ -0,0 +1,43 @@ +/// @ref gtx_projection +/// @file glm/gtx/projection.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_projection GLM_GTX_projection +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Projection of a vector to other one + +#pragma once + +// Dependency: +#include "../geometric.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_projection is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_projection extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_projection + /// @{ + + /// Projects x on Normal. + /// + /// @param[in] x A vector to project + /// @param[in] Normal A normal that doesn't need to be of unit length. + /// + /// @see gtx_projection + template + GLM_FUNC_DECL genType proj(genType const& x, genType const& Normal); + + /// @} +}//namespace glm + +#include "projection.inl" diff --git a/thirdparty/glm/glm/gtx/projection.inl b/thirdparty/glm/glm/gtx/projection.inl new file mode 100644 index 000000000000..f23f884fb93a --- /dev/null +++ b/thirdparty/glm/glm/gtx/projection.inl @@ -0,0 +1,10 @@ +/// @ref gtx_projection + +namespace glm +{ + template + GLM_FUNC_QUALIFIER genType proj(genType const& x, genType const& Normal) + { + return glm::dot(x, Normal) / glm::dot(Normal, Normal) * Normal; + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/quaternion.hpp b/thirdparty/glm/glm/gtx/quaternion.hpp new file mode 100644 index 000000000000..35c372b816e9 --- /dev/null +++ b/thirdparty/glm/glm/gtx/quaternion.hpp @@ -0,0 +1,174 @@ +/// @ref gtx_quaternion +/// @file glm/gtx/quaternion.hpp +/// +/// @see core (dependence) +/// @see gtx_extented_min_max (dependence) +/// +/// @defgroup gtx_quaternion GLM_GTX_quaternion +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Extended quaternion types and functions + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../gtc/constants.hpp" +#include "../gtc/quaternion.hpp" +#include "../ext/quaternion_exponential.hpp" +#include "../gtx/norm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_quaternion is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_quaternion extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_quaternion + /// @{ + + /// Create an identity quaternion. + /// + /// @see gtx_quaternion + template + GLM_FUNC_DECL GLM_CONSTEXPR qua quat_identity(); + + /// Compute a cross product between a quaternion and a vector. + /// + /// @see gtx_quaternion + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> cross( + qua const& q, + vec<3, T, Q> const& v); + + //! Compute a cross product between a vector and a quaternion. + /// + /// @see gtx_quaternion + template + GLM_FUNC_DECL GLM_CONSTEXPR vec<3, T, Q> cross( + vec<3, T, Q> const& v, + qua const& q); + + //! Compute a point on a path according squad equation. + //! q1 and q2 are control points; s1 and s2 are intermediate control points. + /// + /// @see gtx_quaternion + template + GLM_FUNC_DECL qua squad( + qua const& q1, + qua const& q2, + qua const& s1, + qua const& s2, + T const& h); + + //! Returns an intermediate control point for squad interpolation. + /// + /// @see gtx_quaternion + template + GLM_FUNC_DECL qua intermediate( + qua const& prev, + qua const& curr, + qua const& next); + + //! Returns quarternion square root. + /// + /// @see gtx_quaternion + //template + //qua sqrt( + // qua const& q); + + //! Rotates a 3 components vector by a quaternion. + /// + /// @see gtx_quaternion + template + GLM_FUNC_DECL vec<3, T, Q> rotate( + qua const& q, + vec<3, T, Q> const& v); + + /// Rotates a 4 components vector by a quaternion. + /// + /// @see gtx_quaternion + template + GLM_FUNC_DECL vec<4, T, Q> rotate( + qua const& q, + vec<4, T, Q> const& v); + + /// Extract the real component of a quaternion. + /// + /// @see gtx_quaternion + template + GLM_FUNC_DECL T extractRealComponent( + qua const& q); + + /// Converts a quaternion to a 3 * 3 matrix. + /// + /// @see gtx_quaternion + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> toMat3( + qua const& x){return mat3_cast(x);} + + /// Converts a quaternion to a 4 * 4 matrix. + /// + /// @see gtx_quaternion + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> toMat4( + qua const& x){return mat4_cast(x);} + + /// Converts a 3 * 3 matrix to a quaternion. + /// + /// @see gtx_quaternion + template + GLM_FUNC_QUALIFIER qua toQuat( + mat<3, 3, T, Q> const& x){return quat_cast(x);} + + /// Converts a 4 * 4 matrix to a quaternion. + /// + /// @see gtx_quaternion + template + GLM_FUNC_QUALIFIER qua toQuat( + mat<4, 4, T, Q> const& x){return quat_cast(x);} + + /// Quaternion interpolation using the rotation short path. + /// + /// @see gtx_quaternion + template + GLM_FUNC_DECL qua shortMix( + qua const& x, + qua const& y, + T const& a); + + /// Quaternion normalized linear interpolation. + /// + /// @see gtx_quaternion + template + GLM_FUNC_DECL qua fastMix( + qua const& x, + qua const& y, + T const& a); + + /// Compute the rotation between two vectors. + /// @param orig vector, needs to be normalized + /// @param dest vector, needs to be normalized + /// + /// @see gtx_quaternion + template + GLM_FUNC_DECL qua rotation( + vec<3, T, Q> const& orig, + vec<3, T, Q> const& dest); + + /// Returns the squared length of x. + /// + /// @see gtx_quaternion + template + GLM_FUNC_DECL GLM_CONSTEXPR T length2(qua const& q); + + /// @} +}//namespace glm + +#include "quaternion.inl" diff --git a/thirdparty/glm/glm/gtx/quaternion.inl b/thirdparty/glm/glm/gtx/quaternion.inl new file mode 100644 index 000000000000..5e18899a714a --- /dev/null +++ b/thirdparty/glm/glm/gtx/quaternion.inl @@ -0,0 +1,159 @@ +/// @ref gtx_quaternion + +#include +#include "../gtc/constants.hpp" + +namespace glm +{ + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR qua quat_identity() + { + return qua::wxyz(static_cast(1), static_cast(0), static_cast(0), static_cast(0)); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> cross(vec<3, T, Q> const& v, qua const& q) + { + return inverse(q) * v; + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR vec<3, T, Q> cross(qua const& q, vec<3, T, Q> const& v) + { + return q * v; + } + + template + GLM_FUNC_QUALIFIER qua squad + ( + qua const& q1, + qua const& q2, + qua const& s1, + qua const& s2, + T const& h) + { + return mix(mix(q1, q2, h), mix(s1, s2, h), static_cast(2) * (static_cast(1) - h) * h); + } + + template + GLM_FUNC_QUALIFIER qua intermediate + ( + qua const& prev, + qua const& curr, + qua const& next + ) + { + qua invQuat = inverse(curr); + return exp((log(next * invQuat) + log(prev * invQuat)) / static_cast(-4)) * curr; + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> rotate(qua const& q, vec<3, T, Q> const& v) + { + return q * v; + } + + template + GLM_FUNC_QUALIFIER vec<4, T, Q> rotate(qua const& q, vec<4, T, Q> const& v) + { + return q * v; + } + + template + GLM_FUNC_QUALIFIER T extractRealComponent(qua const& q) + { + T w = static_cast(1) - q.x * q.x - q.y * q.y - q.z * q.z; + if(w < T(0)) + return T(0); + else + return -sqrt(w); + } + + template + GLM_FUNC_QUALIFIER GLM_CONSTEXPR T length2(qua const& q) + { + return q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w; + } + + template + GLM_FUNC_QUALIFIER qua shortMix(qua const& x, qua const& y, T const& a) + { + if(a <= static_cast(0)) return x; + if(a >= static_cast(1)) return y; + + T fCos = dot(x, y); + qua y2(y); //BUG!!! qua y2; + if(fCos < static_cast(0)) + { + y2 = -y; + fCos = -fCos; + } + + //if(fCos > 1.0f) // problem + T k0, k1; + if(fCos > (static_cast(1) - epsilon())) + { + k0 = static_cast(1) - a; + k1 = static_cast(0) + a; //BUG!!! 1.0f + a; + } + else + { + T fSin = sqrt(T(1) - fCos * fCos); + T fAngle = atan(fSin, fCos); + T fOneOverSin = static_cast(1) / fSin; + k0 = sin((static_cast(1) - a) * fAngle) * fOneOverSin; + k1 = sin((static_cast(0) + a) * fAngle) * fOneOverSin; + } + + return qua::wxyz( + k0 * x.w + k1 * y2.w, + k0 * x.x + k1 * y2.x, + k0 * x.y + k1 * y2.y, + k0 * x.z + k1 * y2.z); + } + + template + GLM_FUNC_QUALIFIER qua fastMix(qua const& x, qua const& y, T const& a) + { + return glm::normalize(x * (static_cast(1) - a) + (y * a)); + } + + template + GLM_FUNC_QUALIFIER qua rotation(vec<3, T, Q> const& orig, vec<3, T, Q> const& dest) + { + T cosTheta = dot(orig, dest); + vec<3, T, Q> rotationAxis; + + if(cosTheta >= static_cast(1) - epsilon()) { + // orig and dest point in the same direction + return quat_identity(); + } + + if(cosTheta < static_cast(-1) + epsilon()) + { + // special case when vectors in opposite directions : + // there is no "ideal" rotation axis + // So guess one; any will do as long as it's perpendicular to start + // This implementation favors a rotation around the Up axis (Y), + // since it's often what you want to do. + rotationAxis = cross(vec<3, T, Q>(0, 0, 1), orig); + if(length2(rotationAxis) < epsilon()) // bad luck, they were parallel, try again! + rotationAxis = cross(vec<3, T, Q>(1, 0, 0), orig); + + rotationAxis = normalize(rotationAxis); + return angleAxis(pi(), rotationAxis); + } + + // Implementation from Stan Melax's Game Programming Gems 1 article + rotationAxis = cross(orig, dest); + + T s = sqrt((T(1) + cosTheta) * static_cast(2)); + T invs = static_cast(1) / s; + + return qua::wxyz( + s * static_cast(0.5f), + rotationAxis.x * invs, + rotationAxis.y * invs, + rotationAxis.z * invs); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/range.hpp b/thirdparty/glm/glm/gtx/range.hpp new file mode 100644 index 000000000000..93bcb9a65a0a --- /dev/null +++ b/thirdparty/glm/glm/gtx/range.hpp @@ -0,0 +1,98 @@ +/// @ref gtx_range +/// @file glm/gtx/range.hpp +/// @author Joshua Moerman +/// +/// @defgroup gtx_range GLM_GTX_range +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Defines begin and end for vectors and matrices. Useful for range-based for loop. +/// The range is defined over the elements, not over columns or rows (e.g. mat4 has 16 elements). + +#pragma once + +// Dependencies +#include "../detail/setup.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_range is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_range extension included") +# endif +#endif + +#include "../gtc/type_ptr.hpp" +#include "../gtc/vec1.hpp" + +namespace glm +{ + /// @addtogroup gtx_range + /// @{ + +# if GLM_COMPILER & GLM_COMPILER_VC +# pragma warning(push) +# pragma warning(disable : 4100) // unreferenced formal parameter +# endif + + template + inline length_t components(vec<1, T, Q> const& v) + { + return v.length(); + } + + template + inline length_t components(vec<2, T, Q> const& v) + { + return v.length(); + } + + template + inline length_t components(vec<3, T, Q> const& v) + { + return v.length(); + } + + template + inline length_t components(vec<4, T, Q> const& v) + { + return v.length(); + } + + template + inline length_t components(genType const& m) + { + return m.length() * m[0].length(); + } + + template + inline typename genType::value_type const * begin(genType const& v) + { + return value_ptr(v); + } + + template + inline typename genType::value_type const * end(genType const& v) + { + return begin(v) + components(v); + } + + template + inline typename genType::value_type * begin(genType& v) + { + return value_ptr(v); + } + + template + inline typename genType::value_type * end(genType& v) + { + return begin(v) + components(v); + } + +# if GLM_COMPILER & GLM_COMPILER_VC +# pragma warning(pop) +# endif + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/raw_data.hpp b/thirdparty/glm/glm/gtx/raw_data.hpp new file mode 100644 index 000000000000..86cbe77d9ae5 --- /dev/null +++ b/thirdparty/glm/glm/gtx/raw_data.hpp @@ -0,0 +1,51 @@ +/// @ref gtx_raw_data +/// @file glm/gtx/raw_data.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_raw_data GLM_GTX_raw_data +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Projection of a vector to other one + +#pragma once + +// Dependencies +#include "../ext/scalar_uint_sized.hpp" +#include "../detail/setup.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_raw_data is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_raw_data extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_raw_data + /// @{ + + //! Type for byte numbers. + //! From GLM_GTX_raw_data extension. + typedef detail::uint8 byte; + + //! Type for word numbers. + //! From GLM_GTX_raw_data extension. + typedef detail::uint16 word; + + //! Type for dword numbers. + //! From GLM_GTX_raw_data extension. + typedef detail::uint32 dword; + + //! Type for qword numbers. + //! From GLM_GTX_raw_data extension. + typedef detail::uint64 qword; + + /// @} +}// namespace glm + +#include "raw_data.inl" diff --git a/thirdparty/glm/glm/gtx/raw_data.inl b/thirdparty/glm/glm/gtx/raw_data.inl new file mode 100644 index 000000000000..c740317d334e --- /dev/null +++ b/thirdparty/glm/glm/gtx/raw_data.inl @@ -0,0 +1,2 @@ +/// @ref gtx_raw_data + diff --git a/thirdparty/glm/glm/gtx/rotate_normalized_axis.hpp b/thirdparty/glm/glm/gtx/rotate_normalized_axis.hpp new file mode 100644 index 000000000000..2103ca08f15e --- /dev/null +++ b/thirdparty/glm/glm/gtx/rotate_normalized_axis.hpp @@ -0,0 +1,68 @@ +/// @ref gtx_rotate_normalized_axis +/// @file glm/gtx/rotate_normalized_axis.hpp +/// +/// @see core (dependence) +/// @see gtc_matrix_transform +/// @see gtc_quaternion +/// +/// @defgroup gtx_rotate_normalized_axis GLM_GTX_rotate_normalized_axis +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Quaternions and matrices rotations around normalized axis. + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../gtc/epsilon.hpp" +#include "../gtc/quaternion.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_rotate_normalized_axis is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_rotate_normalized_axis extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_rotate_normalized_axis + /// @{ + + /// Builds a rotation 4 * 4 matrix created from a normalized axis and an angle. + /// + /// @param m Input matrix multiplied by this rotation matrix. + /// @param angle Rotation angle expressed in radians. + /// @param axis Rotation axis, must be normalized. + /// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double. + /// + /// @see gtx_rotate_normalized_axis + /// @see - rotate(T angle, T x, T y, T z) + /// @see - rotate(mat<4, 4, T, Q> const& m, T angle, T x, T y, T z) + /// @see - rotate(T angle, vec<3, T, Q> const& v) + template + GLM_FUNC_DECL mat<4, 4, T, Q> rotateNormalizedAxis( + mat<4, 4, T, Q> const& m, + T const& angle, + vec<3, T, Q> const& axis); + + /// Rotates a quaternion from a vector of 3 components normalized axis and an angle. + /// + /// @param q Source orientation + /// @param angle Angle expressed in radians. + /// @param axis Normalized axis of the rotation, must be normalized. + /// + /// @see gtx_rotate_normalized_axis + template + GLM_FUNC_DECL qua rotateNormalizedAxis( + qua const& q, + T const& angle, + vec<3, T, Q> const& axis); + + /// @} +}//namespace glm + +#include "rotate_normalized_axis.inl" diff --git a/thirdparty/glm/glm/gtx/rotate_normalized_axis.inl b/thirdparty/glm/glm/gtx/rotate_normalized_axis.inl new file mode 100644 index 000000000000..352a56cb17ac --- /dev/null +++ b/thirdparty/glm/glm/gtx/rotate_normalized_axis.inl @@ -0,0 +1,58 @@ +/// @ref gtx_rotate_normalized_axis + +namespace glm +{ + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> rotateNormalizedAxis + ( + mat<4, 4, T, Q> const& m, + T const& angle, + vec<3, T, Q> const& v + ) + { + T const a = angle; + T const c = cos(a); + T const s = sin(a); + + vec<3, T, Q> const axis(v); + + vec<3, T, Q> const temp((static_cast(1) - c) * axis); + + mat<4, 4, T, Q> Rotate; + Rotate[0][0] = c + temp[0] * axis[0]; + Rotate[0][1] = 0 + temp[0] * axis[1] + s * axis[2]; + Rotate[0][2] = 0 + temp[0] * axis[2] - s * axis[1]; + + Rotate[1][0] = 0 + temp[1] * axis[0] - s * axis[2]; + Rotate[1][1] = c + temp[1] * axis[1]; + Rotate[1][2] = 0 + temp[1] * axis[2] + s * axis[0]; + + Rotate[2][0] = 0 + temp[2] * axis[0] + s * axis[1]; + Rotate[2][1] = 0 + temp[2] * axis[1] - s * axis[0]; + Rotate[2][2] = c + temp[2] * axis[2]; + + mat<4, 4, T, Q> Result; + Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2]; + Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2]; + Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2]; + Result[3] = m[3]; + return Result; + } + + template + GLM_FUNC_QUALIFIER qua rotateNormalizedAxis + ( + qua const& q, + T const& angle, + vec<3, T, Q> const& v + ) + { + vec<3, T, Q> const Tmp(v); + + T const AngleRad(angle); + T const Sin = sin(AngleRad * T(0.5)); + + return q * qua::wxyz(cos(AngleRad * static_cast(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin); + //return gtc::quaternion::cross(q, tquat(cos(AngleRad * T(0.5)), Tmp.x * fSin, Tmp.y * fSin, Tmp.z * fSin)); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/rotate_vector.hpp b/thirdparty/glm/glm/gtx/rotate_vector.hpp new file mode 100644 index 000000000000..dcd5b95a6e5b --- /dev/null +++ b/thirdparty/glm/glm/gtx/rotate_vector.hpp @@ -0,0 +1,123 @@ +/// @ref gtx_rotate_vector +/// @file glm/gtx/rotate_vector.hpp +/// +/// @see core (dependence) +/// @see gtx_transform (dependence) +/// +/// @defgroup gtx_rotate_vector GLM_GTX_rotate_vector +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Function to directly rotate a vector + +#pragma once + +// Dependency: +#include "../gtx/transform.hpp" +#include "../gtc/epsilon.hpp" +#include "../ext/vector_relational.hpp" +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_rotate_vector is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_rotate_vector extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_rotate_vector + /// @{ + + /// Returns Spherical interpolation between two vectors + /// + /// @param x A first vector + /// @param y A second vector + /// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1]. + /// + /// @see gtx_rotate_vector + template + GLM_FUNC_DECL vec<3, T, Q> slerp( + vec<3, T, Q> const& x, + vec<3, T, Q> const& y, + T const& a); + + //! Rotate a two dimensional vector. + //! From GLM_GTX_rotate_vector extension. + template + GLM_FUNC_DECL vec<2, T, Q> rotate( + vec<2, T, Q> const& v, + T const& angle); + + //! Rotate a three dimensional vector around an axis. + //! From GLM_GTX_rotate_vector extension. + template + GLM_FUNC_DECL vec<3, T, Q> rotate( + vec<3, T, Q> const& v, + T const& angle, + vec<3, T, Q> const& normal); + + //! Rotate a four dimensional vector around an axis. + //! From GLM_GTX_rotate_vector extension. + template + GLM_FUNC_DECL vec<4, T, Q> rotate( + vec<4, T, Q> const& v, + T const& angle, + vec<3, T, Q> const& normal); + + //! Rotate a three dimensional vector around the X axis. + //! From GLM_GTX_rotate_vector extension. + template + GLM_FUNC_DECL vec<3, T, Q> rotateX( + vec<3, T, Q> const& v, + T const& angle); + + //! Rotate a three dimensional vector around the Y axis. + //! From GLM_GTX_rotate_vector extension. + template + GLM_FUNC_DECL vec<3, T, Q> rotateY( + vec<3, T, Q> const& v, + T const& angle); + + //! Rotate a three dimensional vector around the Z axis. + //! From GLM_GTX_rotate_vector extension. + template + GLM_FUNC_DECL vec<3, T, Q> rotateZ( + vec<3, T, Q> const& v, + T const& angle); + + //! Rotate a four dimensional vector around the X axis. + //! From GLM_GTX_rotate_vector extension. + template + GLM_FUNC_DECL vec<4, T, Q> rotateX( + vec<4, T, Q> const& v, + T const& angle); + + //! Rotate a four dimensional vector around the Y axis. + //! From GLM_GTX_rotate_vector extension. + template + GLM_FUNC_DECL vec<4, T, Q> rotateY( + vec<4, T, Q> const& v, + T const& angle); + + //! Rotate a four dimensional vector around the Z axis. + //! From GLM_GTX_rotate_vector extension. + template + GLM_FUNC_DECL vec<4, T, Q> rotateZ( + vec<4, T, Q> const& v, + T const& angle); + + //! Build a rotation matrix from a normal and a up vector. + //! From GLM_GTX_rotate_vector extension. + template + GLM_FUNC_DECL mat<4, 4, T, Q> orientation( + vec<3, T, Q> const& Normal, + vec<3, T, Q> const& Up); + + /// @} +}//namespace glm + +#include "rotate_vector.inl" diff --git a/thirdparty/glm/glm/gtx/rotate_vector.inl b/thirdparty/glm/glm/gtx/rotate_vector.inl new file mode 100644 index 000000000000..f8136e765e05 --- /dev/null +++ b/thirdparty/glm/glm/gtx/rotate_vector.inl @@ -0,0 +1,187 @@ +/// @ref gtx_rotate_vector + +namespace glm +{ + template + GLM_FUNC_QUALIFIER vec<3, T, Q> slerp + ( + vec<3, T, Q> const& x, + vec<3, T, Q> const& y, + T const& a + ) + { + // get cosine of angle between vectors (-1 -> 1) + T CosAlpha = dot(x, y); + // get angle (0 -> pi) + T Alpha = acos(CosAlpha); + // get sine of angle between vectors (0 -> 1) + T SinAlpha = sin(Alpha); + // this breaks down when SinAlpha = 0, i.e. Alpha = 0 or pi + T t1 = sin((static_cast(1) - a) * Alpha) / SinAlpha; + T t2 = sin(a * Alpha) / SinAlpha; + + // interpolate src vectors + return x * t1 + y * t2; + } + + template + GLM_FUNC_QUALIFIER vec<2, T, Q> rotate + ( + vec<2, T, Q> const& v, + T const& angle + ) + { + vec<2, T, Q> Result; + T const Cos(cos(angle)); + T const Sin(sin(angle)); + + Result.x = v.x * Cos - v.y * Sin; + Result.y = v.x * Sin + v.y * Cos; + return Result; + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> rotate + ( + vec<3, T, Q> const& v, + T const& angle, + vec<3, T, Q> const& normal + ) + { + return mat<3, 3, T, Q>(glm::rotate(angle, normal)) * v; + } + /* + template + GLM_FUNC_QUALIFIER vec<3, T, Q> rotateGTX( + const vec<3, T, Q>& x, + T angle, + const vec<3, T, Q>& normal) + { + const T Cos = cos(radians(angle)); + const T Sin = sin(radians(angle)); + return x * Cos + ((x * normal) * (T(1) - Cos)) * normal + cross(x, normal) * Sin; + } + */ + template + GLM_FUNC_QUALIFIER vec<4, T, Q> rotate + ( + vec<4, T, Q> const& v, + T const& angle, + vec<3, T, Q> const& normal + ) + { + return rotate(angle, normal) * v; + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> rotateX + ( + vec<3, T, Q> const& v, + T const& angle + ) + { + vec<3, T, Q> Result(v); + T const Cos(cos(angle)); + T const Sin(sin(angle)); + + Result.y = v.y * Cos - v.z * Sin; + Result.z = v.y * Sin + v.z * Cos; + return Result; + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> rotateY + ( + vec<3, T, Q> const& v, + T const& angle + ) + { + vec<3, T, Q> Result = v; + T const Cos(cos(angle)); + T const Sin(sin(angle)); + + Result.x = v.x * Cos + v.z * Sin; + Result.z = -v.x * Sin + v.z * Cos; + return Result; + } + + template + GLM_FUNC_QUALIFIER vec<3, T, Q> rotateZ + ( + vec<3, T, Q> const& v, + T const& angle + ) + { + vec<3, T, Q> Result = v; + T const Cos(cos(angle)); + T const Sin(sin(angle)); + + Result.x = v.x * Cos - v.y * Sin; + Result.y = v.x * Sin + v.y * Cos; + return Result; + } + + template + GLM_FUNC_QUALIFIER vec<4, T, Q> rotateX + ( + vec<4, T, Q> const& v, + T const& angle + ) + { + vec<4, T, Q> Result = v; + T const Cos(cos(angle)); + T const Sin(sin(angle)); + + Result.y = v.y * Cos - v.z * Sin; + Result.z = v.y * Sin + v.z * Cos; + return Result; + } + + template + GLM_FUNC_QUALIFIER vec<4, T, Q> rotateY + ( + vec<4, T, Q> const& v, + T const& angle + ) + { + vec<4, T, Q> Result = v; + T const Cos(cos(angle)); + T const Sin(sin(angle)); + + Result.x = v.x * Cos + v.z * Sin; + Result.z = -v.x * Sin + v.z * Cos; + return Result; + } + + template + GLM_FUNC_QUALIFIER vec<4, T, Q> rotateZ + ( + vec<4, T, Q> const& v, + T const& angle + ) + { + vec<4, T, Q> Result = v; + T const Cos(cos(angle)); + T const Sin(sin(angle)); + + Result.x = v.x * Cos - v.y * Sin; + Result.y = v.x * Sin + v.y * Cos; + return Result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> orientation + ( + vec<3, T, Q> const& Normal, + vec<3, T, Q> const& Up + ) + { + if(all(equal(Normal, Up, epsilon()))) + return mat<4, 4, T, Q>(static_cast(1)); + + vec<3, T, Q> RotationAxis = cross(Up, Normal); + T Angle = acos(dot(Normal, Up)); + + return rotate(Angle, RotationAxis); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/scalar_multiplication.hpp b/thirdparty/glm/glm/gtx/scalar_multiplication.hpp new file mode 100644 index 000000000000..9f9f2fb3edbc --- /dev/null +++ b/thirdparty/glm/glm/gtx/scalar_multiplication.hpp @@ -0,0 +1,82 @@ +/// @ref gtx_scalar_multiplication +/// @file glm/gtx/scalar_multiplication.hpp +/// @author Joshua Moerman +/// +/// @defgroup gtx_scalar_multiplication GLM_GTX_scalar_multiplication +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Enables scalar multiplication for all types +/// +/// Since GLSL is very strict about types, the following (often used) combinations do not work: +/// double * vec4 +/// int * vec4 +/// vec4 / int +/// So we'll fix that! Of course "float * vec4" should remain the same (hence the enable_if magic) + +#pragma once + +#include "../detail/setup.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_scalar_multiplication is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_scalar_multiplication extension included") +# endif +#endif + +#include "../vec2.hpp" +#include "../vec3.hpp" +#include "../vec4.hpp" +#include "../mat2x2.hpp" +#include + +namespace glm +{ + /// @addtogroup gtx_scalar_multiplication + /// @{ + + template + using return_type_scalar_multiplication = typename std::enable_if< + !std::is_same::value // T may not be a float + && std::is_arithmetic::value, Vec // But it may be an int or double (no vec3 or mat3, ...) + >::type; + +#define GLM_IMPLEMENT_SCAL_MULT(Vec) \ + template \ + return_type_scalar_multiplication \ + operator*(T const& s, Vec rh){ \ + return rh *= static_cast(s); \ + } \ + \ + template \ + return_type_scalar_multiplication \ + operator*(Vec lh, T const& s){ \ + return lh *= static_cast(s); \ + } \ + \ + template \ + return_type_scalar_multiplication \ + operator/(Vec lh, T const& s){ \ + return lh *= 1.0f / static_cast(s); \ + } + +GLM_IMPLEMENT_SCAL_MULT(vec2) +GLM_IMPLEMENT_SCAL_MULT(vec3) +GLM_IMPLEMENT_SCAL_MULT(vec4) + +GLM_IMPLEMENT_SCAL_MULT(mat2) +GLM_IMPLEMENT_SCAL_MULT(mat2x3) +GLM_IMPLEMENT_SCAL_MULT(mat2x4) +GLM_IMPLEMENT_SCAL_MULT(mat3x2) +GLM_IMPLEMENT_SCAL_MULT(mat3) +GLM_IMPLEMENT_SCAL_MULT(mat3x4) +GLM_IMPLEMENT_SCAL_MULT(mat4x2) +GLM_IMPLEMENT_SCAL_MULT(mat4x3) +GLM_IMPLEMENT_SCAL_MULT(mat4) + +#undef GLM_IMPLEMENT_SCAL_MULT + /// @} +} // namespace glm diff --git a/thirdparty/glm/glm/gtx/scalar_relational.hpp b/thirdparty/glm/glm/gtx/scalar_relational.hpp new file mode 100644 index 000000000000..8be9c57b8b35 --- /dev/null +++ b/thirdparty/glm/glm/gtx/scalar_relational.hpp @@ -0,0 +1,36 @@ +/// @ref gtx_scalar_relational +/// @file glm/gtx/scalar_relational.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_scalar_relational GLM_GTX_scalar_relational +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Extend a position from a source to a position at a defined length. + +#pragma once + +// Dependency: +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_extend is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_extend extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_scalar_relational + /// @{ + + + + /// @} +}//namespace glm + +#include "scalar_relational.inl" diff --git a/thirdparty/glm/glm/gtx/scalar_relational.inl b/thirdparty/glm/glm/gtx/scalar_relational.inl new file mode 100644 index 000000000000..c2a121cff977 --- /dev/null +++ b/thirdparty/glm/glm/gtx/scalar_relational.inl @@ -0,0 +1,88 @@ +/// @ref gtx_scalar_relational + +namespace glm +{ + template + GLM_FUNC_QUALIFIER bool lessThan + ( + T const& x, + T const& y + ) + { + return x < y; + } + + template + GLM_FUNC_QUALIFIER bool lessThanEqual + ( + T const& x, + T const& y + ) + { + return x <= y; + } + + template + GLM_FUNC_QUALIFIER bool greaterThan + ( + T const& x, + T const& y + ) + { + return x > y; + } + + template + GLM_FUNC_QUALIFIER bool greaterThanEqual + ( + T const& x, + T const& y + ) + { + return x >= y; + } + + template + GLM_FUNC_QUALIFIER bool equal + ( + T const& x, + T const& y + ) + { + return detail::compute_equal::is_iec559>::call(x, y); + } + + template + GLM_FUNC_QUALIFIER bool notEqual + ( + T const& x, + T const& y + ) + { + return !detail::compute_equal::is_iec559>::call(x, y); + } + + GLM_FUNC_QUALIFIER bool any + ( + bool const& x + ) + { + return x; + } + + GLM_FUNC_QUALIFIER bool all + ( + bool const& x + ) + { + return x; + } + + GLM_FUNC_QUALIFIER bool not_ + ( + bool const& x + ) + { + return !x; + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/spline.hpp b/thirdparty/glm/glm/gtx/spline.hpp new file mode 100644 index 000000000000..731c979e358a --- /dev/null +++ b/thirdparty/glm/glm/gtx/spline.hpp @@ -0,0 +1,65 @@ +/// @ref gtx_spline +/// @file glm/gtx/spline.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_spline GLM_GTX_spline +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Spline functions + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../gtx/optimum_pow.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_spline is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_spline extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_spline + /// @{ + + /// Return a point from a catmull rom curve. + /// @see gtx_spline extension. + template + GLM_FUNC_DECL genType catmullRom( + genType const& v1, + genType const& v2, + genType const& v3, + genType const& v4, + typename genType::value_type const& s); + + /// Return a point from a hermite curve. + /// @see gtx_spline extension. + template + GLM_FUNC_DECL genType hermite( + genType const& v1, + genType const& t1, + genType const& v2, + genType const& t2, + typename genType::value_type const& s); + + /// Return a point from a cubic curve. + /// @see gtx_spline extension. + template + GLM_FUNC_DECL genType cubic( + genType const& v1, + genType const& v2, + genType const& v3, + genType const& v4, + typename genType::value_type const& s); + + /// @} +}//namespace glm + +#include "spline.inl" diff --git a/thirdparty/glm/glm/gtx/spline.inl b/thirdparty/glm/glm/gtx/spline.inl new file mode 100644 index 000000000000..c3fd05656291 --- /dev/null +++ b/thirdparty/glm/glm/gtx/spline.inl @@ -0,0 +1,60 @@ +/// @ref gtx_spline + +namespace glm +{ + template + GLM_FUNC_QUALIFIER genType catmullRom + ( + genType const& v1, + genType const& v2, + genType const& v3, + genType const& v4, + typename genType::value_type const& s + ) + { + typename genType::value_type s2 = pow2(s); + typename genType::value_type s3 = pow3(s); + + typename genType::value_type f1 = -s3 + typename genType::value_type(2) * s2 - s; + typename genType::value_type f2 = typename genType::value_type(3) * s3 - typename genType::value_type(5) * s2 + typename genType::value_type(2); + typename genType::value_type f3 = typename genType::value_type(-3) * s3 + typename genType::value_type(4) * s2 + s; + typename genType::value_type f4 = s3 - s2; + + return (f1 * v1 + f2 * v2 + f3 * v3 + f4 * v4) / typename genType::value_type(2); + + } + + template + GLM_FUNC_QUALIFIER genType hermite + ( + genType const& v1, + genType const& t1, + genType const& v2, + genType const& t2, + typename genType::value_type const& s + ) + { + typename genType::value_type s2 = pow2(s); + typename genType::value_type s3 = pow3(s); + + typename genType::value_type f1 = typename genType::value_type(2) * s3 - typename genType::value_type(3) * s2 + typename genType::value_type(1); + typename genType::value_type f2 = typename genType::value_type(-2) * s3 + typename genType::value_type(3) * s2; + typename genType::value_type f3 = s3 - typename genType::value_type(2) * s2 + s; + typename genType::value_type f4 = s3 - s2; + + return f1 * v1 + f2 * v2 + f3 * t1 + f4 * t2; + } + + template + GLM_FUNC_QUALIFIER genType cubic + ( + genType const& v1, + genType const& v2, + genType const& v3, + genType const& v4, + typename genType::value_type const& s + ) + { + return ((v1 * s + v2) * s + v3) * s + v4; + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/std_based_type.hpp b/thirdparty/glm/glm/gtx/std_based_type.hpp new file mode 100644 index 000000000000..cd3be8cb7892 --- /dev/null +++ b/thirdparty/glm/glm/gtx/std_based_type.hpp @@ -0,0 +1,68 @@ +/// @ref gtx_std_based_type +/// @file glm/gtx/std_based_type.hpp +/// +/// @see core (dependence) +/// @see gtx_extented_min_max (dependence) +/// +/// @defgroup gtx_std_based_type GLM_GTX_std_based_type +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Adds vector types based on STL value types. + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_std_based_type is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_std_based_type extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_std_based_type + /// @{ + + /// Vector type based of one std::size_t component. + /// @see GLM_GTX_std_based_type + typedef vec<1, std::size_t, defaultp> size1; + + /// Vector type based of two std::size_t components. + /// @see GLM_GTX_std_based_type + typedef vec<2, std::size_t, defaultp> size2; + + /// Vector type based of three std::size_t components. + /// @see GLM_GTX_std_based_type + typedef vec<3, std::size_t, defaultp> size3; + + /// Vector type based of four std::size_t components. + /// @see GLM_GTX_std_based_type + typedef vec<4, std::size_t, defaultp> size4; + + /// Vector type based of one std::size_t component. + /// @see GLM_GTX_std_based_type + typedef vec<1, std::size_t, defaultp> size1_t; + + /// Vector type based of two std::size_t components. + /// @see GLM_GTX_std_based_type + typedef vec<2, std::size_t, defaultp> size2_t; + + /// Vector type based of three std::size_t components. + /// @see GLM_GTX_std_based_type + typedef vec<3, std::size_t, defaultp> size3_t; + + /// Vector type based of four std::size_t components. + /// @see GLM_GTX_std_based_type + typedef vec<4, std::size_t, defaultp> size4_t; + + /// @} +}//namespace glm + +#include "std_based_type.inl" diff --git a/thirdparty/glm/glm/gtx/std_based_type.inl b/thirdparty/glm/glm/gtx/std_based_type.inl new file mode 100644 index 000000000000..9c34bdb6e0f7 --- /dev/null +++ b/thirdparty/glm/glm/gtx/std_based_type.inl @@ -0,0 +1,6 @@ +/// @ref gtx_std_based_type + +namespace glm +{ + +} diff --git a/thirdparty/glm/glm/gtx/string_cast.hpp b/thirdparty/glm/glm/gtx/string_cast.hpp new file mode 100644 index 000000000000..71f6ece4c9f1 --- /dev/null +++ b/thirdparty/glm/glm/gtx/string_cast.hpp @@ -0,0 +1,46 @@ +/// @ref gtx_string_cast +/// @file glm/gtx/string_cast.hpp +/// +/// @see core (dependence) +/// @see gtx_integer (dependence) +/// @see gtx_quaternion (dependence) +/// +/// @defgroup gtx_string_cast GLM_GTX_string_cast +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Setup strings for GLM type values + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../gtc/type_precision.hpp" +#include "../gtc/quaternion.hpp" +#include "../gtx/dual_quaternion.hpp" +#include +#include + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_string_cast is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_string_cast extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_string_cast + /// @{ + + /// Create a string from a GLM vector or matrix typed variable. + /// @see gtx_string_cast extension. + template + GLM_FUNC_DECL std::string to_string(genType const& x); + + /// @} +}//namespace glm + +#include "string_cast.inl" diff --git a/thirdparty/glm/glm/gtx/string_cast.inl b/thirdparty/glm/glm/gtx/string_cast.inl new file mode 100644 index 000000000000..0b2d4b6aebc6 --- /dev/null +++ b/thirdparty/glm/glm/gtx/string_cast.inl @@ -0,0 +1,492 @@ +/// @ref gtx_string_cast + +#include +#include + +namespace glm{ +namespace detail +{ + template + struct cast + { + typedef T value_type; + }; + + template <> + struct cast + { + typedef double value_type; + }; + + GLM_FUNC_QUALIFIER std::string format(const char* msg, ...) + { + std::size_t const STRING_BUFFER(4096); + char text[STRING_BUFFER]; + va_list list; + + if(msg == GLM_NULLPTR) + return std::string(); + + va_start(list, msg); +# if (GLM_COMPILER & GLM_COMPILER_VC) + vsprintf_s(text, STRING_BUFFER, msg, list); +# else// + std::vsnprintf(text, STRING_BUFFER, msg, list); +# endif// + va_end(list); + + return std::string(text); + } + + static const char* LabelTrue = "true"; + static const char* LabelFalse = "false"; + + template + struct literal + { + GLM_FUNC_QUALIFIER static char const * value() {return "%d";} + }; + + template + struct literal + { + GLM_FUNC_QUALIFIER static char const * value() {return "%f";} + }; + +# if GLM_MODEL == GLM_MODEL_32 && GLM_COMPILER && GLM_COMPILER_VC + template<> + struct literal + { + GLM_FUNC_QUALIFIER static char const * value() {return "%lld";} + }; + + template<> + struct literal + { + GLM_FUNC_QUALIFIER static char const * value() {return "%lld";} + }; +# endif//GLM_MODEL == GLM_MODEL_32 && GLM_COMPILER && GLM_COMPILER_VC + + template + struct prefix{}; + + template<> + struct prefix + { + GLM_FUNC_QUALIFIER static char const * value() {return "";} + }; + + template<> + struct prefix + { + GLM_FUNC_QUALIFIER static char const * value() {return "d";} + }; + + template<> + struct prefix + { + GLM_FUNC_QUALIFIER static char const * value() {return "b";} + }; + + template<> + struct prefix + { + GLM_FUNC_QUALIFIER static char const * value() {return "u8";} + }; + + template<> + struct prefix + { + GLM_FUNC_QUALIFIER static char const * value() {return "i8";} + }; + + template<> + struct prefix + { + GLM_FUNC_QUALIFIER static char const * value() {return "u16";} + }; + + template<> + struct prefix + { + GLM_FUNC_QUALIFIER static char const * value() {return "i16";} + }; + + template<> + struct prefix + { + GLM_FUNC_QUALIFIER static char const * value() {return "u";} + }; + + template<> + struct prefix + { + GLM_FUNC_QUALIFIER static char const * value() {return "i";} + }; + + template<> + struct prefix + { + GLM_FUNC_QUALIFIER static char const * value() {return "u64";} + }; + + template<> + struct prefix + { + GLM_FUNC_QUALIFIER static char const * value() {return "i64";} + }; + + template + struct compute_to_string + {}; + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(vec<1, bool, Q> const& x) + { + return detail::format("bvec1(%s)", + x[0] ? detail::LabelTrue : detail::LabelFalse); + } + }; + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(vec<2, bool, Q> const& x) + { + return detail::format("bvec2(%s, %s)", + x[0] ? detail::LabelTrue : detail::LabelFalse, + x[1] ? detail::LabelTrue : detail::LabelFalse); + } + }; + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(vec<3, bool, Q> const& x) + { + return detail::format("bvec3(%s, %s, %s)", + x[0] ? detail::LabelTrue : detail::LabelFalse, + x[1] ? detail::LabelTrue : detail::LabelFalse, + x[2] ? detail::LabelTrue : detail::LabelFalse); + } + }; + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(vec<4, bool, Q> const& x) + { + return detail::format("bvec4(%s, %s, %s, %s)", + x[0] ? detail::LabelTrue : detail::LabelFalse, + x[1] ? detail::LabelTrue : detail::LabelFalse, + x[2] ? detail::LabelTrue : detail::LabelFalse, + x[3] ? detail::LabelTrue : detail::LabelFalse); + } + }; + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(vec<1, T, Q> const& x) + { + char const * PrefixStr = prefix::value(); + char const * LiteralStr = literal::is_iec559>::value(); + std::string FormatStr(detail::format("%svec1(%s)", + PrefixStr, + LiteralStr)); + + return detail::format(FormatStr.c_str(), + static_cast::value_type>(x[0])); + } + }; + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(vec<2, T, Q> const& x) + { + char const * PrefixStr = prefix::value(); + char const * LiteralStr = literal::is_iec559>::value(); + std::string FormatStr(detail::format("%svec2(%s, %s)", + PrefixStr, + LiteralStr, LiteralStr)); + + return detail::format(FormatStr.c_str(), + static_cast::value_type>(x[0]), + static_cast::value_type>(x[1])); + } + }; + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(vec<3, T, Q> const& x) + { + char const * PrefixStr = prefix::value(); + char const * LiteralStr = literal::is_iec559>::value(); + std::string FormatStr(detail::format("%svec3(%s, %s, %s)", + PrefixStr, + LiteralStr, LiteralStr, LiteralStr)); + + return detail::format(FormatStr.c_str(), + static_cast::value_type>(x[0]), + static_cast::value_type>(x[1]), + static_cast::value_type>(x[2])); + } + }; + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(vec<4, T, Q> const& x) + { + char const * PrefixStr = prefix::value(); + char const * LiteralStr = literal::is_iec559>::value(); + std::string FormatStr(detail::format("%svec4(%s, %s, %s, %s)", + PrefixStr, + LiteralStr, LiteralStr, LiteralStr, LiteralStr)); + + return detail::format(FormatStr.c_str(), + static_cast::value_type>(x[0]), + static_cast::value_type>(x[1]), + static_cast::value_type>(x[2]), + static_cast::value_type>(x[3])); + } + }; + + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(mat<2, 2, T, Q> const& x) + { + char const * PrefixStr = prefix::value(); + char const * LiteralStr = literal::is_iec559>::value(); + std::string FormatStr(detail::format("%smat2x2((%s, %s), (%s, %s))", + PrefixStr, + LiteralStr, LiteralStr, + LiteralStr, LiteralStr)); + + return detail::format(FormatStr.c_str(), + static_cast::value_type>(x[0][0]), static_cast::value_type>(x[0][1]), + static_cast::value_type>(x[1][0]), static_cast::value_type>(x[1][1])); + } + }; + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(mat<2, 3, T, Q> const& x) + { + char const * PrefixStr = prefix::value(); + char const * LiteralStr = literal::is_iec559>::value(); + std::string FormatStr(detail::format("%smat2x3((%s, %s, %s), (%s, %s, %s))", + PrefixStr, + LiteralStr, LiteralStr, LiteralStr, + LiteralStr, LiteralStr, LiteralStr)); + + return detail::format(FormatStr.c_str(), + static_cast::value_type>(x[0][0]), static_cast::value_type>(x[0][1]), static_cast::value_type>(x[0][2]), + static_cast::value_type>(x[1][0]), static_cast::value_type>(x[1][1]), static_cast::value_type>(x[1][2])); + } + }; + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(mat<2, 4, T, Q> const& x) + { + char const * PrefixStr = prefix::value(); + char const * LiteralStr = literal::is_iec559>::value(); + std::string FormatStr(detail::format("%smat2x4((%s, %s, %s, %s), (%s, %s, %s, %s))", + PrefixStr, + LiteralStr, LiteralStr, LiteralStr, LiteralStr, + LiteralStr, LiteralStr, LiteralStr, LiteralStr)); + + return detail::format(FormatStr.c_str(), + static_cast::value_type>(x[0][0]), static_cast::value_type>(x[0][1]), static_cast::value_type>(x[0][2]), static_cast::value_type>(x[0][3]), + static_cast::value_type>(x[1][0]), static_cast::value_type>(x[1][1]), static_cast::value_type>(x[1][2]), static_cast::value_type>(x[1][3])); + } + }; + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(mat<3, 2, T, Q> const& x) + { + char const * PrefixStr = prefix::value(); + char const * LiteralStr = literal::is_iec559>::value(); + std::string FormatStr(detail::format("%smat3x2((%s, %s), (%s, %s), (%s, %s))", + PrefixStr, + LiteralStr, LiteralStr, + LiteralStr, LiteralStr, + LiteralStr, LiteralStr)); + + return detail::format(FormatStr.c_str(), + static_cast::value_type>(x[0][0]), static_cast::value_type>(x[0][1]), + static_cast::value_type>(x[1][0]), static_cast::value_type>(x[1][1]), + static_cast::value_type>(x[2][0]), static_cast::value_type>(x[2][1])); + } + }; + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(mat<3, 3, T, Q> const& x) + { + char const * PrefixStr = prefix::value(); + char const * LiteralStr = literal::is_iec559>::value(); + std::string FormatStr(detail::format("%smat3x3((%s, %s, %s), (%s, %s, %s), (%s, %s, %s))", + PrefixStr, + LiteralStr, LiteralStr, LiteralStr, + LiteralStr, LiteralStr, LiteralStr, + LiteralStr, LiteralStr, LiteralStr)); + + return detail::format(FormatStr.c_str(), + static_cast::value_type>(x[0][0]), static_cast::value_type>(x[0][1]), static_cast::value_type>(x[0][2]), + static_cast::value_type>(x[1][0]), static_cast::value_type>(x[1][1]), static_cast::value_type>(x[1][2]), + static_cast::value_type>(x[2][0]), static_cast::value_type>(x[2][1]), static_cast::value_type>(x[2][2])); + } + }; + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(mat<3, 4, T, Q> const& x) + { + char const * PrefixStr = prefix::value(); + char const * LiteralStr = literal::is_iec559>::value(); + std::string FormatStr(detail::format("%smat3x4((%s, %s, %s, %s), (%s, %s, %s, %s), (%s, %s, %s, %s))", + PrefixStr, + LiteralStr, LiteralStr, LiteralStr, LiteralStr, + LiteralStr, LiteralStr, LiteralStr, LiteralStr, + LiteralStr, LiteralStr, LiteralStr, LiteralStr)); + + return detail::format(FormatStr.c_str(), + static_cast::value_type>(x[0][0]), static_cast::value_type>(x[0][1]), static_cast::value_type>(x[0][2]), static_cast::value_type>(x[0][3]), + static_cast::value_type>(x[1][0]), static_cast::value_type>(x[1][1]), static_cast::value_type>(x[1][2]), static_cast::value_type>(x[1][3]), + static_cast::value_type>(x[2][0]), static_cast::value_type>(x[2][1]), static_cast::value_type>(x[2][2]), static_cast::value_type>(x[2][3])); + } + }; + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(mat<4, 2, T, Q> const& x) + { + char const * PrefixStr = prefix::value(); + char const * LiteralStr = literal::is_iec559>::value(); + std::string FormatStr(detail::format("%smat4x2((%s, %s), (%s, %s), (%s, %s), (%s, %s))", + PrefixStr, + LiteralStr, LiteralStr, + LiteralStr, LiteralStr, + LiteralStr, LiteralStr, + LiteralStr, LiteralStr)); + + return detail::format(FormatStr.c_str(), + static_cast::value_type>(x[0][0]), static_cast::value_type>(x[0][1]), + static_cast::value_type>(x[1][0]), static_cast::value_type>(x[1][1]), + static_cast::value_type>(x[2][0]), static_cast::value_type>(x[2][1]), + static_cast::value_type>(x[3][0]), static_cast::value_type>(x[3][1])); + } + }; + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(mat<4, 3, T, Q> const& x) + { + char const * PrefixStr = prefix::value(); + char const * LiteralStr = literal::is_iec559>::value(); + std::string FormatStr(detail::format("%smat4x3((%s, %s, %s), (%s, %s, %s), (%s, %s, %s), (%s, %s, %s))", + PrefixStr, + LiteralStr, LiteralStr, LiteralStr, + LiteralStr, LiteralStr, LiteralStr, + LiteralStr, LiteralStr, LiteralStr, + LiteralStr, LiteralStr, LiteralStr)); + + return detail::format(FormatStr.c_str(), + static_cast::value_type>(x[0][0]), static_cast::value_type>(x[0][1]), static_cast::value_type>(x[0][2]), + static_cast::value_type>(x[1][0]), static_cast::value_type>(x[1][1]), static_cast::value_type>(x[1][2]), + static_cast::value_type>(x[2][0]), static_cast::value_type>(x[2][1]), static_cast::value_type>(x[2][2]), + static_cast::value_type>(x[3][0]), static_cast::value_type>(x[3][1]), static_cast::value_type>(x[3][2])); + } + }; + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(mat<4, 4, T, Q> const& x) + { + char const * PrefixStr = prefix::value(); + char const * LiteralStr = literal::is_iec559>::value(); + std::string FormatStr(detail::format("%smat4x4((%s, %s, %s, %s), (%s, %s, %s, %s), (%s, %s, %s, %s), (%s, %s, %s, %s))", + PrefixStr, + LiteralStr, LiteralStr, LiteralStr, LiteralStr, + LiteralStr, LiteralStr, LiteralStr, LiteralStr, + LiteralStr, LiteralStr, LiteralStr, LiteralStr, + LiteralStr, LiteralStr, LiteralStr, LiteralStr)); + + return detail::format(FormatStr.c_str(), + static_cast::value_type>(x[0][0]), static_cast::value_type>(x[0][1]), static_cast::value_type>(x[0][2]), static_cast::value_type>(x[0][3]), + static_cast::value_type>(x[1][0]), static_cast::value_type>(x[1][1]), static_cast::value_type>(x[1][2]), static_cast::value_type>(x[1][3]), + static_cast::value_type>(x[2][0]), static_cast::value_type>(x[2][1]), static_cast::value_type>(x[2][2]), static_cast::value_type>(x[2][3]), + static_cast::value_type>(x[3][0]), static_cast::value_type>(x[3][1]), static_cast::value_type>(x[3][2]), static_cast::value_type>(x[3][3])); + } + }; + + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(qua const& q) + { + char const * PrefixStr = prefix::value(); + char const * LiteralStr = literal::is_iec559>::value(); + std::string FormatStr(detail::format("%squat(%s, {%s, %s, %s})", + PrefixStr, + LiteralStr, LiteralStr, LiteralStr, LiteralStr)); + + return detail::format(FormatStr.c_str(), + static_cast::value_type>(q.w), + static_cast::value_type>(q.x), + static_cast::value_type>(q.y), + static_cast::value_type>(q.z)); + } + }; + + template + struct compute_to_string > + { + GLM_FUNC_QUALIFIER static std::string call(tdualquat const& x) + { + char const * PrefixStr = prefix::value(); + char const * LiteralStr = literal::is_iec559>::value(); + std::string FormatStr(detail::format("%sdualquat((%s, {%s, %s, %s}), (%s, {%s, %s, %s}))", + PrefixStr, + LiteralStr, LiteralStr, LiteralStr, LiteralStr, + LiteralStr, LiteralStr, LiteralStr, LiteralStr)); + + return detail::format(FormatStr.c_str(), + static_cast::value_type>(x.real.w), + static_cast::value_type>(x.real.x), + static_cast::value_type>(x.real.y), + static_cast::value_type>(x.real.z), + static_cast::value_type>(x.dual.w), + static_cast::value_type>(x.dual.x), + static_cast::value_type>(x.dual.y), + static_cast::value_type>(x.dual.z)); + } + }; + +}//namespace detail + +template +GLM_FUNC_QUALIFIER std::string to_string(matType const& x) +{ + return detail::compute_to_string::call(x); +} + +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/texture.hpp b/thirdparty/glm/glm/gtx/texture.hpp new file mode 100644 index 000000000000..20585e68ce11 --- /dev/null +++ b/thirdparty/glm/glm/gtx/texture.hpp @@ -0,0 +1,46 @@ +/// @ref gtx_texture +/// @file glm/gtx/texture.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_texture GLM_GTX_texture +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Wrapping mode of texture coordinates. + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../gtc/integer.hpp" +#include "../gtx/component_wise.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_texture is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_texture extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_texture + /// @{ + + /// Compute the number of mipmaps levels necessary to create a mipmap complete texture + /// + /// @param Extent Extent of the texture base level mipmap + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point or signed integer scalar types + /// @tparam Q Value from qualifier enum + template + T levels(vec const& Extent); + + /// @} +}// namespace glm + +#include "texture.inl" + diff --git a/thirdparty/glm/glm/gtx/texture.inl b/thirdparty/glm/glm/gtx/texture.inl new file mode 100644 index 000000000000..593c826141b0 --- /dev/null +++ b/thirdparty/glm/glm/gtx/texture.inl @@ -0,0 +1,17 @@ +/// @ref gtx_texture + +namespace glm +{ + template + inline T levels(vec const& Extent) + { + return glm::log2(compMax(Extent)) + static_cast(1); + } + + template + inline T levels(T Extent) + { + return vec<1, T, defaultp>(Extent).x; + } +}//namespace glm + diff --git a/thirdparty/glm/glm/gtx/transform.hpp b/thirdparty/glm/glm/gtx/transform.hpp new file mode 100644 index 000000000000..0279fc8bd329 --- /dev/null +++ b/thirdparty/glm/glm/gtx/transform.hpp @@ -0,0 +1,60 @@ +/// @ref gtx_transform +/// @file glm/gtx/transform.hpp +/// +/// @see core (dependence) +/// @see gtc_matrix_transform (dependence) +/// @see gtx_transform +/// @see gtx_transform2 +/// +/// @defgroup gtx_transform GLM_GTX_transform +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Add transformation matrices + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../gtc/matrix_transform.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_transform is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_transform extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_transform + /// @{ + + /// Transforms a matrix with a translation 4 * 4 matrix created from 3 scalars. + /// @see gtc_matrix_transform + /// @see gtx_transform + template + GLM_FUNC_DECL mat<4, 4, T, Q> translate( + vec<3, T, Q> const& v); + + /// Builds a rotation 4 * 4 matrix created from an axis of 3 scalars and an angle expressed in radians. + /// @see gtc_matrix_transform + /// @see gtx_transform + template + GLM_FUNC_DECL mat<4, 4, T, Q> rotate( + T angle, + vec<3, T, Q> const& v); + + /// Transforms a matrix with a scale 4 * 4 matrix created from a vector of 3 components. + /// @see gtc_matrix_transform + /// @see gtx_transform + template + GLM_FUNC_DECL mat<4, 4, T, Q> scale( + vec<3, T, Q> const& v); + + /// @} +}// namespace glm + +#include "transform.inl" diff --git a/thirdparty/glm/glm/gtx/transform.inl b/thirdparty/glm/glm/gtx/transform.inl new file mode 100644 index 000000000000..48ee6801b651 --- /dev/null +++ b/thirdparty/glm/glm/gtx/transform.inl @@ -0,0 +1,23 @@ +/// @ref gtx_transform + +namespace glm +{ + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> translate(vec<3, T, Q> const& v) + { + return translate(mat<4, 4, T, Q>(static_cast(1)), v); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> rotate(T angle, vec<3, T, Q> const& v) + { + return rotate(mat<4, 4, T, Q>(static_cast(1)), angle, v); + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> scale(vec<3, T, Q> const& v) + { + return scale(mat<4, 4, T, Q>(static_cast(1)), v); + } + +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/transform2.hpp b/thirdparty/glm/glm/gtx/transform2.hpp new file mode 100644 index 000000000000..0d8ba9d90bc5 --- /dev/null +++ b/thirdparty/glm/glm/gtx/transform2.hpp @@ -0,0 +1,89 @@ +/// @ref gtx_transform2 +/// @file glm/gtx/transform2.hpp +/// +/// @see core (dependence) +/// @see gtx_transform (dependence) +/// +/// @defgroup gtx_transform2 GLM_GTX_transform2 +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Add extra transformation matrices + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../gtx/transform.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_transform2 is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_transform2 extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_transform2 + /// @{ + + //! Transforms a matrix with a shearing on X axis. + //! From GLM_GTX_transform2 extension. + template + GLM_FUNC_DECL mat<3, 3, T, Q> shearX2D(mat<3, 3, T, Q> const& m, T y); + + //! Transforms a matrix with a shearing on Y axis. + //! From GLM_GTX_transform2 extension. + template + GLM_FUNC_DECL mat<3, 3, T, Q> shearY2D(mat<3, 3, T, Q> const& m, T x); + + //! Transforms a matrix with a shearing on X axis + //! From GLM_GTX_transform2 extension. + template + GLM_FUNC_DECL mat<4, 4, T, Q> shearX3D(mat<4, 4, T, Q> const& m, T y, T z); + + //! Transforms a matrix with a shearing on Y axis. + //! From GLM_GTX_transform2 extension. + template + GLM_FUNC_DECL mat<4, 4, T, Q> shearY3D(mat<4, 4, T, Q> const& m, T x, T z); + + //! Transforms a matrix with a shearing on Z axis. + //! From GLM_GTX_transform2 extension. + template + GLM_FUNC_DECL mat<4, 4, T, Q> shearZ3D(mat<4, 4, T, Q> const& m, T x, T y); + + //template GLM_FUNC_QUALIFIER mat<4, 4, T, Q> shear(const mat<4, 4, T, Q> & m, shearPlane, planePoint, angle) + // Identity + tan(angle) * cross(Normal, OnPlaneVector) 0 + // - dot(PointOnPlane, normal) * OnPlaneVector 1 + + // Reflect functions seem to don't work + //template mat<3, 3, T, Q> reflect2D(const mat<3, 3, T, Q> & m, const vec<3, T, Q>& normal){return reflect2DGTX(m, normal);} //!< \brief Build a reflection matrix (from GLM_GTX_transform2 extension) + //template mat<4, 4, T, Q> reflect3D(const mat<4, 4, T, Q> & m, const vec<3, T, Q>& normal){return reflect3DGTX(m, normal);} //!< \brief Build a reflection matrix (from GLM_GTX_transform2 extension) + + //! Build planar projection matrix along normal axis. + //! From GLM_GTX_transform2 extension. + template + GLM_FUNC_DECL mat<3, 3, T, Q> proj2D(mat<3, 3, T, Q> const& m, vec<3, T, Q> const& normal); + + //! Build planar projection matrix along normal axis. + //! From GLM_GTX_transform2 extension. + template + GLM_FUNC_DECL mat<4, 4, T, Q> proj3D(mat<4, 4, T, Q> const & m, vec<3, T, Q> const& normal); + + //! Build a scale bias matrix. + //! From GLM_GTX_transform2 extension. + template + GLM_FUNC_DECL mat<4, 4, T, Q> scaleBias(T scale, T bias); + + //! Build a scale bias matrix. + //! From GLM_GTX_transform2 extension. + template + GLM_FUNC_DECL mat<4, 4, T, Q> scaleBias(mat<4, 4, T, Q> const& m, T scale, T bias); + + /// @} +}// namespace glm + +#include "transform2.inl" diff --git a/thirdparty/glm/glm/gtx/transform2.inl b/thirdparty/glm/glm/gtx/transform2.inl new file mode 100644 index 000000000000..0118ab09603a --- /dev/null +++ b/thirdparty/glm/glm/gtx/transform2.inl @@ -0,0 +1,125 @@ +/// @ref gtx_transform2 + +namespace glm +{ + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> shearX2D(mat<3, 3, T, Q> const& m, T s) + { + mat<3, 3, T, Q> r(1); + r[1][0] = s; + return m * r; + } + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> shearY2D(mat<3, 3, T, Q> const& m, T s) + { + mat<3, 3, T, Q> r(1); + r[0][1] = s; + return m * r; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> shearX3D(mat<4, 4, T, Q> const& m, T s, T t) + { + mat<4, 4, T, Q> r(1); + r[0][1] = s; + r[0][2] = t; + return m * r; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> shearY3D(mat<4, 4, T, Q> const& m, T s, T t) + { + mat<4, 4, T, Q> r(1); + r[1][0] = s; + r[1][2] = t; + return m * r; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> shearZ3D(mat<4, 4, T, Q> const& m, T s, T t) + { + mat<4, 4, T, Q> r(1); + r[2][0] = s; + r[2][1] = t; + return m * r; + } + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> reflect2D(mat<3, 3, T, Q> const& m, vec<3, T, Q> const& normal) + { + mat<3, 3, T, Q> r(static_cast(1)); + r[0][0] = static_cast(1) - static_cast(2) * normal.x * normal.x; + r[0][1] = -static_cast(2) * normal.x * normal.y; + r[1][0] = -static_cast(2) * normal.x * normal.y; + r[1][1] = static_cast(1) - static_cast(2) * normal.y * normal.y; + return m * r; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> reflect3D(mat<4, 4, T, Q> const& m, vec<3, T, Q> const& normal) + { + mat<4, 4, T, Q> r(static_cast(1)); + r[0][0] = static_cast(1) - static_cast(2) * normal.x * normal.x; + r[0][1] = -static_cast(2) * normal.x * normal.y; + r[0][2] = -static_cast(2) * normal.x * normal.z; + + r[1][0] = -static_cast(2) * normal.x * normal.y; + r[1][1] = static_cast(1) - static_cast(2) * normal.y * normal.y; + r[1][2] = -static_cast(2) * normal.y * normal.z; + + r[2][0] = -static_cast(2) * normal.x * normal.z; + r[2][1] = -static_cast(2) * normal.y * normal.z; + r[2][2] = static_cast(1) - static_cast(2) * normal.z * normal.z; + return m * r; + } + + template + GLM_FUNC_QUALIFIER mat<3, 3, T, Q> proj2D( + const mat<3, 3, T, Q>& m, + const vec<3, T, Q>& normal) + { + mat<3, 3, T, Q> r(static_cast(1)); + r[0][0] = static_cast(1) - normal.x * normal.x; + r[0][1] = - normal.x * normal.y; + r[1][0] = - normal.x * normal.y; + r[1][1] = static_cast(1) - normal.y * normal.y; + return m * r; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> proj3D( + const mat<4, 4, T, Q>& m, + const vec<3, T, Q>& normal) + { + mat<4, 4, T, Q> r(static_cast(1)); + r[0][0] = static_cast(1) - normal.x * normal.x; + r[0][1] = - normal.x * normal.y; + r[0][2] = - normal.x * normal.z; + r[1][0] = - normal.x * normal.y; + r[1][1] = static_cast(1) - normal.y * normal.y; + r[1][2] = - normal.y * normal.z; + r[2][0] = - normal.x * normal.z; + r[2][1] = - normal.y * normal.z; + r[2][2] = static_cast(1) - normal.z * normal.z; + return m * r; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> scaleBias(T scale, T bias) + { + mat<4, 4, T, Q> result; + result[3] = vec<4, T, Q>(vec<3, T, Q>(bias), static_cast(1)); + result[0][0] = scale; + result[1][1] = scale; + result[2][2] = scale; + return result; + } + + template + GLM_FUNC_QUALIFIER mat<4, 4, T, Q> scaleBias(mat<4, 4, T, Q> const& m, T scale, T bias) + { + return m * scaleBias(scale, bias); + } +}//namespace glm + diff --git a/thirdparty/glm/glm/gtx/type_aligned.hpp b/thirdparty/glm/glm/gtx/type_aligned.hpp new file mode 100644 index 000000000000..2ae522c1fc7e --- /dev/null +++ b/thirdparty/glm/glm/gtx/type_aligned.hpp @@ -0,0 +1,982 @@ +/// @ref gtx_type_aligned +/// @file glm/gtx/type_aligned.hpp +/// +/// @see core (dependence) +/// @see gtc_quaternion (dependence) +/// +/// @defgroup gtx_type_aligned GLM_GTX_type_aligned +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Defines aligned types. + +#pragma once + +// Dependency: +#include "../gtc/type_precision.hpp" +#include "../gtc/quaternion.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_type_aligned is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_type_aligned extension included") +# endif +#endif + +namespace glm +{ + /////////////////////////// + // Signed int vector types + + /// @addtogroup gtx_type_aligned + /// @{ + + /// Low qualifier 8 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_int8, aligned_lowp_int8, 1); + + /// Low qualifier 16 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_int16, aligned_lowp_int16, 2); + + /// Low qualifier 32 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_int32, aligned_lowp_int32, 4); + + /// Low qualifier 64 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_int64, aligned_lowp_int64, 8); + + + /// Low qualifier 8 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_int8_t, aligned_lowp_int8_t, 1); + + /// Low qualifier 16 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_int16_t, aligned_lowp_int16_t, 2); + + /// Low qualifier 32 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_int32_t, aligned_lowp_int32_t, 4); + + /// Low qualifier 64 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_int64_t, aligned_lowp_int64_t, 8); + + + /// Low qualifier 8 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_i8, aligned_lowp_i8, 1); + + /// Low qualifier 16 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_i16, aligned_lowp_i16, 2); + + /// Low qualifier 32 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_i32, aligned_lowp_i32, 4); + + /// Low qualifier 64 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_i64, aligned_lowp_i64, 8); + + + /// Medium qualifier 8 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_int8, aligned_mediump_int8, 1); + + /// Medium qualifier 16 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_int16, aligned_mediump_int16, 2); + + /// Medium qualifier 32 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_int32, aligned_mediump_int32, 4); + + /// Medium qualifier 64 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_int64, aligned_mediump_int64, 8); + + + /// Medium qualifier 8 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_int8_t, aligned_mediump_int8_t, 1); + + /// Medium qualifier 16 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_int16_t, aligned_mediump_int16_t, 2); + + /// Medium qualifier 32 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_int32_t, aligned_mediump_int32_t, 4); + + /// Medium qualifier 64 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_int64_t, aligned_mediump_int64_t, 8); + + + /// Medium qualifier 8 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_i8, aligned_mediump_i8, 1); + + /// Medium qualifier 16 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_i16, aligned_mediump_i16, 2); + + /// Medium qualifier 32 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_i32, aligned_mediump_i32, 4); + + /// Medium qualifier 64 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_i64, aligned_mediump_i64, 8); + + + /// High qualifier 8 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_int8, aligned_highp_int8, 1); + + /// High qualifier 16 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_int16, aligned_highp_int16, 2); + + /// High qualifier 32 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_int32, aligned_highp_int32, 4); + + /// High qualifier 64 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_int64, aligned_highp_int64, 8); + + + /// High qualifier 8 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_int8_t, aligned_highp_int8_t, 1); + + /// High qualifier 16 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_int16_t, aligned_highp_int16_t, 2); + + /// High qualifier 32 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_int32_t, aligned_highp_int32_t, 4); + + /// High qualifier 64 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_int64_t, aligned_highp_int64_t, 8); + + + /// High qualifier 8 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_i8, aligned_highp_i8, 1); + + /// High qualifier 16 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_i16, aligned_highp_i16, 2); + + /// High qualifier 32 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_i32, aligned_highp_i32, 4); + + /// High qualifier 64 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_i64, aligned_highp_i64, 8); + + + /// Default qualifier 8 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(int8, aligned_int8, 1); + + /// Default qualifier 16 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(int16, aligned_int16, 2); + + /// Default qualifier 32 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(int32, aligned_int32, 4); + + /// Default qualifier 64 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(int64, aligned_int64, 8); + + + /// Default qualifier 8 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(int8_t, aligned_int8_t, 1); + + /// Default qualifier 16 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(int16_t, aligned_int16_t, 2); + + /// Default qualifier 32 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(int32_t, aligned_int32_t, 4); + + /// Default qualifier 64 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(int64_t, aligned_int64_t, 8); + + + /// Default qualifier 8 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i8, aligned_i8, 1); + + /// Default qualifier 16 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i16, aligned_i16, 2); + + /// Default qualifier 32 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i32, aligned_i32, 4); + + /// Default qualifier 64 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i64, aligned_i64, 8); + + + /// Default qualifier 32 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(ivec1, aligned_ivec1, 4); + + /// Default qualifier 32 bit signed integer aligned vector of 2 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(ivec2, aligned_ivec2, 8); + + /// Default qualifier 32 bit signed integer aligned vector of 3 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(ivec3, aligned_ivec3, 16); + + /// Default qualifier 32 bit signed integer aligned vector of 4 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(ivec4, aligned_ivec4, 16); + + + /// Default qualifier 8 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i8vec1, aligned_i8vec1, 1); + + /// Default qualifier 8 bit signed integer aligned vector of 2 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i8vec2, aligned_i8vec2, 2); + + /// Default qualifier 8 bit signed integer aligned vector of 3 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i8vec3, aligned_i8vec3, 4); + + /// Default qualifier 8 bit signed integer aligned vector of 4 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i8vec4, aligned_i8vec4, 4); + + + /// Default qualifier 16 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i16vec1, aligned_i16vec1, 2); + + /// Default qualifier 16 bit signed integer aligned vector of 2 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i16vec2, aligned_i16vec2, 4); + + /// Default qualifier 16 bit signed integer aligned vector of 3 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i16vec3, aligned_i16vec3, 8); + + /// Default qualifier 16 bit signed integer aligned vector of 4 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i16vec4, aligned_i16vec4, 8); + + + /// Default qualifier 32 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i32vec1, aligned_i32vec1, 4); + + /// Default qualifier 32 bit signed integer aligned vector of 2 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i32vec2, aligned_i32vec2, 8); + + /// Default qualifier 32 bit signed integer aligned vector of 3 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i32vec3, aligned_i32vec3, 16); + + /// Default qualifier 32 bit signed integer aligned vector of 4 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i32vec4, aligned_i32vec4, 16); + + + /// Default qualifier 64 bit signed integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i64vec1, aligned_i64vec1, 8); + + /// Default qualifier 64 bit signed integer aligned vector of 2 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i64vec2, aligned_i64vec2, 16); + + /// Default qualifier 64 bit signed integer aligned vector of 3 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i64vec3, aligned_i64vec3, 32); + + /// Default qualifier 64 bit signed integer aligned vector of 4 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(i64vec4, aligned_i64vec4, 32); + + + ///////////////////////////// + // Unsigned int vector types + + /// Low qualifier 8 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_uint8, aligned_lowp_uint8, 1); + + /// Low qualifier 16 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_uint16, aligned_lowp_uint16, 2); + + /// Low qualifier 32 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_uint32, aligned_lowp_uint32, 4); + + /// Low qualifier 64 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_uint64, aligned_lowp_uint64, 8); + + + /// Low qualifier 8 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_uint8_t, aligned_lowp_uint8_t, 1); + + /// Low qualifier 16 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_uint16_t, aligned_lowp_uint16_t, 2); + + /// Low qualifier 32 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_uint32_t, aligned_lowp_uint32_t, 4); + + /// Low qualifier 64 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_uint64_t, aligned_lowp_uint64_t, 8); + + + /// Low qualifier 8 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_u8, aligned_lowp_u8, 1); + + /// Low qualifier 16 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_u16, aligned_lowp_u16, 2); + + /// Low qualifier 32 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_u32, aligned_lowp_u32, 4); + + /// Low qualifier 64 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(lowp_u64, aligned_lowp_u64, 8); + + + /// Medium qualifier 8 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_uint8, aligned_mediump_uint8, 1); + + /// Medium qualifier 16 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_uint16, aligned_mediump_uint16, 2); + + /// Medium qualifier 32 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_uint32, aligned_mediump_uint32, 4); + + /// Medium qualifier 64 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_uint64, aligned_mediump_uint64, 8); + + + /// Medium qualifier 8 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_uint8_t, aligned_mediump_uint8_t, 1); + + /// Medium qualifier 16 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_uint16_t, aligned_mediump_uint16_t, 2); + + /// Medium qualifier 32 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_uint32_t, aligned_mediump_uint32_t, 4); + + /// Medium qualifier 64 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_uint64_t, aligned_mediump_uint64_t, 8); + + + /// Medium qualifier 8 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_u8, aligned_mediump_u8, 1); + + /// Medium qualifier 16 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_u16, aligned_mediump_u16, 2); + + /// Medium qualifier 32 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_u32, aligned_mediump_u32, 4); + + /// Medium qualifier 64 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mediump_u64, aligned_mediump_u64, 8); + + + /// High qualifier 8 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_uint8, aligned_highp_uint8, 1); + + /// High qualifier 16 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_uint16, aligned_highp_uint16, 2); + + /// High qualifier 32 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_uint32, aligned_highp_uint32, 4); + + /// High qualifier 64 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_uint64, aligned_highp_uint64, 8); + + + /// High qualifier 8 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_uint8_t, aligned_highp_uint8_t, 1); + + /// High qualifier 16 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_uint16_t, aligned_highp_uint16_t, 2); + + /// High qualifier 32 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_uint32_t, aligned_highp_uint32_t, 4); + + /// High qualifier 64 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_uint64_t, aligned_highp_uint64_t, 8); + + + /// High qualifier 8 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_u8, aligned_highp_u8, 1); + + /// High qualifier 16 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_u16, aligned_highp_u16, 2); + + /// High qualifier 32 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_u32, aligned_highp_u32, 4); + + /// High qualifier 64 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(highp_u64, aligned_highp_u64, 8); + + + /// Default qualifier 8 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(uint8, aligned_uint8, 1); + + /// Default qualifier 16 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(uint16, aligned_uint16, 2); + + /// Default qualifier 32 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(uint32, aligned_uint32, 4); + + /// Default qualifier 64 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(uint64, aligned_uint64, 8); + + + /// Default qualifier 8 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(uint8_t, aligned_uint8_t, 1); + + /// Default qualifier 16 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(uint16_t, aligned_uint16_t, 2); + + /// Default qualifier 32 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(uint32_t, aligned_uint32_t, 4); + + /// Default qualifier 64 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(uint64_t, aligned_uint64_t, 8); + + + /// Default qualifier 8 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u8, aligned_u8, 1); + + /// Default qualifier 16 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u16, aligned_u16, 2); + + /// Default qualifier 32 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u32, aligned_u32, 4); + + /// Default qualifier 64 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u64, aligned_u64, 8); + + + /// Default qualifier 32 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(uvec1, aligned_uvec1, 4); + + /// Default qualifier 32 bit unsigned integer aligned vector of 2 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(uvec2, aligned_uvec2, 8); + + /// Default qualifier 32 bit unsigned integer aligned vector of 3 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(uvec3, aligned_uvec3, 16); + + /// Default qualifier 32 bit unsigned integer aligned vector of 4 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(uvec4, aligned_uvec4, 16); + + + /// Default qualifier 8 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u8vec1, aligned_u8vec1, 1); + + /// Default qualifier 8 bit unsigned integer aligned vector of 2 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u8vec2, aligned_u8vec2, 2); + + /// Default qualifier 8 bit unsigned integer aligned vector of 3 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u8vec3, aligned_u8vec3, 4); + + /// Default qualifier 8 bit unsigned integer aligned vector of 4 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u8vec4, aligned_u8vec4, 4); + + + /// Default qualifier 16 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u16vec1, aligned_u16vec1, 2); + + /// Default qualifier 16 bit unsigned integer aligned vector of 2 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u16vec2, aligned_u16vec2, 4); + + /// Default qualifier 16 bit unsigned integer aligned vector of 3 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u16vec3, aligned_u16vec3, 8); + + /// Default qualifier 16 bit unsigned integer aligned vector of 4 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u16vec4, aligned_u16vec4, 8); + + + /// Default qualifier 32 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u32vec1, aligned_u32vec1, 4); + + /// Default qualifier 32 bit unsigned integer aligned vector of 2 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u32vec2, aligned_u32vec2, 8); + + /// Default qualifier 32 bit unsigned integer aligned vector of 3 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u32vec3, aligned_u32vec3, 16); + + /// Default qualifier 32 bit unsigned integer aligned vector of 4 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u32vec4, aligned_u32vec4, 16); + + + /// Default qualifier 64 bit unsigned integer aligned scalar type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u64vec1, aligned_u64vec1, 8); + + /// Default qualifier 64 bit unsigned integer aligned vector of 2 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u64vec2, aligned_u64vec2, 16); + + /// Default qualifier 64 bit unsigned integer aligned vector of 3 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u64vec3, aligned_u64vec3, 32); + + /// Default qualifier 64 bit unsigned integer aligned vector of 4 components type. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(u64vec4, aligned_u64vec4, 32); + + + ////////////////////// + // Float vector types + + /// 32 bit single-qualifier floating-point aligned scalar. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(float32, aligned_float32, 4); + + /// 32 bit single-qualifier floating-point aligned scalar. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(float32_t, aligned_float32_t, 4); + + /// 32 bit single-qualifier floating-point aligned scalar. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(float32, aligned_f32, 4); + +# ifndef GLM_FORCE_SINGLE_ONLY + + /// 64 bit double-qualifier floating-point aligned scalar. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(float64, aligned_float64, 8); + + /// 64 bit double-qualifier floating-point aligned scalar. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(float64_t, aligned_float64_t, 8); + + /// 64 bit double-qualifier floating-point aligned scalar. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(float64, aligned_f64, 8); + +# endif//GLM_FORCE_SINGLE_ONLY + + + /// Single-qualifier floating-point aligned vector of 1 component. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(vec1, aligned_vec1, 4); + + /// Single-qualifier floating-point aligned vector of 2 components. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(vec2, aligned_vec2, 8); + + /// Single-qualifier floating-point aligned vector of 3 components. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(vec3, aligned_vec3, 16); + + /// Single-qualifier floating-point aligned vector of 4 components. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(vec4, aligned_vec4, 16); + + + /// Single-qualifier floating-point aligned vector of 1 component. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(fvec1, aligned_fvec1, 4); + + /// Single-qualifier floating-point aligned vector of 2 components. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(fvec2, aligned_fvec2, 8); + + /// Single-qualifier floating-point aligned vector of 3 components. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(fvec3, aligned_fvec3, 16); + + /// Single-qualifier floating-point aligned vector of 4 components. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(fvec4, aligned_fvec4, 16); + + + /// Single-qualifier floating-point aligned vector of 1 component. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f32vec1, aligned_f32vec1, 4); + + /// Single-qualifier floating-point aligned vector of 2 components. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f32vec2, aligned_f32vec2, 8); + + /// Single-qualifier floating-point aligned vector of 3 components. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f32vec3, aligned_f32vec3, 16); + + /// Single-qualifier floating-point aligned vector of 4 components. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f32vec4, aligned_f32vec4, 16); + + + /// Double-qualifier floating-point aligned vector of 1 component. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(dvec1, aligned_dvec1, 8); + + /// Double-qualifier floating-point aligned vector of 2 components. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(dvec2, aligned_dvec2, 16); + + /// Double-qualifier floating-point aligned vector of 3 components. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(dvec3, aligned_dvec3, 32); + + /// Double-qualifier floating-point aligned vector of 4 components. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(dvec4, aligned_dvec4, 32); + + +# ifndef GLM_FORCE_SINGLE_ONLY + + /// Double-qualifier floating-point aligned vector of 1 component. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f64vec1, aligned_f64vec1, 8); + + /// Double-qualifier floating-point aligned vector of 2 components. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f64vec2, aligned_f64vec2, 16); + + /// Double-qualifier floating-point aligned vector of 3 components. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f64vec3, aligned_f64vec3, 32); + + /// Double-qualifier floating-point aligned vector of 4 components. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f64vec4, aligned_f64vec4, 32); + +# endif//GLM_FORCE_SINGLE_ONLY + + ////////////////////// + // Float matrix types + + /// Single-qualifier floating-point aligned 1x1 matrix. + /// @see gtx_type_aligned + //typedef detail::tmat1 mat1; + + /// Single-qualifier floating-point aligned 2x2 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mat2, aligned_mat2, 16); + + /// Single-qualifier floating-point aligned 3x3 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mat3, aligned_mat3, 16); + + /// Single-qualifier floating-point aligned 4x4 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mat4, aligned_mat4, 16); + + + /// Single-qualifier floating-point aligned 1x1 matrix. + /// @see gtx_type_aligned + //typedef detail::tmat1x1 mat1; + + /// Single-qualifier floating-point aligned 2x2 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mat2x2, aligned_mat2x2, 16); + + /// Single-qualifier floating-point aligned 3x3 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mat3x3, aligned_mat3x3, 16); + + /// Single-qualifier floating-point aligned 4x4 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(mat4x4, aligned_mat4x4, 16); + + + /// Single-qualifier floating-point aligned 1x1 matrix. + /// @see gtx_type_aligned + //typedef detail::tmat1x1 fmat1; + + /// Single-qualifier floating-point aligned 2x2 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(fmat2x2, aligned_fmat2, 16); + + /// Single-qualifier floating-point aligned 3x3 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(fmat3x3, aligned_fmat3, 16); + + /// Single-qualifier floating-point aligned 4x4 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(fmat4x4, aligned_fmat4, 16); + + + /// Single-qualifier floating-point aligned 1x1 matrix. + /// @see gtx_type_aligned + //typedef f32 fmat1x1; + + /// Single-qualifier floating-point aligned 2x2 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(fmat2x2, aligned_fmat2x2, 16); + + /// Single-qualifier floating-point aligned 2x3 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(fmat2x3, aligned_fmat2x3, 16); + + /// Single-qualifier floating-point aligned 2x4 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(fmat2x4, aligned_fmat2x4, 16); + + /// Single-qualifier floating-point aligned 3x2 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(fmat3x2, aligned_fmat3x2, 16); + + /// Single-qualifier floating-point aligned 3x3 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(fmat3x3, aligned_fmat3x3, 16); + + /// Single-qualifier floating-point aligned 3x4 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(fmat3x4, aligned_fmat3x4, 16); + + /// Single-qualifier floating-point aligned 4x2 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(fmat4x2, aligned_fmat4x2, 16); + + /// Single-qualifier floating-point aligned 4x3 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(fmat4x3, aligned_fmat4x3, 16); + + /// Single-qualifier floating-point aligned 4x4 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(fmat4x4, aligned_fmat4x4, 16); + + + /// Single-qualifier floating-point aligned 1x1 matrix. + /// @see gtx_type_aligned + //typedef detail::tmat1x1 f32mat1; + + /// Single-qualifier floating-point aligned 2x2 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f32mat2x2, aligned_f32mat2, 16); + + /// Single-qualifier floating-point aligned 3x3 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f32mat3x3, aligned_f32mat3, 16); + + /// Single-qualifier floating-point aligned 4x4 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f32mat4x4, aligned_f32mat4, 16); + + + /// Single-qualifier floating-point aligned 1x1 matrix. + /// @see gtx_type_aligned + //typedef f32 f32mat1x1; + + /// Single-qualifier floating-point aligned 2x2 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f32mat2x2, aligned_f32mat2x2, 16); + + /// Single-qualifier floating-point aligned 2x3 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f32mat2x3, aligned_f32mat2x3, 16); + + /// Single-qualifier floating-point aligned 2x4 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f32mat2x4, aligned_f32mat2x4, 16); + + /// Single-qualifier floating-point aligned 3x2 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f32mat3x2, aligned_f32mat3x2, 16); + + /// Single-qualifier floating-point aligned 3x3 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f32mat3x3, aligned_f32mat3x3, 16); + + /// Single-qualifier floating-point aligned 3x4 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f32mat3x4, aligned_f32mat3x4, 16); + + /// Single-qualifier floating-point aligned 4x2 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f32mat4x2, aligned_f32mat4x2, 16); + + /// Single-qualifier floating-point aligned 4x3 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f32mat4x3, aligned_f32mat4x3, 16); + + /// Single-qualifier floating-point aligned 4x4 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f32mat4x4, aligned_f32mat4x4, 16); + + +# ifndef GLM_FORCE_SINGLE_ONLY + + /// Double-qualifier floating-point aligned 1x1 matrix. + /// @see gtx_type_aligned + //typedef detail::tmat1x1 f64mat1; + + /// Double-qualifier floating-point aligned 2x2 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f64mat2x2, aligned_f64mat2, 32); + + /// Double-qualifier floating-point aligned 3x3 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f64mat3x3, aligned_f64mat3, 32); + + /// Double-qualifier floating-point aligned 4x4 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f64mat4x4, aligned_f64mat4, 32); + + + /// Double-qualifier floating-point aligned 1x1 matrix. + /// @see gtx_type_aligned + //typedef f64 f64mat1x1; + + /// Double-qualifier floating-point aligned 2x2 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f64mat2x2, aligned_f64mat2x2, 32); + + /// Double-qualifier floating-point aligned 2x3 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f64mat2x3, aligned_f64mat2x3, 32); + + /// Double-qualifier floating-point aligned 2x4 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f64mat2x4, aligned_f64mat2x4, 32); + + /// Double-qualifier floating-point aligned 3x2 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f64mat3x2, aligned_f64mat3x2, 32); + + /// Double-qualifier floating-point aligned 3x3 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f64mat3x3, aligned_f64mat3x3, 32); + + /// Double-qualifier floating-point aligned 3x4 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f64mat3x4, aligned_f64mat3x4, 32); + + /// Double-qualifier floating-point aligned 4x2 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f64mat4x2, aligned_f64mat4x2, 32); + + /// Double-qualifier floating-point aligned 4x3 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f64mat4x3, aligned_f64mat4x3, 32); + + /// Double-qualifier floating-point aligned 4x4 matrix. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f64mat4x4, aligned_f64mat4x4, 32); + +# endif//GLM_FORCE_SINGLE_ONLY + + + ////////////////////////// + // Quaternion types + + /// Single-qualifier floating-point aligned quaternion. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(quat, aligned_quat, 16); + + /// Single-qualifier floating-point aligned quaternion. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(quat, aligned_fquat, 16); + + /// Double-qualifier floating-point aligned quaternion. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(dquat, aligned_dquat, 32); + + /// Single-qualifier floating-point aligned quaternion. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f32quat, aligned_f32quat, 16); + +# ifndef GLM_FORCE_SINGLE_ONLY + + /// Double-qualifier floating-point aligned quaternion. + /// @see gtx_type_aligned + GLM_ALIGNED_TYPEDEF(f64quat, aligned_f64quat, 32); + +# endif//GLM_FORCE_SINGLE_ONLY + + /// @} +}//namespace glm + +#include "type_aligned.inl" diff --git a/thirdparty/glm/glm/gtx/type_aligned.inl b/thirdparty/glm/glm/gtx/type_aligned.inl new file mode 100644 index 000000000000..54c1b818b64a --- /dev/null +++ b/thirdparty/glm/glm/gtx/type_aligned.inl @@ -0,0 +1,6 @@ +/// @ref gtc_type_aligned + +namespace glm +{ + +} diff --git a/thirdparty/glm/glm/gtx/type_trait.hpp b/thirdparty/glm/glm/gtx/type_trait.hpp new file mode 100644 index 000000000000..56685c8cb98c --- /dev/null +++ b/thirdparty/glm/glm/gtx/type_trait.hpp @@ -0,0 +1,85 @@ +/// @ref gtx_type_trait +/// @file glm/gtx/type_trait.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_type_trait GLM_GTX_type_trait +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Defines traits for each type. + +#pragma once + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_type_trait is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_type_trait extension included") +# endif +#endif + +// Dependency: +#include "../detail/qualifier.hpp" +#include "../gtc/quaternion.hpp" +#include "../gtx/dual_quaternion.hpp" + +namespace glm +{ + /// @addtogroup gtx_type_trait + /// @{ + + template + struct type + { + static bool const is_vec = false; + static bool const is_mat = false; + static bool const is_quat = false; + static length_t const components = 0; + static length_t const cols = 0; + static length_t const rows = 0; + }; + + template + struct type > + { + static bool const is_vec = true; + static bool const is_mat = false; + static bool const is_quat = false; + static length_t const components = L; + }; + + template + struct type > + { + static bool const is_vec = false; + static bool const is_mat = true; + static bool const is_quat = false; + static length_t const components = C; + static length_t const cols = C; + static length_t const rows = R; + }; + + template + struct type > + { + static bool const is_vec = false; + static bool const is_mat = false; + static bool const is_quat = true; + static length_t const components = 4; + }; + + template + struct type > + { + static bool const is_vec = false; + static bool const is_mat = false; + static bool const is_quat = true; + static length_t const components = 8; + }; + + /// @} +}//namespace glm + +#include "type_trait.inl" diff --git a/thirdparty/glm/glm/gtx/type_trait.inl b/thirdparty/glm/glm/gtx/type_trait.inl new file mode 100644 index 000000000000..045de959cc21 --- /dev/null +++ b/thirdparty/glm/glm/gtx/type_trait.inl @@ -0,0 +1,61 @@ +/// @ref gtx_type_trait + +namespace glm +{ + template + bool const type::is_vec; + template + bool const type::is_mat; + template + bool const type::is_quat; + template + length_t const type::components; + template + length_t const type::cols; + template + length_t const type::rows; + + // vec + template + bool const type >::is_vec; + template + bool const type >::is_mat; + template + bool const type >::is_quat; + template + length_t const type >::components; + + // mat + template + bool const type >::is_vec; + template + bool const type >::is_mat; + template + bool const type >::is_quat; + template + length_t const type >::components; + template + length_t const type >::cols; + template + length_t const type >::rows; + + // tquat + template + bool const type >::is_vec; + template + bool const type >::is_mat; + template + bool const type >::is_quat; + template + length_t const type >::components; + + // tdualquat + template + bool const type >::is_vec; + template + bool const type >::is_mat; + template + bool const type >::is_quat; + template + length_t const type >::components; +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/vec_swizzle.hpp b/thirdparty/glm/glm/gtx/vec_swizzle.hpp new file mode 100644 index 000000000000..4440c9accd54 --- /dev/null +++ b/thirdparty/glm/glm/gtx/vec_swizzle.hpp @@ -0,0 +1,2786 @@ +/// @ref gtx_vec_swizzle +/// @file glm/gtx/vec_swizzle.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_vec_swizzle GLM_GTX_vec_swizzle +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Functions to perform swizzle operation. + +#pragma once + +#include "../glm.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_vec_swizzle is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_vec_swizzle extension included") +# endif +#endif + +namespace glm { + /// @addtogroup gtx_vec_swizzle + /// @{ + + // xx + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> xx(const glm::vec<1, T, Q> &v) { + return glm::vec<2, T, Q>(v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> xx(const glm::vec<2, T, Q> &v) { + return glm::vec<2, T, Q>(v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> xx(const glm::vec<3, T, Q> &v) { + return glm::vec<2, T, Q>(v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> xx(const glm::vec<4, T, Q> &v) { + return glm::vec<2, T, Q>(v.x, v.x); + } + + // xy + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> xy(const glm::vec<2, T, Q> &v) { + return glm::vec<2, T, Q>(v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> xy(const glm::vec<3, T, Q> &v) { + return glm::vec<2, T, Q>(v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> xy(const glm::vec<4, T, Q> &v) { + return glm::vec<2, T, Q>(v.x, v.y); + } + + // xz + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> xz(const glm::vec<3, T, Q> &v) { + return glm::vec<2, T, Q>(v.x, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> xz(const glm::vec<4, T, Q> &v) { + return glm::vec<2, T, Q>(v.x, v.z); + } + + // xw + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> xw(const glm::vec<4, T, Q> &v) { + return glm::vec<2, T, Q>(v.x, v.w); + } + + // yx + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> yx(const glm::vec<2, T, Q> &v) { + return glm::vec<2, T, Q>(v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> yx(const glm::vec<3, T, Q> &v) { + return glm::vec<2, T, Q>(v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> yx(const glm::vec<4, T, Q> &v) { + return glm::vec<2, T, Q>(v.y, v.x); + } + + // yy + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> yy(const glm::vec<2, T, Q> &v) { + return glm::vec<2, T, Q>(v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> yy(const glm::vec<3, T, Q> &v) { + return glm::vec<2, T, Q>(v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> yy(const glm::vec<4, T, Q> &v) { + return glm::vec<2, T, Q>(v.y, v.y); + } + + // yz + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> yz(const glm::vec<3, T, Q> &v) { + return glm::vec<2, T, Q>(v.y, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> yz(const glm::vec<4, T, Q> &v) { + return glm::vec<2, T, Q>(v.y, v.z); + } + + // yw + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> yw(const glm::vec<4, T, Q> &v) { + return glm::vec<2, T, Q>(v.y, v.w); + } + + // zx + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> zx(const glm::vec<3, T, Q> &v) { + return glm::vec<2, T, Q>(v.z, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> zx(const glm::vec<4, T, Q> &v) { + return glm::vec<2, T, Q>(v.z, v.x); + } + + // zy + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> zy(const glm::vec<3, T, Q> &v) { + return glm::vec<2, T, Q>(v.z, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> zy(const glm::vec<4, T, Q> &v) { + return glm::vec<2, T, Q>(v.z, v.y); + } + + // zz + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> zz(const glm::vec<3, T, Q> &v) { + return glm::vec<2, T, Q>(v.z, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> zz(const glm::vec<4, T, Q> &v) { + return glm::vec<2, T, Q>(v.z, v.z); + } + + // zw + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> zw(const glm::vec<4, T, Q> &v) { + return glm::vec<2, T, Q>(v.z, v.w); + } + + // wx + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> wx(const glm::vec<4, T, Q> &v) { + return glm::vec<2, T, Q>(v.w, v.x); + } + + // wy + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> wy(const glm::vec<4, T, Q> &v) { + return glm::vec<2, T, Q>(v.w, v.y); + } + + // wz + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> wz(const glm::vec<4, T, Q> &v) { + return glm::vec<2, T, Q>(v.w, v.z); + } + + // ww + template + GLM_FUNC_QUALIFIER glm::vec<2, T, Q> ww(const glm::vec<4, T, Q> &v) { + return glm::vec<2, T, Q>(v.w, v.w); + } + + // xxx + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xxx(const glm::vec<1, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xxx(const glm::vec<2, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xxx(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xxx(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.x, v.x); + } + + // xxy + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xxy(const glm::vec<2, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xxy(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xxy(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.x, v.y); + } + + // xxz + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xxz(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.x, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xxz(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.x, v.z); + } + + // xxw + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xxw(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.x, v.w); + } + + // xyx + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xyx(const glm::vec<2, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xyx(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xyx(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.y, v.x); + } + + // xyy + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xyy(const glm::vec<2, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xyy(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xyy(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.y, v.y); + } + + // xyz + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xyz(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.y, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xyz(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.y, v.z); + } + + // xyw + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xyw(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.y, v.w); + } + + // xzx + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xzx(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.z, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xzx(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.z, v.x); + } + + // xzy + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xzy(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.z, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xzy(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.z, v.y); + } + + // xzz + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xzz(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.z, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xzz(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.z, v.z); + } + + // xzw + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xzw(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.z, v.w); + } + + // xwx + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xwx(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.w, v.x); + } + + // xwy + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xwy(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.w, v.y); + } + + // xwz + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xwz(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.w, v.z); + } + + // xww + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> xww(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.x, v.w, v.w); + } + + // yxx + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yxx(const glm::vec<2, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yxx(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yxx(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.x, v.x); + } + + // yxy + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yxy(const glm::vec<2, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yxy(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yxy(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.x, v.y); + } + + // yxz + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yxz(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.x, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yxz(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.x, v.z); + } + + // yxw + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yxw(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.x, v.w); + } + + // yyx + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yyx(const glm::vec<2, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yyx(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yyx(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.y, v.x); + } + + // yyy + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yyy(const glm::vec<2, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yyy(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yyy(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.y, v.y); + } + + // yyz + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yyz(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.y, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yyz(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.y, v.z); + } + + // yyw + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yyw(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.y, v.w); + } + + // yzx + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yzx(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.z, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yzx(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.z, v.x); + } + + // yzy + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yzy(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.z, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yzy(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.z, v.y); + } + + // yzz + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yzz(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.z, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yzz(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.z, v.z); + } + + // yzw + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yzw(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.z, v.w); + } + + // ywx + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> ywx(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.w, v.x); + } + + // ywy + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> ywy(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.w, v.y); + } + + // ywz + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> ywz(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.w, v.z); + } + + // yww + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> yww(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.y, v.w, v.w); + } + + // zxx + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zxx(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zxx(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.x, v.x); + } + + // zxy + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zxy(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zxy(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.x, v.y); + } + + // zxz + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zxz(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.x, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zxz(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.x, v.z); + } + + // zxw + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zxw(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.x, v.w); + } + + // zyx + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zyx(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zyx(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.y, v.x); + } + + // zyy + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zyy(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zyy(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.y, v.y); + } + + // zyz + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zyz(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.y, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zyz(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.y, v.z); + } + + // zyw + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zyw(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.y, v.w); + } + + // zzx + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zzx(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.z, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zzx(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.z, v.x); + } + + // zzy + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zzy(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.z, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zzy(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.z, v.y); + } + + // zzz + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zzz(const glm::vec<3, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.z, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zzz(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.z, v.z); + } + + // zzw + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zzw(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.z, v.w); + } + + // zwx + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zwx(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.w, v.x); + } + + // zwy + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zwy(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.w, v.y); + } + + // zwz + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zwz(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.w, v.z); + } + + // zww + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> zww(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.z, v.w, v.w); + } + + // wxx + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> wxx(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.w, v.x, v.x); + } + + // wxy + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> wxy(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.w, v.x, v.y); + } + + // wxz + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> wxz(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.w, v.x, v.z); + } + + // wxw + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> wxw(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.w, v.x, v.w); + } + + // wyx + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> wyx(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.w, v.y, v.x); + } + + // wyy + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> wyy(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.w, v.y, v.y); + } + + // wyz + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> wyz(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.w, v.y, v.z); + } + + // wyw + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> wyw(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.w, v.y, v.w); + } + + // wzx + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> wzx(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.w, v.z, v.x); + } + + // wzy + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> wzy(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.w, v.z, v.y); + } + + // wzz + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> wzz(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.w, v.z, v.z); + } + + // wzw + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> wzw(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.w, v.z, v.w); + } + + // wwx + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> wwx(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.w, v.w, v.x); + } + + // wwy + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> wwy(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.w, v.w, v.y); + } + + // wwz + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> wwz(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.w, v.w, v.z); + } + + // www + template + GLM_FUNC_QUALIFIER glm::vec<3, T, Q> www(const glm::vec<4, T, Q> &v) { + return glm::vec<3, T, Q>(v.w, v.w, v.w); + } + + // xxxx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxxx(const glm::vec<1, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxxx(const glm::vec<2, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxxx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxxx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.x, v.x); + } + + // xxxy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxxy(const glm::vec<2, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxxy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxxy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.x, v.y); + } + + // xxxz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxxz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.x, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxxz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.x, v.z); + } + + // xxxw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxxw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.x, v.w); + } + + // xxyx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxyx(const glm::vec<2, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxyx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxyx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.y, v.x); + } + + // xxyy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxyy(const glm::vec<2, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxyy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxyy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.y, v.y); + } + + // xxyz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxyz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.y, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxyz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.y, v.z); + } + + // xxyw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxyw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.y, v.w); + } + + // xxzx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxzx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.z, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxzx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.z, v.x); + } + + // xxzy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxzy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.z, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxzy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.z, v.y); + } + + // xxzz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxzz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.z, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxzz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.z, v.z); + } + + // xxzw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxzw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.z, v.w); + } + + // xxwx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxwx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.w, v.x); + } + + // xxwy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxwy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.w, v.y); + } + + // xxwz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxwz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.w, v.z); + } + + // xxww + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xxww(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.x, v.w, v.w); + } + + // xyxx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyxx(const glm::vec<2, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyxx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyxx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.x, v.x); + } + + // xyxy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyxy(const glm::vec<2, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyxy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyxy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.x, v.y); + } + + // xyxz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyxz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.x, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyxz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.x, v.z); + } + + // xyxw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyxw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.x, v.w); + } + + // xyyx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyyx(const glm::vec<2, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyyx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyyx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.y, v.x); + } + + // xyyy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyyy(const glm::vec<2, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyyy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyyy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.y, v.y); + } + + // xyyz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyyz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.y, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyyz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.y, v.z); + } + + // xyyw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyyw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.y, v.w); + } + + // xyzx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyzx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.z, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyzx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.z, v.x); + } + + // xyzy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyzy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.z, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyzy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.z, v.y); + } + + // xyzz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyzz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.z, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyzz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.z, v.z); + } + + // xyzw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyzw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.z, v.w); + } + + // xywx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xywx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.w, v.x); + } + + // xywy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xywy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.w, v.y); + } + + // xywz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xywz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.w, v.z); + } + + // xyww + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xyww(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.y, v.w, v.w); + } + + // xzxx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzxx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzxx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.x, v.x); + } + + // xzxy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzxy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzxy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.x, v.y); + } + + // xzxz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzxz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.x, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzxz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.x, v.z); + } + + // xzxw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzxw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.x, v.w); + } + + // xzyx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzyx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzyx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.y, v.x); + } + + // xzyy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzyy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzyy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.y, v.y); + } + + // xzyz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzyz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.y, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzyz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.y, v.z); + } + + // xzyw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzyw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.y, v.w); + } + + // xzzx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzzx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.z, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzzx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.z, v.x); + } + + // xzzy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzzy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.z, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzzy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.z, v.y); + } + + // xzzz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzzz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.z, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzzz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.z, v.z); + } + + // xzzw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzzw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.z, v.w); + } + + // xzwx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzwx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.w, v.x); + } + + // xzwy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzwy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.w, v.y); + } + + // xzwz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzwz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.w, v.z); + } + + // xzww + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xzww(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.z, v.w, v.w); + } + + // xwxx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xwxx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.w, v.x, v.x); + } + + // xwxy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xwxy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.w, v.x, v.y); + } + + // xwxz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xwxz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.w, v.x, v.z); + } + + // xwxw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xwxw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.w, v.x, v.w); + } + + // xwyx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xwyx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.w, v.y, v.x); + } + + // xwyy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xwyy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.w, v.y, v.y); + } + + // xwyz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xwyz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.w, v.y, v.z); + } + + // xwyw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xwyw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.w, v.y, v.w); + } + + // xwzx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xwzx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.w, v.z, v.x); + } + + // xwzy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xwzy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.w, v.z, v.y); + } + + // xwzz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xwzz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.w, v.z, v.z); + } + + // xwzw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xwzw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.w, v.z, v.w); + } + + // xwwx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xwwx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.w, v.w, v.x); + } + + // xwwy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xwwy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.w, v.w, v.y); + } + + // xwwz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xwwz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.w, v.w, v.z); + } + + // xwww + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> xwww(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.x, v.w, v.w, v.w); + } + + // yxxx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxxx(const glm::vec<2, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxxx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxxx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.x, v.x); + } + + // yxxy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxxy(const glm::vec<2, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxxy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxxy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.x, v.y); + } + + // yxxz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxxz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.x, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxxz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.x, v.z); + } + + // yxxw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxxw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.x, v.w); + } + + // yxyx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxyx(const glm::vec<2, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxyx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxyx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.y, v.x); + } + + // yxyy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxyy(const glm::vec<2, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxyy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxyy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.y, v.y); + } + + // yxyz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxyz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.y, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxyz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.y, v.z); + } + + // yxyw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxyw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.y, v.w); + } + + // yxzx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxzx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.z, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxzx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.z, v.x); + } + + // yxzy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxzy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.z, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxzy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.z, v.y); + } + + // yxzz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxzz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.z, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxzz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.z, v.z); + } + + // yxzw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxzw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.z, v.w); + } + + // yxwx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxwx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.w, v.x); + } + + // yxwy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxwy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.w, v.y); + } + + // yxwz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxwz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.w, v.z); + } + + // yxww + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yxww(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.x, v.w, v.w); + } + + // yyxx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyxx(const glm::vec<2, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyxx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyxx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.x, v.x); + } + + // yyxy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyxy(const glm::vec<2, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyxy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyxy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.x, v.y); + } + + // yyxz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyxz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.x, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyxz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.x, v.z); + } + + // yyxw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyxw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.x, v.w); + } + + // yyyx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyyx(const glm::vec<2, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyyx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyyx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.y, v.x); + } + + // yyyy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyyy(const glm::vec<2, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyyy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyyy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.y, v.y); + } + + // yyyz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyyz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.y, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyyz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.y, v.z); + } + + // yyyw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyyw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.y, v.w); + } + + // yyzx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyzx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.z, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyzx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.z, v.x); + } + + // yyzy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyzy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.z, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyzy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.z, v.y); + } + + // yyzz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyzz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.z, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyzz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.z, v.z); + } + + // yyzw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyzw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.z, v.w); + } + + // yywx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yywx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.w, v.x); + } + + // yywy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yywy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.w, v.y); + } + + // yywz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yywz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.w, v.z); + } + + // yyww + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yyww(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.y, v.w, v.w); + } + + // yzxx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzxx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzxx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.x, v.x); + } + + // yzxy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzxy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzxy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.x, v.y); + } + + // yzxz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzxz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.x, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzxz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.x, v.z); + } + + // yzxw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzxw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.x, v.w); + } + + // yzyx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzyx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzyx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.y, v.x); + } + + // yzyy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzyy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzyy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.y, v.y); + } + + // yzyz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzyz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.y, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzyz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.y, v.z); + } + + // yzyw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzyw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.y, v.w); + } + + // yzzx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzzx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.z, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzzx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.z, v.x); + } + + // yzzy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzzy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.z, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzzy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.z, v.y); + } + + // yzzz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzzz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.z, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzzz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.z, v.z); + } + + // yzzw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzzw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.z, v.w); + } + + // yzwx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzwx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.w, v.x); + } + + // yzwy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzwy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.w, v.y); + } + + // yzwz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzwz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.w, v.z); + } + + // yzww + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> yzww(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.z, v.w, v.w); + } + + // ywxx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> ywxx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.w, v.x, v.x); + } + + // ywxy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> ywxy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.w, v.x, v.y); + } + + // ywxz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> ywxz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.w, v.x, v.z); + } + + // ywxw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> ywxw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.w, v.x, v.w); + } + + // ywyx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> ywyx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.w, v.y, v.x); + } + + // ywyy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> ywyy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.w, v.y, v.y); + } + + // ywyz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> ywyz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.w, v.y, v.z); + } + + // ywyw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> ywyw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.w, v.y, v.w); + } + + // ywzx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> ywzx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.w, v.z, v.x); + } + + // ywzy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> ywzy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.w, v.z, v.y); + } + + // ywzz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> ywzz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.w, v.z, v.z); + } + + // ywzw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> ywzw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.w, v.z, v.w); + } + + // ywwx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> ywwx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.w, v.w, v.x); + } + + // ywwy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> ywwy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.w, v.w, v.y); + } + + // ywwz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> ywwz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.w, v.w, v.z); + } + + // ywww + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> ywww(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.y, v.w, v.w, v.w); + } + + // zxxx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxxx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxxx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.x, v.x); + } + + // zxxy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxxy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxxy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.x, v.y); + } + + // zxxz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxxz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.x, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxxz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.x, v.z); + } + + // zxxw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxxw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.x, v.w); + } + + // zxyx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxyx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxyx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.y, v.x); + } + + // zxyy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxyy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxyy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.y, v.y); + } + + // zxyz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxyz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.y, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxyz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.y, v.z); + } + + // zxyw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxyw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.y, v.w); + } + + // zxzx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxzx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.z, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxzx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.z, v.x); + } + + // zxzy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxzy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.z, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxzy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.z, v.y); + } + + // zxzz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxzz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.z, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxzz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.z, v.z); + } + + // zxzw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxzw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.z, v.w); + } + + // zxwx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxwx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.w, v.x); + } + + // zxwy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxwy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.w, v.y); + } + + // zxwz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxwz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.w, v.z); + } + + // zxww + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zxww(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.x, v.w, v.w); + } + + // zyxx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyxx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyxx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.x, v.x); + } + + // zyxy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyxy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyxy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.x, v.y); + } + + // zyxz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyxz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.x, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyxz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.x, v.z); + } + + // zyxw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyxw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.x, v.w); + } + + // zyyx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyyx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyyx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.y, v.x); + } + + // zyyy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyyy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyyy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.y, v.y); + } + + // zyyz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyyz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.y, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyyz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.y, v.z); + } + + // zyyw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyyw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.y, v.w); + } + + // zyzx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyzx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.z, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyzx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.z, v.x); + } + + // zyzy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyzy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.z, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyzy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.z, v.y); + } + + // zyzz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyzz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.z, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyzz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.z, v.z); + } + + // zyzw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyzw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.z, v.w); + } + + // zywx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zywx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.w, v.x); + } + + // zywy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zywy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.w, v.y); + } + + // zywz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zywz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.w, v.z); + } + + // zyww + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zyww(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.y, v.w, v.w); + } + + // zzxx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzxx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.x, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzxx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.x, v.x); + } + + // zzxy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzxy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.x, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzxy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.x, v.y); + } + + // zzxz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzxz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.x, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzxz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.x, v.z); + } + + // zzxw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzxw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.x, v.w); + } + + // zzyx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzyx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.y, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzyx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.y, v.x); + } + + // zzyy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzyy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.y, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzyy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.y, v.y); + } + + // zzyz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzyz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.y, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzyz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.y, v.z); + } + + // zzyw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzyw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.y, v.w); + } + + // zzzx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzzx(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.z, v.x); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzzx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.z, v.x); + } + + // zzzy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzzy(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.z, v.y); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzzy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.z, v.y); + } + + // zzzz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzzz(const glm::vec<3, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.z, v.z); + } + + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzzz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.z, v.z); + } + + // zzzw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzzw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.z, v.w); + } + + // zzwx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzwx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.w, v.x); + } + + // zzwy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzwy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.w, v.y); + } + + // zzwz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzwz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.w, v.z); + } + + // zzww + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zzww(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.z, v.w, v.w); + } + + // zwxx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zwxx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.w, v.x, v.x); + } + + // zwxy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zwxy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.w, v.x, v.y); + } + + // zwxz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zwxz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.w, v.x, v.z); + } + + // zwxw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zwxw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.w, v.x, v.w); + } + + // zwyx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zwyx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.w, v.y, v.x); + } + + // zwyy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zwyy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.w, v.y, v.y); + } + + // zwyz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zwyz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.w, v.y, v.z); + } + + // zwyw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zwyw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.w, v.y, v.w); + } + + // zwzx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zwzx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.w, v.z, v.x); + } + + // zwzy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zwzy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.w, v.z, v.y); + } + + // zwzz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zwzz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.w, v.z, v.z); + } + + // zwzw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zwzw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.w, v.z, v.w); + } + + // zwwx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zwwx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.w, v.w, v.x); + } + + // zwwy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zwwy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.w, v.w, v.y); + } + + // zwwz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zwwz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.w, v.w, v.z); + } + + // zwww + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> zwww(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.z, v.w, v.w, v.w); + } + + // wxxx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wxxx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.x, v.x, v.x); + } + + // wxxy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wxxy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.x, v.x, v.y); + } + + // wxxz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wxxz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.x, v.x, v.z); + } + + // wxxw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wxxw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.x, v.x, v.w); + } + + // wxyx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wxyx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.x, v.y, v.x); + } + + // wxyy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wxyy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.x, v.y, v.y); + } + + // wxyz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wxyz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.x, v.y, v.z); + } + + // wxyw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wxyw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.x, v.y, v.w); + } + + // wxzx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wxzx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.x, v.z, v.x); + } + + // wxzy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wxzy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.x, v.z, v.y); + } + + // wxzz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wxzz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.x, v.z, v.z); + } + + // wxzw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wxzw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.x, v.z, v.w); + } + + // wxwx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wxwx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.x, v.w, v.x); + } + + // wxwy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wxwy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.x, v.w, v.y); + } + + // wxwz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wxwz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.x, v.w, v.z); + } + + // wxww + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wxww(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.x, v.w, v.w); + } + + // wyxx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wyxx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.y, v.x, v.x); + } + + // wyxy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wyxy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.y, v.x, v.y); + } + + // wyxz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wyxz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.y, v.x, v.z); + } + + // wyxw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wyxw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.y, v.x, v.w); + } + + // wyyx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wyyx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.y, v.y, v.x); + } + + // wyyy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wyyy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.y, v.y, v.y); + } + + // wyyz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wyyz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.y, v.y, v.z); + } + + // wyyw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wyyw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.y, v.y, v.w); + } + + // wyzx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wyzx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.y, v.z, v.x); + } + + // wyzy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wyzy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.y, v.z, v.y); + } + + // wyzz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wyzz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.y, v.z, v.z); + } + + // wyzw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wyzw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.y, v.z, v.w); + } + + // wywx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wywx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.y, v.w, v.x); + } + + // wywy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wywy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.y, v.w, v.y); + } + + // wywz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wywz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.y, v.w, v.z); + } + + // wyww + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wyww(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.y, v.w, v.w); + } + + // wzxx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wzxx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.z, v.x, v.x); + } + + // wzxy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wzxy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.z, v.x, v.y); + } + + // wzxz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wzxz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.z, v.x, v.z); + } + + // wzxw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wzxw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.z, v.x, v.w); + } + + // wzyx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wzyx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.z, v.y, v.x); + } + + // wzyy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wzyy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.z, v.y, v.y); + } + + // wzyz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wzyz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.z, v.y, v.z); + } + + // wzyw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wzyw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.z, v.y, v.w); + } + + // wzzx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wzzx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.z, v.z, v.x); + } + + // wzzy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wzzy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.z, v.z, v.y); + } + + // wzzz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wzzz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.z, v.z, v.z); + } + + // wzzw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wzzw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.z, v.z, v.w); + } + + // wzwx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wzwx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.z, v.w, v.x); + } + + // wzwy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wzwy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.z, v.w, v.y); + } + + // wzwz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wzwz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.z, v.w, v.z); + } + + // wzww + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wzww(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.z, v.w, v.w); + } + + // wwxx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wwxx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.w, v.x, v.x); + } + + // wwxy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wwxy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.w, v.x, v.y); + } + + // wwxz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wwxz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.w, v.x, v.z); + } + + // wwxw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wwxw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.w, v.x, v.w); + } + + // wwyx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wwyx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.w, v.y, v.x); + } + + // wwyy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wwyy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.w, v.y, v.y); + } + + // wwyz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wwyz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.w, v.y, v.z); + } + + // wwyw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wwyw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.w, v.y, v.w); + } + + // wwzx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wwzx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.w, v.z, v.x); + } + + // wwzy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wwzy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.w, v.z, v.y); + } + + // wwzz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wwzz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.w, v.z, v.z); + } + + // wwzw + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wwzw(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.w, v.z, v.w); + } + + // wwwx + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wwwx(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.w, v.w, v.x); + } + + // wwwy + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wwwy(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.w, v.w, v.y); + } + + // wwwz + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wwwz(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.w, v.w, v.z); + } + + // wwww + template + GLM_FUNC_QUALIFIER glm::vec<4, T, Q> wwww(const glm::vec<4, T, Q> &v) { + return glm::vec<4, T, Q>(v.w, v.w, v.w, v.w); + } + + /// @} +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/vector_angle.hpp b/thirdparty/glm/glm/gtx/vector_angle.hpp new file mode 100644 index 000000000000..9ae437126b19 --- /dev/null +++ b/thirdparty/glm/glm/gtx/vector_angle.hpp @@ -0,0 +1,57 @@ +/// @ref gtx_vector_angle +/// @file glm/gtx/vector_angle.hpp +/// +/// @see core (dependence) +/// @see gtx_quaternion (dependence) +/// @see gtx_epsilon (dependence) +/// +/// @defgroup gtx_vector_angle GLM_GTX_vector_angle +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Compute angle between vectors + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../gtc/epsilon.hpp" +#include "../gtx/quaternion.hpp" +#include "../gtx/rotate_vector.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_vector_angle is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_vector_angle extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_vector_angle + /// @{ + + //! Returns the absolute angle between two vectors. + //! Parameters need to be normalized. + /// @see gtx_vector_angle extension. + template + GLM_FUNC_DECL T angle(vec const& x, vec const& y); + + //! Returns the oriented angle between two 2d vectors. + //! Parameters need to be normalized. + /// @see gtx_vector_angle extension. + template + GLM_FUNC_DECL T orientedAngle(vec<2, T, Q> const& x, vec<2, T, Q> const& y); + + //! Returns the oriented angle between two 3d vectors based from a reference axis. + //! Parameters need to be normalized. + /// @see gtx_vector_angle extension. + template + GLM_FUNC_DECL T orientedAngle(vec<3, T, Q> const& x, vec<3, T, Q> const& y, vec<3, T, Q> const& ref); + + /// @} +}// namespace glm + +#include "vector_angle.inl" diff --git a/thirdparty/glm/glm/gtx/vector_angle.inl b/thirdparty/glm/glm/gtx/vector_angle.inl new file mode 100644 index 000000000000..11e1a218372e --- /dev/null +++ b/thirdparty/glm/glm/gtx/vector_angle.inl @@ -0,0 +1,45 @@ +/// @ref gtx_vector_angle + +namespace glm +{ + template + GLM_FUNC_QUALIFIER genType angle + ( + genType const& x, + genType const& y + ) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'angle' only accept floating-point inputs"); + return acos(clamp(dot(x, y), genType(-1), genType(1))); + } + + template + GLM_FUNC_QUALIFIER T angle(vec const& x, vec const& y) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'angle' only accept floating-point inputs"); + return acos(clamp(dot(x, y), T(-1), T(1))); + } + + template + GLM_FUNC_QUALIFIER T orientedAngle(vec<2, T, Q> const& x, vec<2, T, Q> const& y) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'orientedAngle' only accept floating-point inputs"); + T const Angle(acos(clamp(dot(x, y), T(-1), T(1)))); + + T const partialCross = x.x * y.y - y.x * x.y; + + if (partialCross > T(0)) + return Angle; + else + return -Angle; + } + + template + GLM_FUNC_QUALIFIER T orientedAngle(vec<3, T, Q> const& x, vec<3, T, Q> const& y, vec<3, T, Q> const& ref) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559 || GLM_CONFIG_UNRESTRICTED_FLOAT, "'orientedAngle' only accept floating-point inputs"); + + T const Angle(acos(clamp(dot(x, y), T(-1), T(1)))); + return mix(Angle, -Angle, dot(ref, cross(x, y)) < T(0)); + } +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/vector_query.hpp b/thirdparty/glm/glm/gtx/vector_query.hpp new file mode 100644 index 000000000000..af1f7b9bd584 --- /dev/null +++ b/thirdparty/glm/glm/gtx/vector_query.hpp @@ -0,0 +1,66 @@ +/// @ref gtx_vector_query +/// @file glm/gtx/vector_query.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_vector_query GLM_GTX_vector_query +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Query information of vector types + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include +#include + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_vector_query is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_vector_query extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_vector_query + /// @{ + + //! Check whether two vectors are collinears. + /// @see gtx_vector_query extensions. + template + GLM_FUNC_DECL bool areCollinear(vec const& v0, vec const& v1, T const& epsilon); + + //! Check whether two vectors are orthogonals. + /// @see gtx_vector_query extensions. + template + GLM_FUNC_DECL bool areOrthogonal(vec const& v0, vec const& v1, T const& epsilon); + + //! Check whether a vector is normalized. + /// @see gtx_vector_query extensions. + template + GLM_FUNC_DECL bool isNormalized(vec const& v, T const& epsilon); + + //! Check whether a vector is null. + /// @see gtx_vector_query extensions. + template + GLM_FUNC_DECL bool isNull(vec const& v, T const& epsilon); + + //! Check whether a each component of a vector is null. + /// @see gtx_vector_query extensions. + template + GLM_FUNC_DECL vec isCompNull(vec const& v, T const& epsilon); + + //! Check whether two vectors are orthonormal. + /// @see gtx_vector_query extensions. + template + GLM_FUNC_DECL bool areOrthonormal(vec const& v0, vec const& v1, T const& epsilon); + + /// @} +}// namespace glm + +#include "vector_query.inl" diff --git a/thirdparty/glm/glm/gtx/vector_query.inl b/thirdparty/glm/glm/gtx/vector_query.inl new file mode 100644 index 000000000000..d1a5c9be46b1 --- /dev/null +++ b/thirdparty/glm/glm/gtx/vector_query.inl @@ -0,0 +1,154 @@ +/// @ref gtx_vector_query + +#include + +namespace glm{ +namespace detail +{ + template + struct compute_areCollinear{}; + + template + struct compute_areCollinear<2, T, Q> + { + GLM_FUNC_QUALIFIER static bool call(vec<2, T, Q> const& v0, vec<2, T, Q> const& v1, T const& epsilon) + { + return length(cross(vec<3, T, Q>(v0, static_cast(0)), vec<3, T, Q>(v1, static_cast(0)))) < epsilon; + } + }; + + template + struct compute_areCollinear<3, T, Q> + { + GLM_FUNC_QUALIFIER static bool call(vec<3, T, Q> const& v0, vec<3, T, Q> const& v1, T const& epsilon) + { + return length(cross(v0, v1)) < epsilon; + } + }; + + template + struct compute_areCollinear<4, T, Q> + { + GLM_FUNC_QUALIFIER static bool call(vec<4, T, Q> const& v0, vec<4, T, Q> const& v1, T const& epsilon) + { + return length(cross(vec<3, T, Q>(v0), vec<3, T, Q>(v1))) < epsilon; + } + }; + + template + struct compute_isCompNull{}; + + template + struct compute_isCompNull<2, T, Q> + { + GLM_FUNC_QUALIFIER static vec<2, bool, Q> call(vec<2, T, Q> const& v, T const& epsilon) + { + return vec<2, bool, Q>( + (abs(v.x) < epsilon), + (abs(v.y) < epsilon)); + } + }; + + template + struct compute_isCompNull<3, T, Q> + { + GLM_FUNC_QUALIFIER static vec<3, bool, Q> call(vec<3, T, Q> const& v, T const& epsilon) + { + return vec<3, bool, Q>( + (abs(v.x) < epsilon), + (abs(v.y) < epsilon), + (abs(v.z) < epsilon)); + } + }; + + template + struct compute_isCompNull<4, T, Q> + { + GLM_FUNC_QUALIFIER static vec<4, bool, Q> call(vec<4, T, Q> const& v, T const& epsilon) + { + return vec<4, bool, Q>( + (abs(v.x) < epsilon), + (abs(v.y) < epsilon), + (abs(v.z) < epsilon), + (abs(v.w) < epsilon)); + } + }; + +}//namespace detail + + template + GLM_FUNC_QUALIFIER bool areCollinear(vec const& v0, vec const& v1, T const& epsilon) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'areCollinear' only accept floating-point inputs"); + + return detail::compute_areCollinear::call(v0, v1, epsilon); + } + + template + GLM_FUNC_QUALIFIER bool areOrthogonal(vec const& v0, vec const& v1, T const& epsilon) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'areOrthogonal' only accept floating-point inputs"); + + return abs(dot(v0, v1)) <= max( + static_cast(1), + length(v0)) * max(static_cast(1), length(v1)) * epsilon; + } + + template + GLM_FUNC_QUALIFIER bool isNormalized(vec const& v, T const& epsilon) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'isNormalized' only accept floating-point inputs"); + + return abs(length(v) - static_cast(1)) <= static_cast(2) * epsilon; + } + + template + GLM_FUNC_QUALIFIER bool isNull(vec const& v, T const& epsilon) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'isNull' only accept floating-point inputs"); + + return length(v) <= epsilon; + } + + template + GLM_FUNC_QUALIFIER vec isCompNull(vec const& v, T const& epsilon) + { + GLM_STATIC_ASSERT(std::numeric_limits::is_iec559, "'isCompNull' only accept floating-point inputs"); + + return detail::compute_isCompNull::call(v, epsilon); + } + + template + GLM_FUNC_QUALIFIER vec<2, bool, Q> isCompNull(vec<2, T, Q> const& v, T const& epsilon) + { + return vec<2, bool, Q>( + abs(v.x) < epsilon, + abs(v.y) < epsilon); + } + + template + GLM_FUNC_QUALIFIER vec<3, bool, Q> isCompNull(vec<3, T, Q> const& v, T const& epsilon) + { + return vec<3, bool, Q>( + abs(v.x) < epsilon, + abs(v.y) < epsilon, + abs(v.z) < epsilon); + } + + template + GLM_FUNC_QUALIFIER vec<4, bool, Q> isCompNull(vec<4, T, Q> const& v, T const& epsilon) + { + return vec<4, bool, Q>( + abs(v.x) < epsilon, + abs(v.y) < epsilon, + abs(v.z) < epsilon, + abs(v.w) < epsilon); + } + + template + GLM_FUNC_QUALIFIER bool areOrthonormal(vec const& v0, vec const& v1, T const& epsilon) + { + return isNormalized(v0, epsilon) && isNormalized(v1, epsilon) && (abs(dot(v0, v1)) <= epsilon); + } + +}//namespace glm diff --git a/thirdparty/glm/glm/gtx/wrap.hpp b/thirdparty/glm/glm/gtx/wrap.hpp new file mode 100644 index 000000000000..ad4eb3fca740 --- /dev/null +++ b/thirdparty/glm/glm/gtx/wrap.hpp @@ -0,0 +1,37 @@ +/// @ref gtx_wrap +/// @file glm/gtx/wrap.hpp +/// +/// @see core (dependence) +/// +/// @defgroup gtx_wrap GLM_GTX_wrap +/// @ingroup gtx +/// +/// Include to use the features of this extension. +/// +/// Wrapping mode of texture coordinates. + +#pragma once + +// Dependency: +#include "../glm.hpp" +#include "../ext/scalar_common.hpp" +#include "../ext/vector_common.hpp" +#include "../gtc/vec1.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# ifndef GLM_ENABLE_EXPERIMENTAL +# pragma message("GLM: GLM_GTX_wrap is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.") +# else +# pragma message("GLM: GLM_GTX_wrap extension included") +# endif +#endif + +namespace glm +{ + /// @addtogroup gtx_wrap + /// @{ + + /// @} +}// namespace glm + +#include "wrap.inl" diff --git a/thirdparty/glm/glm/gtx/wrap.inl b/thirdparty/glm/glm/gtx/wrap.inl new file mode 100644 index 000000000000..4be3b4c38aee --- /dev/null +++ b/thirdparty/glm/glm/gtx/wrap.inl @@ -0,0 +1,6 @@ +/// @ref gtx_wrap + +namespace glm +{ + +}//namespace glm diff --git a/thirdparty/glm/glm/integer.hpp b/thirdparty/glm/glm/integer.hpp new file mode 100644 index 000000000000..8817db3f0a22 --- /dev/null +++ b/thirdparty/glm/glm/integer.hpp @@ -0,0 +1,212 @@ +/// @ref core +/// @file glm/integer.hpp +/// +/// @see GLSL 4.20.8 specification, section 8.8 Integer Functions +/// +/// @defgroup core_func_integer Integer functions +/// @ingroup core +/// +/// Provides GLSL functions on integer types +/// +/// These all operate component-wise. The description is per component. +/// The notation [a, b] means the set of bits from bit-number a through bit-number +/// b, inclusive. The lowest-order bit is bit 0. +/// +/// Include to use these core features. + +#pragma once + +#include "detail/qualifier.hpp" +#include "common.hpp" +#include "vector_relational.hpp" + +namespace glm +{ + /// @addtogroup core_func_integer + /// @{ + + /// Adds 32-bit unsigned integer x and y, returning the sum + /// modulo pow(2, 32). The value carry is set to 0 if the sum was + /// less than pow(2, 32), or to 1 otherwise. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// + /// @see GLSL uaddCarry man page + /// @see GLSL 4.20.8 specification, section 8.8 Integer Functions + template + GLM_FUNC_DECL vec uaddCarry( + vec const& x, + vec const& y, + vec & carry); + + /// Subtracts the 32-bit unsigned integer y from x, returning + /// the difference if non-negative, or pow(2, 32) plus the difference + /// otherwise. The value borrow is set to 0 if x >= y, or to 1 otherwise. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// + /// @see GLSL usubBorrow man page + /// @see GLSL 4.20.8 specification, section 8.8 Integer Functions + template + GLM_FUNC_DECL vec usubBorrow( + vec const& x, + vec const& y, + vec & borrow); + + /// Multiplies 32-bit integers x and y, producing a 64-bit + /// result. The 32 least-significant bits are returned in lsb. + /// The 32 most-significant bits are returned in msb. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// + /// @see GLSL umulExtended man page + /// @see GLSL 4.20.8 specification, section 8.8 Integer Functions + template + GLM_FUNC_DECL void umulExtended( + vec const& x, + vec const& y, + vec & msb, + vec & lsb); + + /// Multiplies 32-bit integers x and y, producing a 64-bit + /// result. The 32 least-significant bits are returned in lsb. + /// The 32 most-significant bits are returned in msb. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// + /// @see GLSL imulExtended man page + /// @see GLSL 4.20.8 specification, section 8.8 Integer Functions + template + GLM_FUNC_DECL void imulExtended( + vec const& x, + vec const& y, + vec & msb, + vec & lsb); + + /// Extracts bits [offset, offset + bits - 1] from value, + /// returning them in the least significant bits of the result. + /// For unsigned data types, the most significant bits of the + /// result will be set to zero. For signed data types, the + /// most significant bits will be set to the value of bit offset + base - 1. + /// + /// If bits is zero, the result will be zero. The result will be + /// undefined if offset or bits is negative, or if the sum of + /// offset and bits is greater than the number of bits used + /// to store the operand. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Signed or unsigned integer scalar types. + /// + /// @see GLSL bitfieldExtract man page + /// @see GLSL 4.20.8 specification, section 8.8 Integer Functions + template + GLM_FUNC_DECL vec bitfieldExtract( + vec const& Value, + int Offset, + int Bits); + + /// Returns the insertion the bits least-significant bits of insert into base. + /// + /// The result will have bits [offset, offset + bits - 1] taken + /// from bits [0, bits - 1] of insert, and all other bits taken + /// directly from the corresponding bits of base. If bits is + /// zero, the result will simply be base. The result will be + /// undefined if offset or bits is negative, or if the sum of + /// offset and bits is greater than the number of bits used to + /// store the operand. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Signed or unsigned integer scalar or vector types. + /// + /// @see GLSL bitfieldInsert man page + /// @see GLSL 4.20.8 specification, section 8.8 Integer Functions + template + GLM_FUNC_DECL vec bitfieldInsert( + vec const& Base, + vec const& Insert, + int Offset, + int Bits); + + /// Returns the reversal of the bits of value. + /// The bit numbered n of the result will be taken from bit (bits - 1) - n of value, + /// where bits is the total number of bits used to represent value. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Signed or unsigned integer scalar or vector types. + /// + /// @see GLSL bitfieldReverse man page + /// @see GLSL 4.20.8 specification, section 8.8 Integer Functions + template + GLM_FUNC_DECL vec bitfieldReverse(vec const& v); + + /// Returns the number of bits set to 1 in the binary representation of value. + /// + /// @tparam genType Signed or unsigned integer scalar or vector types. + /// + /// @see GLSL bitCount man page + /// @see GLSL 4.20.8 specification, section 8.8 Integer Functions + template + GLM_FUNC_DECL int bitCount(genType v); + + /// Returns the number of bits set to 1 in the binary representation of value. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Signed or unsigned integer scalar or vector types. + /// + /// @see GLSL bitCount man page + /// @see GLSL 4.20.8 specification, section 8.8 Integer Functions + template + GLM_FUNC_DECL vec bitCount(vec const& v); + + /// Returns the bit number of the least significant bit set to + /// 1 in the binary representation of value. + /// If value is zero, -1 will be returned. + /// + /// @tparam genIUType Signed or unsigned integer scalar types. + /// + /// @see GLSL findLSB man page + /// @see GLSL 4.20.8 specification, section 8.8 Integer Functions + template + GLM_FUNC_DECL int findLSB(genIUType x); + + /// Returns the bit number of the least significant bit set to + /// 1 in the binary representation of value. + /// If value is zero, -1 will be returned. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Signed or unsigned integer scalar types. + /// + /// @see GLSL findLSB man page + /// @see GLSL 4.20.8 specification, section 8.8 Integer Functions + template + GLM_FUNC_DECL vec findLSB(vec const& v); + + /// Returns the bit number of the most significant bit in the binary representation of value. + /// For positive integers, the result will be the bit number of the most significant bit set to 1. + /// For negative integers, the result will be the bit number of the most significant + /// bit set to 0. For a value of zero or negative one, -1 will be returned. + /// + /// @tparam genIUType Signed or unsigned integer scalar types. + /// + /// @see GLSL findMSB man page + /// @see GLSL 4.20.8 specification, section 8.8 Integer Functions + template + GLM_FUNC_DECL int findMSB(genIUType x); + + /// Returns the bit number of the most significant bit in the binary representation of value. + /// For positive integers, the result will be the bit number of the most significant bit set to 1. + /// For negative integers, the result will be the bit number of the most significant + /// bit set to 0. For a value of zero or negative one, -1 will be returned. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T Signed or unsigned integer scalar types. + /// + /// @see GLSL findMSB man page + /// @see GLSL 4.20.8 specification, section 8.8 Integer Functions + template + GLM_FUNC_DECL vec findMSB(vec const& v); + + /// @} +}//namespace glm + +#include "detail/func_integer.inl" diff --git a/thirdparty/glm/glm/mat2x2.hpp b/thirdparty/glm/glm/mat2x2.hpp new file mode 100644 index 000000000000..96bec96b9a63 --- /dev/null +++ b/thirdparty/glm/glm/mat2x2.hpp @@ -0,0 +1,9 @@ +/// @ref core +/// @file glm/mat2x2.hpp + +#pragma once +#include "./ext/matrix_double2x2.hpp" +#include "./ext/matrix_double2x2_precision.hpp" +#include "./ext/matrix_float2x2.hpp" +#include "./ext/matrix_float2x2_precision.hpp" + diff --git a/thirdparty/glm/glm/mat2x3.hpp b/thirdparty/glm/glm/mat2x3.hpp new file mode 100644 index 000000000000..d68dc25eda94 --- /dev/null +++ b/thirdparty/glm/glm/mat2x3.hpp @@ -0,0 +1,9 @@ +/// @ref core +/// @file glm/mat2x3.hpp + +#pragma once +#include "./ext/matrix_double2x3.hpp" +#include "./ext/matrix_double2x3_precision.hpp" +#include "./ext/matrix_float2x3.hpp" +#include "./ext/matrix_float2x3_precision.hpp" + diff --git a/thirdparty/glm/glm/mat2x4.hpp b/thirdparty/glm/glm/mat2x4.hpp new file mode 100644 index 000000000000..b04b7387b1a3 --- /dev/null +++ b/thirdparty/glm/glm/mat2x4.hpp @@ -0,0 +1,9 @@ +/// @ref core +/// @file glm/mat2x4.hpp + +#pragma once +#include "./ext/matrix_double2x4.hpp" +#include "./ext/matrix_double2x4_precision.hpp" +#include "./ext/matrix_float2x4.hpp" +#include "./ext/matrix_float2x4_precision.hpp" + diff --git a/thirdparty/glm/glm/mat3x2.hpp b/thirdparty/glm/glm/mat3x2.hpp new file mode 100644 index 000000000000..c85315372dc0 --- /dev/null +++ b/thirdparty/glm/glm/mat3x2.hpp @@ -0,0 +1,9 @@ +/// @ref core +/// @file glm/mat3x2.hpp + +#pragma once +#include "./ext/matrix_double3x2.hpp" +#include "./ext/matrix_double3x2_precision.hpp" +#include "./ext/matrix_float3x2.hpp" +#include "./ext/matrix_float3x2_precision.hpp" + diff --git a/thirdparty/glm/glm/mat3x3.hpp b/thirdparty/glm/glm/mat3x3.hpp new file mode 100644 index 000000000000..fd4fa31cdee0 --- /dev/null +++ b/thirdparty/glm/glm/mat3x3.hpp @@ -0,0 +1,8 @@ +/// @ref core +/// @file glm/mat3x3.hpp + +#pragma once +#include "./ext/matrix_double3x3.hpp" +#include "./ext/matrix_double3x3_precision.hpp" +#include "./ext/matrix_float3x3.hpp" +#include "./ext/matrix_float3x3_precision.hpp" diff --git a/thirdparty/glm/glm/mat3x4.hpp b/thirdparty/glm/glm/mat3x4.hpp new file mode 100644 index 000000000000..6342bf5b992d --- /dev/null +++ b/thirdparty/glm/glm/mat3x4.hpp @@ -0,0 +1,8 @@ +/// @ref core +/// @file glm/mat3x4.hpp + +#pragma once +#include "./ext/matrix_double3x4.hpp" +#include "./ext/matrix_double3x4_precision.hpp" +#include "./ext/matrix_float3x4.hpp" +#include "./ext/matrix_float3x4_precision.hpp" diff --git a/thirdparty/glm/glm/mat4x2.hpp b/thirdparty/glm/glm/mat4x2.hpp new file mode 100644 index 000000000000..e013e46b9c20 --- /dev/null +++ b/thirdparty/glm/glm/mat4x2.hpp @@ -0,0 +1,9 @@ +/// @ref core +/// @file glm/mat4x2.hpp + +#pragma once +#include "./ext/matrix_double4x2.hpp" +#include "./ext/matrix_double4x2_precision.hpp" +#include "./ext/matrix_float4x2.hpp" +#include "./ext/matrix_float4x2_precision.hpp" + diff --git a/thirdparty/glm/glm/mat4x3.hpp b/thirdparty/glm/glm/mat4x3.hpp new file mode 100644 index 000000000000..205725abd25a --- /dev/null +++ b/thirdparty/glm/glm/mat4x3.hpp @@ -0,0 +1,8 @@ +/// @ref core +/// @file glm/mat4x3.hpp + +#pragma once +#include "./ext/matrix_double4x3.hpp" +#include "./ext/matrix_double4x3_precision.hpp" +#include "./ext/matrix_float4x3.hpp" +#include "./ext/matrix_float4x3_precision.hpp" diff --git a/thirdparty/glm/glm/mat4x4.hpp b/thirdparty/glm/glm/mat4x4.hpp new file mode 100644 index 000000000000..3515f7f370bf --- /dev/null +++ b/thirdparty/glm/glm/mat4x4.hpp @@ -0,0 +1,9 @@ +/// @ref core +/// @file glm/mat4x4.hpp + +#pragma once +#include "./ext/matrix_double4x4.hpp" +#include "./ext/matrix_double4x4_precision.hpp" +#include "./ext/matrix_float4x4.hpp" +#include "./ext/matrix_float4x4_precision.hpp" + diff --git a/thirdparty/glm/glm/matrix.hpp b/thirdparty/glm/glm/matrix.hpp new file mode 100644 index 000000000000..4584c92c3c4e --- /dev/null +++ b/thirdparty/glm/glm/matrix.hpp @@ -0,0 +1,161 @@ +/// @ref core +/// @file glm/matrix.hpp +/// +/// @see GLSL 4.20.8 specification, section 8.6 Matrix Functions +/// +/// @defgroup core_func_matrix Matrix functions +/// @ingroup core +/// +/// Provides GLSL matrix functions. +/// +/// Include to use these core features. + +#pragma once + +// Dependencies +#include "detail/qualifier.hpp" +#include "detail/setup.hpp" +#include "vec2.hpp" +#include "vec3.hpp" +#include "vec4.hpp" +#include "mat2x2.hpp" +#include "mat2x3.hpp" +#include "mat2x4.hpp" +#include "mat3x2.hpp" +#include "mat3x3.hpp" +#include "mat3x4.hpp" +#include "mat4x2.hpp" +#include "mat4x3.hpp" +#include "mat4x4.hpp" + +namespace glm { +namespace detail +{ + template + struct outerProduct_trait{}; + + template + struct outerProduct_trait<2, 2, T, Q> + { + typedef mat<2, 2, T, Q> type; + }; + + template + struct outerProduct_trait<2, 3, T, Q> + { + typedef mat<3, 2, T, Q> type; + }; + + template + struct outerProduct_trait<2, 4, T, Q> + { + typedef mat<4, 2, T, Q> type; + }; + + template + struct outerProduct_trait<3, 2, T, Q> + { + typedef mat<2, 3, T, Q> type; + }; + + template + struct outerProduct_trait<3, 3, T, Q> + { + typedef mat<3, 3, T, Q> type; + }; + + template + struct outerProduct_trait<3, 4, T, Q> + { + typedef mat<4, 3, T, Q> type; + }; + + template + struct outerProduct_trait<4, 2, T, Q> + { + typedef mat<2, 4, T, Q> type; + }; + + template + struct outerProduct_trait<4, 3, T, Q> + { + typedef mat<3, 4, T, Q> type; + }; + + template + struct outerProduct_trait<4, 4, T, Q> + { + typedef mat<4, 4, T, Q> type; + }; +}//namespace detail + + /// @addtogroup core_func_matrix + /// @{ + + /// Multiply matrix x by matrix y component-wise, i.e., + /// result[i][j] is the scalar product of x[i][j] and y[i][j]. + /// + /// @tparam C Integer between 1 and 4 included that qualify the number a column + /// @tparam R Integer between 1 and 4 included that qualify the number a row + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL matrixCompMult man page + /// @see GLSL 4.20.8 specification, section 8.6 Matrix Functions + template + GLM_FUNC_DECL mat matrixCompMult(mat const& x, mat const& y); + + /// Treats the first parameter c as a column vector + /// and the second parameter r as a row vector + /// and does a linear algebraic matrix multiply c * r. + /// + /// @tparam C Integer between 1 and 4 included that qualify the number a column + /// @tparam R Integer between 1 and 4 included that qualify the number a row + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL outerProduct man page + /// @see GLSL 4.20.8 specification, section 8.6 Matrix Functions + template + GLM_FUNC_DECL typename detail::outerProduct_trait::type outerProduct(vec const& c, vec const& r); + + /// Returns the transposed matrix of x + /// + /// @tparam C Integer between 1 and 4 included that qualify the number a column + /// @tparam R Integer between 1 and 4 included that qualify the number a row + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL transpose man page + /// @see GLSL 4.20.8 specification, section 8.6 Matrix Functions + template + GLM_FUNC_DECL typename mat::transpose_type transpose(mat const& x); + + /// Return the determinant of a squared matrix. + /// + /// @tparam C Integer between 1 and 4 included that qualify the number a column + /// @tparam R Integer between 1 and 4 included that qualify the number a row + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL determinant man page + /// @see GLSL 4.20.8 specification, section 8.6 Matrix Functions + template + GLM_FUNC_DECL T determinant(mat const& m); + + /// Return the inverse of a squared matrix. + /// + /// @tparam C Integer between 1 and 4 included that qualify the number a column + /// @tparam R Integer between 1 and 4 included that qualify the number a row + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL inverse man page + /// @see GLSL 4.20.8 specification, section 8.6 Matrix Functions + template + GLM_FUNC_DECL mat inverse(mat const& m); + + /// @} +}//namespace glm + +#include "detail/func_matrix.inl" diff --git a/thirdparty/glm/glm/packing.hpp b/thirdparty/glm/glm/packing.hpp new file mode 100644 index 000000000000..ca83ac1dec96 --- /dev/null +++ b/thirdparty/glm/glm/packing.hpp @@ -0,0 +1,173 @@ +/// @ref core +/// @file glm/packing.hpp +/// +/// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions +/// @see gtc_packing +/// +/// @defgroup core_func_packing Floating-Point Pack and Unpack Functions +/// @ingroup core +/// +/// Provides GLSL functions to pack and unpack half, single and double-precision floating point values into more compact integer types. +/// +/// These functions do not operate component-wise, rather as described in each case. +/// +/// Include to use these core features. + +#pragma once + +#include "./ext/vector_uint2.hpp" +#include "./ext/vector_float2.hpp" +#include "./ext/vector_float4.hpp" + +namespace glm +{ + /// @addtogroup core_func_packing + /// @{ + + /// First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values. + /// Then, the results are packed into the returned 32-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packUnorm2x16: round(clamp(c, 0, +1) * 65535.0) + /// + /// The first component of the vector will be written to the least significant bits of the output; + /// the last component will be written to the most significant bits. + /// + /// @see GLSL packUnorm2x16 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL uint packUnorm2x16(vec2 const& v); + + /// First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values. + /// Then, the results are packed into the returned 32-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packSnorm2x16: round(clamp(v, -1, +1) * 32767.0) + /// + /// The first component of the vector will be written to the least significant bits of the output; + /// the last component will be written to the most significant bits. + /// + /// @see GLSL packSnorm2x16 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL uint packSnorm2x16(vec2 const& v); + + /// First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values. + /// Then, the results are packed into the returned 32-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packUnorm4x8: round(clamp(c, 0, +1) * 255.0) + /// + /// The first component of the vector will be written to the least significant bits of the output; + /// the last component will be written to the most significant bits. + /// + /// @see GLSL packUnorm4x8 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL uint packUnorm4x8(vec4 const& v); + + /// First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values. + /// Then, the results are packed into the returned 32-bit unsigned integer. + /// + /// The conversion for component c of v to fixed point is done as follows: + /// packSnorm4x8: round(clamp(c, -1, +1) * 127.0) + /// + /// The first component of the vector will be written to the least significant bits of the output; + /// the last component will be written to the most significant bits. + /// + /// @see GLSL packSnorm4x8 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL uint packSnorm4x8(vec4 const& v); + + /// First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers. + /// Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackUnorm2x16: f / 65535.0 + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see GLSL unpackUnorm2x16 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL vec2 unpackUnorm2x16(uint p); + + /// First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers. + /// Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackSnorm2x16: clamp(f / 32767.0, -1, +1) + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see GLSL unpackSnorm2x16 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL vec2 unpackSnorm2x16(uint p); + + /// First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers. + /// Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackUnorm4x8: f / 255.0 + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see GLSL unpackUnorm4x8 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL vec4 unpackUnorm4x8(uint p); + + /// First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers. + /// Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector. + /// + /// The conversion for unpacked fixed-point value f to floating point is done as follows: + /// unpackSnorm4x8: clamp(f / 127.0, -1, +1) + /// + /// The first component of the returned vector will be extracted from the least significant bits of the input; + /// the last component will be extracted from the most significant bits. + /// + /// @see GLSL unpackSnorm4x8 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL vec4 unpackSnorm4x8(uint p); + + /// Returns a double-qualifier value obtained by packing the components of v into a 64-bit value. + /// If an IEEE 754 Inf or NaN is created, it will not signal, and the resulting floating point value is unspecified. + /// Otherwise, the bit- level representation of v is preserved. + /// The first vector component specifies the 32 least significant bits; + /// the second component specifies the 32 most significant bits. + /// + /// @see GLSL packDouble2x32 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL double packDouble2x32(uvec2 const& v); + + /// Returns a two-component unsigned integer vector representation of v. + /// The bit-level representation of v is preserved. + /// The first component of the vector contains the 32 least significant bits of the double; + /// the second component consists the 32 most significant bits. + /// + /// @see GLSL unpackDouble2x32 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL uvec2 unpackDouble2x32(double v); + + /// Returns an unsigned integer obtained by converting the components of a two-component floating-point vector + /// to the 16-bit floating-point representation found in the OpenGL Specification, + /// and then packing these two 16- bit integers into a 32-bit unsigned integer. + /// The first vector component specifies the 16 least-significant bits of the result; + /// the second component specifies the 16 most-significant bits. + /// + /// @see GLSL packHalf2x16 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL uint packHalf2x16(vec2 const& v); + + /// Returns a two-component floating-point vector with components obtained by unpacking a 32-bit unsigned integer into a pair of 16-bit values, + /// interpreting those values as 16-bit floating-point numbers according to the OpenGL Specification, + /// and converting them to 32-bit floating-point values. + /// The first component of the vector is obtained from the 16 least-significant bits of v; + /// the second component is obtained from the 16 most-significant bits of v. + /// + /// @see GLSL unpackHalf2x16 man page + /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions + GLM_FUNC_DECL vec2 unpackHalf2x16(uint v); + + /// @} +}//namespace glm + +#include "detail/func_packing.inl" diff --git a/thirdparty/glm/glm/simd/common.h b/thirdparty/glm/glm/simd/common.h new file mode 100644 index 000000000000..9b017cb4256e --- /dev/null +++ b/thirdparty/glm/glm/simd/common.h @@ -0,0 +1,240 @@ +/// @ref simd +/// @file glm/simd/common.h + +#pragma once + +#include "platform.h" + +#if GLM_ARCH & GLM_ARCH_SSE2_BIT + +GLM_FUNC_QUALIFIER glm_f32vec4 glm_vec4_add(glm_f32vec4 a, glm_f32vec4 b) +{ + return _mm_add_ps(a, b); +} + +GLM_FUNC_QUALIFIER glm_f32vec4 glm_vec1_add(glm_f32vec4 a, glm_f32vec4 b) +{ + return _mm_add_ss(a, b); +} + +GLM_FUNC_QUALIFIER glm_f32vec4 glm_vec4_sub(glm_f32vec4 a, glm_f32vec4 b) +{ + return _mm_sub_ps(a, b); +} + +GLM_FUNC_QUALIFIER glm_f32vec4 glm_vec1_sub(glm_f32vec4 a, glm_f32vec4 b) +{ + return _mm_sub_ss(a, b); +} + +GLM_FUNC_QUALIFIER glm_f32vec4 glm_vec4_mul(glm_f32vec4 a, glm_f32vec4 b) +{ + return _mm_mul_ps(a, b); +} + +GLM_FUNC_QUALIFIER glm_f32vec4 glm_vec1_mul(glm_f32vec4 a, glm_f32vec4 b) +{ + return _mm_mul_ss(a, b); +} + +GLM_FUNC_QUALIFIER glm_f32vec4 glm_vec4_div(glm_f32vec4 a, glm_f32vec4 b) +{ + return _mm_div_ps(a, b); +} + +GLM_FUNC_QUALIFIER glm_f32vec4 glm_vec1_div(glm_f32vec4 a, glm_f32vec4 b) +{ + return _mm_div_ss(a, b); +} + +GLM_FUNC_QUALIFIER glm_f32vec4 glm_vec4_div_lowp(glm_f32vec4 a, glm_f32vec4 b) +{ + return glm_vec4_mul(a, _mm_rcp_ps(b)); +} + +GLM_FUNC_QUALIFIER glm_f32vec4 glm_vec4_swizzle_xyzw(glm_f32vec4 a) +{ +# if GLM_ARCH & GLM_ARCH_AVX2_BIT + return _mm_permute_ps(a, _MM_SHUFFLE(3, 2, 1, 0)); +# else + return _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 2, 1, 0)); +# endif +} + +GLM_FUNC_QUALIFIER glm_f32vec4 glm_vec1_fma(glm_f32vec4 a, glm_f32vec4 b, glm_f32vec4 c) +{ +# if (GLM_ARCH & GLM_ARCH_AVX2_BIT) && !(GLM_COMPILER & GLM_COMPILER_CLANG) + return _mm_fmadd_ss(a, b, c); +# else + return _mm_add_ss(_mm_mul_ss(a, b), c); +# endif +} + +GLM_FUNC_QUALIFIER glm_f32vec4 glm_vec4_fma(glm_f32vec4 a, glm_f32vec4 b, glm_f32vec4 c) +{ +# if (GLM_ARCH & GLM_ARCH_AVX2_BIT) && !(GLM_COMPILER & GLM_COMPILER_CLANG) + return _mm_fmadd_ps(a, b, c); +# else + return glm_vec4_add(glm_vec4_mul(a, b), c); +# endif +} + +GLM_FUNC_QUALIFIER glm_f32vec4 glm_vec4_abs(glm_f32vec4 x) +{ + return _mm_and_ps(x, _mm_castsi128_ps(_mm_set1_epi32(0x7FFFFFFF))); +} + +GLM_FUNC_QUALIFIER glm_ivec4 glm_ivec4_abs(glm_ivec4 x) +{ +# if GLM_ARCH & GLM_ARCH_SSSE3_BIT + return _mm_sign_epi32(x, x); +# else + glm_ivec4 const sgn0 = _mm_srai_epi32(x, 31); + glm_ivec4 const inv0 = _mm_xor_si128(x, sgn0); + glm_ivec4 const sub0 = _mm_sub_epi32(inv0, sgn0); + return sub0; +# endif +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_sign(glm_vec4 x) +{ + glm_vec4 const zro0 = _mm_setzero_ps(); + glm_vec4 const cmp0 = _mm_cmplt_ps(x, zro0); + glm_vec4 const cmp1 = _mm_cmpgt_ps(x, zro0); + glm_vec4 const and0 = _mm_and_ps(cmp0, _mm_set1_ps(-1.0f)); + glm_vec4 const and1 = _mm_and_ps(cmp1, _mm_set1_ps(1.0f)); + glm_vec4 const or0 = _mm_or_ps(and0, and1); + return or0; +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_round(glm_vec4 x) +{ +# if GLM_ARCH & GLM_ARCH_SSE41_BIT + return _mm_round_ps(x, _MM_FROUND_TO_NEAREST_INT); +# else + glm_vec4 const sgn0 = _mm_castsi128_ps(_mm_set1_epi32(int(0x80000000))); + glm_vec4 const and0 = _mm_and_ps(sgn0, x); + glm_vec4 const or0 = _mm_or_ps(and0, _mm_set_ps1(8388608.0f)); + glm_vec4 const add0 = glm_vec4_add(x, or0); + glm_vec4 const sub0 = glm_vec4_sub(add0, or0); + return sub0; +# endif +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_floor(glm_vec4 x) +{ +# if GLM_ARCH & GLM_ARCH_SSE41_BIT + return _mm_floor_ps(x); +# else + glm_vec4 const rnd0 = glm_vec4_round(x); + glm_vec4 const cmp0 = _mm_cmplt_ps(x, rnd0); + glm_vec4 const and0 = _mm_and_ps(cmp0, _mm_set1_ps(1.0f)); + glm_vec4 const sub0 = glm_vec4_sub(rnd0, and0); + return sub0; +# endif +} + +/* trunc TODO +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_trunc(glm_vec4 x) +{ + return glm_vec4(); +} +*/ + +//roundEven +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_roundEven(glm_vec4 x) +{ + glm_vec4 const sgn0 = _mm_castsi128_ps(_mm_set1_epi32(int(0x80000000))); + glm_vec4 const and0 = _mm_and_ps(sgn0, x); + glm_vec4 const or0 = _mm_or_ps(and0, _mm_set_ps1(8388608.0f)); + glm_vec4 const add0 = glm_vec4_add(x, or0); + glm_vec4 const sub0 = glm_vec4_sub(add0, or0); + return sub0; +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_ceil(glm_vec4 x) +{ +# if GLM_ARCH & GLM_ARCH_SSE41_BIT + return _mm_ceil_ps(x); +# else + glm_vec4 const rnd0 = glm_vec4_round(x); + glm_vec4 const cmp0 = _mm_cmpgt_ps(x, rnd0); + glm_vec4 const and0 = _mm_and_ps(cmp0, _mm_set1_ps(1.0f)); + glm_vec4 const add0 = glm_vec4_add(rnd0, and0); + return add0; +# endif +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_fract(glm_vec4 x) +{ + glm_vec4 const flr0 = glm_vec4_floor(x); + glm_vec4 const sub0 = glm_vec4_sub(x, flr0); + return sub0; +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_mod(glm_vec4 x, glm_vec4 y) +{ + glm_vec4 const div0 = glm_vec4_div(x, y); + glm_vec4 const flr0 = glm_vec4_floor(div0); + glm_vec4 const mul0 = glm_vec4_mul(y, flr0); + glm_vec4 const sub0 = glm_vec4_sub(x, mul0); + return sub0; +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_clamp(glm_vec4 v, glm_vec4 minVal, glm_vec4 maxVal) +{ + glm_vec4 const min0 = _mm_min_ps(v, maxVal); + glm_vec4 const max0 = _mm_max_ps(min0, minVal); + return max0; +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_mix(glm_vec4 v1, glm_vec4 v2, glm_vec4 a) +{ + glm_vec4 const sub0 = glm_vec4_sub(_mm_set1_ps(1.0f), a); + glm_vec4 const mul0 = glm_vec4_mul(v1, sub0); + glm_vec4 const mad0 = glm_vec4_fma(v2, a, mul0); + return mad0; +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_step(glm_vec4 edge, glm_vec4 x) +{ + glm_vec4 const cmp = _mm_cmple_ps(x, edge); + return _mm_movemask_ps(cmp) == 0 ? _mm_set1_ps(1.0f) : _mm_setzero_ps(); +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_smoothstep(glm_vec4 edge0, glm_vec4 edge1, glm_vec4 x) +{ + glm_vec4 const sub0 = glm_vec4_sub(x, edge0); + glm_vec4 const sub1 = glm_vec4_sub(edge1, edge0); + glm_vec4 const div0 = glm_vec4_sub(sub0, sub1); + glm_vec4 const clp0 = glm_vec4_clamp(div0, _mm_setzero_ps(), _mm_set1_ps(1.0f)); + glm_vec4 const mul0 = glm_vec4_mul(_mm_set1_ps(2.0f), clp0); + glm_vec4 const sub2 = glm_vec4_sub(_mm_set1_ps(3.0f), mul0); + glm_vec4 const mul1 = glm_vec4_mul(clp0, clp0); + glm_vec4 const mul2 = glm_vec4_mul(mul1, sub2); + return mul2; +} + +// Agner Fog method +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_nan(glm_vec4 x) +{ + glm_ivec4 const t1 = _mm_castps_si128(x); // reinterpret as 32-bit integer + glm_ivec4 const t2 = _mm_sll_epi32(t1, _mm_cvtsi32_si128(1)); // shift out sign bit + glm_ivec4 const t3 = _mm_set1_epi32(int(0xFF000000)); // exponent mask + glm_ivec4 const t4 = _mm_and_si128(t2, t3); // exponent + glm_ivec4 const t5 = _mm_andnot_si128(t3, t2); // fraction + glm_ivec4 const Equal = _mm_cmpeq_epi32(t3, t4); + glm_ivec4 const Nequal = _mm_cmpeq_epi32(t5, _mm_setzero_si128()); + glm_ivec4 const And = _mm_and_si128(Equal, Nequal); + return _mm_castsi128_ps(And); // exponent = all 1s and fraction != 0 +} + +// Agner Fog method +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_inf(glm_vec4 x) +{ + glm_ivec4 const t1 = _mm_castps_si128(x); // reinterpret as 32-bit integer + glm_ivec4 const t2 = _mm_sll_epi32(t1, _mm_cvtsi32_si128(1)); // shift out sign bit + return _mm_castsi128_ps(_mm_cmpeq_epi32(t2, _mm_set1_epi32(int(0xFF000000)))); // exponent is all 1s, fraction is 0 +} + +#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT diff --git a/thirdparty/glm/glm/simd/exponential.h b/thirdparty/glm/glm/simd/exponential.h new file mode 100644 index 000000000000..bc351d0119b9 --- /dev/null +++ b/thirdparty/glm/glm/simd/exponential.h @@ -0,0 +1,20 @@ +/// @ref simd +/// @file glm/simd/experimental.h + +#pragma once + +#include "platform.h" + +#if GLM_ARCH & GLM_ARCH_SSE2_BIT + +GLM_FUNC_QUALIFIER glm_f32vec4 glm_vec1_sqrt_lowp(glm_f32vec4 x) +{ + return _mm_mul_ss(_mm_rsqrt_ss(x), x); +} + +GLM_FUNC_QUALIFIER glm_f32vec4 glm_vec4_sqrt_lowp(glm_f32vec4 x) +{ + return _mm_mul_ps(_mm_rsqrt_ps(x), x); +} + +#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT diff --git a/thirdparty/glm/glm/simd/geometric.h b/thirdparty/glm/glm/simd/geometric.h new file mode 100644 index 000000000000..07d7cbcc425f --- /dev/null +++ b/thirdparty/glm/glm/simd/geometric.h @@ -0,0 +1,124 @@ +/// @ref simd +/// @file glm/simd/geometric.h + +#pragma once + +#include "common.h" + +#if GLM_ARCH & GLM_ARCH_SSE2_BIT + +GLM_FUNC_DECL glm_vec4 glm_vec4_dot(glm_vec4 v1, glm_vec4 v2); +GLM_FUNC_DECL glm_vec4 glm_vec1_dot(glm_vec4 v1, glm_vec4 v2); + +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_length(glm_vec4 x) +{ + glm_vec4 const dot0 = glm_vec4_dot(x, x); + glm_vec4 const sqt0 = _mm_sqrt_ps(dot0); + return sqt0; +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_distance(glm_vec4 p0, glm_vec4 p1) +{ + glm_vec4 const sub0 = _mm_sub_ps(p0, p1); + glm_vec4 const len0 = glm_vec4_length(sub0); + return len0; +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_dot(glm_vec4 v1, glm_vec4 v2) +{ +# if GLM_ARCH & GLM_ARCH_AVX_BIT + return _mm_dp_ps(v1, v2, 0xff); +# elif GLM_ARCH & GLM_ARCH_SSE3_BIT + glm_vec4 const mul0 = _mm_mul_ps(v1, v2); + glm_vec4 const hadd0 = _mm_hadd_ps(mul0, mul0); + glm_vec4 const hadd1 = _mm_hadd_ps(hadd0, hadd0); + return hadd1; +# else + glm_vec4 const mul0 = _mm_mul_ps(v1, v2); + glm_vec4 const swp0 = _mm_shuffle_ps(mul0, mul0, _MM_SHUFFLE(2, 3, 0, 1)); + glm_vec4 const add0 = _mm_add_ps(mul0, swp0); + glm_vec4 const swp1 = _mm_shuffle_ps(add0, add0, _MM_SHUFFLE(0, 1, 2, 3)); + glm_vec4 const add1 = _mm_add_ps(add0, swp1); + return add1; +# endif +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_vec1_dot(glm_vec4 v1, glm_vec4 v2) +{ +# if GLM_ARCH & GLM_ARCH_AVX_BIT + return _mm_dp_ps(v1, v2, 0xff); +# elif GLM_ARCH & GLM_ARCH_SSE3_BIT + glm_vec4 const mul0 = _mm_mul_ps(v1, v2); + glm_vec4 const had0 = _mm_hadd_ps(mul0, mul0); + glm_vec4 const had1 = _mm_hadd_ps(had0, had0); + return had1; +# else + glm_vec4 const mul0 = _mm_mul_ps(v1, v2); + glm_vec4 const mov0 = _mm_movehl_ps(mul0, mul0); + glm_vec4 const add0 = _mm_add_ps(mov0, mul0); + glm_vec4 const swp1 = _mm_shuffle_ps(add0, add0, 1); + glm_vec4 const add1 = _mm_add_ss(add0, swp1); + return add1; +# endif +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_cross(glm_vec4 v1, glm_vec4 v2) +{ + glm_vec4 const swp0 = _mm_shuffle_ps(v1, v1, _MM_SHUFFLE(3, 0, 2, 1)); + glm_vec4 const swp1 = _mm_shuffle_ps(v1, v1, _MM_SHUFFLE(3, 1, 0, 2)); + glm_vec4 const swp2 = _mm_shuffle_ps(v2, v2, _MM_SHUFFLE(3, 0, 2, 1)); + glm_vec4 const swp3 = _mm_shuffle_ps(v2, v2, _MM_SHUFFLE(3, 1, 0, 2)); + glm_vec4 const mul0 = _mm_mul_ps(swp0, swp3); + glm_vec4 const mul1 = _mm_mul_ps(swp1, swp2); + glm_vec4 const sub0 = _mm_sub_ps(mul0, mul1); + return sub0; +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_normalize(glm_vec4 v) +{ + glm_vec4 const dot0 = glm_vec4_dot(v, v); + glm_vec4 const isr0 = _mm_rsqrt_ps(dot0); + glm_vec4 const mul0 = _mm_mul_ps(v, isr0); + return mul0; +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_faceforward(glm_vec4 N, glm_vec4 I, glm_vec4 Nref) +{ + glm_vec4 const dot0 = glm_vec4_dot(Nref, I); + glm_vec4 const sgn0 = glm_vec4_sign(dot0); + glm_vec4 const mul0 = _mm_mul_ps(sgn0, _mm_set1_ps(-1.0f)); + glm_vec4 const mul1 = _mm_mul_ps(N, mul0); + return mul1; +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_vec4_reflect(glm_vec4 I, glm_vec4 N) +{ + glm_vec4 const dot0 = glm_vec4_dot(N, I); + glm_vec4 const mul0 = _mm_mul_ps(N, dot0); + glm_vec4 const mul1 = _mm_mul_ps(mul0, _mm_set1_ps(2.0f)); + glm_vec4 const sub0 = _mm_sub_ps(I, mul1); + return sub0; +} + +GLM_FUNC_QUALIFIER __m128 glm_vec4_refract(glm_vec4 I, glm_vec4 N, glm_vec4 eta) +{ + glm_vec4 const dot0 = glm_vec4_dot(N, I); + glm_vec4 const mul0 = _mm_mul_ps(eta, eta); + glm_vec4 const mul1 = _mm_mul_ps(dot0, dot0); + glm_vec4 const sub0 = _mm_sub_ps(_mm_set1_ps(1.0f), mul0); + glm_vec4 const sub1 = _mm_sub_ps(_mm_set1_ps(1.0f), mul1); + glm_vec4 const mul2 = _mm_mul_ps(sub0, sub1); + + if(_mm_movemask_ps(_mm_cmplt_ss(mul2, _mm_set1_ps(0.0f))) == 0) + return _mm_set1_ps(0.0f); + + glm_vec4 const sqt0 = _mm_sqrt_ps(mul2); + glm_vec4 const mad0 = glm_vec4_fma(eta, dot0, sqt0); + glm_vec4 const mul4 = _mm_mul_ps(mad0, N); + glm_vec4 const mul5 = _mm_mul_ps(eta, I); + glm_vec4 const sub2 = _mm_sub_ps(mul5, mul4); + + return sub2; +} + +#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT diff --git a/thirdparty/glm/glm/simd/integer.h b/thirdparty/glm/glm/simd/integer.h new file mode 100644 index 000000000000..93814183fe02 --- /dev/null +++ b/thirdparty/glm/glm/simd/integer.h @@ -0,0 +1,115 @@ +/// @ref simd +/// @file glm/simd/integer.h + +#pragma once + +#if GLM_ARCH & GLM_ARCH_SSE2_BIT + +GLM_FUNC_QUALIFIER glm_uvec4 glm_i128_interleave(glm_uvec4 x) +{ + glm_uvec4 const Mask4 = _mm_set1_epi32(0x0000FFFF); + glm_uvec4 const Mask3 = _mm_set1_epi32(0x00FF00FF); + glm_uvec4 const Mask2 = _mm_set1_epi32(0x0F0F0F0F); + glm_uvec4 const Mask1 = _mm_set1_epi32(0x33333333); + glm_uvec4 const Mask0 = _mm_set1_epi32(0x55555555); + + glm_uvec4 Reg1; + glm_uvec4 Reg2; + + // REG1 = x; + // REG2 = y; + //Reg1 = _mm_unpacklo_epi64(x, y); + Reg1 = x; + + //REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); + //REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); + Reg2 = _mm_slli_si128(Reg1, 2); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask4); + + //REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); + //REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); + Reg2 = _mm_slli_si128(Reg1, 1); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask3); + + //REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); + //REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); + Reg2 = _mm_slli_epi32(Reg1, 4); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask2); + + //REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); + //REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); + Reg2 = _mm_slli_epi32(Reg1, 2); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask1); + + //REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); + //REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); + Reg2 = _mm_slli_epi32(Reg1, 1); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask0); + + //return REG1 | (REG2 << 1); + Reg2 = _mm_slli_epi32(Reg1, 1); + Reg2 = _mm_srli_si128(Reg2, 8); + Reg1 = _mm_or_si128(Reg1, Reg2); + + return Reg1; +} + +GLM_FUNC_QUALIFIER glm_uvec4 glm_i128_interleave2(glm_uvec4 x, glm_uvec4 y) +{ + glm_uvec4 const Mask4 = _mm_set1_epi32(0x0000FFFF); + glm_uvec4 const Mask3 = _mm_set1_epi32(0x00FF00FF); + glm_uvec4 const Mask2 = _mm_set1_epi32(0x0F0F0F0F); + glm_uvec4 const Mask1 = _mm_set1_epi32(0x33333333); + glm_uvec4 const Mask0 = _mm_set1_epi32(0x55555555); + + glm_uvec4 Reg1; + glm_uvec4 Reg2; + + // REG1 = x; + // REG2 = y; + Reg1 = _mm_unpacklo_epi64(x, y); + + //REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); + //REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); + Reg2 = _mm_slli_si128(Reg1, 2); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask4); + + //REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); + //REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); + Reg2 = _mm_slli_si128(Reg1, 1); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask3); + + //REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); + //REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); + Reg2 = _mm_slli_epi32(Reg1, 4); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask2); + + //REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); + //REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); + Reg2 = _mm_slli_epi32(Reg1, 2); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask1); + + //REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); + //REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); + Reg2 = _mm_slli_epi32(Reg1, 1); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask0); + + //return REG1 | (REG2 << 1); + Reg2 = _mm_slli_epi32(Reg1, 1); + Reg2 = _mm_srli_si128(Reg2, 8); + Reg1 = _mm_or_si128(Reg1, Reg2); + + return Reg1; +} + +#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT diff --git a/thirdparty/glm/glm/simd/matrix.h b/thirdparty/glm/glm/simd/matrix.h new file mode 100644 index 000000000000..b6c42ea4c17c --- /dev/null +++ b/thirdparty/glm/glm/simd/matrix.h @@ -0,0 +1,1028 @@ +/// @ref simd +/// @file glm/simd/matrix.h + +#pragma once + +#include "geometric.h" + +#if GLM_ARCH & GLM_ARCH_SSE2_BIT + +GLM_FUNC_QUALIFIER void glm_mat4_matrixCompMult(glm_vec4 const in1[4], glm_vec4 const in2[4], glm_vec4 out[4]) +{ + out[0] = _mm_mul_ps(in1[0], in2[0]); + out[1] = _mm_mul_ps(in1[1], in2[1]); + out[2] = _mm_mul_ps(in1[2], in2[2]); + out[3] = _mm_mul_ps(in1[3], in2[3]); +} + +GLM_FUNC_QUALIFIER void glm_mat4_add(glm_vec4 const in1[4], glm_vec4 const in2[4], glm_vec4 out[4]) +{ + out[0] = _mm_add_ps(in1[0], in2[0]); + out[1] = _mm_add_ps(in1[1], in2[1]); + out[2] = _mm_add_ps(in1[2], in2[2]); + out[3] = _mm_add_ps(in1[3], in2[3]); +} + +GLM_FUNC_QUALIFIER void glm_mat4_sub(glm_vec4 const in1[4], glm_vec4 const in2[4], glm_vec4 out[4]) +{ + out[0] = _mm_sub_ps(in1[0], in2[0]); + out[1] = _mm_sub_ps(in1[1], in2[1]); + out[2] = _mm_sub_ps(in1[2], in2[2]); + out[3] = _mm_sub_ps(in1[3], in2[3]); +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_mat4_mul_vec4(glm_vec4 const m[4], glm_vec4 v) +{ + __m128 v0 = _mm_shuffle_ps(v, v, _MM_SHUFFLE(0, 0, 0, 0)); + __m128 v1 = _mm_shuffle_ps(v, v, _MM_SHUFFLE(1, 1, 1, 1)); + __m128 v2 = _mm_shuffle_ps(v, v, _MM_SHUFFLE(2, 2, 2, 2)); + __m128 v3 = _mm_shuffle_ps(v, v, _MM_SHUFFLE(3, 3, 3, 3)); + + __m128 m0 = _mm_mul_ps(m[0], v0); + __m128 m1 = _mm_mul_ps(m[1], v1); + __m128 m2 = _mm_mul_ps(m[2], v2); + __m128 m3 = _mm_mul_ps(m[3], v3); + + __m128 a0 = _mm_add_ps(m0, m1); + __m128 a1 = _mm_add_ps(m2, m3); + __m128 a2 = _mm_add_ps(a0, a1); + + return a2; +} + +GLM_FUNC_QUALIFIER __m128 glm_vec4_mul_mat4(glm_vec4 v, glm_vec4 const m[4]) +{ + __m128 i0 = m[0]; + __m128 i1 = m[1]; + __m128 i2 = m[2]; + __m128 i3 = m[3]; + + __m128 m0 = _mm_mul_ps(v, i0); + __m128 m1 = _mm_mul_ps(v, i1); + __m128 m2 = _mm_mul_ps(v, i2); + __m128 m3 = _mm_mul_ps(v, i3); + + __m128 u0 = _mm_unpacklo_ps(m0, m1); + __m128 u1 = _mm_unpackhi_ps(m0, m1); + __m128 a0 = _mm_add_ps(u0, u1); + + __m128 u2 = _mm_unpacklo_ps(m2, m3); + __m128 u3 = _mm_unpackhi_ps(m2, m3); + __m128 a1 = _mm_add_ps(u2, u3); + + __m128 f0 = _mm_movelh_ps(a0, a1); + __m128 f1 = _mm_movehl_ps(a1, a0); + __m128 f2 = _mm_add_ps(f0, f1); + + return f2; +} + +GLM_FUNC_QUALIFIER void glm_mat4_mul(glm_vec4 const in1[4], glm_vec4 const in2[4], glm_vec4 out[4]) +{ + { + __m128 e0 = _mm_shuffle_ps(in2[0], in2[0], _MM_SHUFFLE(0, 0, 0, 0)); + __m128 e1 = _mm_shuffle_ps(in2[0], in2[0], _MM_SHUFFLE(1, 1, 1, 1)); + __m128 e2 = _mm_shuffle_ps(in2[0], in2[0], _MM_SHUFFLE(2, 2, 2, 2)); + __m128 e3 = _mm_shuffle_ps(in2[0], in2[0], _MM_SHUFFLE(3, 3, 3, 3)); + + __m128 m0 = _mm_mul_ps(in1[0], e0); + __m128 m1 = _mm_mul_ps(in1[1], e1); + __m128 m2 = _mm_mul_ps(in1[2], e2); + __m128 m3 = _mm_mul_ps(in1[3], e3); + + __m128 a0 = _mm_add_ps(m0, m1); + __m128 a1 = _mm_add_ps(m2, m3); + __m128 a2 = _mm_add_ps(a0, a1); + + out[0] = a2; + } + + { + __m128 e0 = _mm_shuffle_ps(in2[1], in2[1], _MM_SHUFFLE(0, 0, 0, 0)); + __m128 e1 = _mm_shuffle_ps(in2[1], in2[1], _MM_SHUFFLE(1, 1, 1, 1)); + __m128 e2 = _mm_shuffle_ps(in2[1], in2[1], _MM_SHUFFLE(2, 2, 2, 2)); + __m128 e3 = _mm_shuffle_ps(in2[1], in2[1], _MM_SHUFFLE(3, 3, 3, 3)); + + __m128 m0 = _mm_mul_ps(in1[0], e0); + __m128 m1 = _mm_mul_ps(in1[1], e1); + __m128 m2 = _mm_mul_ps(in1[2], e2); + __m128 m3 = _mm_mul_ps(in1[3], e3); + + __m128 a0 = _mm_add_ps(m0, m1); + __m128 a1 = _mm_add_ps(m2, m3); + __m128 a2 = _mm_add_ps(a0, a1); + + out[1] = a2; + } + + { + __m128 e0 = _mm_shuffle_ps(in2[2], in2[2], _MM_SHUFFLE(0, 0, 0, 0)); + __m128 e1 = _mm_shuffle_ps(in2[2], in2[2], _MM_SHUFFLE(1, 1, 1, 1)); + __m128 e2 = _mm_shuffle_ps(in2[2], in2[2], _MM_SHUFFLE(2, 2, 2, 2)); + __m128 e3 = _mm_shuffle_ps(in2[2], in2[2], _MM_SHUFFLE(3, 3, 3, 3)); + + __m128 m0 = _mm_mul_ps(in1[0], e0); + __m128 m1 = _mm_mul_ps(in1[1], e1); + __m128 m2 = _mm_mul_ps(in1[2], e2); + __m128 m3 = _mm_mul_ps(in1[3], e3); + + __m128 a0 = _mm_add_ps(m0, m1); + __m128 a1 = _mm_add_ps(m2, m3); + __m128 a2 = _mm_add_ps(a0, a1); + + out[2] = a2; + } + + { + //(__m128&)_mm_shuffle_epi32(__m128i&)in2[0], _MM_SHUFFLE(3, 3, 3, 3)) + __m128 e0 = _mm_shuffle_ps(in2[3], in2[3], _MM_SHUFFLE(0, 0, 0, 0)); + __m128 e1 = _mm_shuffle_ps(in2[3], in2[3], _MM_SHUFFLE(1, 1, 1, 1)); + __m128 e2 = _mm_shuffle_ps(in2[3], in2[3], _MM_SHUFFLE(2, 2, 2, 2)); + __m128 e3 = _mm_shuffle_ps(in2[3], in2[3], _MM_SHUFFLE(3, 3, 3, 3)); + + __m128 m0 = _mm_mul_ps(in1[0], e0); + __m128 m1 = _mm_mul_ps(in1[1], e1); + __m128 m2 = _mm_mul_ps(in1[2], e2); + __m128 m3 = _mm_mul_ps(in1[3], e3); + + __m128 a0 = _mm_add_ps(m0, m1); + __m128 a1 = _mm_add_ps(m2, m3); + __m128 a2 = _mm_add_ps(a0, a1); + + out[3] = a2; + } +} + +GLM_FUNC_QUALIFIER void glm_mat4_transpose(glm_vec4 const in[4], glm_vec4 out[4]) +{ + __m128 tmp0 = _mm_shuffle_ps(in[0], in[1], 0x44); + __m128 tmp2 = _mm_shuffle_ps(in[0], in[1], 0xEE); + __m128 tmp1 = _mm_shuffle_ps(in[2], in[3], 0x44); + __m128 tmp3 = _mm_shuffle_ps(in[2], in[3], 0xEE); + + out[0] = _mm_shuffle_ps(tmp0, tmp1, 0x88); + out[1] = _mm_shuffle_ps(tmp0, tmp1, 0xDD); + out[2] = _mm_shuffle_ps(tmp2, tmp3, 0x88); + out[3] = _mm_shuffle_ps(tmp2, tmp3, 0xDD); +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_mat4_determinant_highp(glm_vec4 const in[4]) +{ + __m128 Fac0; + { + // valType SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; + // valType SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; + // valType SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3]; + // valType SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3]; + + __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(3, 3, 3, 3)); + __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(2, 2, 2, 2)); + + __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(2, 2, 2, 2)); + __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(3, 3, 3, 3)); + + __m128 Mul00 = _mm_mul_ps(Swp00, Swp01); + __m128 Mul01 = _mm_mul_ps(Swp02, Swp03); + Fac0 = _mm_sub_ps(Mul00, Mul01); + } + + __m128 Fac1; + { + // valType SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; + // valType SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; + // valType SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3]; + // valType SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3]; + + __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(3, 3, 3, 3)); + __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(1, 1, 1, 1)); + + __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(1, 1, 1, 1)); + __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(3, 3, 3, 3)); + + __m128 Mul00 = _mm_mul_ps(Swp00, Swp01); + __m128 Mul01 = _mm_mul_ps(Swp02, Swp03); + Fac1 = _mm_sub_ps(Mul00, Mul01); + } + + + __m128 Fac2; + { + // valType SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; + // valType SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; + // valType SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2]; + // valType SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2]; + + __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(2, 2, 2, 2)); + __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(1, 1, 1, 1)); + + __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(1, 1, 1, 1)); + __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(2, 2, 2, 2)); + + __m128 Mul00 = _mm_mul_ps(Swp00, Swp01); + __m128 Mul01 = _mm_mul_ps(Swp02, Swp03); + Fac2 = _mm_sub_ps(Mul00, Mul01); + } + + __m128 Fac3; + { + // valType SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; + // valType SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; + // valType SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3]; + // valType SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3]; + + __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(3, 3, 3, 3)); + __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(0, 0, 0, 0)); + + __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(3, 3, 3, 3)); + + __m128 Mul00 = _mm_mul_ps(Swp00, Swp01); + __m128 Mul01 = _mm_mul_ps(Swp02, Swp03); + Fac3 = _mm_sub_ps(Mul00, Mul01); + } + + __m128 Fac4; + { + // valType SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; + // valType SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; + // valType SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2]; + // valType SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2]; + + __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(2, 2, 2, 2)); + __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(0, 0, 0, 0)); + + __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(2, 2, 2, 2)); + + __m128 Mul00 = _mm_mul_ps(Swp00, Swp01); + __m128 Mul01 = _mm_mul_ps(Swp02, Swp03); + Fac4 = _mm_sub_ps(Mul00, Mul01); + } + + __m128 Fac5; + { + // valType SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; + // valType SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; + // valType SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1]; + // valType SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1]; + + __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(1, 1, 1, 1)); + __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(0, 0, 0, 0)); + + __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(1, 1, 1, 1)); + + __m128 Mul00 = _mm_mul_ps(Swp00, Swp01); + __m128 Mul01 = _mm_mul_ps(Swp02, Swp03); + Fac5 = _mm_sub_ps(Mul00, Mul01); + } + + __m128 SignA = _mm_set_ps( 1.0f,-1.0f, 1.0f,-1.0f); + __m128 SignB = _mm_set_ps(-1.0f, 1.0f,-1.0f, 1.0f); + + // m[1][0] + // m[0][0] + // m[0][0] + // m[0][0] + __m128 Temp0 = _mm_shuffle_ps(in[1], in[0], _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Vec0 = _mm_shuffle_ps(Temp0, Temp0, _MM_SHUFFLE(2, 2, 2, 0)); + + // m[1][1] + // m[0][1] + // m[0][1] + // m[0][1] + __m128 Temp1 = _mm_shuffle_ps(in[1], in[0], _MM_SHUFFLE(1, 1, 1, 1)); + __m128 Vec1 = _mm_shuffle_ps(Temp1, Temp1, _MM_SHUFFLE(2, 2, 2, 0)); + + // m[1][2] + // m[0][2] + // m[0][2] + // m[0][2] + __m128 Temp2 = _mm_shuffle_ps(in[1], in[0], _MM_SHUFFLE(2, 2, 2, 2)); + __m128 Vec2 = _mm_shuffle_ps(Temp2, Temp2, _MM_SHUFFLE(2, 2, 2, 0)); + + // m[1][3] + // m[0][3] + // m[0][3] + // m[0][3] + __m128 Temp3 = _mm_shuffle_ps(in[1], in[0], _MM_SHUFFLE(3, 3, 3, 3)); + __m128 Vec3 = _mm_shuffle_ps(Temp3, Temp3, _MM_SHUFFLE(2, 2, 2, 0)); + + // col0 + // + (Vec1[0] * Fac0[0] - Vec2[0] * Fac1[0] + Vec3[0] * Fac2[0]), + // - (Vec1[1] * Fac0[1] - Vec2[1] * Fac1[1] + Vec3[1] * Fac2[1]), + // + (Vec1[2] * Fac0[2] - Vec2[2] * Fac1[2] + Vec3[2] * Fac2[2]), + // - (Vec1[3] * Fac0[3] - Vec2[3] * Fac1[3] + Vec3[3] * Fac2[3]), + __m128 Mul00 = _mm_mul_ps(Vec1, Fac0); + __m128 Mul01 = _mm_mul_ps(Vec2, Fac1); + __m128 Mul02 = _mm_mul_ps(Vec3, Fac2); + __m128 Sub00 = _mm_sub_ps(Mul00, Mul01); + __m128 Add00 = _mm_add_ps(Sub00, Mul02); + __m128 Inv0 = _mm_mul_ps(SignB, Add00); + + // col1 + // - (Vec0[0] * Fac0[0] - Vec2[0] * Fac3[0] + Vec3[0] * Fac4[0]), + // + (Vec0[0] * Fac0[1] - Vec2[1] * Fac3[1] + Vec3[1] * Fac4[1]), + // - (Vec0[0] * Fac0[2] - Vec2[2] * Fac3[2] + Vec3[2] * Fac4[2]), + // + (Vec0[0] * Fac0[3] - Vec2[3] * Fac3[3] + Vec3[3] * Fac4[3]), + __m128 Mul03 = _mm_mul_ps(Vec0, Fac0); + __m128 Mul04 = _mm_mul_ps(Vec2, Fac3); + __m128 Mul05 = _mm_mul_ps(Vec3, Fac4); + __m128 Sub01 = _mm_sub_ps(Mul03, Mul04); + __m128 Add01 = _mm_add_ps(Sub01, Mul05); + __m128 Inv1 = _mm_mul_ps(SignA, Add01); + + // col2 + // + (Vec0[0] * Fac1[0] - Vec1[0] * Fac3[0] + Vec3[0] * Fac5[0]), + // - (Vec0[0] * Fac1[1] - Vec1[1] * Fac3[1] + Vec3[1] * Fac5[1]), + // + (Vec0[0] * Fac1[2] - Vec1[2] * Fac3[2] + Vec3[2] * Fac5[2]), + // - (Vec0[0] * Fac1[3] - Vec1[3] * Fac3[3] + Vec3[3] * Fac5[3]), + __m128 Mul06 = _mm_mul_ps(Vec0, Fac1); + __m128 Mul07 = _mm_mul_ps(Vec1, Fac3); + __m128 Mul08 = _mm_mul_ps(Vec3, Fac5); + __m128 Sub02 = _mm_sub_ps(Mul06, Mul07); + __m128 Add02 = _mm_add_ps(Sub02, Mul08); + __m128 Inv2 = _mm_mul_ps(SignB, Add02); + + // col3 + // - (Vec1[0] * Fac2[0] - Vec1[0] * Fac4[0] + Vec2[0] * Fac5[0]), + // + (Vec1[0] * Fac2[1] - Vec1[1] * Fac4[1] + Vec2[1] * Fac5[1]), + // - (Vec1[0] * Fac2[2] - Vec1[2] * Fac4[2] + Vec2[2] * Fac5[2]), + // + (Vec1[0] * Fac2[3] - Vec1[3] * Fac4[3] + Vec2[3] * Fac5[3])); + __m128 Mul09 = _mm_mul_ps(Vec0, Fac2); + __m128 Mul10 = _mm_mul_ps(Vec1, Fac4); + __m128 Mul11 = _mm_mul_ps(Vec2, Fac5); + __m128 Sub03 = _mm_sub_ps(Mul09, Mul10); + __m128 Add03 = _mm_add_ps(Sub03, Mul11); + __m128 Inv3 = _mm_mul_ps(SignA, Add03); + + __m128 Row0 = _mm_shuffle_ps(Inv0, Inv1, _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Row1 = _mm_shuffle_ps(Inv2, Inv3, _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Row2 = _mm_shuffle_ps(Row0, Row1, _MM_SHUFFLE(2, 0, 2, 0)); + + // valType Determinant = m[0][0] * Inverse[0][0] + // + m[0][1] * Inverse[1][0] + // + m[0][2] * Inverse[2][0] + // + m[0][3] * Inverse[3][0]; + __m128 Det0 = glm_vec4_dot(in[0], Row2); + return Det0; +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_mat4_determinant_lowp(glm_vec4 const m[4]) +{ + // _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128( + + //T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; + //T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; + //T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; + //T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; + //T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; + //T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; + + // First 2 columns + __m128 Swp2A = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(m[2]), _MM_SHUFFLE(0, 1, 1, 2))); + __m128 Swp3A = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(m[3]), _MM_SHUFFLE(3, 2, 3, 3))); + __m128 MulA = _mm_mul_ps(Swp2A, Swp3A); + + // Second 2 columns + __m128 Swp2B = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(m[2]), _MM_SHUFFLE(3, 2, 3, 3))); + __m128 Swp3B = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(m[3]), _MM_SHUFFLE(0, 1, 1, 2))); + __m128 MulB = _mm_mul_ps(Swp2B, Swp3B); + + // Columns subtraction + __m128 SubE = _mm_sub_ps(MulA, MulB); + + // Last 2 rows + __m128 Swp2C = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(m[2]), _MM_SHUFFLE(0, 0, 1, 2))); + __m128 Swp3C = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(m[3]), _MM_SHUFFLE(1, 2, 0, 0))); + __m128 MulC = _mm_mul_ps(Swp2C, Swp3C); + __m128 SubF = _mm_sub_ps(_mm_movehl_ps(MulC, MulC), MulC); + + //vec<4, T, Q> DetCof( + // + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02), + // - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04), + // + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05), + // - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05)); + + __m128 SubFacA = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(SubE), _MM_SHUFFLE(2, 1, 0, 0))); + __m128 SwpFacA = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(m[1]), _MM_SHUFFLE(0, 0, 0, 1))); + __m128 MulFacA = _mm_mul_ps(SwpFacA, SubFacA); + + __m128 SubTmpB = _mm_shuffle_ps(SubE, SubF, _MM_SHUFFLE(0, 0, 3, 1)); + __m128 SubFacB = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(SubTmpB), _MM_SHUFFLE(3, 1, 1, 0)));//SubF[0], SubE[3], SubE[3], SubE[1]; + __m128 SwpFacB = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(m[1]), _MM_SHUFFLE(1, 1, 2, 2))); + __m128 MulFacB = _mm_mul_ps(SwpFacB, SubFacB); + + __m128 SubRes = _mm_sub_ps(MulFacA, MulFacB); + + __m128 SubTmpC = _mm_shuffle_ps(SubE, SubF, _MM_SHUFFLE(1, 0, 2, 2)); + __m128 SubFacC = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(SubTmpC), _MM_SHUFFLE(3, 3, 2, 0))); + __m128 SwpFacC = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(m[1]), _MM_SHUFFLE(2, 3, 3, 3))); + __m128 MulFacC = _mm_mul_ps(SwpFacC, SubFacC); + + __m128 AddRes = _mm_add_ps(SubRes, MulFacC); + __m128 DetCof = _mm_mul_ps(AddRes, _mm_setr_ps( 1.0f,-1.0f, 1.0f,-1.0f)); + + //return m[0][0] * DetCof[0] + // + m[0][1] * DetCof[1] + // + m[0][2] * DetCof[2] + // + m[0][3] * DetCof[3]; + + return glm_vec4_dot(m[0], DetCof); +} + +GLM_FUNC_QUALIFIER glm_vec4 glm_mat4_determinant(glm_vec4 const m[4]) +{ + // _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(add) + + //T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; + //T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; + //T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; + //T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; + //T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; + //T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; + + // First 2 columns + __m128 Swp2A = _mm_shuffle_ps(m[2], m[2], _MM_SHUFFLE(0, 1, 1, 2)); + __m128 Swp3A = _mm_shuffle_ps(m[3], m[3], _MM_SHUFFLE(3, 2, 3, 3)); + __m128 MulA = _mm_mul_ps(Swp2A, Swp3A); + + // Second 2 columns + __m128 Swp2B = _mm_shuffle_ps(m[2], m[2], _MM_SHUFFLE(3, 2, 3, 3)); + __m128 Swp3B = _mm_shuffle_ps(m[3], m[3], _MM_SHUFFLE(0, 1, 1, 2)); + __m128 MulB = _mm_mul_ps(Swp2B, Swp3B); + + // Columns subtraction + __m128 SubE = _mm_sub_ps(MulA, MulB); + + // Last 2 rows + __m128 Swp2C = _mm_shuffle_ps(m[2], m[2], _MM_SHUFFLE(0, 0, 1, 2)); + __m128 Swp3C = _mm_shuffle_ps(m[3], m[3], _MM_SHUFFLE(1, 2, 0, 0)); + __m128 MulC = _mm_mul_ps(Swp2C, Swp3C); + __m128 SubF = _mm_sub_ps(_mm_movehl_ps(MulC, MulC), MulC); + + //vec<4, T, Q> DetCof( + // + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02), + // - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04), + // + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05), + // - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05)); + + __m128 SubFacA = _mm_shuffle_ps(SubE, SubE, _MM_SHUFFLE(2, 1, 0, 0)); + __m128 SwpFacA = _mm_shuffle_ps(m[1], m[1], _MM_SHUFFLE(0, 0, 0, 1)); + __m128 MulFacA = _mm_mul_ps(SwpFacA, SubFacA); + + __m128 SubTmpB = _mm_shuffle_ps(SubE, SubF, _MM_SHUFFLE(0, 0, 3, 1)); + __m128 SubFacB = _mm_shuffle_ps(SubTmpB, SubTmpB, _MM_SHUFFLE(3, 1, 1, 0));//SubF[0], SubE[3], SubE[3], SubE[1]; + __m128 SwpFacB = _mm_shuffle_ps(m[1], m[1], _MM_SHUFFLE(1, 1, 2, 2)); + __m128 MulFacB = _mm_mul_ps(SwpFacB, SubFacB); + + __m128 SubRes = _mm_sub_ps(MulFacA, MulFacB); + + __m128 SubTmpC = _mm_shuffle_ps(SubE, SubF, _MM_SHUFFLE(1, 0, 2, 2)); + __m128 SubFacC = _mm_shuffle_ps(SubTmpC, SubTmpC, _MM_SHUFFLE(3, 3, 2, 0)); + __m128 SwpFacC = _mm_shuffle_ps(m[1], m[1], _MM_SHUFFLE(2, 3, 3, 3)); + __m128 MulFacC = _mm_mul_ps(SwpFacC, SubFacC); + + __m128 AddRes = _mm_add_ps(SubRes, MulFacC); + __m128 DetCof = _mm_mul_ps(AddRes, _mm_setr_ps( 1.0f,-1.0f, 1.0f,-1.0f)); + + //return m[0][0] * DetCof[0] + // + m[0][1] * DetCof[1] + // + m[0][2] * DetCof[2] + // + m[0][3] * DetCof[3]; + + return glm_vec4_dot(m[0], DetCof); +} + +GLM_FUNC_QUALIFIER void glm_mat4_inverse(glm_vec4 const in[4], glm_vec4 out[4]) +{ + __m128 Fac0; + { + // valType SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; + // valType SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; + // valType SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3]; + // valType SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3]; + + __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(3, 3, 3, 3)); + __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(2, 2, 2, 2)); + + __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(2, 2, 2, 2)); + __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(3, 3, 3, 3)); + + __m128 Mul00 = _mm_mul_ps(Swp00, Swp01); + __m128 Mul01 = _mm_mul_ps(Swp02, Swp03); + Fac0 = _mm_sub_ps(Mul00, Mul01); + } + + __m128 Fac1; + { + // valType SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; + // valType SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; + // valType SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3]; + // valType SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3]; + + __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(3, 3, 3, 3)); + __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(1, 1, 1, 1)); + + __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(1, 1, 1, 1)); + __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(3, 3, 3, 3)); + + __m128 Mul00 = _mm_mul_ps(Swp00, Swp01); + __m128 Mul01 = _mm_mul_ps(Swp02, Swp03); + Fac1 = _mm_sub_ps(Mul00, Mul01); + } + + + __m128 Fac2; + { + // valType SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; + // valType SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; + // valType SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2]; + // valType SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2]; + + __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(2, 2, 2, 2)); + __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(1, 1, 1, 1)); + + __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(1, 1, 1, 1)); + __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(2, 2, 2, 2)); + + __m128 Mul00 = _mm_mul_ps(Swp00, Swp01); + __m128 Mul01 = _mm_mul_ps(Swp02, Swp03); + Fac2 = _mm_sub_ps(Mul00, Mul01); + } + + __m128 Fac3; + { + // valType SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; + // valType SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; + // valType SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3]; + // valType SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3]; + + __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(3, 3, 3, 3)); + __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(0, 0, 0, 0)); + + __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(3, 3, 3, 3)); + + __m128 Mul00 = _mm_mul_ps(Swp00, Swp01); + __m128 Mul01 = _mm_mul_ps(Swp02, Swp03); + Fac3 = _mm_sub_ps(Mul00, Mul01); + } + + __m128 Fac4; + { + // valType SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; + // valType SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; + // valType SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2]; + // valType SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2]; + + __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(2, 2, 2, 2)); + __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(0, 0, 0, 0)); + + __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(2, 2, 2, 2)); + + __m128 Mul00 = _mm_mul_ps(Swp00, Swp01); + __m128 Mul01 = _mm_mul_ps(Swp02, Swp03); + Fac4 = _mm_sub_ps(Mul00, Mul01); + } + + __m128 Fac5; + { + // valType SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; + // valType SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; + // valType SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1]; + // valType SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1]; + + __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(1, 1, 1, 1)); + __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(0, 0, 0, 0)); + + __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(1, 1, 1, 1)); + + __m128 Mul00 = _mm_mul_ps(Swp00, Swp01); + __m128 Mul01 = _mm_mul_ps(Swp02, Swp03); + Fac5 = _mm_sub_ps(Mul00, Mul01); + } + + __m128 SignA = _mm_set_ps( 1.0f,-1.0f, 1.0f,-1.0f); + __m128 SignB = _mm_set_ps(-1.0f, 1.0f,-1.0f, 1.0f); + + // m[1][0] + // m[0][0] + // m[0][0] + // m[0][0] + __m128 Temp0 = _mm_shuffle_ps(in[1], in[0], _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Vec0 = _mm_shuffle_ps(Temp0, Temp0, _MM_SHUFFLE(2, 2, 2, 0)); + + // m[1][1] + // m[0][1] + // m[0][1] + // m[0][1] + __m128 Temp1 = _mm_shuffle_ps(in[1], in[0], _MM_SHUFFLE(1, 1, 1, 1)); + __m128 Vec1 = _mm_shuffle_ps(Temp1, Temp1, _MM_SHUFFLE(2, 2, 2, 0)); + + // m[1][2] + // m[0][2] + // m[0][2] + // m[0][2] + __m128 Temp2 = _mm_shuffle_ps(in[1], in[0], _MM_SHUFFLE(2, 2, 2, 2)); + __m128 Vec2 = _mm_shuffle_ps(Temp2, Temp2, _MM_SHUFFLE(2, 2, 2, 0)); + + // m[1][3] + // m[0][3] + // m[0][3] + // m[0][3] + __m128 Temp3 = _mm_shuffle_ps(in[1], in[0], _MM_SHUFFLE(3, 3, 3, 3)); + __m128 Vec3 = _mm_shuffle_ps(Temp3, Temp3, _MM_SHUFFLE(2, 2, 2, 0)); + + // col0 + // + (Vec1[0] * Fac0[0] - Vec2[0] * Fac1[0] + Vec3[0] * Fac2[0]), + // - (Vec1[1] * Fac0[1] - Vec2[1] * Fac1[1] + Vec3[1] * Fac2[1]), + // + (Vec1[2] * Fac0[2] - Vec2[2] * Fac1[2] + Vec3[2] * Fac2[2]), + // - (Vec1[3] * Fac0[3] - Vec2[3] * Fac1[3] + Vec3[3] * Fac2[3]), + __m128 Mul00 = _mm_mul_ps(Vec1, Fac0); + __m128 Mul01 = _mm_mul_ps(Vec2, Fac1); + __m128 Mul02 = _mm_mul_ps(Vec3, Fac2); + __m128 Sub00 = _mm_sub_ps(Mul00, Mul01); + __m128 Add00 = _mm_add_ps(Sub00, Mul02); + __m128 Inv0 = _mm_mul_ps(SignB, Add00); + + // col1 + // - (Vec0[0] * Fac0[0] - Vec2[0] * Fac3[0] + Vec3[0] * Fac4[0]), + // + (Vec0[0] * Fac0[1] - Vec2[1] * Fac3[1] + Vec3[1] * Fac4[1]), + // - (Vec0[0] * Fac0[2] - Vec2[2] * Fac3[2] + Vec3[2] * Fac4[2]), + // + (Vec0[0] * Fac0[3] - Vec2[3] * Fac3[3] + Vec3[3] * Fac4[3]), + __m128 Mul03 = _mm_mul_ps(Vec0, Fac0); + __m128 Mul04 = _mm_mul_ps(Vec2, Fac3); + __m128 Mul05 = _mm_mul_ps(Vec3, Fac4); + __m128 Sub01 = _mm_sub_ps(Mul03, Mul04); + __m128 Add01 = _mm_add_ps(Sub01, Mul05); + __m128 Inv1 = _mm_mul_ps(SignA, Add01); + + // col2 + // + (Vec0[0] * Fac1[0] - Vec1[0] * Fac3[0] + Vec3[0] * Fac5[0]), + // - (Vec0[0] * Fac1[1] - Vec1[1] * Fac3[1] + Vec3[1] * Fac5[1]), + // + (Vec0[0] * Fac1[2] - Vec1[2] * Fac3[2] + Vec3[2] * Fac5[2]), + // - (Vec0[0] * Fac1[3] - Vec1[3] * Fac3[3] + Vec3[3] * Fac5[3]), + __m128 Mul06 = _mm_mul_ps(Vec0, Fac1); + __m128 Mul07 = _mm_mul_ps(Vec1, Fac3); + __m128 Mul08 = _mm_mul_ps(Vec3, Fac5); + __m128 Sub02 = _mm_sub_ps(Mul06, Mul07); + __m128 Add02 = _mm_add_ps(Sub02, Mul08); + __m128 Inv2 = _mm_mul_ps(SignB, Add02); + + // col3 + // - (Vec1[0] * Fac2[0] - Vec1[0] * Fac4[0] + Vec2[0] * Fac5[0]), + // + (Vec1[0] * Fac2[1] - Vec1[1] * Fac4[1] + Vec2[1] * Fac5[1]), + // - (Vec1[0] * Fac2[2] - Vec1[2] * Fac4[2] + Vec2[2] * Fac5[2]), + // + (Vec1[0] * Fac2[3] - Vec1[3] * Fac4[3] + Vec2[3] * Fac5[3])); + __m128 Mul09 = _mm_mul_ps(Vec0, Fac2); + __m128 Mul10 = _mm_mul_ps(Vec1, Fac4); + __m128 Mul11 = _mm_mul_ps(Vec2, Fac5); + __m128 Sub03 = _mm_sub_ps(Mul09, Mul10); + __m128 Add03 = _mm_add_ps(Sub03, Mul11); + __m128 Inv3 = _mm_mul_ps(SignA, Add03); + + __m128 Row0 = _mm_shuffle_ps(Inv0, Inv1, _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Row1 = _mm_shuffle_ps(Inv2, Inv3, _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Row2 = _mm_shuffle_ps(Row0, Row1, _MM_SHUFFLE(2, 0, 2, 0)); + + // valType Determinant = m[0][0] * Inverse[0][0] + // + m[0][1] * Inverse[1][0] + // + m[0][2] * Inverse[2][0] + // + m[0][3] * Inverse[3][0]; + __m128 Det0 = glm_vec4_dot(in[0], Row2); + __m128 Rcp0 = _mm_div_ps(_mm_set1_ps(1.0f), Det0); + //__m128 Rcp0 = _mm_rcp_ps(Det0); + + // Inverse /= Determinant; + out[0] = _mm_mul_ps(Inv0, Rcp0); + out[1] = _mm_mul_ps(Inv1, Rcp0); + out[2] = _mm_mul_ps(Inv2, Rcp0); + out[3] = _mm_mul_ps(Inv3, Rcp0); +} + +GLM_FUNC_QUALIFIER void glm_mat4_inverse_lowp(glm_vec4 const in[4], glm_vec4 out[4]) +{ + __m128 Fac0; + { + // valType SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; + // valType SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3]; + // valType SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3]; + // valType SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3]; + + __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(3, 3, 3, 3)); + __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(2, 2, 2, 2)); + + __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(2, 2, 2, 2)); + __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(3, 3, 3, 3)); + + __m128 Mul00 = _mm_mul_ps(Swp00, Swp01); + __m128 Mul01 = _mm_mul_ps(Swp02, Swp03); + Fac0 = _mm_sub_ps(Mul00, Mul01); + } + + __m128 Fac1; + { + // valType SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; + // valType SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3]; + // valType SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3]; + // valType SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3]; + + __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(3, 3, 3, 3)); + __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(1, 1, 1, 1)); + + __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(1, 1, 1, 1)); + __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(3, 3, 3, 3)); + + __m128 Mul00 = _mm_mul_ps(Swp00, Swp01); + __m128 Mul01 = _mm_mul_ps(Swp02, Swp03); + Fac1 = _mm_sub_ps(Mul00, Mul01); + } + + + __m128 Fac2; + { + // valType SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; + // valType SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2]; + // valType SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2]; + // valType SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2]; + + __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(2, 2, 2, 2)); + __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(1, 1, 1, 1)); + + __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(1, 1, 1, 1)); + __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(2, 2, 2, 2)); + + __m128 Mul00 = _mm_mul_ps(Swp00, Swp01); + __m128 Mul01 = _mm_mul_ps(Swp02, Swp03); + Fac2 = _mm_sub_ps(Mul00, Mul01); + } + + __m128 Fac3; + { + // valType SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; + // valType SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3]; + // valType SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3]; + // valType SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3]; + + __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(3, 3, 3, 3)); + __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(0, 0, 0, 0)); + + __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(3, 3, 3, 3)); + + __m128 Mul00 = _mm_mul_ps(Swp00, Swp01); + __m128 Mul01 = _mm_mul_ps(Swp02, Swp03); + Fac3 = _mm_sub_ps(Mul00, Mul01); + } + + __m128 Fac4; + { + // valType SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; + // valType SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2]; + // valType SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2]; + // valType SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2]; + + __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(2, 2, 2, 2)); + __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(0, 0, 0, 0)); + + __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(2, 2, 2, 2)); + + __m128 Mul00 = _mm_mul_ps(Swp00, Swp01); + __m128 Mul01 = _mm_mul_ps(Swp02, Swp03); + Fac4 = _mm_sub_ps(Mul00, Mul01); + } + + __m128 Fac5; + { + // valType SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; + // valType SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1]; + // valType SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1]; + // valType SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1]; + + __m128 Swp0a = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(1, 1, 1, 1)); + __m128 Swp0b = _mm_shuffle_ps(in[3], in[2], _MM_SHUFFLE(0, 0, 0, 0)); + + __m128 Swp00 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Swp01 = _mm_shuffle_ps(Swp0a, Swp0a, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp02 = _mm_shuffle_ps(Swp0b, Swp0b, _MM_SHUFFLE(2, 0, 0, 0)); + __m128 Swp03 = _mm_shuffle_ps(in[2], in[1], _MM_SHUFFLE(1, 1, 1, 1)); + + __m128 Mul00 = _mm_mul_ps(Swp00, Swp01); + __m128 Mul01 = _mm_mul_ps(Swp02, Swp03); + Fac5 = _mm_sub_ps(Mul00, Mul01); + } + + __m128 SignA = _mm_set_ps( 1.0f,-1.0f, 1.0f,-1.0f); + __m128 SignB = _mm_set_ps(-1.0f, 1.0f,-1.0f, 1.0f); + + // m[1][0] + // m[0][0] + // m[0][0] + // m[0][0] + __m128 Temp0 = _mm_shuffle_ps(in[1], in[0], _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Vec0 = _mm_shuffle_ps(Temp0, Temp0, _MM_SHUFFLE(2, 2, 2, 0)); + + // m[1][1] + // m[0][1] + // m[0][1] + // m[0][1] + __m128 Temp1 = _mm_shuffle_ps(in[1], in[0], _MM_SHUFFLE(1, 1, 1, 1)); + __m128 Vec1 = _mm_shuffle_ps(Temp1, Temp1, _MM_SHUFFLE(2, 2, 2, 0)); + + // m[1][2] + // m[0][2] + // m[0][2] + // m[0][2] + __m128 Temp2 = _mm_shuffle_ps(in[1], in[0], _MM_SHUFFLE(2, 2, 2, 2)); + __m128 Vec2 = _mm_shuffle_ps(Temp2, Temp2, _MM_SHUFFLE(2, 2, 2, 0)); + + // m[1][3] + // m[0][3] + // m[0][3] + // m[0][3] + __m128 Temp3 = _mm_shuffle_ps(in[1], in[0], _MM_SHUFFLE(3, 3, 3, 3)); + __m128 Vec3 = _mm_shuffle_ps(Temp3, Temp3, _MM_SHUFFLE(2, 2, 2, 0)); + + // col0 + // + (Vec1[0] * Fac0[0] - Vec2[0] * Fac1[0] + Vec3[0] * Fac2[0]), + // - (Vec1[1] * Fac0[1] - Vec2[1] * Fac1[1] + Vec3[1] * Fac2[1]), + // + (Vec1[2] * Fac0[2] - Vec2[2] * Fac1[2] + Vec3[2] * Fac2[2]), + // - (Vec1[3] * Fac0[3] - Vec2[3] * Fac1[3] + Vec3[3] * Fac2[3]), + __m128 Mul00 = _mm_mul_ps(Vec1, Fac0); + __m128 Mul01 = _mm_mul_ps(Vec2, Fac1); + __m128 Mul02 = _mm_mul_ps(Vec3, Fac2); + __m128 Sub00 = _mm_sub_ps(Mul00, Mul01); + __m128 Add00 = _mm_add_ps(Sub00, Mul02); + __m128 Inv0 = _mm_mul_ps(SignB, Add00); + + // col1 + // - (Vec0[0] * Fac0[0] - Vec2[0] * Fac3[0] + Vec3[0] * Fac4[0]), + // + (Vec0[0] * Fac0[1] - Vec2[1] * Fac3[1] + Vec3[1] * Fac4[1]), + // - (Vec0[0] * Fac0[2] - Vec2[2] * Fac3[2] + Vec3[2] * Fac4[2]), + // + (Vec0[0] * Fac0[3] - Vec2[3] * Fac3[3] + Vec3[3] * Fac4[3]), + __m128 Mul03 = _mm_mul_ps(Vec0, Fac0); + __m128 Mul04 = _mm_mul_ps(Vec2, Fac3); + __m128 Mul05 = _mm_mul_ps(Vec3, Fac4); + __m128 Sub01 = _mm_sub_ps(Mul03, Mul04); + __m128 Add01 = _mm_add_ps(Sub01, Mul05); + __m128 Inv1 = _mm_mul_ps(SignA, Add01); + + // col2 + // + (Vec0[0] * Fac1[0] - Vec1[0] * Fac3[0] + Vec3[0] * Fac5[0]), + // - (Vec0[0] * Fac1[1] - Vec1[1] * Fac3[1] + Vec3[1] * Fac5[1]), + // + (Vec0[0] * Fac1[2] - Vec1[2] * Fac3[2] + Vec3[2] * Fac5[2]), + // - (Vec0[0] * Fac1[3] - Vec1[3] * Fac3[3] + Vec3[3] * Fac5[3]), + __m128 Mul06 = _mm_mul_ps(Vec0, Fac1); + __m128 Mul07 = _mm_mul_ps(Vec1, Fac3); + __m128 Mul08 = _mm_mul_ps(Vec3, Fac5); + __m128 Sub02 = _mm_sub_ps(Mul06, Mul07); + __m128 Add02 = _mm_add_ps(Sub02, Mul08); + __m128 Inv2 = _mm_mul_ps(SignB, Add02); + + // col3 + // - (Vec1[0] * Fac2[0] - Vec1[0] * Fac4[0] + Vec2[0] * Fac5[0]), + // + (Vec1[0] * Fac2[1] - Vec1[1] * Fac4[1] + Vec2[1] * Fac5[1]), + // - (Vec1[0] * Fac2[2] - Vec1[2] * Fac4[2] + Vec2[2] * Fac5[2]), + // + (Vec1[0] * Fac2[3] - Vec1[3] * Fac4[3] + Vec2[3] * Fac5[3])); + __m128 Mul09 = _mm_mul_ps(Vec0, Fac2); + __m128 Mul10 = _mm_mul_ps(Vec1, Fac4); + __m128 Mul11 = _mm_mul_ps(Vec2, Fac5); + __m128 Sub03 = _mm_sub_ps(Mul09, Mul10); + __m128 Add03 = _mm_add_ps(Sub03, Mul11); + __m128 Inv3 = _mm_mul_ps(SignA, Add03); + + __m128 Row0 = _mm_shuffle_ps(Inv0, Inv1, _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Row1 = _mm_shuffle_ps(Inv2, Inv3, _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Row2 = _mm_shuffle_ps(Row0, Row1, _MM_SHUFFLE(2, 0, 2, 0)); + + // valType Determinant = m[0][0] * Inverse[0][0] + // + m[0][1] * Inverse[1][0] + // + m[0][2] * Inverse[2][0] + // + m[0][3] * Inverse[3][0]; + __m128 Det0 = glm_vec4_dot(in[0], Row2); + __m128 Rcp0 = _mm_rcp_ps(Det0); + //__m128 Rcp0 = _mm_div_ps(one, Det0); + // Inverse /= Determinant; + out[0] = _mm_mul_ps(Inv0, Rcp0); + out[1] = _mm_mul_ps(Inv1, Rcp0); + out[2] = _mm_mul_ps(Inv2, Rcp0); + out[3] = _mm_mul_ps(Inv3, Rcp0); +} +/* +GLM_FUNC_QUALIFIER void glm_mat4_rotate(__m128 const in[4], float Angle, float const v[3], __m128 out[4]) +{ + float a = glm::radians(Angle); + float c = cos(a); + float s = sin(a); + + glm::vec4 AxisA(v[0], v[1], v[2], float(0)); + __m128 AxisB = _mm_set_ps(AxisA.w, AxisA.z, AxisA.y, AxisA.x); + __m128 AxisC = detail::sse_nrm_ps(AxisB); + + __m128 Cos0 = _mm_set_ss(c); + __m128 CosA = _mm_shuffle_ps(Cos0, Cos0, _MM_SHUFFLE(0, 0, 0, 0)); + __m128 Sin0 = _mm_set_ss(s); + __m128 SinA = _mm_shuffle_ps(Sin0, Sin0, _MM_SHUFFLE(0, 0, 0, 0)); + + // vec<3, T, Q> temp = (valType(1) - c) * axis; + __m128 Temp0 = _mm_sub_ps(one, CosA); + __m128 Temp1 = _mm_mul_ps(Temp0, AxisC); + + //Rotate[0][0] = c + temp[0] * axis[0]; + //Rotate[0][1] = 0 + temp[0] * axis[1] + s * axis[2]; + //Rotate[0][2] = 0 + temp[0] * axis[2] - s * axis[1]; + __m128 Axis0 = _mm_shuffle_ps(AxisC, AxisC, _MM_SHUFFLE(0, 0, 0, 0)); + __m128 TmpA0 = _mm_mul_ps(Axis0, AxisC); + __m128 CosA0 = _mm_shuffle_ps(Cos0, Cos0, _MM_SHUFFLE(1, 1, 1, 0)); + __m128 TmpA1 = _mm_add_ps(CosA0, TmpA0); + __m128 SinA0 = SinA;//_mm_set_ps(0.0f, s, -s, 0.0f); + __m128 TmpA2 = _mm_shuffle_ps(AxisC, AxisC, _MM_SHUFFLE(3, 1, 2, 3)); + __m128 TmpA3 = _mm_mul_ps(SinA0, TmpA2); + __m128 TmpA4 = _mm_add_ps(TmpA1, TmpA3); + + //Rotate[1][0] = 0 + temp[1] * axis[0] - s * axis[2]; + //Rotate[1][1] = c + temp[1] * axis[1]; + //Rotate[1][2] = 0 + temp[1] * axis[2] + s * axis[0]; + __m128 Axis1 = _mm_shuffle_ps(AxisC, AxisC, _MM_SHUFFLE(1, 1, 1, 1)); + __m128 TmpB0 = _mm_mul_ps(Axis1, AxisC); + __m128 CosA1 = _mm_shuffle_ps(Cos0, Cos0, _MM_SHUFFLE(1, 1, 0, 1)); + __m128 TmpB1 = _mm_add_ps(CosA1, TmpB0); + __m128 SinB0 = SinA;//_mm_set_ps(-s, 0.0f, s, 0.0f); + __m128 TmpB2 = _mm_shuffle_ps(AxisC, AxisC, _MM_SHUFFLE(3, 0, 3, 2)); + __m128 TmpB3 = _mm_mul_ps(SinA0, TmpB2); + __m128 TmpB4 = _mm_add_ps(TmpB1, TmpB3); + + //Rotate[2][0] = 0 + temp[2] * axis[0] + s * axis[1]; + //Rotate[2][1] = 0 + temp[2] * axis[1] - s * axis[0]; + //Rotate[2][2] = c + temp[2] * axis[2]; + __m128 Axis2 = _mm_shuffle_ps(AxisC, AxisC, _MM_SHUFFLE(2, 2, 2, 2)); + __m128 TmpC0 = _mm_mul_ps(Axis2, AxisC); + __m128 CosA2 = _mm_shuffle_ps(Cos0, Cos0, _MM_SHUFFLE(1, 0, 1, 1)); + __m128 TmpC1 = _mm_add_ps(CosA2, TmpC0); + __m128 SinC0 = SinA;//_mm_set_ps(s, -s, 0.0f, 0.0f); + __m128 TmpC2 = _mm_shuffle_ps(AxisC, AxisC, _MM_SHUFFLE(3, 3, 0, 1)); + __m128 TmpC3 = _mm_mul_ps(SinA0, TmpC2); + __m128 TmpC4 = _mm_add_ps(TmpC1, TmpC3); + + __m128 Result[4]; + Result[0] = TmpA4; + Result[1] = TmpB4; + Result[2] = TmpC4; + Result[3] = _mm_set_ps(1, 0, 0, 0); + + //mat<4, 4, valType> Result; + //Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2]; + //Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2]; + //Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2]; + //Result[3] = m[3]; + //return Result; + sse_mul_ps(in, Result, out); +} +*/ +GLM_FUNC_QUALIFIER void glm_mat4_outerProduct(__m128 const& c, __m128 const& r, __m128 out[4]) +{ + out[0] = _mm_mul_ps(c, _mm_shuffle_ps(r, r, _MM_SHUFFLE(0, 0, 0, 0))); + out[1] = _mm_mul_ps(c, _mm_shuffle_ps(r, r, _MM_SHUFFLE(1, 1, 1, 1))); + out[2] = _mm_mul_ps(c, _mm_shuffle_ps(r, r, _MM_SHUFFLE(2, 2, 2, 2))); + out[3] = _mm_mul_ps(c, _mm_shuffle_ps(r, r, _MM_SHUFFLE(3, 3, 3, 3))); +} + +#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT diff --git a/thirdparty/glm/glm/simd/neon.h b/thirdparty/glm/glm/simd/neon.h new file mode 100644 index 000000000000..f85947f5c19a --- /dev/null +++ b/thirdparty/glm/glm/simd/neon.h @@ -0,0 +1,155 @@ +/// @ref simd_neon +/// @file glm/simd/neon.h + +#pragma once + +#if GLM_ARCH & GLM_ARCH_NEON_BIT +#include + +namespace glm { + namespace neon { + static inline float32x4_t dupq_lane(float32x4_t vsrc, int lane) { + switch(lane) { +#if GLM_ARCH & GLM_ARCH_ARMV8_BIT + case 0: return vdupq_laneq_f32(vsrc, 0); + case 1: return vdupq_laneq_f32(vsrc, 1); + case 2: return vdupq_laneq_f32(vsrc, 2); + case 3: return vdupq_laneq_f32(vsrc, 3); +#else + case 0: return vdupq_n_f32(vgetq_lane_f32(vsrc, 0)); + case 1: return vdupq_n_f32(vgetq_lane_f32(vsrc, 1)); + case 2: return vdupq_n_f32(vgetq_lane_f32(vsrc, 2)); + case 3: return vdupq_n_f32(vgetq_lane_f32(vsrc, 3)); +#endif + } + assert(!"Unreachable code executed!"); + return vdupq_n_f32(0.0f); + } + + static inline float32x2_t dup_lane(float32x4_t vsrc, int lane) { + switch(lane) { +#if GLM_ARCH & GLM_ARCH_ARMV8_BIT + case 0: return vdup_laneq_f32(vsrc, 0); + case 1: return vdup_laneq_f32(vsrc, 1); + case 2: return vdup_laneq_f32(vsrc, 2); + case 3: return vdup_laneq_f32(vsrc, 3); +#else + case 0: return vdup_n_f32(vgetq_lane_f32(vsrc, 0)); + case 1: return vdup_n_f32(vgetq_lane_f32(vsrc, 1)); + case 2: return vdup_n_f32(vgetq_lane_f32(vsrc, 2)); + case 3: return vdup_n_f32(vgetq_lane_f32(vsrc, 3)); +#endif + } + assert(!"Unreachable code executed!"); + return vdup_n_f32(0.0f); + } + + static inline float32x4_t copy_lane(float32x4_t vdst, int dlane, float32x4_t vsrc, int slane) { +#if GLM_ARCH & GLM_ARCH_ARMV8_BIT + switch(dlane) { + case 0: + switch(slane) { + case 0: return vcopyq_laneq_f32(vdst, 0, vsrc, 0); + case 1: return vcopyq_laneq_f32(vdst, 0, vsrc, 1); + case 2: return vcopyq_laneq_f32(vdst, 0, vsrc, 2); + case 3: return vcopyq_laneq_f32(vdst, 0, vsrc, 3); + } + assert(!"Unreachable code executed!"); + case 1: + switch(slane) { + case 0: return vcopyq_laneq_f32(vdst, 1, vsrc, 0); + case 1: return vcopyq_laneq_f32(vdst, 1, vsrc, 1); + case 2: return vcopyq_laneq_f32(vdst, 1, vsrc, 2); + case 3: return vcopyq_laneq_f32(vdst, 1, vsrc, 3); + } + assert(!"Unreachable code executed!"); + case 2: + switch(slane) { + case 0: return vcopyq_laneq_f32(vdst, 2, vsrc, 0); + case 1: return vcopyq_laneq_f32(vdst, 2, vsrc, 1); + case 2: return vcopyq_laneq_f32(vdst, 2, vsrc, 2); + case 3: return vcopyq_laneq_f32(vdst, 2, vsrc, 3); + } + assert(!"Unreachable code executed!"); + case 3: + switch(slane) { + case 0: return vcopyq_laneq_f32(vdst, 3, vsrc, 0); + case 1: return vcopyq_laneq_f32(vdst, 3, vsrc, 1); + case 2: return vcopyq_laneq_f32(vdst, 3, vsrc, 2); + case 3: return vcopyq_laneq_f32(vdst, 3, vsrc, 3); + } + assert(!"Unreachable code executed!"); + } +#else + + float l; + switch(slane) { + case 0: l = vgetq_lane_f32(vsrc, 0); break; + case 1: l = vgetq_lane_f32(vsrc, 1); break; + case 2: l = vgetq_lane_f32(vsrc, 2); break; + case 3: l = vgetq_lane_f32(vsrc, 3); break; + default: + assert(!"Unreachable code executed!"); + } + switch(dlane) { + case 0: return vsetq_lane_f32(l, vdst, 0); + case 1: return vsetq_lane_f32(l, vdst, 1); + case 2: return vsetq_lane_f32(l, vdst, 2); + case 3: return vsetq_lane_f32(l, vdst, 3); + } +#endif + assert(!"Unreachable code executed!"); + return vdupq_n_f32(0.0f); + } + + static inline float32x4_t mul_lane(float32x4_t v, float32x4_t vlane, int lane) { +#if GLM_ARCH & GLM_ARCH_ARMV8_BIT + switch(lane) { + case 0: return vmulq_laneq_f32(v, vlane, 0); break; + case 1: return vmulq_laneq_f32(v, vlane, 1); break; + case 2: return vmulq_laneq_f32(v, vlane, 2); break; + case 3: return vmulq_laneq_f32(v, vlane, 3); break; + default: + assert(!"Unreachable code executed!"); + } + assert(!"Unreachable code executed!"); + return vdupq_n_f32(0.0f); +#else + return vmulq_f32(v, dupq_lane(vlane, lane)); +#endif + } + + static inline float32x4_t madd_lane(float32x4_t acc, float32x4_t v, float32x4_t vlane, int lane) { +#if GLM_ARCH & GLM_ARCH_ARMV8_BIT +#ifdef GLM_CONFIG_FORCE_FMA +# define FMADD_LANE(acc, x, y, L) do { asm volatile ("fmla %0.4s, %1.4s, %2.4s" : "+w"(acc) : "w"(x), "w"(dup_lane(y, L))); } while(0) +#else +# define FMADD_LANE(acc, x, y, L) do { acc = vmlaq_laneq_f32(acc, x, y, L); } while(0) +#endif + + switch(lane) { + case 0: + FMADD_LANE(acc, v, vlane, 0); + return acc; + case 1: + FMADD_LANE(acc, v, vlane, 1); + return acc; + case 2: + FMADD_LANE(acc, v, vlane, 2); + return acc; + case 3: + FMADD_LANE(acc, v, vlane, 3); + return acc; + default: + assert(!"Unreachable code executed!"); + } + assert(!"Unreachable code executed!"); + return vdupq_n_f32(0.0f); +# undef FMADD_LANE +#else + return vaddq_f32(acc, vmulq_f32(v, dupq_lane(vlane, lane))); +#endif + } + } //namespace neon +} // namespace glm +#endif // GLM_ARCH & GLM_ARCH_NEON_BIT diff --git a/thirdparty/glm/glm/simd/packing.h b/thirdparty/glm/glm/simd/packing.h new file mode 100644 index 000000000000..609163eb0d77 --- /dev/null +++ b/thirdparty/glm/glm/simd/packing.h @@ -0,0 +1,8 @@ +/// @ref simd +/// @file glm/simd/packing.h + +#pragma once + +#if GLM_ARCH & GLM_ARCH_SSE2_BIT + +#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT diff --git a/thirdparty/glm/glm/simd/platform.h b/thirdparty/glm/glm/simd/platform.h new file mode 100644 index 000000000000..a318b098f9cf --- /dev/null +++ b/thirdparty/glm/glm/simd/platform.h @@ -0,0 +1,469 @@ +#pragma once + +/////////////////////////////////////////////////////////////////////////////////// +// Platform + +#define GLM_PLATFORM_UNKNOWN 0x00000000 +#define GLM_PLATFORM_WINDOWS 0x00010000 +#define GLM_PLATFORM_LINUX 0x00020000 +#define GLM_PLATFORM_APPLE 0x00040000 +//#define GLM_PLATFORM_IOS 0x00080000 +#define GLM_PLATFORM_ANDROID 0x00100000 +#define GLM_PLATFORM_CHROME_NACL 0x00200000 +#define GLM_PLATFORM_UNIX 0x00400000 +#define GLM_PLATFORM_QNXNTO 0x00800000 +#define GLM_PLATFORM_WINCE 0x01000000 +#define GLM_PLATFORM_CYGWIN 0x02000000 + +#ifdef GLM_FORCE_PLATFORM_UNKNOWN +# define GLM_PLATFORM GLM_PLATFORM_UNKNOWN +#elif defined(__CYGWIN__) +# define GLM_PLATFORM GLM_PLATFORM_CYGWIN +#elif defined(__QNXNTO__) +# define GLM_PLATFORM GLM_PLATFORM_QNXNTO +#elif defined(__APPLE__) +# define GLM_PLATFORM GLM_PLATFORM_APPLE +#elif defined(WINCE) +# define GLM_PLATFORM GLM_PLATFORM_WINCE +#elif defined(_WIN32) +# define GLM_PLATFORM GLM_PLATFORM_WINDOWS +#elif defined(__native_client__) +# define GLM_PLATFORM GLM_PLATFORM_CHROME_NACL +#elif defined(__ANDROID__) +# define GLM_PLATFORM GLM_PLATFORM_ANDROID +#elif defined(__linux) +# define GLM_PLATFORM GLM_PLATFORM_LINUX +#elif defined(__unix) +# define GLM_PLATFORM GLM_PLATFORM_UNIX +#else +# define GLM_PLATFORM GLM_PLATFORM_UNKNOWN +#endif// + +/////////////////////////////////////////////////////////////////////////////////// +// Compiler + +#define GLM_COMPILER_UNKNOWN 0x00000000 + +// Intel +#define GLM_COMPILER_INTEL 0x00100000 +#define GLM_COMPILER_INTEL14 0x00100040 +#define GLM_COMPILER_INTEL15 0x00100050 +#define GLM_COMPILER_INTEL16 0x00100060 +#define GLM_COMPILER_INTEL17 0x00100070 +#define GLM_COMPILER_INTEL18 0x00100080 +#define GLM_COMPILER_INTEL19 0x00100090 +#define GLM_COMPILER_INTEL21 0x001000A0 + +// Visual C++ defines +#define GLM_COMPILER_VC 0x01000000 +#define GLM_COMPILER_VC12 0x01000001 // Visual Studio 2013 +#define GLM_COMPILER_VC14 0x01000002 // Visual Studio 2015 +#define GLM_COMPILER_VC15 0x01000003 // Visual Studio 2017 +#define GLM_COMPILER_VC15_3 0x01000004 +#define GLM_COMPILER_VC15_5 0x01000005 +#define GLM_COMPILER_VC15_6 0x01000006 +#define GLM_COMPILER_VC15_7 0x01000007 +#define GLM_COMPILER_VC15_8 0x01000008 +#define GLM_COMPILER_VC15_9 0x01000009 +#define GLM_COMPILER_VC16 0x0100000A // Visual Studio 2019 +#define GLM_COMPILER_VC17 0x0100000B // Visual Studio 2022 + +// GCC defines +#define GLM_COMPILER_GCC 0x02000000 +#define GLM_COMPILER_GCC46 0x020000D0 +#define GLM_COMPILER_GCC47 0x020000E0 +#define GLM_COMPILER_GCC48 0x020000F0 +#define GLM_COMPILER_GCC49 0x02000100 +#define GLM_COMPILER_GCC5 0x02000200 +#define GLM_COMPILER_GCC6 0x02000300 +#define GLM_COMPILER_GCC61 0x02000800 +#define GLM_COMPILER_GCC7 0x02000400 +#define GLM_COMPILER_GCC8 0x02000500 +#define GLM_COMPILER_GCC9 0x02000600 +#define GLM_COMPILER_GCC10 0x02000700 +#define GLM_COMPILER_GCC11 0x02000800 +#define GLM_COMPILER_GCC12 0x02000900 +#define GLM_COMPILER_GCC13 0x02000A00 +#define GLM_COMPILER_GCC14 0x02000B00 + +// CUDA +#define GLM_COMPILER_CUDA 0x10000000 +#define GLM_COMPILER_CUDA75 0x10000001 +#define GLM_COMPILER_CUDA80 0x10000002 +#define GLM_COMPILER_CUDA90 0x10000004 +#define GLM_COMPILER_CUDA_RTC 0x10000100 + +// Clang +#define GLM_COMPILER_CLANG 0x20000000 +#define GLM_COMPILER_CLANG34 0x20000050 +#define GLM_COMPILER_CLANG35 0x20000060 +#define GLM_COMPILER_CLANG36 0x20000070 +#define GLM_COMPILER_CLANG37 0x20000080 +#define GLM_COMPILER_CLANG38 0x20000090 +#define GLM_COMPILER_CLANG39 0x200000A0 +#define GLM_COMPILER_CLANG4 0x200000B0 +#define GLM_COMPILER_CLANG5 0x200000C0 +#define GLM_COMPILER_CLANG6 0x200000D0 +#define GLM_COMPILER_CLANG7 0x200000E0 +#define GLM_COMPILER_CLANG8 0x200000F0 +#define GLM_COMPILER_CLANG9 0x20000100 +#define GLM_COMPILER_CLANG10 0x20000200 +#define GLM_COMPILER_CLANG11 0x20000300 +#define GLM_COMPILER_CLANG12 0x20000400 +#define GLM_COMPILER_CLANG13 0x20000500 +#define GLM_COMPILER_CLANG14 0x20000600 +#define GLM_COMPILER_CLANG15 0x20000700 +#define GLM_COMPILER_CLANG16 0x20000800 +#define GLM_COMPILER_CLANG17 0x20000900 +#define GLM_COMPILER_CLANG18 0x20000A00 +#define GLM_COMPILER_CLANG19 0x20000B00 + +// HIP +#define GLM_COMPILER_HIP 0x40000000 + +// Build model +#define GLM_MODEL_32 0x00000010 +#define GLM_MODEL_64 0x00000020 + +// Force generic C++ compiler +#ifdef GLM_FORCE_COMPILER_UNKNOWN +# define GLM_COMPILER GLM_COMPILER_UNKNOWN + +#elif defined(__INTEL_COMPILER) +# if __INTEL_COMPILER >= 2021 +# define GLM_COMPILER GLM_COMPILER_INTEL21 +# elif __INTEL_COMPILER >= 1900 +# define GLM_COMPILER GLM_COMPILER_INTEL19 +# elif __INTEL_COMPILER >= 1800 +# define GLM_COMPILER GLM_COMPILER_INTEL18 +# elif __INTEL_COMPILER >= 1700 +# define GLM_COMPILER GLM_COMPILER_INTEL17 +# elif __INTEL_COMPILER >= 1600 +# define GLM_COMPILER GLM_COMPILER_INTEL16 +# elif __INTEL_COMPILER >= 1500 +# define GLM_COMPILER GLM_COMPILER_INTEL15 +# elif __INTEL_COMPILER >= 1400 +# define GLM_COMPILER GLM_COMPILER_INTEL14 +# elif __INTEL_COMPILER < 1400 +# error "GLM requires ICC 2013 SP1 or newer" +# endif + +// CUDA +#elif defined(__CUDACC__) +# if !defined(CUDA_VERSION) && !defined(GLM_FORCE_CUDA) +# include // make sure version is defined since nvcc does not define it itself! +# endif +# if defined(__CUDACC_RTC__) +# define GLM_COMPILER GLM_COMPILER_CUDA_RTC +# elif CUDA_VERSION >= 8000 +# define GLM_COMPILER GLM_COMPILER_CUDA80 +# elif CUDA_VERSION >= 7500 +# define GLM_COMPILER GLM_COMPILER_CUDA75 +# elif CUDA_VERSION >= 7000 +# define GLM_COMPILER GLM_COMPILER_CUDA70 +# elif CUDA_VERSION < 7000 +# error "GLM requires CUDA 7.0 or higher" +# endif + +// HIP +#elif defined(__HIP__) +# define GLM_COMPILER GLM_COMPILER_HIP + +// Clang +#elif defined(__clang__) +# if defined(__apple_build_version__) +# if (__clang_major__ < 6) +# error "GLM requires Clang 3.4 / Apple Clang 6.0 or higher" +# elif __clang_major__ == 6 && __clang_minor__ == 0 +# define GLM_COMPILER GLM_COMPILER_CLANG35 +# elif __clang_major__ == 6 && __clang_minor__ >= 1 +# define GLM_COMPILER GLM_COMPILER_CLANG36 +# elif __clang_major__ >= 7 +# define GLM_COMPILER GLM_COMPILER_CLANG37 +# endif +# else +# if ((__clang_major__ == 3) && (__clang_minor__ < 4)) || (__clang_major__ < 3) +# error "GLM requires Clang 3.4 or higher" +# elif __clang_major__ == 3 && __clang_minor__ == 4 +# define GLM_COMPILER GLM_COMPILER_CLANG34 +# elif __clang_major__ == 3 && __clang_minor__ == 5 +# define GLM_COMPILER GLM_COMPILER_CLANG35 +# elif __clang_major__ == 3 && __clang_minor__ == 6 +# define GLM_COMPILER GLM_COMPILER_CLANG36 +# elif __clang_major__ == 3 && __clang_minor__ == 7 +# define GLM_COMPILER GLM_COMPILER_CLANG37 +# elif __clang_major__ == 3 && __clang_minor__ == 8 +# define GLM_COMPILER GLM_COMPILER_CLANG38 +# elif __clang_major__ == 3 && __clang_minor__ >= 9 +# define GLM_COMPILER GLM_COMPILER_CLANG39 +# elif __clang_major__ == 4 && __clang_minor__ == 0 +# define GLM_COMPILER GLM_COMPILER_CLANG4 +# elif __clang_major__ == 5 +# define GLM_COMPILER GLM_COMPILER_CLANG5 +# elif __clang_major__ == 6 +# define GLM_COMPILER GLM_COMPILER_CLANG6 +# elif __clang_major__ == 7 +# define GLM_COMPILER GLM_COMPILER_CLANG7 +# elif __clang_major__ == 8 +# define GLM_COMPILER GLM_COMPILER_CLANG8 +# elif __clang_major__ == 9 +# define GLM_COMPILER GLM_COMPILER_CLANG9 +# elif __clang_major__ == 10 +# define GLM_COMPILER GLM_COMPILER_CLANG10 +# elif __clang_major__ == 11 +# define GLM_COMPILER GLM_COMPILER_CLANG11 +# elif __clang_major__ == 12 +# define GLM_COMPILER GLM_COMPILER_CLANG12 +# elif __clang_major__ == 13 +# define GLM_COMPILER GLM_COMPILER_CLANG13 +# elif __clang_major__ == 14 +# define GLM_COMPILER GLM_COMPILER_CLANG14 +# elif __clang_major__ == 15 +# define GLM_COMPILER GLM_COMPILER_CLANG15 +# elif __clang_major__ == 16 +# define GLM_COMPILER GLM_COMPILER_CLANG16 +# elif __clang_major__ == 17 +# define GLM_COMPILER GLM_COMPILER_CLANG17 +# elif __clang_major__ == 18 +# define GLM_COMPILER GLM_COMPILER_CLANG18 +# elif __clang_major__ >= 19 +# define GLM_COMPILER GLM_COMPILER_CLANG19 +# endif +# endif + +// Visual C++ +#elif defined(_MSC_VER) +# if _MSC_VER >= 1930 +# define GLM_COMPILER GLM_COMPILER_VC17 +# elif _MSC_VER >= 1920 +# define GLM_COMPILER GLM_COMPILER_VC16 +# elif _MSC_VER >= 1916 +# define GLM_COMPILER GLM_COMPILER_VC15_9 +# elif _MSC_VER >= 1915 +# define GLM_COMPILER GLM_COMPILER_VC15_8 +# elif _MSC_VER >= 1914 +# define GLM_COMPILER GLM_COMPILER_VC15_7 +# elif _MSC_VER >= 1913 +# define GLM_COMPILER GLM_COMPILER_VC15_6 +# elif _MSC_VER >= 1912 +# define GLM_COMPILER GLM_COMPILER_VC15_5 +# elif _MSC_VER >= 1911 +# define GLM_COMPILER GLM_COMPILER_VC15_3 +# elif _MSC_VER >= 1910 +# define GLM_COMPILER GLM_COMPILER_VC15 +# elif _MSC_VER >= 1900 +# define GLM_COMPILER GLM_COMPILER_VC14 +# elif _MSC_VER >= 1800 +# define GLM_COMPILER GLM_COMPILER_VC12 +# elif _MSC_VER < 1800 +# error "GLM requires Visual C++ 12 - 2013 or higher" +# endif//_MSC_VER + +// G++ +#elif defined(__GNUC__) || defined(__MINGW32__) +# if __GNUC__ >= 14 +# define GLM_COMPILER GLM_COMPILER_GCC14 +# elif __GNUC__ >= 13 +# define GLM_COMPILER GLM_COMPILER_GCC13 +# elif __GNUC__ >= 12 +# define GLM_COMPILER GLM_COMPILER_GCC12 +# elif __GNUC__ >= 11 +# define GLM_COMPILER GLM_COMPILER_GCC11 +# elif __GNUC__ >= 10 +# define GLM_COMPILER GLM_COMPILER_GCC10 +# elif __GNUC__ >= 9 +# define GLM_COMPILER GLM_COMPILER_GCC9 +# elif __GNUC__ >= 8 +# define GLM_COMPILER GLM_COMPILER_GCC8 +# elif __GNUC__ >= 7 +# define GLM_COMPILER GLM_COMPILER_GCC7 +# elif __GNUC__ >= 6 +# define GLM_COMPILER GLM_COMPILER_GCC6 +# elif __GNUC__ >= 5 +# define GLM_COMPILER GLM_COMPILER_GCC5 +# elif __GNUC__ == 4 && __GNUC_MINOR__ >= 9 +# define GLM_COMPILER GLM_COMPILER_GCC49 +# elif __GNUC__ == 4 && __GNUC_MINOR__ >= 8 +# define GLM_COMPILER GLM_COMPILER_GCC48 +# elif __GNUC__ == 4 && __GNUC_MINOR__ >= 7 +# define GLM_COMPILER GLM_COMPILER_GCC47 +# elif __GNUC__ == 4 && __GNUC_MINOR__ >= 6 +# define GLM_COMPILER GLM_COMPILER_GCC46 +# elif ((__GNUC__ == 4) && (__GNUC_MINOR__ < 6)) || (__GNUC__ < 4) +# error "GLM requires GCC 4.6 or higher" +# endif + +#else +# define GLM_COMPILER GLM_COMPILER_UNKNOWN +#endif + +#ifndef GLM_COMPILER +# error "GLM_COMPILER undefined, your compiler may not be supported by GLM. Add #define GLM_COMPILER 0 to ignore this message." +#endif//GLM_COMPILER + +/////////////////////////////////////////////////////////////////////////////////// +// Instruction sets + +// User defines: GLM_FORCE_PURE GLM_FORCE_INTRINSICS GLM_FORCE_SSE2 GLM_FORCE_SSE3 GLM_FORCE_AVX GLM_FORCE_AVX2 GLM_FORCE_AVX2 + +#define GLM_ARCH_MIPS_BIT (0x10000000) +#define GLM_ARCH_PPC_BIT (0x20000000) +#define GLM_ARCH_ARM_BIT (0x40000000) +#define GLM_ARCH_ARMV8_BIT (0x01000000) +#define GLM_ARCH_X86_BIT (0x80000000) + +#define GLM_ARCH_SIMD_BIT (0x00001000) + +#define GLM_ARCH_NEON_BIT (0x00000001) +#define GLM_ARCH_SSE_BIT (0x00000002) +#define GLM_ARCH_SSE2_BIT (0x00000004) +#define GLM_ARCH_SSE3_BIT (0x00000008) +#define GLM_ARCH_SSSE3_BIT (0x00000010) +#define GLM_ARCH_SSE41_BIT (0x00000020) +#define GLM_ARCH_SSE42_BIT (0x00000040) +#define GLM_ARCH_AVX_BIT (0x00000080) +#define GLM_ARCH_AVX2_BIT (0x00000100) + +#define GLM_ARCH_UNKNOWN (0) +#define GLM_ARCH_X86 (GLM_ARCH_X86_BIT) +#define GLM_ARCH_SSE (GLM_ARCH_SSE_BIT | GLM_ARCH_SIMD_BIT | GLM_ARCH_X86) +#define GLM_ARCH_SSE2 (GLM_ARCH_SSE2_BIT | GLM_ARCH_SSE) +#define GLM_ARCH_SSE3 (GLM_ARCH_SSE3_BIT | GLM_ARCH_SSE2) +#define GLM_ARCH_SSSE3 (GLM_ARCH_SSSE3_BIT | GLM_ARCH_SSE3) +#define GLM_ARCH_SSE41 (GLM_ARCH_SSE41_BIT | GLM_ARCH_SSSE3) +#define GLM_ARCH_SSE42 (GLM_ARCH_SSE42_BIT | GLM_ARCH_SSE41) +#define GLM_ARCH_AVX (GLM_ARCH_AVX_BIT | GLM_ARCH_SSE42) +#define GLM_ARCH_AVX2 (GLM_ARCH_AVX2_BIT | GLM_ARCH_AVX) +#define GLM_ARCH_ARM (GLM_ARCH_ARM_BIT) +#define GLM_ARCH_ARMV8 (GLM_ARCH_NEON_BIT | GLM_ARCH_SIMD_BIT | GLM_ARCH_ARM | GLM_ARCH_ARMV8_BIT) +#define GLM_ARCH_NEON (GLM_ARCH_NEON_BIT | GLM_ARCH_SIMD_BIT | GLM_ARCH_ARM) +#define GLM_ARCH_MIPS (GLM_ARCH_MIPS_BIT) +#define GLM_ARCH_PPC (GLM_ARCH_PPC_BIT) + +#if defined(GLM_FORCE_ARCH_UNKNOWN) || defined(GLM_FORCE_PURE) +# define GLM_ARCH GLM_ARCH_UNKNOWN +#elif defined(GLM_FORCE_NEON) +# if __ARM_ARCH >= 8 +# define GLM_ARCH (GLM_ARCH_ARMV8) +# else +# define GLM_ARCH (GLM_ARCH_NEON) +# endif +# define GLM_FORCE_INTRINSICS +#elif defined(GLM_FORCE_AVX2) +# define GLM_ARCH (GLM_ARCH_AVX2) +# define GLM_FORCE_INTRINSICS +#elif defined(GLM_FORCE_AVX) +# define GLM_ARCH (GLM_ARCH_AVX) +# define GLM_FORCE_INTRINSICS +#elif defined(GLM_FORCE_SSE42) +# define GLM_ARCH (GLM_ARCH_SSE42) +# define GLM_FORCE_INTRINSICS +#elif defined(GLM_FORCE_SSE41) +# define GLM_ARCH (GLM_ARCH_SSE41) +# define GLM_FORCE_INTRINSICS +#elif defined(GLM_FORCE_SSSE3) +# define GLM_ARCH (GLM_ARCH_SSSE3) +# define GLM_FORCE_INTRINSICS +#elif defined(GLM_FORCE_SSE3) +# define GLM_ARCH (GLM_ARCH_SSE3) +# define GLM_FORCE_INTRINSICS +#elif defined(GLM_FORCE_SSE2) +# define GLM_ARCH (GLM_ARCH_SSE2) +# define GLM_FORCE_INTRINSICS +#elif defined(GLM_FORCE_SSE) +# define GLM_ARCH (GLM_ARCH_SSE) +# define GLM_FORCE_INTRINSICS +#elif defined(GLM_FORCE_INTRINSICS) && !defined(GLM_FORCE_XYZW_ONLY) +# if defined(__AVX2__) +# define GLM_ARCH (GLM_ARCH_AVX2) +# elif defined(__AVX__) +# define GLM_ARCH (GLM_ARCH_AVX) +# elif defined(__SSE4_2__) +# define GLM_ARCH (GLM_ARCH_SSE42) +# elif defined(__SSE4_1__) +# define GLM_ARCH (GLM_ARCH_SSE41) +# elif defined(__SSSE3__) +# define GLM_ARCH (GLM_ARCH_SSSE3) +# elif defined(__SSE3__) +# define GLM_ARCH (GLM_ARCH_SSE3) +# elif defined(__SSE2__) || defined(__x86_64__) || defined(_M_X64) || defined(_M_IX86_FP) +# define GLM_ARCH (GLM_ARCH_SSE2) +# elif defined(__i386__) +# define GLM_ARCH (GLM_ARCH_X86) +# elif defined(__ARM_ARCH) && (__ARM_ARCH >= 8) +# define GLM_ARCH (GLM_ARCH_ARMV8) +# elif defined(__ARM_NEON) +# define GLM_ARCH (GLM_ARCH_ARM | GLM_ARCH_NEON) +# elif defined(__arm__ ) || defined(_M_ARM) +# define GLM_ARCH (GLM_ARCH_ARM) +# elif defined(__mips__ ) +# define GLM_ARCH (GLM_ARCH_MIPS) +# elif defined(__powerpc__ ) || defined(_M_PPC) +# define GLM_ARCH (GLM_ARCH_PPC) +# else +# define GLM_ARCH (GLM_ARCH_UNKNOWN) +# endif +#else +# if defined(__x86_64__) || defined(_M_X64) || defined(_M_IX86) || defined(__i386__) +# define GLM_ARCH (GLM_ARCH_X86) +# elif defined(__arm__) || defined(_M_ARM) +# define GLM_ARCH (GLM_ARCH_ARM) +# elif defined(__powerpc__) || defined(_M_PPC) +# define GLM_ARCH (GLM_ARCH_PPC) +# elif defined(__mips__) +# define GLM_ARCH (GLM_ARCH_MIPS) +# else +# define GLM_ARCH (GLM_ARCH_UNKNOWN) +# endif +#endif + +#if GLM_ARCH & GLM_ARCH_AVX2_BIT +# include +#elif GLM_ARCH & GLM_ARCH_AVX_BIT +# include +#elif GLM_ARCH & GLM_ARCH_SSE42_BIT +# if GLM_COMPILER & GLM_COMPILER_CLANG +# include +# endif +# include +#elif GLM_ARCH & GLM_ARCH_SSE41_BIT +# include +#elif GLM_ARCH & GLM_ARCH_SSSE3_BIT +# include +#elif GLM_ARCH & GLM_ARCH_SSE3_BIT +# include +#elif GLM_ARCH & GLM_ARCH_SSE2_BIT +# include +#elif GLM_ARCH & GLM_ARCH_NEON_BIT +# include "neon.h" +#endif//GLM_ARCH + +#if GLM_ARCH & GLM_ARCH_SSE2_BIT + typedef __m128 glm_f32vec4; + typedef __m128i glm_i32vec4; + typedef __m128i glm_u32vec4; + typedef __m128d glm_f64vec2; + typedef __m128i glm_i64vec2; + typedef __m128i glm_u64vec2; + + typedef glm_f32vec4 glm_vec4; + typedef glm_i32vec4 glm_ivec4; + typedef glm_u32vec4 glm_uvec4; + typedef glm_f64vec2 glm_dvec2; +#endif + +#if GLM_ARCH & GLM_ARCH_AVX_BIT + typedef __m256d glm_f64vec4; + typedef glm_f64vec4 glm_dvec4; +#endif + +#if GLM_ARCH & GLM_ARCH_AVX2_BIT + typedef __m256i glm_i64vec4; + typedef __m256i glm_u64vec4; +#endif + +#if GLM_ARCH & GLM_ARCH_NEON_BIT + typedef float32x4_t glm_f32vec4; + typedef int32x4_t glm_i32vec4; + typedef uint32x4_t glm_u32vec4; +#endif diff --git a/thirdparty/glm/glm/simd/trigonometric.h b/thirdparty/glm/glm/simd/trigonometric.h new file mode 100644 index 000000000000..739b796e7e45 --- /dev/null +++ b/thirdparty/glm/glm/simd/trigonometric.h @@ -0,0 +1,9 @@ +/// @ref simd +/// @file glm/simd/trigonometric.h + +#pragma once + +#if GLM_ARCH & GLM_ARCH_SSE2_BIT + +#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT + diff --git a/thirdparty/glm/glm/simd/vector_relational.h b/thirdparty/glm/glm/simd/vector_relational.h new file mode 100644 index 000000000000..f7385e974736 --- /dev/null +++ b/thirdparty/glm/glm/simd/vector_relational.h @@ -0,0 +1,8 @@ +/// @ref simd +/// @file glm/simd/vector_relational.h + +#pragma once + +#if GLM_ARCH & GLM_ARCH_SSE2_BIT + +#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT diff --git a/thirdparty/glm/glm/trigonometric.hpp b/thirdparty/glm/glm/trigonometric.hpp new file mode 100644 index 000000000000..51d49c132bb5 --- /dev/null +++ b/thirdparty/glm/glm/trigonometric.hpp @@ -0,0 +1,210 @@ +/// @ref core +/// @file glm/trigonometric.hpp +/// +/// @see GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions +/// +/// @defgroup core_func_trigonometric Angle and Trigonometry Functions +/// @ingroup core +/// +/// Function parameters specified as angle are assumed to be in units of radians. +/// In no case will any of these functions result in a divide by zero error. If +/// the divisor of a ratio is 0, then results will be undefined. +/// +/// These all operate component-wise. The description is per component. +/// +/// Include to use these core features. +/// +/// @see ext_vector_trigonometric + +#pragma once + +#include "detail/setup.hpp" +#include "detail/qualifier.hpp" + +namespace glm +{ + /// @addtogroup core_func_trigonometric + /// @{ + + /// Converts degrees to radians and returns the result. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL radians man page + /// @see GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR vec radians(vec const& degrees); + + /// Converts radians to degrees and returns the result. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL degrees man page + /// @see GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR vec degrees(vec const& radians); + + /// The standard trigonometric sine function. + /// The values returned by this function will range from [-1, 1]. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL sin man page + /// @see GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions + template + GLM_FUNC_DECL vec sin(vec const& angle); + + /// The standard trigonometric cosine function. + /// The values returned by this function will range from [-1, 1]. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL cos man page + /// @see GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions + template + GLM_FUNC_DECL vec cos(vec const& angle); + + /// The standard trigonometric tangent function. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL tan man page + /// @see GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions + template + GLM_FUNC_DECL vec tan(vec const& angle); + + /// Arc sine. Returns an angle whose sine is x. + /// The range of values returned by this function is [-PI/2, PI/2]. + /// Results are undefined if |x| > 1. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL asin man page + /// @see GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions + template + GLM_FUNC_DECL vec asin(vec const& x); + + /// Arc cosine. Returns an angle whose cosine is x. + /// The range of values returned by this function is [0, PI]. + /// Results are undefined if |x| > 1. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL acos man page + /// @see GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions + template + GLM_FUNC_DECL vec acos(vec const& x); + + /// Arc tangent. Returns an angle whose tangent is y/x. + /// The signs of x and y are used to determine what + /// quadrant the angle is in. The range of values returned + /// by this function is [-PI, PI]. Results are undefined + /// if x and y are both 0. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL atan man page + /// @see GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions + template + GLM_FUNC_DECL vec atan(vec const& y, vec const& x); + + /// Arc tangent. Returns an angle whose tangent is y_over_x. + /// The range of values returned by this function is [-PI/2, PI/2]. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL atan man page + /// @see GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions + template + GLM_FUNC_DECL vec atan(vec const& y_over_x); + + /// Returns the hyperbolic sine function, (exp(x) - exp(-x)) / 2 + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL sinh man page + /// @see GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions + template + GLM_FUNC_DECL vec sinh(vec const& angle); + + /// Returns the hyperbolic cosine function, (exp(x) + exp(-x)) / 2 + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL cosh man page + /// @see GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions + template + GLM_FUNC_DECL vec cosh(vec const& angle); + + /// Returns the hyperbolic tangent function, sinh(angle) / cosh(angle) + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL tanh man page + /// @see GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions + template + GLM_FUNC_DECL vec tanh(vec const& angle); + + /// Arc hyperbolic sine; returns the inverse of sinh. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL asinh man page + /// @see GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions + template + GLM_FUNC_DECL vec asinh(vec const& x); + + /// Arc hyperbolic cosine; returns the non-negative inverse + /// of cosh. Results are undefined if x < 1. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL acosh man page + /// @see GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions + template + GLM_FUNC_DECL vec acosh(vec const& x); + + /// Arc hyperbolic tangent; returns the inverse of tanh. + /// Results are undefined if abs(x) >= 1. + /// + /// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector + /// @tparam T Floating-point scalar types + /// @tparam Q Value from qualifier enum + /// + /// @see GLSL atanh man page + /// @see GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions + template + GLM_FUNC_DECL vec atanh(vec const& x); + + /// @} +}//namespace glm + +#include "detail/func_trigonometric.inl" diff --git a/thirdparty/glm/glm/vec2.hpp b/thirdparty/glm/glm/vec2.hpp new file mode 100644 index 000000000000..cd4e0708e109 --- /dev/null +++ b/thirdparty/glm/glm/vec2.hpp @@ -0,0 +1,14 @@ +/// @ref core +/// @file glm/vec2.hpp + +#pragma once +#include "./ext/vector_bool2.hpp" +#include "./ext/vector_bool2_precision.hpp" +#include "./ext/vector_float2.hpp" +#include "./ext/vector_float2_precision.hpp" +#include "./ext/vector_double2.hpp" +#include "./ext/vector_double2_precision.hpp" +#include "./ext/vector_int2.hpp" +#include "./ext/vector_int2_sized.hpp" +#include "./ext/vector_uint2.hpp" +#include "./ext/vector_uint2_sized.hpp" diff --git a/thirdparty/glm/glm/vec3.hpp b/thirdparty/glm/glm/vec3.hpp new file mode 100644 index 000000000000..f5a927dbe4c5 --- /dev/null +++ b/thirdparty/glm/glm/vec3.hpp @@ -0,0 +1,14 @@ +/// @ref core +/// @file glm/vec3.hpp + +#pragma once +#include "./ext/vector_bool3.hpp" +#include "./ext/vector_bool3_precision.hpp" +#include "./ext/vector_float3.hpp" +#include "./ext/vector_float3_precision.hpp" +#include "./ext/vector_double3.hpp" +#include "./ext/vector_double3_precision.hpp" +#include "./ext/vector_int3.hpp" +#include "./ext/vector_int3_sized.hpp" +#include "./ext/vector_uint3.hpp" +#include "./ext/vector_uint3_sized.hpp" diff --git a/thirdparty/glm/glm/vec4.hpp b/thirdparty/glm/glm/vec4.hpp new file mode 100644 index 000000000000..c6ea9f1ff4c5 --- /dev/null +++ b/thirdparty/glm/glm/vec4.hpp @@ -0,0 +1,15 @@ +/// @ref core +/// @file glm/vec4.hpp + +#pragma once +#include "./ext/vector_bool4.hpp" +#include "./ext/vector_bool4_precision.hpp" +#include "./ext/vector_float4.hpp" +#include "./ext/vector_float4_precision.hpp" +#include "./ext/vector_double4.hpp" +#include "./ext/vector_double4_precision.hpp" +#include "./ext/vector_int4.hpp" +#include "./ext/vector_int4_sized.hpp" +#include "./ext/vector_uint4.hpp" +#include "./ext/vector_uint4_sized.hpp" + diff --git a/thirdparty/glm/glm/vector_relational.hpp b/thirdparty/glm/glm/vector_relational.hpp new file mode 100644 index 000000000000..a0fe17eb707a --- /dev/null +++ b/thirdparty/glm/glm/vector_relational.hpp @@ -0,0 +1,121 @@ +/// @ref core +/// @file glm/vector_relational.hpp +/// +/// @see GLSL 4.20.8 specification, section 8.7 Vector Relational Functions +/// +/// @defgroup core_func_vector_relational Vector Relational Functions +/// @ingroup core +/// +/// Relational and equality operators (<, <=, >, >=, ==, !=) are defined to +/// operate on scalars and produce scalar Boolean results. For vector results, +/// use the following built-in functions. +/// +/// In all cases, the sizes of all the input and return vectors for any particular +/// call must match. +/// +/// Include to use these core features. +/// +/// @see ext_vector_relational + +#pragma once + +#include "detail/qualifier.hpp" +#include "detail/setup.hpp" + +namespace glm +{ + /// @addtogroup core_func_vector_relational + /// @{ + + /// Returns the component-wise comparison result of x < y. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T A floating-point or integer scalar type. + /// + /// @see GLSL lessThan man page + /// @see GLSL 4.20.8 specification, section 8.7 Vector Relational Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR vec lessThan(vec const& x, vec const& y); + + /// Returns the component-wise comparison of result x <= y. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T A floating-point or integer scalar type. + /// + /// @see GLSL lessThanEqual man page + /// @see GLSL 4.20.8 specification, section 8.7 Vector Relational Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR vec lessThanEqual(vec const& x, vec const& y); + + /// Returns the component-wise comparison of result x > y. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T A floating-point or integer scalar type. + /// + /// @see GLSL greaterThan man page + /// @see GLSL 4.20.8 specification, section 8.7 Vector Relational Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR vec greaterThan(vec const& x, vec const& y); + + /// Returns the component-wise comparison of result x >= y. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T A floating-point or integer scalar type. + /// + /// @see GLSL greaterThanEqual man page + /// @see GLSL 4.20.8 specification, section 8.7 Vector Relational Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR vec greaterThanEqual(vec const& x, vec const& y); + + /// Returns the component-wise comparison of result x == y. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T A floating-point, integer or bool scalar type. + /// + /// @see GLSL equal man page + /// @see GLSL 4.20.8 specification, section 8.7 Vector Relational Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR vec equal(vec const& x, vec const& y); + + /// Returns the component-wise comparison of result x != y. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// @tparam T A floating-point, integer or bool scalar type. + /// + /// @see GLSL notEqual man page + /// @see GLSL 4.20.8 specification, section 8.7 Vector Relational Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR vec notEqual(vec const& x, vec const& y); + + /// Returns true if any component of x is true. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// + /// @see GLSL any man page + /// @see GLSL 4.20.8 specification, section 8.7 Vector Relational Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR bool any(vec const& v); + + /// Returns true if all components of x are true. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// + /// @see GLSL all man page + /// @see GLSL 4.20.8 specification, section 8.7 Vector Relational Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR bool all(vec const& v); + + /// Returns the component-wise logical complement of x. + /// /!\ Because of language incompatibilities between C++ and GLSL, GLM defines the function not but not_ instead. + /// + /// @tparam L An integer between 1 and 4 included that qualify the dimension of the vector. + /// + /// @see GLSL not man page + /// @see GLSL 4.20.8 specification, section 8.7 Vector Relational Functions + template + GLM_FUNC_DECL GLM_CONSTEXPR vec not_(vec const& v); + + /// @} +}//namespace glm + +#include "detail/func_vector_relational.inl" diff --git a/thirdparty/manifold/AUTHORS b/thirdparty/manifold/AUTHORS new file mode 100644 index 000000000000..a3e3c587f416 --- /dev/null +++ b/thirdparty/manifold/AUTHORS @@ -0,0 +1,10 @@ +# This is the list of Manifold's significant contributors. +# +# This does not necessarily list everyone who has contributed code, +# especially since many employees of one corporation may be contributing. +# To see the full list of contributors, see the revision history in +# source control. +Emmett Lalish +Chun Kit LAM +Geoff deRosenroll +Google LLC diff --git a/thirdparty/manifold/LICENSE b/thirdparty/manifold/LICENSE new file mode 100644 index 000000000000..261eeb9e9f8b --- /dev/null +++ b/thirdparty/manifold/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/thirdparty/manifold/src/collider/include/manifold/collider.h b/thirdparty/manifold/src/collider/include/manifold/collider.h new file mode 100644 index 000000000000..37a0cb91e5ad --- /dev/null +++ b/thirdparty/manifold/src/collider/include/manifold/collider.h @@ -0,0 +1,396 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#include "manifold/common.h" +#include "manifold/parallel.h" +#include "manifold/sparse.h" +#include "manifold/utils.h" +#include "manifold/vec.h" + +#ifdef _MSC_VER +#include +#endif + +namespace manifold { + +namespace collider_internal { +// Adjustable parameters +constexpr int kInitialLength = 128; +constexpr int kLengthMultiple = 4; +constexpr int kSequentialThreshold = 512; +// Fundamental constants +constexpr int kRoot = 1; + +#ifdef _MSC_VER + +#ifndef _WINDEF_ +typedef unsigned long DWORD; +#endif + +uint32_t inline ctz(uint32_t value) { + DWORD trailing_zero = 0; + + if (_BitScanForward(&trailing_zero, value)) { + return trailing_zero; + } else { + // This is undefined, I better choose 32 than 0 + return 32; + } +} + +uint32_t inline clz(uint32_t value) { + DWORD leading_zero = 0; + + if (_BitScanReverse(&leading_zero, value)) { + return 31 - leading_zero; + } else { + // Same remarks as above + return 32; + } +} +#endif + +constexpr inline bool IsLeaf(int node) { return node % 2 == 0; } +constexpr inline bool IsInternal(int node) { return node % 2 == 1; } +constexpr inline int Node2Internal(int node) { return (node - 1) / 2; } +constexpr inline int Internal2Node(int internal) { return internal * 2 + 1; } +constexpr inline int Node2Leaf(int node) { return node / 2; } +constexpr inline int Leaf2Node(int leaf) { return leaf * 2; } + +struct CreateRadixTree { + VecView nodeParent_; + VecView> internalChildren_; + const VecView leafMorton_; + + int PrefixLength(uint32_t a, uint32_t b) const { +// count-leading-zeros is used to find the number of identical highest-order +// bits +#ifdef _MSC_VER + // return __lzcnt(a ^ b); + return clz(a ^ b); +#else + return __builtin_clz(a ^ b); +#endif + } + + int PrefixLength(int i, int j) const { + if (j < 0 || j >= static_cast(leafMorton_.size())) { + return -1; + } else { + int out; + if (leafMorton_[i] == leafMorton_[j]) + // use index to disambiguate + out = 32 + + PrefixLength(static_cast(i), static_cast(j)); + else + out = PrefixLength(leafMorton_[i], leafMorton_[j]); + return out; + } + } + + int RangeEnd(int i) const { + // Determine direction of range (+1 or -1) + int dir = PrefixLength(i, i + 1) - PrefixLength(i, i - 1); + dir = (dir > 0) - (dir < 0); + // Compute conservative range length with exponential increase + int commonPrefix = PrefixLength(i, i - dir); + int max_length = kInitialLength; + while (PrefixLength(i, i + dir * max_length) > commonPrefix) + max_length *= kLengthMultiple; + // Compute precise range length with binary search + int length = 0; + for (int step = max_length / 2; step > 0; step /= 2) { + if (PrefixLength(i, i + dir * (length + step)) > commonPrefix) + length += step; + } + return i + dir * length; + } + + int FindSplit(int first, int last) const { + int commonPrefix = PrefixLength(first, last); + // Find the furthest object that shares more than commonPrefix bits with the + // first one, using binary search. + int split = first; + int step = last - first; + do { + step = (step + 1) >> 1; // divide by 2, rounding up + int newSplit = split + step; + if (newSplit < last) { + int splitPrefix = PrefixLength(first, newSplit); + if (splitPrefix > commonPrefix) split = newSplit; + } + } while (step > 1); + return split; + } + + void operator()(int internal) { + int first = internal; + // Find the range of objects with a common prefix + int last = RangeEnd(first); + if (first > last) std::swap(first, last); + // Determine where the next-highest difference occurs + int split = FindSplit(first, last); + int child1 = split == first ? Leaf2Node(split) : Internal2Node(split); + ++split; + int child2 = split == last ? Leaf2Node(split) : Internal2Node(split); + // Record parent_child relationships. + internalChildren_[internal].first = child1; + internalChildren_[internal].second = child2; + int node = Internal2Node(internal); + nodeParent_[child1] = node; + nodeParent_[child2] = node; + } +}; + +template +struct FindCollisions { + VecView queries; + VecView nodeBBox_; + VecView> internalChildren_; + Recorder recorder; + + int RecordCollision(int node, const int queryIdx) { + bool overlaps = nodeBBox_[node].DoesOverlap(queries[queryIdx]); + if (overlaps && IsLeaf(node)) { + int leafIdx = Node2Leaf(node); + if (!selfCollision || leafIdx != queryIdx) { + recorder.record(queryIdx, leafIdx); + } + } + return overlaps && IsInternal(node); // Should traverse into node + } + + void operator()(const int queryIdx) { + // stack cannot overflow because radix tree has max depth 30 (Morton code) + + // 32 (index). + int stack[64]; + int top = -1; + // Depth-first search + int node = kRoot; + // same implies that this query do not have any collision + if (recorder.earlyexit(queryIdx)) return; + while (1) { + int internal = Node2Internal(node); + int child1 = internalChildren_[internal].first; + int child2 = internalChildren_[internal].second; + + int traverse1 = RecordCollision(child1, queryIdx); + int traverse2 = RecordCollision(child2, queryIdx); + + if (!traverse1 && !traverse2) { + if (top < 0) break; // done + node = stack[top--]; // get a saved node + } else { + node = traverse1 ? child1 : child2; // go here next + if (traverse1 && traverse2) { + stack[++top] = child2; // save the other for later + } + } + } + recorder.end(queryIdx); + } +}; + +struct CountCollisions { + VecView counts; + VecView empty; + void record(int queryIdx, int _leafIdx) { counts[queryIdx]++; } + bool earlyexit(int _queryIdx) { return false; } + void end(int queryIdx) { + if (counts[queryIdx] == 0) empty[queryIdx] = 1; + } +}; + +template +struct SeqCollisionRecorder { + SparseIndices& queryTri_; + void record(int queryIdx, int leafIdx) const { + if (inverted) + queryTri_.Add(leafIdx, queryIdx); + else + queryTri_.Add(queryIdx, leafIdx); + } + bool earlyexit(int queryIdx) const { return false; } + void end(int queryIdx) const {} +}; + +template +struct ParCollisionRecorder { + SparseIndices& queryTri; + VecView counts; + VecView empty; + void record(int queryIdx, int leafIdx) { + int pos = counts[queryIdx]++; + if (inverted) + queryTri.Set(pos, leafIdx, queryIdx); + else + queryTri.Set(pos, queryIdx, leafIdx); + } + bool earlyexit(int queryIdx) const { return empty[queryIdx] == 1; } + void end(int queryIdx) const {} +}; + +struct BuildInternalBoxes { + VecView nodeBBox_; + VecView counter_; + const VecView nodeParent_; + const VecView> internalChildren_; + + void operator()(int leaf) { + int node = Leaf2Node(leaf); + do { + node = nodeParent_[node]; + int internal = Node2Internal(node); + if (AtomicAdd(counter_[internal], 1) == 0) return; + nodeBBox_[node] = nodeBBox_[internalChildren_[internal].first].Union( + nodeBBox_[internalChildren_[internal].second]); + } while (node != kRoot); + } +}; + +struct TransformBox { + const mat4x3 transform; + void operator()(Box& box) { box = box.Transform(transform); } +}; + +constexpr inline uint32_t SpreadBits3(uint32_t v) { + v = 0xFF0000FFu & (v * 0x00010001u); + v = 0x0F00F00Fu & (v * 0x00000101u); + v = 0xC30C30C3u & (v * 0x00000011u); + v = 0x49249249u & (v * 0x00000005u); + return v; +} +} // namespace collider_internal + +/** @ingroup Private */ +class Collider { + public: + Collider() {}; + + Collider(const VecView& leafBB, + const VecView& leafMorton) { + ZoneScoped; + DEBUG_ASSERT(leafBB.size() == leafMorton.size(), userErr, + "vectors must be the same length"); + int num_nodes = 2 * leafBB.size() - 1; + // assign and allocate members + nodeBBox_.resize(num_nodes); + nodeParent_.resize(num_nodes, -1); + internalChildren_.resize(leafBB.size() - 1, std::make_pair(-1, -1)); + // organize tree + for_each_n(autoPolicy(NumInternal(), 1e4), countAt(0), NumInternal(), + collider_internal::CreateRadixTree( + {nodeParent_, internalChildren_, leafMorton})); + UpdateBoxes(leafBB); + } + + bool Transform(mat4x3 transform) { + ZoneScoped; + bool axisAligned = true; + for (int row : {0, 1, 2}) { + int count = 0; + for (int col : {0, 1, 2}) { + if (transform[col][row] == 0.0) ++count; + } + if (count != 2) axisAligned = false; + } + if (axisAligned) { + for_each(autoPolicy(nodeBBox_.size(), 1e5), nodeBBox_.begin(), + nodeBBox_.end(), + [transform](Box& box) { box = box.Transform(transform); }); + } + return axisAligned; + } + + void UpdateBoxes(const VecView& leafBB) { + ZoneScoped; + DEBUG_ASSERT(leafBB.size() == NumLeaves(), userErr, + "must have the same number of updated boxes as original"); + // copy in leaf node Boxes + auto leaves = StridedRange(nodeBBox_.begin(), nodeBBox_.end(), 2); + copy(leafBB.cbegin(), leafBB.cend(), leaves.begin()); + // create global counters + Vec counter(NumInternal(), 0); + // kernel over leaves to save internal Boxes + for_each_n(autoPolicy(NumInternal(), 1e3), countAt(0), NumLeaves(), + collider_internal::BuildInternalBoxes( + {nodeBBox_, counter, nodeParent_, internalChildren_})); + } + + template + SparseIndices Collisions(const VecView& queriesIn) const { + ZoneScoped; + using collider_internal::FindCollisions; + // note that the length is 1 larger than the number of queries so the last + // element can store the sum when using exclusive scan + if (queriesIn.size() < collider_internal::kSequentialThreshold) { + SparseIndices queryTri; + for_each_n( + ExecutionPolicy::Seq, countAt(0), queriesIn.size(), + FindCollisions>{ + queriesIn, nodeBBox_, internalChildren_, {queryTri}}); + return queryTri; + } else { + // compute the number of collisions to determine the size for allocation + // and offset, this avoids the need for atomic + Vec counts(queriesIn.size() + 1, 0); + Vec empty(queriesIn.size(), 0); + for_each_n( + ExecutionPolicy::Par, countAt(0), queriesIn.size(), + FindCollisions{ + queriesIn, nodeBBox_, internalChildren_, {counts, empty}}); + // compute start index for each query and total count + manifold::exclusive_scan(counts.begin(), counts.end(), counts.begin(), 0, + std::plus()); + if (counts.back() == 0) return SparseIndices(0); + SparseIndices queryTri(counts.back()); + // actually recording collisions + for_each_n( + ExecutionPolicy::Par, countAt(0), queriesIn.size(), + FindCollisions>{ + queriesIn, + nodeBBox_, + internalChildren_, + {queryTri, counts, empty}}); + return queryTri; + } + } + + static uint32_t MortonCode(vec3 position, Box bBox) { + using collider_internal::SpreadBits3; + vec3 xyz = (position - bBox.min) / (bBox.max - bBox.min); + xyz = glm::min(vec3(1023.0), glm::max(vec3(0.0), 1024.0 * xyz)); + uint32_t x = SpreadBits3(static_cast(xyz.x)); + uint32_t y = SpreadBits3(static_cast(xyz.y)); + uint32_t z = SpreadBits3(static_cast(xyz.z)); + return x * 4 + y * 2 + z; + } + + private: + Vec nodeBBox_; + Vec nodeParent_; + // even nodes are leaves, odd nodes are internal, root is 1 + Vec> internalChildren_; + + size_t NumInternal() const { return internalChildren_.size(); }; + size_t NumLeaves() const { + return internalChildren_.empty() ? 0 : (NumInternal() + 1); + }; +}; + +} // namespace manifold diff --git a/thirdparty/manifold/src/cross_section/include/manifold/cross_section.h b/thirdparty/manifold/src/cross_section/include/manifold/cross_section.h new file mode 100644 index 000000000000..bf016692a96c --- /dev/null +++ b/thirdparty/manifold/src/cross_section/include/manifold/cross_section.h @@ -0,0 +1,173 @@ +// Copyright 2023 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include + +#include "manifold/common.h" +#include "manifold/vec_view.h" + +namespace manifold { + +/** @addtogroup Core + * @{ + */ + +struct PathImpl; + +/** + * Two-dimensional cross sections guaranteed to be without self-intersections, + * or overlaps between polygons (from construction onwards). This class makes + * use of the [Clipper2](http://www.angusj.com/clipper2/Docs/Overview.htm) + * library for polygon clipping (boolean) and offsetting operations. + */ +class CrossSection { + public: + /** @name Creation + * Constructors + */ + ///@{ + + CrossSection(); + ~CrossSection(); + + CrossSection(const CrossSection& other); + CrossSection& operator=(const CrossSection& other); + CrossSection(CrossSection&&) noexcept; + CrossSection& operator=(CrossSection&&) noexcept; + + // Adapted from Clipper2 docs: + // http://www.angusj.com/clipper2/Docs/Units/Clipper/Types/FillRule.htm + // (Copyright © 2010-2023 Angus Johnson) + /** + * Filling rules defining which polygon sub-regions are considered to be + * inside a given polygon, and which sub-regions will not (based on winding + * numbers). See the [Clipper2 + * docs](http://www.angusj.com/clipper2/Docs/Units/Clipper/Types/FillRule.htm) + * for a detailed explaination with illusrations. + */ + enum class FillRule { + EvenOdd, ///< Only odd numbered sub-regions are filled. + NonZero, ///< Only non-zero sub-regions are filled. + Positive, ///< Only sub-regions with winding counts > 0 are filled. + Negative ///< Only sub-regions with winding counts < 0 are filled. + }; + + CrossSection(const SimplePolygon& contour, + FillRule fillrule = FillRule::Positive); + CrossSection(const Polygons& contours, + FillRule fillrule = FillRule::Positive); + CrossSection(const Rect& rect); + static CrossSection Square(const vec2 dims, bool center = false); + static CrossSection Circle(double radius, int circularSegments = 0); + ///@} + + /** @name Information + * Details of the cross-section + */ + ///@{ + double Area() const; + int NumVert() const; + int NumContour() const; + bool IsEmpty() const; + Rect Bounds() const; + ///@} + + /** @name Modification + */ + ///@{ + CrossSection Translate(const vec2 v) const; + CrossSection Rotate(double degrees) const; + CrossSection Scale(const vec2 s) const; + CrossSection Mirror(const vec2 ax) const; + CrossSection Transform(const mat3x2& m) const; + CrossSection Warp(std::function warpFunc) const; + CrossSection WarpBatch(std::function)> warpFunc) const; + CrossSection Simplify(double epsilon = 1e-6) const; + + // Adapted from Clipper2 docs: + // http://www.angusj.com/clipper2/Docs/Units/Clipper/Types/JoinType.htm + // (Copyright © 2010-2023 Angus Johnson) + /** + * Specifies the treatment of path/contour joins (corners) when offseting + * CrossSections. See the [Clipper2 + * doc](http://www.angusj.com/clipper2/Docs/Units/Clipper/Types/JoinType.htm) + * for illustrations. + */ + enum class JoinType { + Square, /*!< Squaring is applied uniformly at all joins where the internal + join angle is less that 90 degrees. The squared edge will be at + exactly the offset distance from the join vertex. */ + Round, /*!< Rounding is applied to all joins that have convex external + angles, and it maintains the exact offset distance from the join + vertex. */ + Miter /*!< There's a necessary limit to mitered joins (to avoid narrow + angled joins producing excessively long and narrow + [spikes](http://www.angusj.com/clipper2/Docs/Units/Clipper.Offset/Classes/ClipperOffset/Properties/MiterLimit.htm)). + So where mitered joins would exceed a given maximum miter distance + (relative to the offset distance), these are 'squared' instead. */ + }; + + CrossSection Offset(double delta, JoinType jt, double miter_limit = 2.0, + int circularSegments = 0) const; + ///@} + + /** @name Boolean + * Combine two manifolds + */ + ///@{ + CrossSection Boolean(const CrossSection& second, OpType op) const; + static CrossSection BatchBoolean( + const std::vector& crossSections, OpType op); + CrossSection operator+(const CrossSection&) const; + CrossSection& operator+=(const CrossSection&); + CrossSection operator-(const CrossSection&) const; + CrossSection& operator-=(const CrossSection&); + CrossSection operator^(const CrossSection&) const; + CrossSection& operator^=(const CrossSection&); + ///@} + + /** @name Topological + */ + ///@{ + static CrossSection Compose(std::vector&); + std::vector Decompose() const; + ///@} + + /** @name Convex Hulling + */ + ///@{ + CrossSection Hull() const; + static CrossSection Hull(const std::vector& crossSections); + static CrossSection Hull(const SimplePolygon poly); + static CrossSection Hull(const Polygons polys); + ///@} + /// + /** @name Conversion + */ + ///@{ + Polygons ToPolygons() const; + ///@} + + private: + mutable std::shared_ptr paths_; + mutable mat3x2 transform_ = mat3x2(1.0); + CrossSection(std::shared_ptr paths); + std::shared_ptr GetPaths() const; +}; +/** @} */ +} // namespace manifold diff --git a/thirdparty/manifold/src/cross_section/src/cross_section.cpp b/thirdparty/manifold/src/cross_section/src/cross_section.cpp new file mode 100644 index 000000000000..5b25c1b7e47a --- /dev/null +++ b/thirdparty/manifold/src/cross_section/src/cross_section.cpp @@ -0,0 +1,788 @@ +// Copyright 2023 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "manifold/cross_section.h" + +#include "clipper2/clipper.core.h" +#include "clipper2/clipper.h" +#include "clipper2/clipper.offset.h" + +namespace C2 = Clipper2Lib; + +using namespace manifold; + +namespace manifold { +struct PathImpl { + PathImpl(const C2::PathsD paths_) : paths_(paths_) {} + operator const C2::PathsD&() const { return paths_; } + const C2::PathsD paths_; +}; +} // namespace manifold + +namespace { +const int precision_ = 8; + +C2::ClipType cliptype_of_op(OpType op) { + C2::ClipType ct = C2::ClipType::Union; + switch (op) { + case OpType::Add: + break; + case OpType::Subtract: + ct = C2::ClipType::Difference; + break; + case OpType::Intersect: + ct = C2::ClipType::Intersection; + break; + }; + return ct; +} + +C2::FillRule fr(CrossSection::FillRule fillrule) { + C2::FillRule fr = C2::FillRule::EvenOdd; + switch (fillrule) { + case CrossSection::FillRule::EvenOdd: + break; + case CrossSection::FillRule::NonZero: + fr = C2::FillRule::NonZero; + break; + case CrossSection::FillRule::Positive: + fr = C2::FillRule::Positive; + break; + case CrossSection::FillRule::Negative: + fr = C2::FillRule::Negative; + break; + }; + return fr; +} + +C2::JoinType jt(CrossSection::JoinType jointype) { + C2::JoinType jt = C2::JoinType::Square; + switch (jointype) { + case CrossSection::JoinType::Square: + break; + case CrossSection::JoinType::Round: + jt = C2::JoinType::Round; + break; + case CrossSection::JoinType::Miter: + jt = C2::JoinType::Miter; + break; + }; + return jt; +} + +vec2 v2_of_pd(const C2::PointD p) { return {p.x, p.y}; } + +C2::PointD v2_to_pd(const vec2 v) { return C2::PointD(v.x, v.y); } + +C2::PathD pathd_of_contour(const SimplePolygon& ctr) { + auto p = C2::PathD(); + p.reserve(ctr.size()); + for (auto v : ctr) { + p.push_back(v2_to_pd(v)); + } + return p; +} + +C2::PathsD transform(const C2::PathsD ps, const mat3x2 m) { + const bool invert = glm::determinant(mat2(m)) < 0; + auto transformed = C2::PathsD(); + transformed.reserve(ps.size()); + for (auto path : ps) { + auto sz = path.size(); + auto s = C2::PathD(sz); + for (size_t i = 0; i < sz; ++i) { + auto idx = invert ? sz - 1 - i : i; + s[idx] = v2_to_pd(m * vec3(path[i].x, path[i].y, 1)); + } + transformed.push_back(s); + } + return transformed; +} + +std::shared_ptr shared_paths(const C2::PathsD& ps) { + return std::make_shared(ps); +} + +// forward declaration for mutual recursion +void decompose_hole(const C2::PolyTreeD* outline, + std::vector& polys, C2::PathsD& poly, + size_t n_holes, size_t j); + +void decompose_outline(const C2::PolyTreeD* tree, + std::vector& polys, size_t i) { + auto n_outlines = tree->Count(); + if (i < n_outlines) { + auto outline = tree->Child(i); + auto n_holes = outline->Count(); + auto poly = C2::PathsD(n_holes + 1); + poly[0] = outline->Polygon(); + decompose_hole(outline, polys, poly, n_holes, 0); + polys.push_back(poly); + if (i < n_outlines - 1) { + decompose_outline(tree, polys, i + 1); + } + } +} + +void decompose_hole(const C2::PolyTreeD* outline, + std::vector& polys, C2::PathsD& poly, + size_t n_holes, size_t j) { + if (j < n_holes) { + auto child = outline->Child(j); + decompose_outline(child, polys, 0); + poly[j + 1] = child->Polygon(); + decompose_hole(outline, polys, poly, n_holes, j + 1); + } +} + +void flatten(const C2::PolyTreeD* tree, C2::PathsD& polys, size_t i) { + auto n_outlines = tree->Count(); + if (i < n_outlines) { + auto outline = tree->Child(i); + flatten(outline, polys, 0); + polys.push_back(outline->Polygon()); + if (i < n_outlines - 1) { + flatten(tree, polys, i + 1); + } + } +} + +bool V2Lesser(vec2 a, vec2 b) { + if (a.x == b.x) return a.y < b.y; + return a.x < b.x; +} + +void HullBacktrack(const vec2& pt, std::vector& stack) { + auto sz = stack.size(); + while (sz >= 2 && CCW(stack[sz - 2], stack[sz - 1], pt, 0.0) <= 0.0) { + stack.pop_back(); + sz = stack.size(); + } +} + +// Based on method described here: +// https://www.hackerearth.com/practice/math/geometry/line-sweep-technique/tutorial/ +// Changed to follow: +// https://en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain +// This is the same algorithm (Andrew, also called Montone Chain). +C2::PathD HullImpl(SimplePolygon& pts) { + size_t len = pts.size(); + if (len < 3) return C2::PathD(); // not enough points to create a polygon + std::sort(pts.begin(), pts.end(), V2Lesser); + + auto lower = std::vector{}; + for (auto& pt : pts) { + HullBacktrack(pt, lower); + lower.push_back(pt); + } + auto upper = std::vector{}; + for (auto pt_iter = pts.rbegin(); pt_iter != pts.rend(); pt_iter++) { + HullBacktrack(*pt_iter, upper); + upper.push_back(*pt_iter); + } + + upper.pop_back(); + lower.pop_back(); + + auto path = C2::PathD(); + path.reserve(lower.size() + upper.size()); + for (const auto& l : lower) path.push_back(v2_to_pd(l)); + for (const auto& u : upper) path.push_back(v2_to_pd(u)); + return path; +} +} // namespace + +namespace manifold { + +/** + * The default constructor is an empty cross-section (containing no contours). + */ +CrossSection::CrossSection() { + paths_ = std::make_shared(C2::PathsD()); +} + +CrossSection::~CrossSection() = default; +CrossSection::CrossSection(CrossSection&&) noexcept = default; +CrossSection& CrossSection::operator=(CrossSection&&) noexcept = default; + +/** + * The copy constructor avoids copying the underlying paths vector (sharing + * with its parent via shared_ptr), however subsequent transformations, and + * their application will not be shared. It is generally recommended to avoid + * this, opting instead to simply create CrossSections with the available + * const methods. + */ +CrossSection::CrossSection(const CrossSection& other) { + paths_ = other.paths_; + transform_ = other.transform_; +} + +CrossSection& CrossSection::operator=(const CrossSection& other) { + if (this != &other) { + paths_ = other.paths_; + transform_ = other.transform_; + } + return *this; +}; + +// Private, skips unioning. +CrossSection::CrossSection(std::shared_ptr ps) { paths_ = ps; } + +/** + * Create a 2d cross-section from a single contour. A boolean union operation + * (with Positive filling rule by default) is performed to ensure the + * resulting CrossSection is free of self-intersections. + * + * @param contour A closed path outlining the desired cross-section. + * @param fillrule The filling rule used to interpret polygon sub-regions + * created by self-intersections in contour. + */ +CrossSection::CrossSection(const SimplePolygon& contour, FillRule fillrule) { + auto ps = C2::PathsD{(pathd_of_contour(contour))}; + paths_ = shared_paths(C2::Union(ps, fr(fillrule), precision_)); +} + +/** + * Create a 2d cross-section from a set of contours (complex polygons). A + * boolean union operation (with Positive filling rule by default) is + * performed to combine overlapping polygons and ensure the resulting + * CrossSection is free of intersections. + * + * @param contours A set of closed paths describing zero or more complex + * polygons. + * @param fillrule The filling rule used to interpret polygon sub-regions in + * contours. + */ +CrossSection::CrossSection(const Polygons& contours, FillRule fillrule) { + auto ps = C2::PathsD(); + ps.reserve(contours.size()); + for (auto ctr : contours) { + ps.push_back(pathd_of_contour(ctr)); + } + paths_ = shared_paths(C2::Union(ps, fr(fillrule), precision_)); +} + +/** + * Create a 2d cross-section from an axis-aligned rectangle (bounding box). + * + * @param rect An axis-aligned rectangular bounding box. + */ +CrossSection::CrossSection(const Rect& rect) { + C2::PathD p(4); + p[0] = C2::PointD(rect.min.x, rect.min.y); + p[1] = C2::PointD(rect.max.x, rect.min.y); + p[2] = C2::PointD(rect.max.x, rect.max.y); + p[3] = C2::PointD(rect.min.x, rect.max.y); + paths_ = shared_paths(C2::PathsD{p}); +} + +// Private +// All access to paths_ should be done through the GetPaths() method, which +// applies the accumulated transform_ +std::shared_ptr CrossSection::GetPaths() const { + if (transform_ == mat3x2(1.0)) { + return paths_; + } + paths_ = shared_paths(::transform(paths_->paths_, transform_)); + transform_ = mat3x2(1.0); + return paths_; +} + +/** + * Constructs a square with the given XY dimensions. By default it is + * positioned in the first quadrant, touching the origin. If any dimensions in + * size are negative, or if all are zero, an empty Manifold will be returned. + * + * @param size The X, and Y dimensions of the square. + * @param center Set to true to shift the center to the origin. + */ +CrossSection CrossSection::Square(const vec2 size, bool center) { + if (size.x < 0.0 || size.y < 0.0 || glm::length(size) == 0.0) { + return CrossSection(); + } + + auto p = C2::PathD(4); + if (center) { + const auto w = size.x / 2; + const auto h = size.y / 2; + p[0] = C2::PointD(w, h); + p[1] = C2::PointD(-w, h); + p[2] = C2::PointD(-w, -h); + p[3] = C2::PointD(w, -h); + } else { + const double x = size.x; + const double y = size.y; + p[0] = C2::PointD(0.0, 0.0); + p[1] = C2::PointD(x, 0.0); + p[2] = C2::PointD(x, y); + p[3] = C2::PointD(0.0, y); + } + return CrossSection(shared_paths(C2::PathsD{p})); +} + +/** + * Constructs a circle of a given radius. + * + * @param radius Radius of the circle. Must be positive. + * @param circularSegments Number of segments along its diameter. Default is + * calculated by the static Quality defaults according to the radius. + */ +CrossSection CrossSection::Circle(double radius, int circularSegments) { + if (radius <= 0.0) { + return CrossSection(); + } + int n = circularSegments > 2 ? circularSegments + : Quality::GetCircularSegments(radius); + double dPhi = 360.0 / n; + auto circle = C2::PathD(n); + for (int i = 0; i < n; ++i) { + circle[i] = C2::PointD(radius * cosd(dPhi * i), radius * sind(dPhi * i)); + } + return CrossSection(shared_paths(C2::PathsD{circle})); +} + +/** + * Perform the given boolean operation between this and another CrossSection. + */ +CrossSection CrossSection::Boolean(const CrossSection& second, + OpType op) const { + auto ct = cliptype_of_op(op); + auto res = C2::BooleanOp(ct, C2::FillRule::Positive, GetPaths()->paths_, + second.GetPaths()->paths_, precision_); + return CrossSection(shared_paths(res)); +} + +/** + * Perform the given boolean operation on a list of CrossSections. In case of + * Subtract, all CrossSections in the tail are differenced from the head. + */ +CrossSection CrossSection::BatchBoolean( + const std::vector& crossSections, OpType op) { + if (crossSections.size() == 0) + return CrossSection(); + else if (crossSections.size() == 1) + return crossSections[0]; + + auto subjs = crossSections[0].GetPaths(); + int n_clips = 0; + for (size_t i = 1; i < crossSections.size(); ++i) { + n_clips += crossSections[i].GetPaths()->paths_.size(); + } + auto clips = C2::PathsD(); + clips.reserve(n_clips); + for (size_t i = 1; i < crossSections.size(); ++i) { + auto ps = crossSections[i].GetPaths(); + clips.insert(clips.end(), ps->paths_.begin(), ps->paths_.end()); + } + + auto ct = cliptype_of_op(op); + auto res = C2::BooleanOp(ct, C2::FillRule::Positive, subjs->paths_, clips, + precision_); + return CrossSection(shared_paths(res)); +} + +/** + * Compute the boolean union between two cross-sections. + */ +CrossSection CrossSection::operator+(const CrossSection& Q) const { + return Boolean(Q, OpType::Add); +} + +/** + * Compute the boolean union between two cross-sections, assigning the result + * to the first. + */ +CrossSection& CrossSection::operator+=(const CrossSection& Q) { + *this = *this + Q; + return *this; +} + +/** + * Compute the boolean difference of a (clip) cross-section from another + * (subject). + */ +CrossSection CrossSection::operator-(const CrossSection& Q) const { + return Boolean(Q, OpType::Subtract); +} + +/** + * Compute the boolean difference of a (clip) cross-section from a another + * (subject), assigning the result to the subject. + */ +CrossSection& CrossSection::operator-=(const CrossSection& Q) { + *this = *this - Q; + return *this; +} + +/** + * Compute the boolean intersection between two cross-sections. + */ +CrossSection CrossSection::operator^(const CrossSection& Q) const { + return Boolean(Q, OpType::Intersect); +} + +/** + * Compute the boolean intersection between two cross-sections, assigning the + * result to the first. + */ +CrossSection& CrossSection::operator^=(const CrossSection& Q) { + *this = *this ^ Q; + return *this; +} + +/** + * Construct a CrossSection from a vector of other CrossSections (batch + * boolean union). + */ +CrossSection CrossSection::Compose(std::vector& crossSections) { + return BatchBoolean(crossSections, OpType::Add); +} + +/** + * This operation returns a vector of CrossSections that are topologically + * disconnected, each containing one outline contour with zero or more + * holes. + */ +std::vector CrossSection::Decompose() const { + if (NumContour() < 2) { + return std::vector{CrossSection(*this)}; + } + + C2::PolyTreeD tree; + C2::BooleanOp(C2::ClipType::Union, C2::FillRule::Positive, GetPaths()->paths_, + C2::PathsD(), tree, precision_); + + auto polys = std::vector(); + decompose_outline(&tree, polys, 0); + + auto comps = std::vector(); + comps.reserve(polys.size()); + // reverse the stack while wrapping + for (auto poly = polys.rbegin(); poly != polys.rend(); ++poly) + comps.emplace_back(CrossSection(shared_paths(*poly))); + + return comps; +} + +/** + * Move this CrossSection in space. This operation can be chained. Transforms + * are combined and applied lazily. + * + * @param v The vector to add to every vertex. + */ +CrossSection CrossSection::Translate(const vec2 v) const { + mat3x2 m(1.0, 0.0, // + 0.0, 1.0, // + v.x, v.y); + return Transform(m); +} + +/** + * Applies a (Z-axis) rotation to the CrossSection, in degrees. This operation + * can be chained. Transforms are combined and applied lazily. + * + * @param degrees degrees about the Z-axis to rotate. + */ +CrossSection CrossSection::Rotate(double degrees) const { + auto s = sind(degrees); + auto c = cosd(degrees); + mat3x2 m(c, s, // + -s, c, // + 0.0, 0.0); + return Transform(m); +} + +/** + * Scale this CrossSection in space. This operation can be chained. Transforms + * are combined and applied lazily. + * + * @param v The vector to multiply every vertex by per component. + */ +CrossSection CrossSection::Scale(const vec2 scale) const { + mat3x2 m(scale.x, 0.0, // + 0.0, scale.y, // + 0.0, 0.0); + return Transform(m); +} + +/** + * Mirror this CrossSection over the arbitrary axis described by the unit form + * of the given vector. If the length of the vector is zero, an empty + * CrossSection is returned. This operation can be chained. Transforms are + * combined and applied lazily. + * + * @param ax the axis to be mirrored over + */ +CrossSection CrossSection::Mirror(const vec2 ax) const { + if (glm::length(ax) == 0.) { + return CrossSection(); + } + auto n = glm::normalize(glm::abs(ax)); + auto m = mat3x2(mat2(1.0) - 2.0 * glm::outerProduct(n, n)); + return Transform(m); +} + +/** + * Transform this CrossSection in space. The first two columns form a 2x2 + * matrix transform and the last is a translation vector. This operation can + * be chained. Transforms are combined and applied lazily. + * + * @param m The affine transform matrix to apply to all the vertices. + */ +CrossSection CrossSection::Transform(const mat3x2& m) const { + auto transformed = CrossSection(); + transformed.transform_ = m * mat3(transform_); + transformed.paths_ = paths_; + return transformed; +} + +/** + * Move the vertices of this CrossSection (creating a new one) according to + * any arbitrary input function, followed by a union operation (with a + * Positive fill rule) that ensures any introduced intersections are not + * included in the result. + * + * @param warpFunc A function that modifies a given vertex position. + */ +CrossSection CrossSection::Warp(std::function warpFunc) const { + return WarpBatch([&warpFunc](VecView vecs) { + for (vec2& p : vecs) { + warpFunc(p); + } + }); +} + +/** + * Same as CrossSection::Warp but calls warpFunc with + * a VecView which is roughly equivalent to std::span + * pointing to all vec2 elements to be modified in-place + * + * @param warpFunc A function that modifies multiple vertex positions. + */ +CrossSection CrossSection::WarpBatch( + std::function)> warpFunc) const { + std::vector tmp_verts; + C2::PathsD paths = GetPaths()->paths_; // deep copy + for (C2::PathD const& path : paths) { + for (C2::PointD const& p : path) { + tmp_verts.push_back(v2_of_pd(p)); + } + } + + warpFunc(VecView(tmp_verts.data(), tmp_verts.size())); + + auto cursor = tmp_verts.begin(); + for (C2::PathD& path : paths) { + for (C2::PointD& p : path) { + p = v2_to_pd(*cursor); + ++cursor; + } + } + + return CrossSection( + shared_paths(C2::Union(paths, C2::FillRule::Positive, precision_))); +} + +/** + * Remove vertices from the contours in this CrossSection that are less than + * the specified distance epsilon from an imaginary line that passes through + * its two adjacent vertices. Near duplicate vertices and collinear points + * will be removed at lower epsilons, with elimination of line segments + * becoming increasingly aggressive with larger epsilons. + * + * It is recommended to apply this function following Offset, in order to + * clean up any spurious tiny line segments introduced that do not improve + * quality in any meaningful way. This is particularly important if further + * offseting operations are to be performed, which would compound the issue. + */ +CrossSection CrossSection::Simplify(double epsilon) const { + C2::PolyTreeD tree; + C2::BooleanOp(C2::ClipType::Union, C2::FillRule::Positive, GetPaths()->paths_, + C2::PathsD(), tree, precision_); + + C2::PathsD polys; + flatten(&tree, polys, 0); + + // Filter out contours less than epsilon wide. + C2::PathsD filtered; + for (C2::PathD poly : polys) { + auto area = C2::Area(poly); + Rect box; + for (auto vert : poly) { + box.Union(vec2(vert.x, vert.y)); + } + vec2 size = box.Size(); + if (std::abs(area) > std::max(size.x, size.y) * epsilon) { + filtered.push_back(poly); + } + } + + auto ps = SimplifyPaths(filtered, epsilon, true); + return CrossSection(shared_paths(ps)); +} + +/** + * Inflate the contours in CrossSection by the specified delta, handling + * corners according to the given JoinType. + * + * @param delta Positive deltas will cause the expansion of outlining contours + * to expand, and retraction of inner (hole) contours. Negative deltas will + * have the opposite effect. + * @param jt The join type specifying the treatment of contour joins + * (corners). + * @param miter_limit The maximum distance in multiples of delta that vertices + * can be offset from their original positions with before squaring is + * applied, when the join type is Miter (default is 2, which is the + * minimum allowed). See the [Clipper2 + * MiterLimit](http://www.angusj.com/clipper2/Docs/Units/Clipper.Offset/Classes/ClipperOffset/Properties/MiterLimit.htm) + * page for a visual example. + * @param circularSegments Number of segments per 360 degrees of + * JoinType::Round corners (roughly, the number of vertices that + * will be added to each contour). Default is calculated by the static Quality + * defaults according to the radius. + */ +CrossSection CrossSection::Offset(double delta, JoinType jointype, + double miter_limit, + int circularSegments) const { + double arc_tol = 0.; + if (jointype == JoinType::Round) { + int n = circularSegments > 2 ? circularSegments + : Quality::GetCircularSegments(delta); + // This calculates tolerance as a function of circular segments and delta + // (radius) in order to get back the same number of segments in Clipper2: + // steps_per_360 = PI / acos(1 - arc_tol / abs_delta) + const double abs_delta = std::fabs(delta); + const double scaled_delta = abs_delta * std::pow(10, precision_); + arc_tol = (std::cos(Clipper2Lib::PI / n) - 1) * -scaled_delta; + } + auto ps = + C2::InflatePaths(GetPaths()->paths_, delta, jt(jointype), + C2::EndType::Polygon, miter_limit, precision_, arc_tol); + return CrossSection(shared_paths(ps)); +} + +/** + * Compute the convex hull enveloping a set of cross-sections. + * + * @param crossSections A vector of cross-sections over which to compute a + * convex hull. + */ +CrossSection CrossSection::Hull( + const std::vector& crossSections) { + int n = 0; + for (auto cs : crossSections) n += cs.NumVert(); + SimplePolygon pts; + pts.reserve(n); + for (auto cs : crossSections) { + auto paths = cs.GetPaths()->paths_; + for (auto path : paths) { + for (auto p : path) { + pts.push_back(v2_of_pd(p)); + } + } + } + return CrossSection(shared_paths(C2::PathsD{HullImpl(pts)})); +} + +/** + * Compute the convex hull of this cross-section. + */ +CrossSection CrossSection::Hull() const { + return Hull(std::vector{*this}); +} + +/** + * Compute the convex hull of a set of points. If the given points are fewer + * than 3, an empty CrossSection will be returned. + * + * @param pts A vector of 2-dimensional points over which to compute a convex + * hull. + */ +CrossSection CrossSection::Hull(SimplePolygon pts) { + return CrossSection(shared_paths(C2::PathsD{HullImpl(pts)})); +} + +/** + * Compute the convex hull of a set of points/polygons. If the given points are + * fewer than 3, an empty CrossSection will be returned. + * + * @param pts A vector of vectors of 2-dimensional points over which to compute + * a convex hull. + */ +CrossSection CrossSection::Hull(const Polygons polys) { + SimplePolygon pts; + for (auto poly : polys) { + for (auto p : poly) { + pts.push_back(p); + } + } + return Hull(pts); +} + +/** + * Return the total area covered by complex polygons making up the + * CrossSection. + */ +double CrossSection::Area() const { return C2::Area(GetPaths()->paths_); } + +/** + * Return the number of vertices in the CrossSection. + */ +int CrossSection::NumVert() const { + int n = 0; + auto paths = GetPaths()->paths_; + for (auto p : paths) { + n += p.size(); + } + return n; +} + +/** + * Return the number of contours (both outer and inner paths) in the + * CrossSection. + */ +int CrossSection::NumContour() const { return GetPaths()->paths_.size(); } + +/** + * Does the CrossSection contain any contours? + */ +bool CrossSection::IsEmpty() const { return GetPaths()->paths_.empty(); } + +/** + * Returns the axis-aligned bounding rectangle of all the CrossSections' + * vertices. + */ +Rect CrossSection::Bounds() const { + auto r = C2::GetBounds(GetPaths()->paths_); + return Rect({r.left, r.bottom}, {r.right, r.top}); +} + +/** + * Return the contours of this CrossSection as a Polygons. + */ +Polygons CrossSection::ToPolygons() const { + auto polys = Polygons(); + auto paths = GetPaths()->paths_; + polys.reserve(paths.size()); + for (auto p : paths) { + auto sp = SimplePolygon(); + sp.reserve(p.size()); + for (auto v : p) { + sp.push_back({v.x, v.y}); + } + polys.push_back(sp); + } + return polys; +} +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/include/manifold/manifold.h b/thirdparty/manifold/src/manifold/include/manifold/manifold.h new file mode 100644 index 000000000000..9f04423d4d9b --- /dev/null +++ b/thirdparty/manifold/src/manifold/include/manifold/manifold.h @@ -0,0 +1,324 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#include +#include +#include + +#include "manifold/common.h" +#include "manifold/vec_view.h" + +namespace manifold { + +/** + * @ingroup Debug + * + * Allows modification of the assertions checked in MANIFOLD_DEBUG mode. + * + * @return ExecutionParams& + */ +ExecutionParams& ManifoldParams(); + +class CsgNode; +class CsgLeafNode; + +/** @ingroup Connections + * @{ + */ + +template +struct MeshGLP { + /// Number of property vertices + I NumVert() const { return vertProperties.size() / numProp; }; + /// Number of triangles + I NumTri() const { return triVerts.size() / 3; }; + /// Number of properties per vertex, always >= 3. + I numProp = 3; + /// Flat, GL-style interleaved list of all vertex properties: propVal = + /// vertProperties[vert * numProp + propIdx]. The first three properties are + /// always the position x, y, z. + std::vector vertProperties; + /// The vertex indices of the three triangle corners in CCW (from the outside) + /// order, for each triangle. + std::vector triVerts; + /// Optional: A list of only the vertex indicies that need to be merged to + /// reconstruct the manifold. + std::vector mergeFromVert; + /// Optional: The same length as mergeFromVert, and the corresponding value + /// contains the vertex to merge with. It will have an identical position, but + /// the other properties may differ. + std::vector mergeToVert; + /// Optional: Indicates runs of triangles that correspond to a particular + /// input mesh instance. The runs encompass all of triVerts and are sorted + /// by runOriginalID. Run i begins at triVerts[runIndex[i]] and ends at + /// triVerts[runIndex[i+1]]. All runIndex values are divisible by 3. Returned + /// runIndex will always be 1 longer than runOriginalID, but same length is + /// also allowed as input: triVerts.size() will be automatically appended in + /// this case. + std::vector runIndex; + /// Optional: The OriginalID of the mesh this triangle run came from. This ID + /// is ideal for reapplying materials to the output mesh. Multiple runs may + /// have the same ID, e.g. representing different copies of the same input + /// mesh. If you create an input MeshGL that you want to be able to reference + /// as one or more originals, be sure to set unique values from ReserveIDs(). + std::vector runOriginalID; + /// Optional: For each run, a 3x4 transform is stored representing how the + /// corresponding original mesh was transformed to create this triangle run. + /// This matrix is stored in column-major order and the length of the overall + /// vector is 12 * runOriginalID.size(). + std::vector runTransform; + /// Optional: Length NumTri, contains an ID of the source face this triangle + /// comes from. When auto-generated, this ID will be a triangle index into the + /// original mesh. All neighboring coplanar triangles from that input mesh + /// will refer to a single triangle of that group as the faceID. When + /// supplying faceIDs, ensure that triangles with the same ID are in fact + /// coplanar and have consistent properties (within some tolerance) or the + /// output will be surprising. + std::vector faceID; + /// Optional: The X-Y-Z-W weighted tangent vectors for smooth Refine(). If + /// non-empty, must be exactly four times as long as Mesh.triVerts. Indexed + /// as 4 * (3 * tri + i) + j, i < 3, j < 4, representing the tangent value + /// Mesh.triVerts[tri][i] along the CCW edge. If empty, mesh is faceted. + std::vector halfedgeTangent; + /// The absolute precision of the vertex positions, based on accrued rounding + /// errors. When creating a Manifold, the precision used will be the maximum + /// of this and a baseline precision from the size of the bounding box. Any + /// edge shorter than precision may be collapsed. + Precision precision = 0; + + MeshGLP() = default; + + bool Merge(); + + vec3 GetVertPos(size_t i) const { + size_t offset = i * numProp; + return vec3(vertProperties[offset], vertProperties[offset + 1], + vertProperties[offset + 2]); + } + + glm::vec<3, I> GetTriVerts(size_t i) const { + size_t offset = 3 * i; + return glm::vec<3, I>(triVerts[offset], triVerts[offset + 1], + triVerts[offset + 2]); + } +}; + +/** + * An alternative to Mesh for output suitable for pushing into graphics + * libraries directly. This may not be manifold since the verts are duplicated + * along property boundaries that do not match. The additional merge vectors + * store this missing information, allowing the manifold to be reconstructed. + */ +using MeshGL = MeshGLP; +using MeshGL64 = MeshGLP; +/** @} */ + +/** @defgroup Core + * @brief The central classes of the library + * @{ + */ + +/** + * This library's internal representation of an oriented, 2-manifold, triangle + * mesh - a simple boundary-representation of a solid object. Use this class to + * store and operate on solids, and use MeshGL for input and output, or + * potentially Mesh if only basic geometry is required. + * + * In addition to storing geometric data, a Manifold can also store an arbitrary + * number of vertex properties. These could be anything, e.g. normals, UV + * coordinates, colors, etc, but this library is completely agnostic. All + * properties are merely float values indexed by channel number. It is up to the + * user to associate channel numbers with meaning. + * + * Manifold allows vertex properties to be shared for efficient storage, or to + * have multiple property verts associated with a single geometric vertex, + * allowing sudden property changes, e.g. at Boolean intersections, without + * sacrificing manifoldness. + * + * Manifolds also keep track of their relationships to their inputs, via + * OriginalIDs and the faceIDs and transforms accessible through MeshGL. This + * allows object-level properties to be re-associated with the output after many + * operations, particularly useful for materials. Since separate object's + * properties are not mixed, there is no requirement that channels have + * consistent meaning between different inputs. + */ +class Manifold { + public: + /** @name Creation + * Constructors + */ + ///@{ + Manifold(); + ~Manifold(); + Manifold(const Manifold& other); + Manifold& operator=(const Manifold& other); + Manifold(Manifold&&) noexcept; + Manifold& operator=(Manifold&&) noexcept; + + Manifold(const MeshGL&); + Manifold(const Mesh&); + Manifold(const MeshGL64&); + + static Manifold Smooth(const MeshGL&, + const std::vector& sharpenedEdges = {}); + static Manifold Smooth(const MeshGL64&, + const std::vector& sharpenedEdges = {}); + static Manifold Tetrahedron(); + static Manifold Cube(vec3 size = vec3(1.0), bool center = false); + static Manifold Cylinder(double height, double radiusLow, + double radiusHigh = -1.0, int circularSegments = 0, + bool center = false); + static Manifold Sphere(double radius, int circularSegments = 0); + static Manifold Extrude(const Polygons& crossSection, double height, + int nDivisions = 0, double twistDegrees = 0.0, + vec2 scaleTop = vec2(1.0)); + static Manifold Revolve(const Polygons& crossSection, + int circularSegments = 0, + double revolveDegrees = 360.0f); + static Manifold LevelSet(std::function sdf, Box bounds, + double edgeLength, double level = 0, + double precision = -1, bool canParallel = true); + ///@} + + /** @name Topological + * No geometric calculations. + */ + ///@{ + static Manifold Compose(const std::vector&); + std::vector Decompose() const; + ///@} + + /** @name Information + * Details of the manifold + */ + ///@{ + Mesh GetMesh() const; + MeshGL GetMeshGL(ivec3 normalIdx = ivec3(0)) const; + MeshGL64 GetMeshGL64(ivec3 normalIdx = ivec3(0)) const; + bool IsEmpty() const; + enum class Error { + NoError, + NonFiniteVertex, + NotManifold, + VertexOutOfBounds, + PropertiesWrongLength, + MissingPositionProperties, + MergeVectorsDifferentLengths, + MergeIndexOutOfBounds, + TransformWrongLength, + RunIndexWrongLength, + FaceIDWrongLength, + InvalidConstruction, + }; + Error Status() const; + size_t NumVert() const; + size_t NumEdge() const; + size_t NumTri() const; + size_t NumProp() const; + size_t NumPropVert() const; + Box BoundingBox() const; + double Precision() const; + int Genus() const; + Properties GetProperties() const; + double MinGap(const Manifold& other, double searchLength) const; + ///@} + + /** @name Mesh ID + * Details of the manifold's relation to its input meshes, for the purposes + * of reapplying mesh properties. + */ + ///@{ + int OriginalID() const; + Manifold AsOriginal(const std::vector& propertyTolerance = {}) const; + static uint32_t ReserveIDs(uint32_t); + ///@} + + /** @name Modification + */ + ///@{ + Manifold Translate(vec3) const; + Manifold Scale(vec3) const; + Manifold Rotate(double xDegrees, double yDegrees = 0.0, + double zDegrees = 0.0) const; + Manifold Transform(const mat4x3&) const; + Manifold Mirror(vec3) const; + Manifold Warp(std::function) const; + Manifold WarpBatch(std::function)>) const; + Manifold SetProperties( + int, std::function) const; + Manifold CalculateCurvature(int gaussianIdx, int meanIdx) const; + Manifold CalculateNormals(int normalIdx, double minSharpAngle = 60) const; + Manifold SmoothByNormals(int normalIdx) const; + Manifold SmoothOut(double minSharpAngle = 60, double minSmoothness = 0) const; + Manifold Refine(int) const; + Manifold RefineToLength(double) const; + ///@} + + /** @name Boolean + * Combine two manifolds + */ + ///@{ + Manifold Boolean(const Manifold& second, OpType op) const; + static Manifold BatchBoolean(const std::vector& manifolds, + OpType op); + // Boolean operation shorthand + Manifold operator+(const Manifold&) const; // Add (Union) + Manifold& operator+=(const Manifold&); + Manifold operator-(const Manifold&) const; // Subtract (Difference) + Manifold& operator-=(const Manifold&); + Manifold operator^(const Manifold&) const; // Intersect + Manifold& operator^=(const Manifold&); + std::pair Split(const Manifold&) const; + std::pair SplitByPlane(vec3 normal, + double originOffset) const; + Manifold TrimByPlane(vec3 normal, double originOffset) const; + ///@} + + /** @name 2D from 3D + */ + ///@{ + Polygons Slice(double height = 0) const; + Polygons Project() const; + ///@} + + /** @name Convex hull + */ + ///@{ + Manifold Hull() const; + static Manifold Hull(const std::vector& manifolds); + static Manifold Hull(const std::vector& pts); + ///@} + + /** @name Testing hooks + * These are just for internal testing. + */ + ///@{ + bool MatchesTriNormals() const; + size_t NumDegenerateTris() const; + size_t NumOverlaps(const Manifold& second) const; + ///@} + + struct Impl; + + private: + Manifold(std::shared_ptr pNode_); + Manifold(std::shared_ptr pImpl_); + static Manifold Invalid(); + mutable std::shared_ptr pNode_; + + CsgLeafNode& GetCsgLeafNode() const; +}; +/** @} */ +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/boolean3.cpp b/thirdparty/manifold/src/manifold/src/boolean3.cpp new file mode 100644 index 000000000000..15e98c80c856 --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/boolean3.cpp @@ -0,0 +1,594 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "boolean3.h" + +#include + +#include "manifold/parallel.h" + +using namespace manifold; + +namespace { + +// These two functions (Interpolate and Intersect) are the only places where +// doubleing-point operations take place in the whole Boolean function. These +// are carefully designed to minimize rounding error and to eliminate it at edge +// cases to ensure consistency. + +vec2 Interpolate(vec3 pL, vec3 pR, double x) { + const double dxL = x - pL.x; + const double dxR = x - pR.x; + DEBUG_ASSERT(dxL * dxR <= 0, logicErr, + "Boolean manifold error: not in domain"); + const bool useL = fabs(dxL) < fabs(dxR); + const vec3 dLR = pR - pL; + const double lambda = (useL ? dxL : dxR) / dLR.x; + if (!isfinite(lambda) || !isfinite(dLR.y) || !isfinite(dLR.z)) + return vec2(pL.y, pL.z); + vec2 yz; + yz[0] = fma(lambda, dLR.y, useL ? pL.y : pR.y); + yz[1] = fma(lambda, dLR.z, useL ? pL.z : pR.z); + return yz; +} + +vec4 Intersect(const vec3 &pL, const vec3 &pR, const vec3 &qL, const vec3 &qR) { + const double dyL = qL.y - pL.y; + const double dyR = qR.y - pR.y; + DEBUG_ASSERT(dyL * dyR <= 0, logicErr, + "Boolean manifold error: no intersection"); + const bool useL = fabs(dyL) < fabs(dyR); + const double dx = pR.x - pL.x; + double lambda = (useL ? dyL : dyR) / (dyL - dyR); + if (!isfinite(lambda)) lambda = 0.0; + vec4 xyzz; + xyzz.x = fma(lambda, dx, useL ? pL.x : pR.x); + const double pDy = pR.y - pL.y; + const double qDy = qR.y - qL.y; + const bool useP = fabs(pDy) < fabs(qDy); + xyzz.y = fma(lambda, useP ? pDy : qDy, + useL ? (useP ? pL.y : qL.y) : (useP ? pR.y : qR.y)); + xyzz.z = fma(lambda, pR.z - pL.z, useL ? pL.z : pR.z); + xyzz.w = fma(lambda, qR.z - qL.z, useL ? qL.z : qR.z); + return xyzz; +} + +template +struct CopyFaceEdges { + const SparseIndices &p1q1; + // x can be either vert or edge (0 or 1). + SparseIndices &pXq1; + VecView halfedgesQ; + const size_t offset; + + void operator()(const size_t i) { + int idx = 3 * (i + offset); + int pX = p1q1.Get(i, inverted); + int q2 = p1q1.Get(i, !inverted); + + for (const int j : {0, 1, 2}) { + const int q1 = 3 * q2 + j; + const Halfedge edge = halfedgesQ[q1]; + int a = pX; + int b = edge.IsForward() ? q1 : edge.pairedHalfedge; + if (inverted) std::swap(a, b); + pXq1.Set(idx + static_cast(j), a, b); + } + } +}; + +SparseIndices Filter11(const Manifold::Impl &inP, const Manifold::Impl &inQ, + const SparseIndices &p1q2, const SparseIndices &p2q1) { + ZoneScoped; + SparseIndices p1q1(3 * p1q2.size() + 3 * p2q1.size()); + for_each_n(autoPolicy(p1q2.size(), 1e5), countAt(0_uz), p1q2.size(), + CopyFaceEdges({p1q2, p1q1, inQ.halfedge_, 0_uz})); + for_each_n(autoPolicy(p2q1.size(), 1e5), countAt(0_uz), p2q1.size(), + CopyFaceEdges({p2q1, p1q1, inP.halfedge_, p1q2.size()})); + p1q1.Unique(); + return p1q1; +} + +inline bool Shadows(double p, double q, double dir) { + return p == q ? dir < 0 : p < q; +} + +inline std::pair Shadow01( + const int p0, const int q1, VecView vertPosP, + VecView vertPosQ, VecView halfedgeQ, + const double expandP, VecView normalP, const bool reverse) { + const int q1s = halfedgeQ[q1].startVert; + const int q1e = halfedgeQ[q1].endVert; + const double p0x = vertPosP[p0].x; + const double q1sx = vertPosQ[q1s].x; + const double q1ex = vertPosQ[q1e].x; + int s01 = reverse ? Shadows(q1sx, p0x, expandP * normalP[q1s].x) - + Shadows(q1ex, p0x, expandP * normalP[q1e].x) + : Shadows(p0x, q1ex, expandP * normalP[p0].x) - + Shadows(p0x, q1sx, expandP * normalP[p0].x); + vec2 yz01(NAN); + + if (s01 != 0) { + yz01 = Interpolate(vertPosQ[q1s], vertPosQ[q1e], vertPosP[p0].x); + if (reverse) { + vec3 diff = vertPosQ[q1s] - vertPosP[p0]; + const double start2 = glm::dot(diff, diff); + diff = vertPosQ[q1e] - vertPosP[p0]; + const double end2 = glm::dot(diff, diff); + const double dir = start2 < end2 ? normalP[q1s].y : normalP[q1e].y; + if (!Shadows(yz01[0], vertPosP[p0].y, expandP * dir)) s01 = 0; + } else { + if (!Shadows(vertPosP[p0].y, yz01[0], expandP * normalP[p0].y)) s01 = 0; + } + } + return std::make_pair(s01, yz01); +} + +// https://github.com/scandum/binary_search/blob/master/README.md +// much faster than standard binary search on large arrays +size_t monobound_quaternary_search(VecView array, int64_t key) { + if (array.size() == 0) { + return std::numeric_limits::max(); + } + size_t bot = 0; + size_t top = array.size(); + while (top >= 65536) { + size_t mid = top / 4; + top -= mid * 3; + if (key < array[bot + mid * 2]) { + if (key >= array[bot + mid]) { + bot += mid; + } + } else { + bot += mid * 2; + if (key >= array[bot + mid]) { + bot += mid; + } + } + } + + while (top > 3) { + size_t mid = top / 2; + if (key >= array[bot + mid]) { + bot += mid; + } + top -= mid; + } + + while (top--) { + if (key == array[bot + top]) { + return bot + top; + } + } + return -1; +} + +struct Kernel11 { + VecView xyzz; + VecView s; + VecView vertPosP; + VecView vertPosQ; + VecView halfedgeP; + VecView halfedgeQ; + const double expandP; + VecView normalP; + const SparseIndices &p1q1; + + void operator()(const size_t idx) { + const int p1 = p1q1.Get(idx, false); + const int q1 = p1q1.Get(idx, true); + vec4 &xyzz11 = xyzz[idx]; + int &s11 = s[idx]; + + // For pRL[k], qRL[k], k==0 is the left and k==1 is the right. + int k = 0; + vec3 pRL[2], qRL[2]; + // Either the left or right must shadow, but not both. This ensures the + // intersection is between the left and right. + bool shadows = false; + s11 = 0; + + const int p0[2] = {halfedgeP[p1].startVert, halfedgeP[p1].endVert}; + for (int i : {0, 1}) { + const auto syz01 = Shadow01(p0[i], q1, vertPosP, vertPosQ, halfedgeQ, + expandP, normalP, false); + const int s01 = syz01.first; + const vec2 yz01 = syz01.second; + // If the value is NaN, then these do not overlap. + if (isfinite(yz01[0])) { + s11 += s01 * (i == 0 ? -1 : 1); + if (k < 2 && (k == 0 || (s01 != 0) != shadows)) { + shadows = s01 != 0; + pRL[k] = vertPosP[p0[i]]; + qRL[k] = vec3(pRL[k].x, yz01); + ++k; + } + } + } + + const int q0[2] = {halfedgeQ[q1].startVert, halfedgeQ[q1].endVert}; + for (int i : {0, 1}) { + const auto syz10 = Shadow01(q0[i], p1, vertPosQ, vertPosP, halfedgeP, + expandP, normalP, true); + const int s10 = syz10.first; + const vec2 yz10 = syz10.second; + // If the value is NaN, then these do not overlap. + if (isfinite(yz10[0])) { + s11 += s10 * (i == 0 ? -1 : 1); + if (k < 2 && (k == 0 || (s10 != 0) != shadows)) { + shadows = s10 != 0; + qRL[k] = vertPosQ[q0[i]]; + pRL[k] = vec3(qRL[k].x, yz10); + ++k; + } + } + } + + if (s11 == 0) { // No intersection + xyzz11 = vec4(NAN); + } else { + DEBUG_ASSERT(k == 2, logicErr, "Boolean manifold error: s11"); + xyzz11 = Intersect(pRL[0], pRL[1], qRL[0], qRL[1]); + + const int p1s = halfedgeP[p1].startVert; + const int p1e = halfedgeP[p1].endVert; + vec3 diff = vertPosP[p1s] - vec3(xyzz11); + const double start2 = glm::dot(diff, diff); + diff = vertPosP[p1e] - vec3(xyzz11); + const double end2 = glm::dot(diff, diff); + const double dir = start2 < end2 ? normalP[p1s].z : normalP[p1e].z; + + if (!Shadows(xyzz11.z, xyzz11.w, expandP * dir)) s11 = 0; + } + } +}; + +std::tuple, Vec> Shadow11(SparseIndices &p1q1, + const Manifold::Impl &inP, + const Manifold::Impl &inQ, + double expandP) { + ZoneScoped; + Vec s11(p1q1.size()); + Vec xyzz11(p1q1.size()); + + for_each_n(autoPolicy(p1q1.size(), 1e4), countAt(0_uz), p1q1.size(), + Kernel11({xyzz11, s11, inP.vertPos_, inQ.vertPos_, inP.halfedge_, + inQ.halfedge_, expandP, inP.vertNormal_, p1q1})); + + p1q1.KeepFinite(xyzz11, s11); + + return std::make_tuple(s11, xyzz11); +}; + +struct Kernel02 { + VecView s; + VecView z; + VecView vertPosP; + VecView halfedgeQ; + VecView vertPosQ; + const double expandP; + VecView vertNormalP; + const SparseIndices &p0q2; + const bool forward; + + void operator()(const size_t idx) { + const int p0 = p0q2.Get(idx, !forward); + const int q2 = p0q2.Get(idx, forward); + int &s02 = s[idx]; + double &z02 = z[idx]; + + // For yzzLR[k], k==0 is the left and k==1 is the right. + int k = 0; + vec3 yzzRL[2]; + // Either the left or right must shadow, but not both. This ensures the + // intersection is between the left and right. + bool shadows = false; + int closestVert = -1; + double minMetric = std::numeric_limits::infinity(); + s02 = 0; + + const vec3 posP = vertPosP[p0]; + for (const int i : {0, 1, 2}) { + const int q1 = 3 * q2 + i; + const Halfedge edge = halfedgeQ[q1]; + const int q1F = edge.IsForward() ? q1 : edge.pairedHalfedge; + + if (!forward) { + const int qVert = halfedgeQ[q1F].startVert; + const vec3 diff = posP - vertPosQ[qVert]; + const double metric = glm::dot(diff, diff); + if (metric < minMetric) { + minMetric = metric; + closestVert = qVert; + } + } + + const auto syz01 = Shadow01(p0, q1F, vertPosP, vertPosQ, halfedgeQ, + expandP, vertNormalP, !forward); + const int s01 = syz01.first; + const vec2 yz01 = syz01.second; + // If the value is NaN, then these do not overlap. + if (isfinite(yz01[0])) { + s02 += s01 * (forward == edge.IsForward() ? -1 : 1); + if (k < 2 && (k == 0 || (s01 != 0) != shadows)) { + shadows = s01 != 0; + yzzRL[k++] = vec3(yz01[0], yz01[1], yz01[1]); + } + } + } + + if (s02 == 0) { // No intersection + z02 = NAN; + } else { + DEBUG_ASSERT(k == 2, logicErr, "Boolean manifold error: s02"); + vec3 vertPos = vertPosP[p0]; + z02 = Interpolate(yzzRL[0], yzzRL[1], vertPos.y)[1]; + if (forward) { + if (!Shadows(vertPos.z, z02, expandP * vertNormalP[p0].z)) s02 = 0; + } else { + // DEBUG_ASSERT(closestVert != -1, topologyErr, "No closest vert"); + if (!Shadows(z02, vertPos.z, expandP * vertNormalP[closestVert].z)) + s02 = 0; + } + } + } +}; + +std::tuple, Vec> Shadow02(const Manifold::Impl &inP, + const Manifold::Impl &inQ, + SparseIndices &p0q2, bool forward, + double expandP) { + ZoneScoped; + Vec s02(p0q2.size()); + Vec z02(p0q2.size()); + + auto vertNormalP = forward ? inP.vertNormal_ : inQ.vertNormal_; + for_each_n(autoPolicy(p0q2.size(), 1e4), countAt(0_uz), p0q2.size(), + Kernel02({s02, z02, inP.vertPos_, inQ.halfedge_, inQ.vertPos_, + expandP, vertNormalP, p0q2, forward})); + + p0q2.KeepFinite(z02, s02); + + return std::make_tuple(s02, z02); +}; + +struct Kernel12 { + VecView x; + VecView v; + VecView p0q2; + VecView s02; + VecView z02; + VecView p1q1; + VecView s11; + VecView xyzz11; + VecView halfedgesP; + VecView halfedgesQ; + VecView vertPosP; + const bool forward; + const SparseIndices &p1q2; + + void operator()(const size_t idx) { + int p1 = p1q2.Get(idx, !forward); + int q2 = p1q2.Get(idx, forward); + int &x12 = x[idx]; + vec3 &v12 = v[idx]; + + // For xzyLR-[k], k==0 is the left and k==1 is the right. + int k = 0; + vec3 xzyLR0[2]; + vec3 xzyLR1[2]; + // Either the left or right must shadow, but not both. This ensures the + // intersection is between the left and right. + bool shadows = false; + x12 = 0; + + const Halfedge edge = halfedgesP[p1]; + + for (int vert : {edge.startVert, edge.endVert}) { + const int64_t key = forward ? SparseIndices::EncodePQ(vert, q2) + : SparseIndices::EncodePQ(q2, vert); + const size_t idx = monobound_quaternary_search(p0q2, key); + if (idx != std::numeric_limits::max()) { + const int s = s02[idx]; + x12 += s * ((vert == edge.startVert) == forward ? 1 : -1); + if (k < 2 && (k == 0 || (s != 0) != shadows)) { + shadows = s != 0; + xzyLR0[k] = vertPosP[vert]; + std::swap(xzyLR0[k].y, xzyLR0[k].z); + xzyLR1[k] = xzyLR0[k]; + xzyLR1[k][1] = z02[idx]; + k++; + } + } + } + + for (const int i : {0, 1, 2}) { + const int q1 = 3 * q2 + i; + const Halfedge edge = halfedgesQ[q1]; + const int q1F = edge.IsForward() ? q1 : edge.pairedHalfedge; + const int64_t key = forward ? SparseIndices::EncodePQ(p1, q1F) + : SparseIndices::EncodePQ(q1F, p1); + const size_t idx = monobound_quaternary_search(p1q1, key); + if (idx != + std::numeric_limits::max()) { // s is implicitly zero for + // anything not found + const int s = s11[idx]; + x12 -= s * (edge.IsForward() ? 1 : -1); + if (k < 2 && (k == 0 || (s != 0) != shadows)) { + shadows = s != 0; + const vec4 xyzz = xyzz11[idx]; + xzyLR0[k][0] = xyzz.x; + xzyLR0[k][1] = xyzz.z; + xzyLR0[k][2] = xyzz.y; + xzyLR1[k] = xzyLR0[k]; + xzyLR1[k][1] = xyzz.w; + if (!forward) std::swap(xzyLR0[k][1], xzyLR1[k][1]); + k++; + } + } + } + + if (x12 == 0) { // No intersection + v12 = vec3(NAN); + } else { + DEBUG_ASSERT(k == 2, logicErr, "Boolean manifold error: v12"); + const vec4 xzyy = Intersect(xzyLR0[0], xzyLR0[1], xzyLR1[0], xzyLR1[1]); + v12.x = xzyy[0]; + v12.y = xzyy[2]; + v12.z = xzyy[1]; + } + } +}; + +std::tuple, Vec> Intersect12( + const Manifold::Impl &inP, const Manifold::Impl &inQ, const Vec &s02, + const SparseIndices &p0q2, const Vec &s11, const SparseIndices &p1q1, + const Vec &z02, const Vec &xyzz11, SparseIndices &p1q2, + bool forward) { + ZoneScoped; + Vec x12(p1q2.size()); + Vec v12(p1q2.size()); + + for_each_n( + autoPolicy(p1q2.size(), 1e4), countAt(0_uz), p1q2.size(), + Kernel12({x12, v12, p0q2.AsVec64(), s02, z02, p1q1.AsVec64(), s11, xyzz11, + inP.halfedge_, inQ.halfedge_, inP.vertPos_, forward, p1q2})); + + p1q2.KeepFinite(v12, x12); + + return std::make_tuple(x12, v12); +}; + +Vec Winding03(const Manifold::Impl &inP, Vec &vertices, Vec &s02, + bool reverse) { + ZoneScoped; + // verts that are not shadowed (not in p0q2) have winding number zero. + Vec w03(inP.NumVert(), 0); + if (vertices.size() <= 1e5) { + for_each_n(ExecutionPolicy::Seq, countAt(0), s02.size(), + [&w03, &vertices, &s02, reverse](const int i) { + w03[vertices[i]] += s02[i] * (reverse ? -1 : 1); + }); + } else { + for_each_n(ExecutionPolicy::Par, countAt(0), s02.size(), + [&w03, &vertices, &s02, reverse](const int i) { + AtomicAdd(w03[vertices[i]], s02[i] * (reverse ? -1 : 1)); + }); + } + return w03; +}; +} // namespace + +namespace manifold { +Boolean3::Boolean3(const Manifold::Impl &inP, const Manifold::Impl &inQ, + OpType op) + : inP_(inP), inQ_(inQ), expandP_(op == OpType::Add ? 1.0 : -1.0) { + // Symbolic perturbation: + // Union -> expand inP + // Difference, Intersection -> contract inP + +#ifdef MANIFOLD_DEBUG + Timer broad; + broad.Start(); +#endif + + if (inP.IsEmpty() || inQ.IsEmpty() || !inP.bBox_.DoesOverlap(inQ.bBox_)) { + PRINT("No overlap, early out"); + w03_.resize(inP.NumVert(), 0); + w30_.resize(inQ.NumVert(), 0); + return; + } + + // Level 3 + // Find edge-triangle overlaps (broad phase) + p1q2_ = inQ_.EdgeCollisions(inP_); + p2q1_ = inP_.EdgeCollisions(inQ_, true); // inverted + + p1q2_.Sort(); + PRINT("p1q2 size = " << p1q2_.size()); + + p2q1_.Sort(); + PRINT("p2q1 size = " << p2q1_.size()); + + // Level 2 + // Find vertices that overlap faces in XY-projection + SparseIndices p0q2 = inQ.VertexCollisionsZ(inP.vertPos_); + p0q2.Sort(); + PRINT("p0q2 size = " << p0q2.size()); + + SparseIndices p2q0 = inP.VertexCollisionsZ(inQ.vertPos_, true); // inverted + p2q0.Sort(); + PRINT("p2q0 size = " << p2q0.size()); + + // Find involved edge pairs from Level 3 + SparseIndices p1q1 = Filter11(inP_, inQ_, p1q2_, p2q1_); + PRINT("p1q1 size = " << p1q1.size()); + +#ifdef MANIFOLD_DEBUG + broad.Stop(); + Timer intersections; + intersections.Start(); +#endif + + // Level 2 + // Build up XY-projection intersection of two edges, including the z-value for + // each edge, keeping only those whose intersection exists. + Vec s11; + Vec xyzz11; + std::tie(s11, xyzz11) = Shadow11(p1q1, inP, inQ, expandP_); + PRINT("s11 size = " << s11.size()); + + // Build up Z-projection of vertices onto triangles, keeping only those that + // fall inside the triangle. + Vec s02; + Vec z02; + std::tie(s02, z02) = Shadow02(inP, inQ, p0q2, true, expandP_); + PRINT("s02 size = " << s02.size()); + + Vec s20; + Vec z20; + std::tie(s20, z20) = Shadow02(inQ, inP, p2q0, false, expandP_); + PRINT("s20 size = " << s20.size()); + + // Level 3 + // Build up the intersection of the edges and triangles, keeping only those + // that intersect, and record the direction the edge is passing through the + // triangle. + std::tie(x12_, v12_) = + Intersect12(inP, inQ, s02, p0q2, s11, p1q1, z02, xyzz11, p1q2_, true); + PRINT("x12 size = " << x12_.size()); + + std::tie(x21_, v21_) = + Intersect12(inQ, inP, s20, p2q0, s11, p1q1, z20, xyzz11, p2q1_, false); + PRINT("x21 size = " << x21_.size()); + + Vec p0 = p0q2.Copy(false); + p0q2.Resize(0); + Vec q0 = p2q0.Copy(true); + p2q0.Resize(0); + // Sum up the winding numbers of all vertices. + w03_ = Winding03(inP, p0, s02, false); + + w30_ = Winding03(inQ, q0, s20, true); + +#ifdef MANIFOLD_DEBUG + intersections.Stop(); + + if (ManifoldParams().verbose) { + broad.Print("Broad phase"); + intersections.Print("Intersections"); + } +#endif +} +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/boolean3.h b/thirdparty/manifold/src/manifold/src/boolean3.h new file mode 100644 index 000000000000..ff04854f885e --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/boolean3.h @@ -0,0 +1,60 @@ +// Copyright 2020 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#include "impl.h" + +#ifdef MANIFOLD_DEBUG +#define PRINT(msg) \ + if (ManifoldParams().verbose) std::cout << msg << std::endl; +#else +#define PRINT(msg) +#endif + +/** + * The notation in these files is abbreviated due to the complexity of the + * functions involved. The key is that the input manifolds are P and Q, while + * the output is R, and these letters in both upper and lower case refer to + * these objects. Operations are based on dimensionality: vert: 0, edge: 1, + * face: 2, solid: 3. X denotes a winding-number type quantity from the source + * paper of this algorithm, while S is closely related but includes only the + * subset of X values which "shadow" (are on the correct side of). + * + * Nearly everything here are sparse arrays, where for instance each pair in + * p2q1 refers to a face index of P interacting with a halfedge index of Q. + * Adjacent arrays like x21 refer to the values of X corresponding to each + * sparse index pair. + * + * Note many functions are designed to work symmetrically, for instance for both + * p2q1 and p1q2. Inside of these functions P and Q are marked as though the + * function is forwards, but it may include a Boolean "reverse" that indicates P + * and Q have been swapped. + */ + +namespace manifold { + +/** @ingroup Private */ +class Boolean3 { + public: + Boolean3(const Manifold::Impl& inP, const Manifold::Impl& inQ, OpType op); + Manifold::Impl Result(OpType op) const; + + private: + const Manifold::Impl &inP_, &inQ_; + const double expandP_; + SparseIndices p1q2_, p2q1_; + Vec x12_, x21_, w03_, w30_; + Vec v12_, v21_; +}; +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/boolean_result.cpp b/thirdparty/manifold/src/manifold/src/boolean_result.cpp new file mode 100644 index 000000000000..93631e2ca17e --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/boolean_result.cpp @@ -0,0 +1,862 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include +#include +#include +#include + +#if MANIFOLD_PAR == 'T' && __has_include() +#define TBB_PREVIEW_CONCURRENT_ORDERED_CONTAINERS 1 +#include +#include + +template +using concurrent_map = tbb::concurrent_map; +#else +template +// not really concurrent when tbb is disabled +using concurrent_map = std::map; +#endif +#include "boolean3.h" +#include "manifold/parallel.h" + +using namespace manifold; + +template <> +struct std::hash> { + size_t operator()(const std::pair &p) const { + return std::hash()(p.first) ^ std::hash()(p.second); + } +}; + +namespace { + +constexpr int kParallelThreshold = 128; + +struct AbsSum { + int operator()(int a, int b) const { return abs(a) + abs(b); } +}; + +struct DuplicateVerts { + VecView vertPosR; + VecView inclusion; + VecView vertR; + VecView vertPosP; + + void operator()(const int vert) { + const int n = std::abs(inclusion[vert]); + for (int i = 0; i < n; ++i) { + vertPosR[vertR[vert] + i] = vertPosP[vert]; + } + } +}; + +template +struct CountVerts { + VecView halfedges; + VecView count; + VecView inclusion; + + void operator()(size_t i) { + if (atomic) + AtomicAdd(count[i / 3], std::abs(inclusion[halfedges[i].startVert])); + else + count[i / 3] += std::abs(inclusion[halfedges[i].startVert]); + } +}; + +template +struct CountNewVerts { + VecView countP; + VecView countQ; + VecView i12; + const SparseIndices &pq; + VecView halfedges; + + void operator()(const int idx) { + int edgeP = pq.Get(idx, inverted); + int faceQ = pq.Get(idx, !inverted); + int inclusion = std::abs(i12[idx]); + + if (atomic) { + AtomicAdd(countQ[faceQ], inclusion); + const Halfedge half = halfedges[edgeP]; + AtomicAdd(countP[edgeP / 3], inclusion); + AtomicAdd(countP[half.pairedHalfedge / 3], inclusion); + } else { + countQ[faceQ] += inclusion; + const Halfedge half = halfedges[edgeP]; + countP[edgeP / 3] += inclusion; + countP[half.pairedHalfedge / 3] += inclusion; + } + } +}; + +std::tuple, Vec> SizeOutput( + Manifold::Impl &outR, const Manifold::Impl &inP, const Manifold::Impl &inQ, + const Vec &i03, const Vec &i30, const Vec &i12, + const Vec &i21, const SparseIndices &p1q2, const SparseIndices &p2q1, + bool invertQ) { + ZoneScoped; + Vec sidesPerFacePQ(inP.NumTri() + inQ.NumTri(), 0); + // note: numFaceR <= facePQ2R.size() = sidesPerFacePQ.size() + 1 + + auto sidesPerFaceP = sidesPerFacePQ.view(0, inP.NumTri()); + auto sidesPerFaceQ = sidesPerFacePQ.view(inP.NumTri(), inQ.NumTri()); + + if (inP.halfedge_.size() >= 1e5) { + for_each(ExecutionPolicy::Par, countAt(0_uz), countAt(inP.halfedge_.size()), + CountVerts({inP.halfedge_, sidesPerFaceP, i03})); + for_each(ExecutionPolicy::Par, countAt(0_uz), countAt(inQ.halfedge_.size()), + CountVerts({inQ.halfedge_, sidesPerFaceQ, i30})); + } else { + for_each(ExecutionPolicy::Seq, countAt(0_uz), countAt(inP.halfedge_.size()), + CountVerts({inP.halfedge_, sidesPerFaceP, i03})); + for_each(ExecutionPolicy::Seq, countAt(0_uz), countAt(inQ.halfedge_.size()), + CountVerts({inQ.halfedge_, sidesPerFaceQ, i30})); + } + + if (i12.size() >= 1e5) { + for_each_n(ExecutionPolicy::Par, countAt(0), i12.size(), + CountNewVerts( + {sidesPerFaceP, sidesPerFaceQ, i12, p1q2, inP.halfedge_})); + for_each_n(ExecutionPolicy::Par, countAt(0), i21.size(), + CountNewVerts( + {sidesPerFaceQ, sidesPerFaceP, i21, p2q1, inQ.halfedge_})); + } else { + for_each_n(ExecutionPolicy::Seq, countAt(0), i12.size(), + CountNewVerts( + {sidesPerFaceP, sidesPerFaceQ, i12, p1q2, inP.halfedge_})); + for_each_n(ExecutionPolicy::Seq, countAt(0), i21.size(), + CountNewVerts( + {sidesPerFaceQ, sidesPerFaceP, i21, p2q1, inQ.halfedge_})); + } + + Vec facePQ2R(inP.NumTri() + inQ.NumTri() + 1, 0); + auto keepFace = TransformIterator(sidesPerFacePQ.begin(), + [](int x) { return x > 0 ? 1 : 0; }); + + inclusive_scan(keepFace, keepFace + sidesPerFacePQ.size(), + facePQ2R.begin() + 1); + int numFaceR = facePQ2R.back(); + facePQ2R.resize(inP.NumTri() + inQ.NumTri()); + + outR.faceNormal_.resize(numFaceR); + + Vec tmpBuffer(outR.faceNormal_.size()); + auto faceIds = TransformIterator(countAt(0_uz), [&sidesPerFacePQ](size_t i) { + if (sidesPerFacePQ[i] > 0) return i; + return std::numeric_limits::max(); + }); + + auto next = + copy_if(faceIds, faceIds + inP.faceNormal_.size(), tmpBuffer.begin(), + [](size_t v) { return v != std::numeric_limits::max(); }); + + gather(tmpBuffer.begin(), next, inP.faceNormal_.begin(), + outR.faceNormal_.begin()); + + auto faceIdsQ = + TransformIterator(countAt(0_uz), [&sidesPerFacePQ, &inP](size_t i) { + if (sidesPerFacePQ[i + inP.faceNormal_.size()] > 0) return i; + return std::numeric_limits::max(); + }); + auto end = + copy_if(faceIdsQ, faceIdsQ + inQ.faceNormal_.size(), next, + [](size_t v) { return v != std::numeric_limits::max(); }); + + if (invertQ) { + gather(next, end, + TransformIterator(inQ.faceNormal_.begin(), Negate()), + outR.faceNormal_.begin() + std::distance(tmpBuffer.begin(), next)); + } else { + gather(next, end, inQ.faceNormal_.begin(), + outR.faceNormal_.begin() + std::distance(tmpBuffer.begin(), next)); + } + + auto newEnd = remove(sidesPerFacePQ.begin(), sidesPerFacePQ.end(), 0); + Vec faceEdge(newEnd - sidesPerFacePQ.begin() + 1, 0); + inclusive_scan(sidesPerFacePQ.begin(), newEnd, faceEdge.begin() + 1); + outR.halfedge_.resize(faceEdge.back()); + + return std::make_tuple(faceEdge, facePQ2R); +} + +struct EdgePos { + int vert; + double edgePos; + bool isStart; +}; + +void AddNewEdgeVerts( + // we need concurrent_map because we will be adding things concurrently + concurrent_map> &edgesP, + concurrent_map, std::vector> &edgesNew, + const SparseIndices &p1q2, const Vec &i12, const Vec &v12R, + const Vec &halfedgeP, bool forward) { + ZoneScoped; + // For each edge of P that intersects a face of Q (p1q2), add this vertex to + // P's corresponding edge vector and to the two new edges, which are + // intersections between the face of Q and the two faces of P attached to the + // edge. The direction and duplicity are given by i12, while v12R remaps to + // the output vert index. When forward is false, all is reversed. + auto process = [&](std::function lock, + std::function unlock, size_t i) { + const int edgeP = p1q2.Get(i, !forward); + const int faceQ = p1q2.Get(i, forward); + const int vert = v12R[i]; + const int inclusion = i12[i]; + + Halfedge halfedge = halfedgeP[edgeP]; + std::pair keyRight = {halfedge.pairedHalfedge / 3, faceQ}; + if (!forward) std::swap(keyRight.first, keyRight.second); + + std::pair keyLeft = {edgeP / 3, faceQ}; + if (!forward) std::swap(keyLeft.first, keyLeft.second); + + bool direction = inclusion < 0; + std::hash> pairHasher; + std::array *>, 3> edges = { + std::make_tuple(direction, std::hash{}(edgeP), &edgesP[edgeP]), + std::make_tuple(direction ^ !forward, // revert if not forward + pairHasher(keyRight), &edgesNew[keyRight]), + std::make_tuple(direction ^ forward, // revert if forward + pairHasher(keyLeft), &edgesNew[keyLeft])}; + for (const auto &tuple : edges) { + lock(std::get<1>(tuple)); + for (int j = 0; j < std::abs(inclusion); ++j) + std::get<2>(tuple)->push_back({vert + j, 0.0, std::get<0>(tuple)}); + unlock(std::get<1>(tuple)); + direction = !direction; + } + }; +#if MANIFOLD_PAR == 'T' && __has_include() + // parallelize operations, requires concurrent_map so we can only enable this + // with tbb + if (!ManifoldParams().deterministic && p1q2.size() > kParallelThreshold) { + // ideally we should have 1 mutex per key, but kParallelThreshold is enough + // to avoid contention for most of the cases + std::array mutexes; + static tbb::affinity_partitioner ap; + auto processFun = std::bind( + process, [&](size_t hash) { mutexes[hash % mutexes.size()].lock(); }, + [&](size_t hash) { mutexes[hash % mutexes.size()].unlock(); }, + std::placeholders::_1); + tbb::parallel_for( + tbb::blocked_range(0_uz, p1q2.size(), 32), + [&](const tbb::blocked_range &range) { + for (size_t i = range.begin(); i != range.end(); i++) processFun(i); + }, + ap); + return; + } +#endif + auto processFun = std::bind( + process, [](size_t _) {}, [](size_t _) {}, std::placeholders::_1); + for (size_t i = 0; i < p1q2.size(); ++i) processFun(i); +} + +std::vector PairUp(std::vector &edgePos) { + // Pair start vertices with end vertices to form edges. The choice of pairing + // is arbitrary for the manifoldness guarantee, but must be ordered to be + // geometrically valid. If the order does not go start-end-start-end... then + // the input and output are not geometrically valid and this algorithm becomes + // a heuristic. + DEBUG_ASSERT(edgePos.size() % 2 == 0, topologyErr, + "Non-manifold edge! Not an even number of points."); + size_t nEdges = edgePos.size() / 2; + auto middle = std::partition(edgePos.begin(), edgePos.end(), + [](EdgePos x) { return x.isStart; }); + DEBUG_ASSERT(static_cast(middle - edgePos.begin()) == nEdges, + topologyErr, "Non-manifold edge!"); + auto cmp = [](EdgePos a, EdgePos b) { return a.edgePos < b.edgePos; }; + std::stable_sort(edgePos.begin(), middle, cmp); + std::stable_sort(middle, edgePos.end(), cmp); + std::vector edges; + for (size_t i = 0; i < nEdges; ++i) + edges.push_back({edgePos[i].vert, edgePos[i + nEdges].vert, -1, -1}); + return edges; +} + +void AppendPartialEdges(Manifold::Impl &outR, Vec &wholeHalfedgeP, + Vec &facePtrR, + concurrent_map> &edgesP, + Vec &halfedgeRef, const Manifold::Impl &inP, + const Vec &i03, const Vec &vP2R, + const Vec::IterC faceP2R, bool forward) { + ZoneScoped; + // Each edge in the map is partially retained; for each of these, look up + // their original verts and include them based on their winding number (i03), + // while remapping them to the output using vP2R. Use the verts position + // projected along the edge vector to pair them up, then distribute these + // edges to their faces. + Vec &halfedgeR = outR.halfedge_; + const Vec &vertPosP = inP.vertPos_; + const Vec &halfedgeP = inP.halfedge_; + + for (auto &value : edgesP) { + const int edgeP = value.first; + std::vector &edgePosP = value.second; + + const Halfedge &halfedge = halfedgeP[edgeP]; + wholeHalfedgeP[edgeP] = false; + wholeHalfedgeP[halfedge.pairedHalfedge] = false; + + const int vStart = halfedge.startVert; + const int vEnd = halfedge.endVert; + const vec3 edgeVec = vertPosP[vEnd] - vertPosP[vStart]; + // Fill in the edge positions of the old points. + for (EdgePos &edge : edgePosP) { + edge.edgePos = glm::dot(outR.vertPos_[edge.vert], edgeVec); + } + + int inclusion = i03[vStart]; + EdgePos edgePos = {vP2R[vStart], + glm::dot(outR.vertPos_[vP2R[vStart]], edgeVec), + inclusion > 0}; + for (int j = 0; j < std::abs(inclusion); ++j) { + edgePosP.push_back(edgePos); + ++edgePos.vert; + } + + inclusion = i03[vEnd]; + edgePos = {vP2R[vEnd], glm::dot(outR.vertPos_[vP2R[vEnd]], edgeVec), + inclusion < 0}; + for (int j = 0; j < std::abs(inclusion); ++j) { + edgePosP.push_back(edgePos); + ++edgePos.vert; + } + + // sort edges into start/end pairs along length + std::vector edges = PairUp(edgePosP); + + // add halfedges to result + const int faceLeftP = edgeP / 3; + const int faceLeft = faceP2R[faceLeftP]; + const int faceRightP = halfedge.pairedHalfedge / 3; + const int faceRight = faceP2R[faceRightP]; + // Negative inclusion means the halfedges are reversed, which means our + // reference is now to the endVert instead of the startVert, which is one + // position advanced CCW. This is only valid if this is a retained vert; it + // will be ignored later if the vert is new. + const TriRef forwardRef = {forward ? 0 : 1, -1, faceLeftP}; + const TriRef backwardRef = {forward ? 0 : 1, -1, faceRightP}; + + for (Halfedge e : edges) { + const int forwardEdge = facePtrR[faceLeft]++; + const int backwardEdge = facePtrR[faceRight]++; + + e.pairedHalfedge = backwardEdge; + halfedgeR[forwardEdge] = e; + halfedgeRef[forwardEdge] = forwardRef; + + std::swap(e.startVert, e.endVert); + e.pairedHalfedge = forwardEdge; + halfedgeR[backwardEdge] = e; + halfedgeRef[backwardEdge] = backwardRef; + } + } +} + +void AppendNewEdges( + Manifold::Impl &outR, Vec &facePtrR, + concurrent_map, std::vector> &edgesNew, + Vec &halfedgeRef, const Vec &facePQ2R, const int numFaceP) { + ZoneScoped; + // Pair up each edge's verts and distribute to faces based on indices in key. + Vec &halfedgeR = outR.halfedge_; + Vec &vertPosR = outR.vertPos_; + + for (auto &value : edgesNew) { + const int faceP = value.first.first; + const int faceQ = value.first.second; + std::vector &edgePos = value.second; + + Box bbox; + for (auto edge : edgePos) { + bbox.Union(vertPosR[edge.vert]); + } + const vec3 size = bbox.Size(); + // Order the points along their longest dimension. + const int i = (size.x > size.y && size.x > size.z) ? 0 + : size.y > size.z ? 1 + : 2; + for (auto &edge : edgePos) { + edge.edgePos = vertPosR[edge.vert][i]; + } + + // sort edges into start/end pairs along length. + std::vector edges = PairUp(edgePos); + + // add halfedges to result + const int faceLeft = facePQ2R[faceP]; + const int faceRight = facePQ2R[numFaceP + faceQ]; + const TriRef forwardRef = {0, -1, faceP}; + const TriRef backwardRef = {1, -1, faceQ}; + for (Halfedge e : edges) { + const int forwardEdge = facePtrR[faceLeft]++; + const int backwardEdge = facePtrR[faceRight]++; + + e.pairedHalfedge = backwardEdge; + halfedgeR[forwardEdge] = e; + halfedgeRef[forwardEdge] = forwardRef; + + std::swap(e.startVert, e.endVert); + e.pairedHalfedge = forwardEdge; + halfedgeR[backwardEdge] = e; + halfedgeRef[backwardEdge] = backwardRef; + } + } +} + +struct DuplicateHalfedges { + VecView halfedgesR; + VecView halfedgeRef; + VecView facePtr; + VecView wholeHalfedgeP; + VecView halfedgesP; + VecView i03; + VecView vP2R; + VecView faceP2R; + const bool forward; + + void operator()(const int idx) { + if (!wholeHalfedgeP[idx]) return; + Halfedge halfedge = halfedgesP[idx]; + if (!halfedge.IsForward()) return; + + const int inclusion = i03[halfedge.startVert]; + if (inclusion == 0) return; + if (inclusion < 0) { // reverse + int tmp = halfedge.startVert; + halfedge.startVert = halfedge.endVert; + halfedge.endVert = tmp; + } + halfedge.startVert = vP2R[halfedge.startVert]; + halfedge.endVert = vP2R[halfedge.endVert]; + const int faceLeftP = idx / 3; + const int newFace = faceP2R[faceLeftP]; + const int faceRightP = halfedge.pairedHalfedge / 3; + const int faceRight = faceP2R[faceRightP]; + // Negative inclusion means the halfedges are reversed, which means our + // reference is now to the endVert instead of the startVert, which is one + // position advanced CCW. + const TriRef forwardRef = {forward ? 0 : 1, -1, faceLeftP}; + const TriRef backwardRef = {forward ? 0 : 1, -1, faceRightP}; + + for (int i = 0; i < std::abs(inclusion); ++i) { + int forwardEdge = AtomicAdd(facePtr[newFace], 1); + int backwardEdge = AtomicAdd(facePtr[faceRight], 1); + halfedge.pairedHalfedge = backwardEdge; + + halfedgesR[forwardEdge] = halfedge; + halfedgesR[backwardEdge] = {halfedge.endVert, halfedge.startVert, + forwardEdge, faceRight}; + halfedgeRef[forwardEdge] = forwardRef; + halfedgeRef[backwardEdge] = backwardRef; + + ++halfedge.startVert; + ++halfedge.endVert; + } + } +}; + +void AppendWholeEdges(Manifold::Impl &outR, Vec &facePtrR, + Vec &halfedgeRef, const Manifold::Impl &inP, + const Vec wholeHalfedgeP, const Vec &i03, + const Vec &vP2R, VecView faceP2R, + bool forward) { + ZoneScoped; + for_each_n( + ManifoldParams().deterministic ? ExecutionPolicy::Seq + : autoPolicy(inP.halfedge_.size()), + countAt(0), inP.halfedge_.size(), + DuplicateHalfedges({outR.halfedge_, halfedgeRef, facePtrR, wholeHalfedgeP, + inP.halfedge_, i03, vP2R, faceP2R, forward})); +} + +struct MapTriRef { + VecView triRefP; + VecView triRefQ; + const int offsetQ; + + void operator()(TriRef &triRef) { + const int tri = triRef.tri; + const bool PQ = triRef.meshID == 0; + triRef = PQ ? triRefP[tri] : triRefQ[tri]; + if (!PQ) triRef.meshID += offsetQ; + } +}; + +void UpdateReference(Manifold::Impl &outR, const Manifold::Impl &inP, + const Manifold::Impl &inQ, bool invertQ) { + const int offsetQ = Manifold::Impl::meshIDCounter_; + for_each_n( + autoPolicy(outR.NumTri(), 1e5), outR.meshRelation_.triRef.begin(), + outR.NumTri(), + MapTriRef({inP.meshRelation_.triRef, inQ.meshRelation_.triRef, offsetQ})); + + for (const auto &pair : inP.meshRelation_.meshIDtransform) { + outR.meshRelation_.meshIDtransform[pair.first] = pair.second; + } + for (const auto &pair : inQ.meshRelation_.meshIDtransform) { + outR.meshRelation_.meshIDtransform[pair.first + offsetQ] = pair.second; + outR.meshRelation_.meshIDtransform[pair.first + offsetQ].backSide ^= + invertQ; + } +} + +struct Barycentric { + VecView uvw; + VecView ref; + VecView vertPosP; + VecView vertPosQ; + VecView vertPosR; + VecView halfedgeP; + VecView halfedgeQ; + VecView halfedgeR; + const double precision; + + void operator()(const int tri) { + const TriRef refPQ = ref[tri]; + if (halfedgeR[3 * tri].startVert < 0) return; + + const int triPQ = refPQ.tri; + const bool PQ = refPQ.meshID == 0; + const auto &vertPos = PQ ? vertPosP : vertPosQ; + const auto &halfedge = PQ ? halfedgeP : halfedgeQ; + + mat3 triPos; + for (const int j : {0, 1, 2}) + triPos[j] = vertPos[halfedge[3 * triPQ + j].startVert]; + + for (const int i : {0, 1, 2}) { + const int vert = halfedgeR[3 * tri + i].startVert; + uvw[3 * tri + i] = GetBarycentric(vertPosR[vert], triPos, precision); + } + } +}; + +void CreateProperties(Manifold::Impl &outR, const Manifold::Impl &inP, + const Manifold::Impl &inQ) { + ZoneScoped; + const int numPropP = inP.NumProp(); + const int numPropQ = inQ.NumProp(); + const int numProp = std::max(numPropP, numPropQ); + outR.meshRelation_.numProp = numProp; + if (numProp == 0) return; + + const int numTri = outR.NumTri(); + outR.meshRelation_.triProperties.resize(numTri); + + Vec bary(outR.halfedge_.size()); + for_each_n(autoPolicy(numTri, 1e4), countAt(0), numTri, + Barycentric({bary, outR.meshRelation_.triRef, inP.vertPos_, + inQ.vertPos_, outR.vertPos_, inP.halfedge_, + inQ.halfedge_, outR.halfedge_, outR.precision_})); + + using Entry = std::pair; + int idMissProp = outR.NumVert(); + std::vector> propIdx(outR.NumVert() + 1); + std::vector propMissIdx[2]; + propMissIdx[0].resize(inQ.NumPropVert(), -1); + propMissIdx[1].resize(inP.NumPropVert(), -1); + + outR.meshRelation_.properties.reserve(outR.NumVert() * numProp); + int idx = 0; + + for (int tri = 0; tri < numTri; ++tri) { + // Skip collapsed triangles + if (outR.halfedge_[3 * tri].startVert < 0) continue; + + const TriRef ref = outR.meshRelation_.triRef[tri]; + const bool PQ = ref.meshID == 0; + const int oldNumProp = PQ ? numPropP : numPropQ; + const auto &properties = + PQ ? inP.meshRelation_.properties : inQ.meshRelation_.properties; + const ivec3 &triProp = oldNumProp == 0 ? ivec3(-1) + : PQ ? inP.meshRelation_.triProperties[ref.tri] + : inQ.meshRelation_.triProperties[ref.tri]; + + for (const int i : {0, 1, 2}) { + const int vert = outR.halfedge_[3 * tri + i].startVert; + const vec3 &uvw = bary[3 * tri + i]; + + ivec4 key(PQ, idMissProp, -1, -1); + if (oldNumProp > 0) { + int edge = -2; + for (const int j : {0, 1, 2}) { + if (uvw[j] == 1) { + // On a retained vert, the propVert must also match + key[2] = triProp[j]; + edge = -1; + break; + } + if (uvw[j] == 0) edge = j; + } + if (edge >= 0) { + // On an edge, both propVerts must match + const int p0 = triProp[Next3(edge)]; + const int p1 = triProp[Prev3(edge)]; + key[1] = vert; + key[2] = std::min(p0, p1); + key[3] = std::max(p0, p1); + } else if (edge == -2) { + key[1] = vert; + } + } + + if (key.y == idMissProp && key.z >= 0) { + // only key.x/key.z matters + auto &entry = propMissIdx[key.x][key.z]; + if (entry >= 0) { + outR.meshRelation_.triProperties[tri][i] = entry; + continue; + } + entry = idx; + } else { + auto &bin = propIdx[key.y]; + bool bFound = false; + for (const auto &b : bin) { + if (b.first == ivec3(key.x, key.z, key.w)) { + bFound = true; + outR.meshRelation_.triProperties[tri][i] = b.second; + break; + } + } + if (bFound) continue; + bin.push_back(std::make_pair(ivec3(key.x, key.z, key.w), idx)); + } + + outR.meshRelation_.triProperties[tri][i] = idx++; + for (int p = 0; p < numProp; ++p) { + if (p < oldNumProp) { + vec3 oldProps; + for (const int j : {0, 1, 2}) + oldProps[j] = properties[oldNumProp * triProp[j] + p]; + outR.meshRelation_.properties.push_back(glm::dot(uvw, oldProps)); + } else { + outR.meshRelation_.properties.push_back(0); + } + } + } + } +} +} // namespace + +namespace manifold { + +Manifold::Impl Boolean3::Result(OpType op) const { +#ifdef MANIFOLD_DEBUG + Timer assemble; + assemble.Start(); +#endif + + DEBUG_ASSERT((expandP_ > 0) == (op == OpType::Add), logicErr, + "Result op type not compatible with constructor op type."); + const int c1 = op == OpType::Intersect ? 0 : 1; + const int c2 = op == OpType::Add ? 1 : 0; + const int c3 = op == OpType::Intersect ? 1 : -1; + + if (inP_.IsEmpty()) { + if (inP_.status_ != Manifold::Error::NoError || + inQ_.status_ != Manifold::Error::NoError) { + auto impl = Manifold::Impl(); + impl.status_ = Manifold::Error::InvalidConstruction; + return impl; + } + if (!inQ_.IsEmpty() && op == OpType::Add) { + return inQ_; + } + return Manifold::Impl(); + } else if (inQ_.IsEmpty()) { + if (inQ_.status_ != Manifold::Error::NoError) { + auto impl = Manifold::Impl(); + impl.status_ = Manifold::Error::InvalidConstruction; + return impl; + } + if (op == OpType::Intersect) { + return Manifold::Impl(); + } + return inP_; + } + + const bool invertQ = op == OpType::Subtract; + + // Convert winding numbers to inclusion values based on operation type. + Vec i12(x12_.size()); + Vec i21(x21_.size()); + Vec i03(w03_.size()); + Vec i30(w30_.size()); + + transform(x12_.begin(), x12_.end(), i12.begin(), + [c3](int v) { return c3 * v; }); + transform(x21_.begin(), x21_.end(), i21.begin(), + [c3](int v) { return c3 * v; }); + transform(w03_.begin(), w03_.end(), i03.begin(), + [c1, c3](int v) { return c1 + c3 * v; }); + transform(w30_.begin(), w30_.end(), i30.begin(), + [c2, c3](int v) { return c2 + c3 * v; }); + + Vec vP2R(inP_.NumVert()); + exclusive_scan(i03.begin(), i03.end(), vP2R.begin(), 0, AbsSum()); + int numVertR = AbsSum()(vP2R.back(), i03.back()); + const int nPv = numVertR; + + Vec vQ2R(inQ_.NumVert()); + exclusive_scan(i30.begin(), i30.end(), vQ2R.begin(), numVertR, AbsSum()); + numVertR = AbsSum()(vQ2R.back(), i30.back()); + const int nQv = numVertR - nPv; + + Vec v12R(v12_.size()); + if (v12_.size() > 0) { + exclusive_scan(i12.begin(), i12.end(), v12R.begin(), numVertR, AbsSum()); + numVertR = AbsSum()(v12R.back(), i12.back()); + } + const int n12 = numVertR - nPv - nQv; + + Vec v21R(v21_.size()); + if (v21_.size() > 0) { + exclusive_scan(i21.begin(), i21.end(), v21R.begin(), numVertR, AbsSum()); + numVertR = AbsSum()(v21R.back(), i21.back()); + } + const int n21 = numVertR - nPv - nQv - n12; + + // Create the output Manifold + Manifold::Impl outR; + + if (numVertR == 0) return outR; + + outR.precision_ = std::max(inP_.precision_, inQ_.precision_); + + outR.vertPos_.resize(numVertR); + // Add vertices, duplicating for inclusion numbers not in [-1, 1]. + // Retained vertices from P and Q: + for_each_n(autoPolicy(inP_.NumVert(), 1e4), countAt(0), inP_.NumVert(), + DuplicateVerts({outR.vertPos_, i03, vP2R, inP_.vertPos_})); + for_each_n(autoPolicy(inQ_.NumVert(), 1e4), countAt(0), inQ_.NumVert(), + DuplicateVerts({outR.vertPos_, i30, vQ2R, inQ_.vertPos_})); + // New vertices created from intersections: + for_each_n(autoPolicy(i12.size(), 1e4), countAt(0), i12.size(), + DuplicateVerts({outR.vertPos_, i12, v12R, v12_})); + for_each_n(autoPolicy(i21.size(), 1e4), countAt(0), i21.size(), + DuplicateVerts({outR.vertPos_, i21, v21R, v21_})); + + PRINT(nPv << " verts from inP"); + PRINT(nQv << " verts from inQ"); + PRINT(n12 << " new verts from edgesP -> facesQ"); + PRINT(n21 << " new verts from facesP -> edgesQ"); + + // Build up new polygonal faces from triangle intersections. At this point the + // calculation switches from parallel to serial. + + // Level 3 + + // This key is the forward halfedge index of P or Q. Only includes intersected + // edges. + concurrent_map> edgesP, edgesQ; + // This key is the face index of + concurrent_map, std::vector> edgesNew; + + AddNewEdgeVerts(edgesP, edgesNew, p1q2_, i12, v12R, inP_.halfedge_, true); + AddNewEdgeVerts(edgesQ, edgesNew, p2q1_, i21, v21R, inQ_.halfedge_, false); + + // Level 4 + Vec faceEdge; + Vec facePQ2R; + std::tie(faceEdge, facePQ2R) = + SizeOutput(outR, inP_, inQ_, i03, i30, i12, i21, p1q2_, p2q1_, invertQ); + + // This gets incremented for each halfedge that's added to a face so that the + // next one knows where to slot in. + Vec facePtrR = faceEdge; + // Intersected halfedges are marked false. + Vec wholeHalfedgeP(inP_.halfedge_.size(), true); + Vec wholeHalfedgeQ(inQ_.halfedge_.size(), true); + // The halfedgeRef contains the data that will become triRef once the faces + // are triangulated. + Vec halfedgeRef(2 * outR.NumEdge()); + + AppendPartialEdges(outR, wholeHalfedgeP, facePtrR, edgesP, halfedgeRef, inP_, + i03, vP2R, facePQ2R.begin(), true); + AppendPartialEdges(outR, wholeHalfedgeQ, facePtrR, edgesQ, halfedgeRef, inQ_, + i30, vQ2R, facePQ2R.begin() + inP_.NumTri(), false); + + AppendNewEdges(outR, facePtrR, edgesNew, halfedgeRef, facePQ2R, + inP_.NumTri()); + + AppendWholeEdges(outR, facePtrR, halfedgeRef, inP_, wholeHalfedgeP, i03, vP2R, + facePQ2R.cview(0, inP_.NumTri()), true); + AppendWholeEdges(outR, facePtrR, halfedgeRef, inQ_, wholeHalfedgeQ, i30, vQ2R, + facePQ2R.cview(inP_.NumTri(), inQ_.NumTri()), false); + +#ifdef MANIFOLD_DEBUG + assemble.Stop(); + Timer triangulate; + triangulate.Start(); +#endif + + // Level 6 + + if (ManifoldParams().intermediateChecks) + DEBUG_ASSERT(outR.IsManifold(), logicErr, "polygon mesh is not manifold!"); + + outR.Face2Tri(faceEdge, halfedgeRef); + +#ifdef MANIFOLD_DEBUG + triangulate.Stop(); + Timer simplify; + simplify.Start(); +#endif + + if (ManifoldParams().intermediateChecks) + DEBUG_ASSERT(outR.IsManifold(), logicErr, + "triangulated mesh is not manifold!"); + + CreateProperties(outR, inP_, inQ_); + + UpdateReference(outR, inP_, inQ_, invertQ); + + outR.SimplifyTopology(); + + if (ManifoldParams().intermediateChecks) + DEBUG_ASSERT(outR.Is2Manifold(), logicErr, + "simplified mesh is not 2-manifold!"); + +#ifdef MANIFOLD_DEBUG + simplify.Stop(); + Timer sort; + sort.Start(); +#endif + + outR.Finish(); + outR.IncrementMeshIDs(); + +#ifdef MANIFOLD_DEBUG + sort.Stop(); + if (ManifoldParams().verbose) { + assemble.Print("Assembly"); + triangulate.Print("Triangulation"); + simplify.Print("Simplification"); + sort.Print("Sorting"); + std::cout << outR.NumVert() << " verts and " << outR.NumTri() << " tris" + << std::endl; + } +#endif + + return outR; +} + +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/constructors.cpp b/thirdparty/manifold/src/manifold/src/constructors.cpp new file mode 100644 index 000000000000..2479209b7bf3 --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/constructors.cpp @@ -0,0 +1,499 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "csg_tree.h" +#include "impl.h" +#include "manifold/parallel.h" +#include "manifold/polygon.h" + +namespace manifold { +/** + * Constructs a smooth version of the input mesh by creating tangents; this + * method will throw if you have supplied tangents with your mesh already. The + * actual triangle resolution is unchanged; use the Refine() method to + * interpolate to a higher-resolution curve. + * + * By default, every edge is calculated for maximum smoothness (very much + * approximately), attempting to minimize the maximum mean Curvature magnitude. + * No higher-order derivatives are considered, as the interpolation is + * independent per triangle, only sharing constraints on their boundaries. + * + * @param meshGL input MeshGL. + * @param sharpenedEdges If desired, you can supply a vector of sharpened + * halfedges, which should in general be a small subset of all halfedges. Order + * of entries doesn't matter, as each one specifies the desired smoothness + * (between zero and one, with one the default for all unspecified halfedges) + * and the halfedge index (3 * triangle index + [0,1,2] where 0 is the edge + * between triVert 0 and 1, etc). + * + * At a smoothness value of zero, a sharp crease is made. The smoothness is + * interpolated along each edge, so the specified value should be thought of as + * an average. Where exactly two sharpened edges meet at a vertex, their + * tangents are rotated to be colinear so that the sharpened edge can be + * continuous. Vertices with only one sharpened edge are completely smooth, + * allowing sharpened edges to smoothly vanish at termination. A single vertex + * can be sharpened by sharping all edges that are incident on it, allowing + * cones to be formed. + */ +Manifold Manifold::Smooth(const MeshGL& meshGL, + const std::vector& sharpenedEdges) { + DEBUG_ASSERT(meshGL.halfedgeTangent.empty(), std::runtime_error, + "when supplying tangents, the normal constructor should be used " + "rather than Smooth()."); + + std::shared_ptr impl = std::make_shared(meshGL); + impl->CreateTangents(impl->UpdateSharpenedEdges(sharpenedEdges)); + return Manifold(impl); +} + +/** + * Constructs a smooth version of the input mesh by creating tangents; this + * method will throw if you have supplied tangents with your mesh already. The + * actual triangle resolution is unchanged; use the Refine() method to + * interpolate to a higher-resolution curve. + * + * By default, every edge is calculated for maximum smoothness (very much + * approximately), attempting to minimize the maximum mean Curvature magnitude. + * No higher-order derivatives are considered, as the interpolation is + * independent per triangle, only sharing constraints on their boundaries. + * + * @param meshGL input MeshGL. + * @param sharpenedEdges If desired, you can supply a vector of sharpened + * halfedges, which should in general be a small subset of all halfedges. Order + * of entries doesn't matter, as each one specifies the desired smoothness + * (between zero and one, with one the default for all unspecified halfedges) + * and the halfedge index (3 * triangle index + [0,1,2] where 0 is the edge + * between triVert 0 and 1, etc). + * + * At a smoothness value of zero, a sharp crease is made. The smoothness is + * interpolated along each edge, so the specified value should be thought of as + * an average. Where exactly two sharpened edges meet at a vertex, their + * tangents are rotated to be colinear so that the sharpened edge can be + * continuous. Vertices with only one sharpened edge are completely smooth, + * allowing sharpened edges to smoothly vanish at termination. A single vertex + * can be sharpened by sharping all edges that are incident on it, allowing + * cones to be formed. + */ +Manifold Manifold::Smooth(const MeshGL64& meshGL64, + const std::vector& sharpenedEdges) { + DEBUG_ASSERT(meshGL64.halfedgeTangent.empty(), std::runtime_error, + "when supplying tangents, the normal constructor should be used " + "rather than Smooth()."); + + std::shared_ptr impl = std::make_shared(meshGL64); + impl->CreateTangents(impl->UpdateSharpenedEdges(sharpenedEdges)); + return Manifold(impl); +} + +/** + * Constructs a tetrahedron centered at the origin with one vertex at (1,1,1) + * and the rest at similarly symmetric points. + */ +Manifold Manifold::Tetrahedron() { + return Manifold(std::make_shared(Impl::Shape::Tetrahedron)); +} + +/** + * Constructs a unit cube (edge lengths all one), by default in the first + * octant, touching the origin. If any dimensions in size are negative, or if + * all are zero, an empty Manifold will be returned. + * + * @param size The X, Y, and Z dimensions of the box. + * @param center Set to true to shift the center to the origin. + */ +Manifold Manifold::Cube(vec3 size, bool center) { + if (size.x < 0.0 || size.y < 0.0 || size.z < 0.0 || glm::length(size) == 0.) { + return Invalid(); + } + mat4x3 m(glm::translate(center ? (-size / 2.0) : vec3(0)) * glm::scale(size)); + return Manifold(std::make_shared(Manifold::Impl::Shape::Cube, m)); +} + +/** + * A convenience constructor for the common case of extruding a circle. Can also + * form cones if both radii are specified. + * + * @param height Z-extent + * @param radiusLow Radius of bottom circle. Must be positive. + * @param radiusHigh Radius of top circle. Can equal zero. Default is equal to + * radiusLow. + * @param circularSegments How many line segments to use around the circle. + * Default is calculated by the static Defaults. + * @param center Set to true to shift the center to the origin. Default is + * origin at the bottom. + */ +Manifold Manifold::Cylinder(double height, double radiusLow, double radiusHigh, + int circularSegments, bool center) { + if (height <= 0.0 || radiusLow <= 0.0) { + return Invalid(); + } + const double scale = radiusHigh >= 0.0 ? radiusHigh / radiusLow : 1.0; + const double radius = fmax(radiusLow, radiusHigh); + const int n = circularSegments > 2 ? circularSegments + : Quality::GetCircularSegments(radius); + + SimplePolygon circle(n); + const double dPhi = 360.0 / n; + for (int i = 0; i < n; ++i) { + circle[i] = {radiusLow * cosd(dPhi * i), radiusLow * sind(dPhi * i)}; + } + + Manifold cylinder = Manifold::Extrude({circle}, height, 0, 0.0, vec2(scale)); + if (center) + cylinder = cylinder.Translate(vec3(0.0, 0.0, -height / 2.0)).AsOriginal(); + return cylinder; +} + +/** + * Constructs a geodesic sphere of a given radius. + * + * @param radius Radius of the sphere. Must be positive. + * @param circularSegments Number of segments along its + * diameter. This number will always be rounded up to the nearest factor of + * four, as this sphere is constructed by refining an octahedron. This means + * there are a circle of vertices on all three of the axis planes. Default is + * calculated by the static Defaults. + */ +Manifold Manifold::Sphere(double radius, int circularSegments) { + if (radius <= 0.0) { + return Invalid(); + } + int n = circularSegments > 0 ? (circularSegments + 3) / 4 + : Quality::GetCircularSegments(radius) / 4; + auto pImpl_ = std::make_shared(Impl::Shape::Octahedron); + pImpl_->Subdivide([n](vec3 edge) { return n - 1; }); + for_each_n(autoPolicy(pImpl_->NumVert(), 1e5), pImpl_->vertPos_.begin(), + pImpl_->NumVert(), [radius](vec3& v) { + v = glm::cos(glm::half_pi() * (1.0 - v)); + v = radius * glm::normalize(v); + if (isnan(v.x)) v = vec3(0.0); + }); + pImpl_->Finish(); + // Ignore preceding octahedron. + pImpl_->InitializeOriginal(); + return Manifold(pImpl_); +} + +/** + * Constructs a manifold from a set of polygons by extruding them along the + * Z-axis. + * Note that high twistDegrees with small nDivisions may cause + * self-intersection. This is not checked here and it is up to the user to + * choose the correct parameters. + * + * @param crossSection A set of non-overlapping polygons to extrude. + * @param height Z-extent of extrusion. + * @param nDivisions Number of extra copies of the crossSection to insert into + * the shape vertically; especially useful in combination with twistDegrees to + * avoid interpolation artifacts. Default is none. + * @param twistDegrees Amount to twist the top crossSection relative to the + * bottom, interpolated linearly for the divisions in between. + * @param scaleTop Amount to scale the top (independently in X and Y). If the + * scale is {0, 0}, a pure cone is formed with only a single vertex at the top. + * Note that scale is applied after twist. + * Default {1, 1}. + */ +Manifold Manifold::Extrude(const Polygons& crossSection, double height, + int nDivisions, double twistDegrees, vec2 scaleTop) { + ZoneScoped; + if (crossSection.size() == 0 || height <= 0.0) { + return Invalid(); + } + + scaleTop.x = std::max(scaleTop.x, 0.0); + scaleTop.y = std::max(scaleTop.y, 0.0); + + auto pImpl_ = std::make_shared(); + ++nDivisions; + auto& vertPos = pImpl_->vertPos_; + Vec triVertsDH; + auto& triVerts = triVertsDH; + int nCrossSection = 0; + bool isCone = scaleTop.x == 0.0 && scaleTop.y == 0.0; + size_t idx = 0; + PolygonsIdx polygonsIndexed; + for (auto& poly : crossSection) { + nCrossSection += poly.size(); + SimplePolygonIdx simpleIndexed; + for (const vec2& polyVert : poly) { + vertPos.push_back({polyVert.x, polyVert.y, 0.0}); + simpleIndexed.push_back({polyVert, static_cast(idx++)}); + } + polygonsIndexed.push_back(simpleIndexed); + } + for (int i = 1; i < nDivisions + 1; ++i) { + double alpha = i / double(nDivisions); + double phi = alpha * twistDegrees; + vec2 scale = glm::mix(vec2(1.0), scaleTop, alpha); + mat2 rotation(cosd(phi), sind(phi), -sind(phi), cosd(phi)); + mat2 transform = mat2(scale.x, 0.0, 0.0, scale.y) * rotation; + size_t j = 0; + size_t idx = 0; + for (const auto& poly : crossSection) { + for (size_t vert = 0; vert < poly.size(); ++vert) { + size_t offset = idx + nCrossSection * i; + size_t thisVert = vert + offset; + size_t lastVert = (vert == 0 ? poly.size() : vert) - 1 + offset; + if (i == nDivisions && isCone) { + triVerts.push_back({nCrossSection * i + j, lastVert - nCrossSection, + thisVert - nCrossSection}); + } else { + vec2 pos = transform * poly[vert]; + vertPos.push_back({pos.x, pos.y, height * alpha}); + triVerts.push_back({thisVert, lastVert, thisVert - nCrossSection}); + triVerts.push_back( + {lastVert, lastVert - nCrossSection, thisVert - nCrossSection}); + } + } + ++j; + idx += poly.size(); + } + } + if (isCone) + for (size_t j = 0; j < crossSection.size(); + ++j) // Duplicate vertex for Genus + vertPos.push_back({0.0, 0.0, height}); + std::vector top = TriangulateIdx(polygonsIndexed); + for (const ivec3& tri : top) { + triVerts.push_back({tri[0], tri[2], tri[1]}); + if (!isCone) triVerts.push_back(tri + nCrossSection * nDivisions); + } + + pImpl_->CreateHalfedges(triVertsDH); + pImpl_->Finish(); + pImpl_->InitializeOriginal(); + pImpl_->CreateFaces(); + return Manifold(pImpl_); +} + +/** + * Constructs a manifold from a set of polygons by revolving this cross-section + * around its Y-axis and then setting this as the Z-axis of the resulting + * manifold. If the polygons cross the Y-axis, only the part on the positive X + * side is used. Geometrically valid input will result in geometrically valid + * output. + * + * @param crossSection A set of non-overlapping polygons to revolve. + * @param circularSegments Number of segments along its diameter. Default is + * calculated by the static Defaults. + * @param revolveDegrees Number of degrees to revolve. Default is 360 degrees. + */ +Manifold Manifold::Revolve(const Polygons& crossSection, int circularSegments, + double revolveDegrees) { + ZoneScoped; + + Polygons polygons; + double radius = 0; + for (const SimplePolygon& poly : crossSection) { + size_t i = 0; + while (i < poly.size() && poly[i].x < 0) { + ++i; + } + if (i == poly.size()) { + continue; + } + polygons.push_back({}); + const size_t start = i; + do { + if (poly[i].x >= 0) { + polygons.back().push_back(poly[i]); + radius = std::max(radius, poly[i].x); + } + const size_t next = i + 1 == poly.size() ? 0 : i + 1; + if ((poly[next].x < 0) != (poly[i].x < 0)) { + const double y = poly[next].y + poly[next].x * + (poly[i].y - poly[next].y) / + (poly[i].x - poly[next].x); + polygons.back().push_back({0, y}); + } + i = next; + } while (i != start); + } + + if (polygons.empty()) { + return Invalid(); + } + + if (revolveDegrees > 360.0) { + revolveDegrees = 360.0; + } + const bool isFullRevolution = revolveDegrees == 360.0; + + const int nDivisions = + circularSegments > 2 + ? circularSegments + : Quality::GetCircularSegments(radius) * revolveDegrees / 360; + + auto pImpl_ = std::make_shared(); + auto& vertPos = pImpl_->vertPos_; + Vec triVertsDH; + auto& triVerts = triVertsDH; + + std::vector startPoses; + std::vector endPoses; + + const double dPhi = revolveDegrees / nDivisions; + // first and last slice are distinguished if not a full revolution. + const int nSlices = isFullRevolution ? nDivisions : nDivisions + 1; + + for (const auto& poly : polygons) { + std::size_t nPosVerts = 0; + std::size_t nRevolveAxisVerts = 0; + for (auto& pt : poly) { + if (pt.x > 0) { + nPosVerts++; + } else { + nRevolveAxisVerts++; + } + } + + for (size_t polyVert = 0; polyVert < poly.size(); ++polyVert) { + const size_t startPosIndex = vertPos.size(); + + if (!isFullRevolution) startPoses.push_back(startPosIndex); + + const vec2 currPolyVertex = poly[polyVert]; + const vec2 prevPolyVertex = + poly[polyVert == 0 ? poly.size() - 1 : polyVert - 1]; + + const int prevStartPosIndex = + startPosIndex + + (polyVert == 0 ? nRevolveAxisVerts + (nSlices * nPosVerts) : 0) + + (prevPolyVertex.x == 0.0 ? -1 : -nSlices); + + for (int slice = 0; slice < nSlices; ++slice) { + const double phi = slice * dPhi; + if (slice == 0 || currPolyVertex.x > 0) { + vertPos.push_back({currPolyVertex.x * cosd(phi), + currPolyVertex.x * sind(phi), currPolyVertex.y}); + } + + if (isFullRevolution || slice > 0) { + const int lastSlice = (slice == 0 ? nDivisions : slice) - 1; + if (currPolyVertex.x > 0.0) { + triVerts.push_back( + {startPosIndex + slice, startPosIndex + lastSlice, + // "Reuse" vertex of first slice if it lies on the revolve axis + (prevPolyVertex.x == 0.0 ? prevStartPosIndex + : prevStartPosIndex + lastSlice)}); + } + + if (prevPolyVertex.x > 0.0) { + triVerts.push_back( + {prevStartPosIndex + lastSlice, prevStartPosIndex + slice, + (currPolyVertex.x == 0.0 ? startPosIndex + : startPosIndex + slice)}); + } + } + } + if (!isFullRevolution) endPoses.push_back(vertPos.size() - 1); + } + } + + // Add front and back triangles if not a full revolution. + if (!isFullRevolution) { + std::vector frontTriangles = + Triangulate(polygons, pImpl_->precision_); + for (auto& t : frontTriangles) { + triVerts.push_back({startPoses[t.x], startPoses[t.y], startPoses[t.z]}); + } + + for (auto& t : frontTriangles) { + triVerts.push_back({endPoses[t.z], endPoses[t.y], endPoses[t.x]}); + } + } + + pImpl_->CreateHalfedges(triVertsDH); + pImpl_->Finish(); + pImpl_->InitializeOriginal(); + pImpl_->CreateFaces(); + return Manifold(pImpl_); +} + +/** + * Constructs a new manifold from a vector of other manifolds. This is a purely + * topological operation, so care should be taken to avoid creating + * overlapping results. It is the inverse operation of Decompose(). + * + * @param manifolds A vector of Manifolds to lazy-union together. + */ +Manifold Manifold::Compose(const std::vector& manifolds) { + std::vector> children; + for (const auto& manifold : manifolds) { + children.push_back(manifold.pNode_->ToLeafNode()); + } + return Manifold(std::make_shared(CsgLeafNode::Compose(children))); +} + +/** + * This operation returns a vector of Manifolds that are topologically + * disconnected. If everything is connected, the vector is length one, + * containing a copy of the original. It is the inverse operation of Compose(). + */ +std::vector Manifold::Decompose() const { + ZoneScoped; + UnionFind<> uf(NumVert()); + // Graph graph; + auto pImpl_ = GetCsgLeafNode().GetImpl(); + for (const Halfedge& halfedge : pImpl_->halfedge_) { + if (halfedge.IsForward()) uf.unionXY(halfedge.startVert, halfedge.endVert); + } + std::vector componentIndices; + const int numComponents = uf.connectedComponents(componentIndices); + + if (numComponents == 1) { + std::vector meshes(1); + meshes[0] = *this; + return meshes; + } + Vec vertLabel(componentIndices); + + const int numVert = NumVert(); + std::vector meshes; + for (int i = 0; i < numComponents; ++i) { + auto impl = std::make_shared(); + // inherit original object's precision + impl->precision_ = pImpl_->precision_; + + Vec vertNew2Old(numVert); + const int nVert = + copy_if(countAt(0), countAt(numVert), vertNew2Old.begin(), + [i, &vertLabel](int v) { return vertLabel[v] == i; }) - + vertNew2Old.begin(); + impl->vertPos_.resize(nVert); + vertNew2Old.resize(nVert); + gather(vertNew2Old.begin(), vertNew2Old.end(), pImpl_->vertPos_.begin(), + impl->vertPos_.begin()); + + Vec faceNew2Old(NumTri()); + const auto& halfedge = pImpl_->halfedge_; + const int nFace = + copy_if(countAt(0_uz), countAt(NumTri()), faceNew2Old.begin(), + [i, &vertLabel, &halfedge](int face) { + return vertLabel[halfedge[3 * face].startVert] == i; + }) - + faceNew2Old.begin(); + + if (nFace == 0) continue; + faceNew2Old.resize(nFace); + + impl->GatherFaces(*pImpl_, faceNew2Old); + impl->ReindexVerts(vertNew2Old, pImpl_->NumVert()); + impl->Finish(); + + meshes.push_back(Manifold(impl)); + } + return meshes; +} +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/csg_tree.cpp b/thirdparty/manifold/src/manifold/src/csg_tree.cpp new file mode 100644 index 000000000000..8f3a2f3b86a7 --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/csg_tree.cpp @@ -0,0 +1,646 @@ +// Copyright 2022 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#if MANIFOLD_PAR == 'T' && __has_include() +#include +#define TBB_PREVIEW_CONCURRENT_ORDERED_CONTAINERS 1 +#include +#endif + +#include +#include + +#include "boolean3.h" +#include "csg_tree.h" +#include "impl.h" +#include "manifold/parallel.h" +#include "mesh_fixes.h" + +constexpr int kParallelThreshold = 4096; + +namespace { +using namespace manifold; +struct Transform4x3 { + mat4x3 transform; + + vec3 operator()(vec3 position) const { + return transform * vec4(position, 1.0); + } +}; + +struct UpdateHalfedge { + const int nextVert; + const int nextEdge; + const int nextFace; + + Halfedge operator()(Halfedge edge) { + edge.startVert += nextVert; + edge.endVert += nextVert; + edge.pairedHalfedge += nextEdge; + return edge; + } +}; + +struct UpdateTriProp { + const int nextProp; + + ivec3 operator()(ivec3 tri) { + tri += nextProp; + return tri; + } +}; + +struct UpdateMeshIDs { + const int offset; + + TriRef operator()(TriRef ref) { + ref.meshID += offset; + return ref; + } +}; + +struct CheckOverlap { + VecView boxes; + const size_t i; + bool operator()(size_t j) { return boxes[i].DoesOverlap(boxes[j]); } +}; + +using SharedImpl = std::variant, + std::shared_ptr>; +struct GetImplPtr { + const Manifold::Impl *operator()(const SharedImpl &p) { + if (std::holds_alternative>(p)) { + return std::get_if>(&p)->get(); + } else { + return std::get_if>(&p)->get(); + } + }; +}; + +struct MeshCompare { + bool operator()(const SharedImpl &a, const SharedImpl &b) { + return GetImplPtr()(a)->NumVert() < GetImplPtr()(b)->NumVert(); + } +}; + +} // namespace +namespace manifold { + +std::shared_ptr CsgNode::Boolean( + const std::shared_ptr &second, OpType op) { + if (auto opNode = std::dynamic_pointer_cast(second)) { + // "this" is not a CsgOpNode (which overrides Boolean), but if "second" is + // and the operation is commutative, we let it built the tree. + if ((op == OpType::Add || op == OpType::Intersect)) { + return opNode->Boolean(shared_from_this(), op); + } + } + std::vector> children({shared_from_this(), second}); + return std::make_shared(children, op); +} + +std::shared_ptr CsgNode::Translate(const vec3 &t) const { + mat4x3 transform(1.0); + transform[3] += t; + return Transform(transform); +} + +std::shared_ptr CsgNode::Scale(const vec3 &v) const { + mat4x3 transform(1.0); + for (int i : {0, 1, 2}) transform[i] *= v; + return Transform(transform); +} + +std::shared_ptr CsgNode::Rotate(double xDegrees, double yDegrees, + double zDegrees) const { + mat3 rX(1.0, 0.0, 0.0, // + 0.0, cosd(xDegrees), sind(xDegrees), // + 0.0, -sind(xDegrees), cosd(xDegrees)); + mat3 rY(cosd(yDegrees), 0.0, -sind(yDegrees), // + 0.0, 1.0, 0.0, // + sind(yDegrees), 0.0, cosd(yDegrees)); + mat3 rZ(cosd(zDegrees), sind(zDegrees), 0.0, // + -sind(zDegrees), cosd(zDegrees), 0.0, // + 0.0, 0.0, 1.0); + mat4x3 transform(rZ * rY * rX); + return Transform(transform); +} + +CsgLeafNode::CsgLeafNode() : pImpl_(std::make_shared()) {} + +CsgLeafNode::CsgLeafNode(std::shared_ptr pImpl_) + : pImpl_(pImpl_) {} + +CsgLeafNode::CsgLeafNode(std::shared_ptr pImpl_, + mat4x3 transform_) + : pImpl_(pImpl_), transform_(transform_) {} + +std::shared_ptr CsgLeafNode::GetImpl() const { + if (transform_ == mat4x3(1.0)) return pImpl_; + pImpl_ = + std::make_shared(pImpl_->Transform(transform_)); + transform_ = mat4x3(1.0); + return pImpl_; +} + +mat4x3 CsgLeafNode::GetTransform() const { return transform_; } + +std::shared_ptr CsgLeafNode::ToLeafNode() const { + return std::make_shared(*this); +} + +std::shared_ptr CsgLeafNode::Transform(const mat4x3 &m) const { + return std::make_shared(pImpl_, m * mat4(transform_)); +} + +CsgNodeType CsgLeafNode::GetNodeType() const { return CsgNodeType::Leaf; } + +/** + * Efficient union of a set of pairwise disjoint meshes. + */ +Manifold::Impl CsgLeafNode::Compose( + const std::vector> &nodes) { + ZoneScoped; + double precision = -1; + int numVert = 0; + int numEdge = 0; + int numTri = 0; + int numPropVert = 0; + std::vector vertIndices; + std::vector edgeIndices; + std::vector triIndices; + std::vector propVertIndices; + int numPropOut = 0; + for (auto &node : nodes) { + if (node->pImpl_->status_ != Manifold::Error::NoError) { + Manifold::Impl impl; + impl.status_ = Manifold::Error::InvalidConstruction; + return impl; + } + double nodeOldScale = node->pImpl_->bBox_.Scale(); + double nodeNewScale = + node->pImpl_->bBox_.Transform(node->transform_).Scale(); + double nodePrecision = node->pImpl_->precision_; + nodePrecision *= std::max(1.0, nodeNewScale / nodeOldScale); + nodePrecision = std::max(nodePrecision, kTolerance * nodeNewScale); + if (!std::isfinite(nodePrecision)) nodePrecision = -1; + precision = std::max(precision, nodePrecision); + + vertIndices.push_back(numVert); + edgeIndices.push_back(numEdge * 2); + triIndices.push_back(numTri); + propVertIndices.push_back(numPropVert); + numVert += node->pImpl_->NumVert(); + numEdge += node->pImpl_->NumEdge(); + numTri += node->pImpl_->NumTri(); + const int numProp = node->pImpl_->NumProp(); + numPropOut = std::max(numPropOut, numProp); + numPropVert += + numProp == 0 ? 1 + : node->pImpl_->meshRelation_.properties.size() / numProp; + } + + Manifold::Impl combined; + combined.precision_ = precision; + combined.vertPos_.resize(numVert); + combined.halfedge_.resize(2 * numEdge); + combined.faceNormal_.resize(numTri); + combined.halfedgeTangent_.resize(2 * numEdge); + combined.meshRelation_.triRef.resize(numTri); + if (numPropOut > 0) { + combined.meshRelation_.numProp = numPropOut; + combined.meshRelation_.properties.resize(numPropOut * numPropVert, 0); + combined.meshRelation_.triProperties.resize(numTri); + } + auto policy = autoPolicy(numTri); + + // if we are already parallelizing for each node, do not perform multithreaded + // copying as it will slightly hurt performance + if (nodes.size() > 1 && policy == ExecutionPolicy::Par) + policy = ExecutionPolicy::Seq; + + for_each_n( + nodes.size() > 1 ? ExecutionPolicy::Par : ExecutionPolicy::Seq, + countAt(0), nodes.size(), + [&nodes, &vertIndices, &edgeIndices, &triIndices, &propVertIndices, + numPropOut, &combined, policy](int i) { + auto &node = nodes[i]; + copy(node->pImpl_->halfedgeTangent_.begin(), + node->pImpl_->halfedgeTangent_.end(), + combined.halfedgeTangent_.begin() + edgeIndices[i]); + transform( + node->pImpl_->halfedge_.begin(), node->pImpl_->halfedge_.end(), + combined.halfedge_.begin() + edgeIndices[i], + UpdateHalfedge({vertIndices[i], edgeIndices[i], triIndices[i]})); + + if (numPropOut > 0) { + auto start = + combined.meshRelation_.triProperties.begin() + triIndices[i]; + if (node->pImpl_->NumProp() > 0) { + auto &triProp = node->pImpl_->meshRelation_.triProperties; + transform(triProp.begin(), triProp.end(), start, + UpdateTriProp({propVertIndices[i]})); + + const int numProp = node->pImpl_->NumProp(); + auto &oldProp = node->pImpl_->meshRelation_.properties; + auto &newProp = combined.meshRelation_.properties; + for (int p = 0; p < numProp; ++p) { + auto oldRange = + StridedRange(oldProp.cbegin() + p, oldProp.cend(), numProp); + auto newRange = StridedRange( + newProp.begin() + numPropOut * propVertIndices[i] + p, + newProp.end(), numPropOut); + copy(oldRange.begin(), oldRange.end(), newRange.begin()); + } + } else { + // point all triangles at single new property of zeros. + fill(start, start + node->pImpl_->NumTri(), + ivec3(propVertIndices[i])); + } + } + + if (node->transform_ == mat4x3(1.0)) { + copy(node->pImpl_->vertPos_.begin(), node->pImpl_->vertPos_.end(), + combined.vertPos_.begin() + vertIndices[i]); + copy(node->pImpl_->faceNormal_.begin(), + node->pImpl_->faceNormal_.end(), + combined.faceNormal_.begin() + triIndices[i]); + } else { + // no need to apply the transform to the node, just copy the vertices + // and face normals and apply transform on the fly + auto vertPosBegin = TransformIterator( + node->pImpl_->vertPos_.begin(), Transform4x3({node->transform_})); + mat3 normalTransform = + glm::inverse(glm::transpose(mat3(node->transform_))); + auto faceNormalBegin = + TransformIterator(node->pImpl_->faceNormal_.begin(), + TransformNormals({normalTransform})); + copy_n(vertPosBegin, node->pImpl_->vertPos_.size(), + combined.vertPos_.begin() + vertIndices[i]); + copy_n(faceNormalBegin, node->pImpl_->faceNormal_.size(), + combined.faceNormal_.begin() + triIndices[i]); + + const bool invert = glm::determinant(mat3(node->transform_)) < 0; + for_each_n(policy, countAt(0), node->pImpl_->halfedgeTangent_.size(), + TransformTangents{combined.halfedgeTangent_, + edgeIndices[i], mat3(node->transform_), + invert, node->pImpl_->halfedgeTangent_, + node->pImpl_->halfedge_}); + if (invert) + for_each_n(policy, countAt(triIndices[i]), node->pImpl_->NumTri(), + FlipTris({combined.halfedge_})); + } + // Since the nodes may be copies containing the same meshIDs, it is + // important to add an offset so that each node instance gets + // unique meshIDs. + const int offset = i * Manifold::Impl::meshIDCounter_; + transform(node->pImpl_->meshRelation_.triRef.begin(), + node->pImpl_->meshRelation_.triRef.end(), + combined.meshRelation_.triRef.begin() + triIndices[i], + UpdateMeshIDs({offset})); + }); + + for (size_t i = 0; i < nodes.size(); i++) { + auto &node = nodes[i]; + const int offset = i * Manifold::Impl::meshIDCounter_; + + for (const auto &pair : node->pImpl_->meshRelation_.meshIDtransform) { + combined.meshRelation_.meshIDtransform[pair.first + offset] = pair.second; + } + } + + // required to remove parts that are smaller than the precision + combined.SimplifyTopology(); + combined.Finish(); + combined.IncrementMeshIDs(); + return combined; +} + +CsgOpNode::CsgOpNode() {} + +CsgOpNode::CsgOpNode(const std::vector> &children, + OpType op) + : impl_(Impl{}) { + auto impl = impl_.GetGuard(); + impl->children_ = children; + SetOp(op); +} + +CsgOpNode::CsgOpNode(std::vector> &&children, + OpType op) + : impl_(Impl{}) { + auto impl = impl_.GetGuard(); + impl->children_ = children; + SetOp(op); +} + +std::shared_ptr CsgOpNode::Boolean( + const std::shared_ptr &second, OpType op) { + std::vector> children; + + auto isReused = [](const auto &node) { return node->impl_.UseCount() > 1; }; + + auto copyChildren = [&](const auto &list, const mat4x3 &transform) { + for (const auto &child : list) { + children.push_back(child->Transform(transform)); + } + }; + + auto self = std::dynamic_pointer_cast(shared_from_this()); + assert(self); + if (IsOp(op) && !isReused(self)) { + auto impl = impl_.GetGuard(); + copyChildren(impl->children_, transform_); + } else { + children.push_back(self); + } + + auto secondOp = std::dynamic_pointer_cast(second); + auto canInlineSecondOp = [&]() { + switch (op) { + case OpType::Add: + case OpType::Intersect: + return secondOp->IsOp(op); + case OpType::Subtract: + return secondOp->IsOp(OpType::Add); + default: + return false; + } + }; + + if (secondOp && canInlineSecondOp() && !isReused(secondOp)) { + auto secondImpl = secondOp->impl_.GetGuard(); + copyChildren(secondImpl->children_, secondOp->transform_); + } else { + children.push_back(second); + } + + return std::make_shared(children, op); +} + +std::shared_ptr CsgOpNode::Transform(const mat4x3 &m) const { + auto node = std::make_shared(); + node->impl_ = impl_; + node->transform_ = m * mat4(transform_); + node->op_ = op_; + return node; +} + +std::shared_ptr CsgOpNode::ToLeafNode() const { + if (cache_ != nullptr) return cache_; + // turn the children into leaf nodes + GetChildren(); + auto impl = impl_.GetGuard(); + auto &children_ = impl->children_; + if (children_.size() > 1) { + switch (op_) { + case CsgNodeType::Union: + BatchUnion(); + break; + case CsgNodeType::Intersection: { + std::vector> impls; + for (auto &child : children_) { + impls.push_back( + std::dynamic_pointer_cast(child)->GetImpl()); + } + children_.clear(); + children_.push_back(std::make_shared( + BatchBoolean(OpType::Intersect, impls))); + break; + }; + case CsgNodeType::Difference: { + // take the lhs out and treat the remaining nodes as the rhs, perform + // union optimization for them + auto lhs = std::dynamic_pointer_cast(children_.front()); + children_.erase(children_.begin()); + BatchUnion(); + auto rhs = std::dynamic_pointer_cast(children_.front()); + children_.clear(); + Boolean3 boolean(*lhs->GetImpl(), *rhs->GetImpl(), OpType::Subtract); + children_.push_back( + std::make_shared(std::make_shared( + boolean.Result(OpType::Subtract)))); + }; + case CsgNodeType::Leaf: + // unreachable + break; + } + } else if (children_.size() == 0) { + return nullptr; + } + // children_ must contain only one CsgLeafNode now, and its Transform will + // give CsgLeafNode as well + cache_ = std::dynamic_pointer_cast( + children_.front()->Transform(transform_)); + return cache_; +} + +/** + * Efficient boolean operation on a set of nodes utilizing commutativity of the + * operation. Only supports union and intersection. + */ +std::shared_ptr CsgOpNode::BatchBoolean( + OpType operation, + std::vector> &results) { + ZoneScoped; + auto getImplPtr = GetImplPtr(); + DEBUG_ASSERT(operation != OpType::Subtract, logicErr, + "BatchBoolean doesn't support Difference."); + // common cases + if (results.size() == 0) return std::make_shared(); + if (results.size() == 1) + return std::make_shared(*results.front()); + if (results.size() == 2) { + Boolean3 boolean(*results[0], *results[1], operation); + return std::make_shared(boolean.Result(operation)); + } +#if MANIFOLD_PAR == 'T' && __has_include() + if (!ManifoldParams().deterministic) { + tbb::task_group group; + tbb::concurrent_priority_queue queue( + results.size()); + for (auto result : results) { + queue.emplace(result); + } + results.clear(); + std::function process = [&]() { + while (queue.size() > 1) { + SharedImpl a, b; + if (!queue.try_pop(a)) continue; + if (!queue.try_pop(b)) { + queue.push(a); + continue; + } + group.run([&, a, b]() { + Boolean3 boolean(*getImplPtr(a), *getImplPtr(b), operation); + queue.emplace( + std::make_shared(boolean.Result(operation))); + return group.run(process); + }); + } + }; + group.run_and_wait(process); + SharedImpl r; + queue.try_pop(r); + return *std::get_if>(&r); + } +#endif + // apply boolean operations starting from smaller meshes + // the assumption is that boolean operations on smaller meshes is faster, + // due to less data being copied and processed + auto cmpFn = MeshCompare(); + std::make_heap(results.begin(), results.end(), cmpFn); + while (results.size() > 1) { + std::pop_heap(results.begin(), results.end(), cmpFn); + auto a = std::move(results.back()); + results.pop_back(); + std::pop_heap(results.begin(), results.end(), cmpFn); + auto b = std::move(results.back()); + results.pop_back(); + // boolean operation + Boolean3 boolean(*a, *b, operation); + auto result = std::make_shared(boolean.Result(operation)); + if (results.size() == 0) { + return result; + } + results.push_back(result); + std::push_heap(results.begin(), results.end(), cmpFn); + } + return std::make_shared(*results.front()); +} + +/** + * Efficient union operation on a set of nodes by doing Compose as much as + * possible. + * Note: Due to some unknown issues with `Compose`, we are now doing + * `BatchBoolean` instead of using `Compose` for non-intersecting manifolds. + */ +void CsgOpNode::BatchUnion() const { + ZoneScoped; + // INVARIANT: children_ is a vector of leaf nodes + // this kMaxUnionSize is a heuristic to avoid the pairwise disjoint check + // with O(n^2) complexity to take too long. + // If the number of children exceeded this limit, we will operate on chunks + // with size kMaxUnionSize. + constexpr size_t kMaxUnionSize = 1000; + auto impl = impl_.GetGuard(); + auto &children_ = impl->children_; + while (children_.size() > 1) { + const size_t start = (children_.size() > kMaxUnionSize) + ? (children_.size() - kMaxUnionSize) + : 0; + Vec boxes; + boxes.reserve(children_.size() - start); + for (size_t i = start; i < children_.size(); i++) { + boxes.push_back(std::dynamic_pointer_cast(children_[i]) + ->GetImpl() + ->bBox_); + } + // partition the children into a set of disjoint sets + // each set contains a set of children that are pairwise disjoint + std::vector> disjointSets; + for (size_t i = 0; i < boxes.size(); i++) { + auto lambda = [&boxes, i](const Vec &set) { + return std::find_if(set.begin(), set.end(), CheckOverlap({boxes, i})) == + set.end(); + }; + auto it = std::find_if(disjointSets.begin(), disjointSets.end(), lambda); + if (it == disjointSets.end()) { + disjointSets.push_back(std::vector{i}); + } else { + it->push_back(i); + } + } + // compose each set of disjoint children + std::vector> impls; + for (auto &set : disjointSets) { + if (set.size() == 1) { + impls.push_back( + std::dynamic_pointer_cast(children_[start + set[0]]) + ->GetImpl()); + } else { + std::vector> tmp; + for (size_t j : set) { + tmp.push_back( + std::dynamic_pointer_cast(children_[start + j])); + } + impls.push_back( + std::make_shared(CsgLeafNode::Compose(tmp))); + } + } + + children_.erase(children_.begin() + start, children_.end()); + children_.push_back( + std::make_shared(BatchBoolean(OpType::Add, impls))); + // move it to the front as we process from the back, and the newly added + // child should be quite complicated + std::swap(children_.front(), children_.back()); + } +} + +/** + * Flatten the children to a list of leaf nodes and return them. + * If forceToLeafNodes is true, the list will be guaranteed to be a list of leaf + * nodes (i.e. no ops). Otherwise, the list may contain ops. Note that this + * function will not apply the transform to children, as they may be shared with + * other nodes. + */ +std::vector> &CsgOpNode::GetChildren( + bool forceToLeafNodes) const { + auto impl = impl_.GetGuard(); + + if (forceToLeafNodes && !impl->forcedToLeafNodes_) { + impl->forcedToLeafNodes_ = true; + for_each(impl->children_.size() > 1 && !ManifoldParams().deterministic + ? ExecutionPolicy::Par + : ExecutionPolicy::Seq, + impl->children_.begin(), impl->children_.end(), [](auto &child) { + if (child->GetNodeType() != CsgNodeType::Leaf) { + child = child->ToLeafNode(); + } + }); + } + return impl->children_; +} + +void CsgOpNode::SetOp(OpType op) { + switch (op) { + case OpType::Add: + op_ = CsgNodeType::Union; + break; + case OpType::Subtract: + op_ = CsgNodeType::Difference; + break; + case OpType::Intersect: + op_ = CsgNodeType::Intersection; + break; + } +} + +bool CsgOpNode::IsOp(OpType op) { + switch (op) { + case OpType::Add: + return op_ == CsgNodeType::Union; + case OpType::Subtract: + return op_ == CsgNodeType::Difference; + case OpType::Intersect: + return op_ == CsgNodeType::Intersection; + default: + return false; + } +} + +mat4x3 CsgOpNode::GetTransform() const { return transform_; } + +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/csg_tree.h b/thirdparty/manifold/src/manifold/src/csg_tree.h new file mode 100644 index 000000000000..c94c8a9ef9f2 --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/csg_tree.h @@ -0,0 +1,108 @@ +// Copyright 2022 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#include "manifold/manifold.h" +#include "manifold/utils.h" + +namespace manifold { + +enum class CsgNodeType { Union, Intersection, Difference, Leaf }; + +class CsgLeafNode; + +class CsgNode : public std::enable_shared_from_this { + public: + virtual std::shared_ptr ToLeafNode() const = 0; + virtual std::shared_ptr Transform(const mat4x3 &m) const = 0; + virtual CsgNodeType GetNodeType() const = 0; + virtual mat4x3 GetTransform() const = 0; + + virtual std::shared_ptr Boolean( + const std::shared_ptr &second, OpType op); + + std::shared_ptr Translate(const vec3 &t) const; + std::shared_ptr Scale(const vec3 &s) const; + std::shared_ptr Rotate(double xDegrees = 0, double yDegrees = 0, + double zDegrees = 0) const; +}; + +class CsgLeafNode final : public CsgNode { + public: + CsgLeafNode(); + CsgLeafNode(std::shared_ptr pImpl_); + CsgLeafNode(std::shared_ptr pImpl_, mat4x3 transform_); + + std::shared_ptr GetImpl() const; + + std::shared_ptr ToLeafNode() const override; + + std::shared_ptr Transform(const mat4x3 &m) const override; + + CsgNodeType GetNodeType() const override; + + mat4x3 GetTransform() const override; + + static Manifold::Impl Compose( + const std::vector> &nodes); + + private: + mutable std::shared_ptr pImpl_; + mutable mat4x3 transform_ = mat4x3(1.0); +}; + +class CsgOpNode final : public CsgNode { + public: + CsgOpNode(); + + CsgOpNode(const std::vector> &children, OpType op); + + CsgOpNode(std::vector> &&children, OpType op); + + std::shared_ptr Boolean(const std::shared_ptr &second, + OpType op) override; + + std::shared_ptr Transform(const mat4x3 &m) const override; + + std::shared_ptr ToLeafNode() const override; + + CsgNodeType GetNodeType() const override { return op_; } + + mat4x3 GetTransform() const override; + + private: + struct Impl { + std::vector> children_; + bool forcedToLeafNodes_ = false; + }; + mutable ConcurrentSharedPtr impl_ = ConcurrentSharedPtr(Impl{}); + CsgNodeType op_; + mat4x3 transform_ = mat4x3(1.0); + // the following fields are for lazy evaluation, so they are mutable + mutable std::shared_ptr cache_ = nullptr; + + void SetOp(OpType); + bool IsOp(OpType op); + + static std::shared_ptr BatchBoolean( + OpType operation, + std::vector> &results); + + void BatchUnion() const; + + std::vector> &GetChildren( + bool forceToLeafNodes = true) const; +}; + +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/edge_op.cpp b/thirdparty/manifold/src/manifold/src/edge_op.cpp new file mode 100644 index 000000000000..df6de00dae09 --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/edge_op.cpp @@ -0,0 +1,697 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "impl.h" +#include "manifold/parallel.h" + +namespace { +using namespace manifold; + +ivec3 TriOf(int edge) { + ivec3 triEdge; + triEdge[0] = edge; + triEdge[1] = NextHalfedge(triEdge[0]); + triEdge[2] = NextHalfedge(triEdge[1]); + return triEdge; +} + +bool Is01Longest(vec2 v0, vec2 v1, vec2 v2) { + const vec2 e[3] = {v1 - v0, v2 - v1, v0 - v2}; + double l[3]; + for (int i : {0, 1, 2}) l[i] = glm::dot(e[i], e[i]); + return l[0] > l[1] && l[0] > l[2]; +} + +struct DuplicateEdge { + const Halfedge* sortedHalfedge; + + bool operator()(int edge) { + const Halfedge& halfedge = sortedHalfedge[edge]; + const Halfedge& nextHalfedge = sortedHalfedge[edge + 1]; + return halfedge.startVert == nextHalfedge.startVert && + halfedge.endVert == nextHalfedge.endVert; + } +}; + +struct ShortEdge { + VecView halfedge; + VecView vertPos; + const double precision; + + bool operator()(int edge) const { + if (halfedge[edge].pairedHalfedge < 0) return false; + // Flag short edges + const vec3 delta = + vertPos[halfedge[edge].endVert] - vertPos[halfedge[edge].startVert]; + return glm::dot(delta, delta) < precision * precision; + } +}; + +struct FlagEdge { + VecView halfedge; + VecView triRef; + + bool operator()(int edge) const { + if (halfedge[edge].pairedHalfedge < 0) return false; + // Flag redundant edges - those where the startVert is surrounded by only + // two original triangles. + const TriRef ref0 = triRef[edge / 3]; + int current = NextHalfedge(halfedge[edge].pairedHalfedge); + const TriRef ref1 = triRef[current / 3]; + while (current != edge) { + current = NextHalfedge(halfedge[current].pairedHalfedge); + int tri = current / 3; + const TriRef ref = triRef[tri]; + if (!ref.SameFace(ref0) && !ref.SameFace(ref1)) return false; + } + return true; + } +}; + +struct SwappableEdge { + VecView halfedge; + VecView vertPos; + VecView triNormal; + const double precision; + + bool operator()(int edge) const { + if (halfedge[edge].pairedHalfedge < 0) return false; + + int tri = edge / 3; + ivec3 triEdge = TriOf(edge); + mat3x2 projection = GetAxisAlignedProjection(triNormal[tri]); + vec2 v[3]; + for (int i : {0, 1, 2}) + v[i] = projection * vertPos[halfedge[triEdge[i]].startVert]; + if (CCW(v[0], v[1], v[2], precision) > 0 || !Is01Longest(v[0], v[1], v[2])) + return false; + + // Switch to neighbor's projection. + edge = halfedge[edge].pairedHalfedge; + tri = edge / 3; + triEdge = TriOf(edge); + projection = GetAxisAlignedProjection(triNormal[tri]); + for (int i : {0, 1, 2}) + v[i] = projection * vertPos[halfedge[triEdge[i]].startVert]; + return CCW(v[0], v[1], v[2], precision) > 0 || + Is01Longest(v[0], v[1], v[2]); + } +}; + +struct SortEntry { + int start; + int end; + size_t index; + inline bool operator<(const SortEntry& other) const { + return start == other.start ? end < other.end : start < other.start; + } +}; +} // namespace + +namespace manifold { + +/** + * Duplicates just enough verts to covert an even-manifold to a proper + * 2-manifold, splitting non-manifold verts and edges with too many triangles. + */ +void Manifold::Impl::CleanupTopology() { + if (!halfedge_.size()) return; + + // In the case of a very bad triangulation, it is possible to create pinched + // verts. They must be removed before edge collapse. + SplitPinchedVerts(); + + while (1) { + ZoneScopedN("DedupeEdge"); + + const size_t nbEdges = halfedge_.size(); + auto policy = autoPolicy(nbEdges, 1e5); + size_t numFlagged = 0; + + Vec entries; + entries.reserve(nbEdges / 2); + for (size_t i = 0; i < nbEdges; ++i) { + if (halfedge_[i].IsForward()) { + entries.push_back({halfedge_[i].startVert, halfedge_[i].endVert, i}); + } + } + + stable_sort(entries.begin(), entries.end()); + for (size_t i = 0; i < entries.size() - 1; ++i) { + const int h0 = entries[i].index; + const int h1 = entries[i + 1].index; + if (halfedge_[h0].startVert == halfedge_[h1].startVert && + halfedge_[h0].endVert == halfedge_[h1].endVert) { + DedupeEdge(entries[i].index); + numFlagged++; + } + } + + if (numFlagged == 0) break; + +#ifdef MANIFOLD_DEBUG + if (ManifoldParams().verbose) { + std::cout << "found " << numFlagged << " duplicate edges to split" + << std::endl; + } +#endif + } +} + +/** + * Collapses degenerate triangles by removing edges shorter than precision_ and + * any edge that is preceeded by an edge that joins the same two face relations. + * It also performs edge swaps on the long edges of degenerate triangles, though + * there are some configurations of degenerates that cannot be removed this way. + * + * Before collapsing edges, the mesh is checked for duplicate edges (more than + * one pair of triangles sharing the same edge), which are removed by + * duplicating one vert and adding two triangles. These degenerate triangles are + * likely to be collapsed again in the subsequent simplification. + * + * Note when an edge collapse would result in something non-manifold, the + * vertices are duplicated in such a way as to remove handles or separate + * meshes, thus decreasing the Genus(). It only increases when meshes that have + * collapsed to just a pair of triangles are removed entirely. + * + * Rather than actually removing the edges, this step merely marks them for + * removal, by setting vertPos to NaN and halfedge to {-1, -1, -1, -1}. + */ +void Manifold::Impl::SimplifyTopology() { + if (!halfedge_.size()) return; + + CleanupTopology(); + + if (!ManifoldParams().cleanupTriangles) { + return; + } + + const size_t nbEdges = halfedge_.size(); + auto policy = autoPolicy(nbEdges, 1e5); + size_t numFlagged = 0; + Vec bFlags(nbEdges); + + std::vector scratchBuffer; + scratchBuffer.reserve(10); + { + ZoneScopedN("CollapseShortEdge"); + numFlagged = 0; + ShortEdge se{halfedge_, vertPos_, precision_}; + for_each_n(policy, countAt(0_uz), nbEdges, + [&](size_t i) { bFlags[i] = se(i); }); + for (size_t i = 0; i < nbEdges; ++i) { + if (bFlags[i]) { + CollapseEdge(i, scratchBuffer); + scratchBuffer.resize(0); + numFlagged++; + } + } + } + +#ifdef MANIFOLD_DEBUG + if (ManifoldParams().verbose && numFlagged > 0) { + std::cout << "found " << numFlagged << " short edges to collapse" + << std::endl; + } +#endif + + { + ZoneScopedN("CollapseFlaggedEdge"); + numFlagged = 0; + FlagEdge se{halfedge_, meshRelation_.triRef}; + for_each_n(policy, countAt(0_uz), nbEdges, + [&](size_t i) { bFlags[i] = se(i); }); + for (size_t i = 0; i < nbEdges; ++i) { + if (bFlags[i]) { + CollapseEdge(i, scratchBuffer); + scratchBuffer.resize(0); + numFlagged++; + } + } + } + +#ifdef MANIFOLD_DEBUG + if (ManifoldParams().verbose && numFlagged > 0) { + std::cout << "found " << numFlagged << " colinear edges to collapse" + << std::endl; + } +#endif + + { + ZoneScopedN("RecursiveEdgeSwap"); + numFlagged = 0; + SwappableEdge se{halfedge_, vertPos_, faceNormal_, precision_}; + for_each_n(policy, countAt(0_uz), nbEdges, + [&](size_t i) { bFlags[i] = se(i); }); + std::vector edgeSwapStack; + std::vector visited(halfedge_.size(), -1); + int tag = 0; + for (size_t i = 0; i < nbEdges; ++i) { + if (bFlags[i]) { + numFlagged++; + tag++; + RecursiveEdgeSwap(i, tag, visited, edgeSwapStack, scratchBuffer); + while (!edgeSwapStack.empty()) { + int last = edgeSwapStack.back(); + edgeSwapStack.pop_back(); + RecursiveEdgeSwap(last, tag, visited, edgeSwapStack, scratchBuffer); + } + } + } + } + +#ifdef MANIFOLD_DEBUG + if (ManifoldParams().verbose && numFlagged > 0) { + std::cout << "found " << numFlagged << " edges to swap" << std::endl; + } +#endif +} + +// Deduplicate the given 4-manifold edge by duplicating endVert, thus making the +// edges distinct. Also duplicates startVert if it becomes pinched. +void Manifold::Impl::DedupeEdge(const int edge) { + // Orbit endVert + const int startVert = halfedge_[edge].startVert; + const int endVert = halfedge_[edge].endVert; + int current = halfedge_[NextHalfedge(edge)].pairedHalfedge; + while (current != edge) { + const int vert = halfedge_[current].startVert; + if (vert == startVert) { + // Single topological unit needs 2 faces added to be split + const int newVert = vertPos_.size(); + vertPos_.push_back(vertPos_[endVert]); + if (vertNormal_.size() > 0) vertNormal_.push_back(vertNormal_[endVert]); + current = halfedge_[NextHalfedge(current)].pairedHalfedge; + const int opposite = halfedge_[NextHalfedge(edge)].pairedHalfedge; + + UpdateVert(newVert, current, opposite); + + int newHalfedge = halfedge_.size(); + int newFace = newHalfedge / 3; + int oldFace = current / 3; + int outsideVert = halfedge_[current].startVert; + halfedge_.push_back({endVert, newVert, -1, newFace}); + halfedge_.push_back({newVert, outsideVert, -1, newFace}); + halfedge_.push_back({outsideVert, endVert, -1, newFace}); + PairUp(newHalfedge + 2, halfedge_[current].pairedHalfedge); + PairUp(newHalfedge + 1, current); + if (meshRelation_.triRef.size() > 0) + meshRelation_.triRef.push_back(meshRelation_.triRef[oldFace]); + if (meshRelation_.triProperties.size() > 0) + meshRelation_.triProperties.push_back( + meshRelation_.triProperties[oldFace]); + if (faceNormal_.size() > 0) faceNormal_.push_back(faceNormal_[oldFace]); + + newHalfedge += 3; + ++newFace; + oldFace = opposite / 3; + outsideVert = halfedge_[opposite].startVert; + halfedge_.push_back({newVert, endVert, -1, newFace}); + halfedge_.push_back({endVert, outsideVert, -1, newFace}); + halfedge_.push_back({outsideVert, newVert, -1, newFace}); + PairUp(newHalfedge + 2, halfedge_[opposite].pairedHalfedge); + PairUp(newHalfedge + 1, opposite); + PairUp(newHalfedge, newHalfedge - 3); + if (meshRelation_.triRef.size() > 0) + meshRelation_.triRef.push_back(meshRelation_.triRef[oldFace]); + if (meshRelation_.triProperties.size() > 0) + meshRelation_.triProperties.push_back( + meshRelation_.triProperties[oldFace]); + if (faceNormal_.size() > 0) faceNormal_.push_back(faceNormal_[oldFace]); + + break; + } + + current = halfedge_[NextHalfedge(current)].pairedHalfedge; + } + + if (current == edge) { + // Separate topological unit needs no new faces to be split + const int newVert = vertPos_.size(); + vertPos_.push_back(vertPos_[endVert]); + if (vertNormal_.size() > 0) vertNormal_.push_back(vertNormal_[endVert]); + + ForVert(NextHalfedge(current), [this, newVert](int e) { + halfedge_[e].startVert = newVert; + halfedge_[halfedge_[e].pairedHalfedge].endVert = newVert; + }); + } + + // Orbit startVert + const int pair = halfedge_[edge].pairedHalfedge; + current = halfedge_[NextHalfedge(pair)].pairedHalfedge; + while (current != pair) { + const int vert = halfedge_[current].startVert; + if (vert == endVert) { + break; // Connected: not a pinched vert + } + current = halfedge_[NextHalfedge(current)].pairedHalfedge; + } + + if (current == pair) { + // Split the pinched vert the previous split created. + const int newVert = vertPos_.size(); + vertPos_.push_back(vertPos_[endVert]); + if (vertNormal_.size() > 0) vertNormal_.push_back(vertNormal_[endVert]); + + ForVert(NextHalfedge(current), [this, newVert](int e) { + halfedge_[e].startVert = newVert; + halfedge_[halfedge_[e].pairedHalfedge].endVert = newVert; + }); + } +} + +void Manifold::Impl::PairUp(int edge0, int edge1) { + halfedge_[edge0].pairedHalfedge = edge1; + halfedge_[edge1].pairedHalfedge = edge0; +} + +// Traverses CW around startEdge.endVert from startEdge to endEdge +// (edgeEdge.endVert must == startEdge.endVert), updating each edge to point +// to vert instead. +void Manifold::Impl::UpdateVert(int vert, int startEdge, int endEdge) { + int current = startEdge; + while (current != endEdge) { + halfedge_[current].endVert = vert; + current = NextHalfedge(current); + halfedge_[current].startVert = vert; + current = halfedge_[current].pairedHalfedge; + DEBUG_ASSERT(current != startEdge, logicErr, "infinite loop in decimator!"); + } +} + +// In the event that the edge collapse would create a non-manifold edge, +// instead we duplicate the two verts and attach the manifolds the other way +// across this edge. +void Manifold::Impl::FormLoop(int current, int end) { + int startVert = vertPos_.size(); + vertPos_.push_back(vertPos_[halfedge_[current].startVert]); + int endVert = vertPos_.size(); + vertPos_.push_back(vertPos_[halfedge_[current].endVert]); + + int oldMatch = halfedge_[current].pairedHalfedge; + int newMatch = halfedge_[end].pairedHalfedge; + + UpdateVert(startVert, oldMatch, newMatch); + UpdateVert(endVert, end, current); + + halfedge_[current].pairedHalfedge = newMatch; + halfedge_[newMatch].pairedHalfedge = current; + halfedge_[end].pairedHalfedge = oldMatch; + halfedge_[oldMatch].pairedHalfedge = end; + + RemoveIfFolded(end); +} + +void Manifold::Impl::CollapseTri(const ivec3& triEdge) { + if (halfedge_[triEdge[1]].pairedHalfedge == -1) return; + int pair1 = halfedge_[triEdge[1]].pairedHalfedge; + int pair2 = halfedge_[triEdge[2]].pairedHalfedge; + halfedge_[pair1].pairedHalfedge = pair2; + halfedge_[pair2].pairedHalfedge = pair1; + for (int i : {0, 1, 2}) { + halfedge_[triEdge[i]] = {-1, -1, -1, -1}; + } +} + +void Manifold::Impl::RemoveIfFolded(int edge) { + const ivec3 tri0edge = TriOf(edge); + const ivec3 tri1edge = TriOf(halfedge_[edge].pairedHalfedge); + if (halfedge_[tri0edge[1]].pairedHalfedge == -1) return; + if (halfedge_[tri0edge[1]].endVert == halfedge_[tri1edge[1]].endVert) { + if (halfedge_[tri0edge[1]].pairedHalfedge == tri1edge[2]) { + if (halfedge_[tri0edge[2]].pairedHalfedge == tri1edge[1]) { + for (int i : {0, 1, 2}) + vertPos_[halfedge_[tri0edge[i]].startVert] = vec3(NAN); + } else { + vertPos_[halfedge_[tri0edge[1]].startVert] = vec3(NAN); + } + } else { + if (halfedge_[tri0edge[2]].pairedHalfedge == tri1edge[1]) { + vertPos_[halfedge_[tri1edge[1]].startVert] = vec3(NAN); + } + } + PairUp(halfedge_[tri0edge[1]].pairedHalfedge, + halfedge_[tri1edge[2]].pairedHalfedge); + PairUp(halfedge_[tri0edge[2]].pairedHalfedge, + halfedge_[tri1edge[1]].pairedHalfedge); + for (int i : {0, 1, 2}) { + halfedge_[tri0edge[i]] = {-1, -1, -1, -1}; + halfedge_[tri1edge[i]] = {-1, -1, -1, -1}; + } + } +} + +// Collapses the given edge by removing startVert. May split the mesh +// topologically if the collapse would have resulted in a 4-manifold edge. Do +// not collapse an edge if startVert is pinched - the vert will be marked NaN, +// but other edges may still be pointing to it. +void Manifold::Impl::CollapseEdge(const int edge, std::vector& edges) { + Vec& triRef = meshRelation_.triRef; + Vec& triProp = meshRelation_.triProperties; + + const Halfedge toRemove = halfedge_[edge]; + if (toRemove.pairedHalfedge < 0) return; + + const int endVert = toRemove.endVert; + const ivec3 tri0edge = TriOf(edge); + const ivec3 tri1edge = TriOf(toRemove.pairedHalfedge); + + const vec3 pNew = vertPos_[endVert]; + const vec3 pOld = vertPos_[toRemove.startVert]; + const vec3 delta = pNew - pOld; + const bool shortEdge = glm::dot(delta, delta) < precision_ * precision_; + + // Orbit endVert + int current = halfedge_[tri0edge[1]].pairedHalfedge; + while (current != tri1edge[2]) { + current = NextHalfedge(current); + edges.push_back(current); + current = halfedge_[current].pairedHalfedge; + } + + // Orbit startVert + int start = halfedge_[tri1edge[1]].pairedHalfedge; + if (!shortEdge) { + current = start; + TriRef refCheck = triRef[toRemove.pairedHalfedge / 3]; + vec3 pLast = vertPos_[halfedge_[tri1edge[1]].endVert]; + while (current != tri0edge[2]) { + current = NextHalfedge(current); + vec3 pNext = vertPos_[halfedge_[current].endVert]; + const int tri = current / 3; + const TriRef ref = triRef[tri]; + const mat3x2 projection = GetAxisAlignedProjection(faceNormal_[tri]); + // Don't collapse if the edge is not redundant (this may have changed due + // to the collapse of neighbors). + if (!ref.SameFace(refCheck)) { + refCheck = triRef[edge / 3]; + if (!ref.SameFace(refCheck)) { + return; + } else { + // Don't collapse if the edges separating the faces are not colinear + // (can happen when the two faces are coplanar). + if (CCW(projection * pOld, projection * pLast, projection * pNew, + precision_) != 0) + return; + } + } + + // Don't collapse edge if it would cause a triangle to invert. + if (CCW(projection * pNext, projection * pLast, projection * pNew, + precision_) < 0) + return; + + pLast = pNext; + current = halfedge_[current].pairedHalfedge; + } + } + + // Remove toRemove.startVert and replace with endVert. + vertPos_[toRemove.startVert] = vec3(NAN); + CollapseTri(tri1edge); + + // Orbit startVert + const int tri0 = edge / 3; + const int tri1 = toRemove.pairedHalfedge / 3; + const int triVert0 = (edge + 1) % 3; + const int triVert1 = toRemove.pairedHalfedge % 3; + current = start; + while (current != tri0edge[2]) { + current = NextHalfedge(current); + + if (triProp.size() > 0) { + // Update the shifted triangles to the vertBary of endVert + const int tri = current / 3; + const int vIdx = current - 3 * tri; + if (triRef[tri].SameFace(triRef[tri0])) { + triProp[tri][vIdx] = triProp[tri0][triVert0]; + } else if (triRef[tri].SameFace(triRef[tri1])) { + triProp[tri][vIdx] = triProp[tri1][triVert1]; + } + } + + const int vert = halfedge_[current].endVert; + const int next = halfedge_[current].pairedHalfedge; + for (size_t i = 0; i < edges.size(); ++i) { + if (vert == halfedge_[edges[i]].endVert) { + FormLoop(edges[i], current); + start = next; + edges.resize(i); + break; + } + } + current = next; + } + + UpdateVert(endVert, start, tri0edge[2]); + CollapseTri(tri0edge); + RemoveIfFolded(start); +} + +void Manifold::Impl::RecursiveEdgeSwap(const int edge, int& tag, + std::vector& visited, + std::vector& edgeSwapStack, + std::vector& edges) { + Vec& triRef = meshRelation_.triRef; + + if (edge < 0) return; + const int pair = halfedge_[edge].pairedHalfedge; + if (pair < 0) return; + + // avoid infinite recursion + if (visited[edge] == tag && visited[pair] == tag) return; + + const ivec3 tri0edge = TriOf(edge); + const ivec3 tri1edge = TriOf(pair); + const ivec3 perm0 = TriOf(edge % 3); + const ivec3 perm1 = TriOf(pair % 3); + + mat3x2 projection = GetAxisAlignedProjection(faceNormal_[edge / 3]); + vec2 v[4]; + for (int i : {0, 1, 2}) + v[i] = projection * vertPos_[halfedge_[tri0edge[i]].startVert]; + // Only operate on the long edge of a degenerate triangle. + if (CCW(v[0], v[1], v[2], precision_) > 0 || !Is01Longest(v[0], v[1], v[2])) + return; + + // Switch to neighbor's projection. + projection = GetAxisAlignedProjection(faceNormal_[pair / 3]); + for (int i : {0, 1, 2}) + v[i] = projection * vertPos_[halfedge_[tri0edge[i]].startVert]; + v[3] = projection * vertPos_[halfedge_[tri1edge[2]].startVert]; + + auto SwapEdge = [&]() { + // The 0-verts are swapped to the opposite 2-verts. + const int v0 = halfedge_[tri0edge[2]].startVert; + const int v1 = halfedge_[tri1edge[2]].startVert; + halfedge_[tri0edge[0]].startVert = v1; + halfedge_[tri0edge[2]].endVert = v1; + halfedge_[tri1edge[0]].startVert = v0; + halfedge_[tri1edge[2]].endVert = v0; + PairUp(tri0edge[0], halfedge_[tri1edge[2]].pairedHalfedge); + PairUp(tri1edge[0], halfedge_[tri0edge[2]].pairedHalfedge); + PairUp(tri0edge[2], tri1edge[2]); + // Both triangles are now subsets of the neighboring triangle. + const int tri0 = tri0edge[0] / 3; + const int tri1 = tri1edge[0] / 3; + faceNormal_[tri0] = faceNormal_[tri1]; + triRef[tri0] = triRef[tri1]; + const double l01 = glm::length(v[1] - v[0]); + const double l02 = glm::length(v[2] - v[0]); + const double a = std::max(0.0, std::min(1.0, l02 / l01)); + // Update properties if applicable + if (meshRelation_.properties.size() > 0) { + Vec& triProp = meshRelation_.triProperties; + Vec& prop = meshRelation_.properties; + triProp[tri0] = triProp[tri1]; + triProp[tri0][perm0[1]] = triProp[tri1][perm1[0]]; + triProp[tri0][perm0[0]] = triProp[tri1][perm1[2]]; + const int numProp = NumProp(); + const int newProp = prop.size() / numProp; + const int propIdx0 = triProp[tri1][perm1[0]]; + const int propIdx1 = triProp[tri1][perm1[1]]; + for (int p = 0; p < numProp; ++p) { + prop.push_back(a * prop[numProp * propIdx0 + p] + + (1 - a) * prop[numProp * propIdx1 + p]); + } + triProp[tri1][perm1[0]] = newProp; + triProp[tri0][perm0[2]] = newProp; + } + + // if the new edge already exists, duplicate the verts and split the mesh. + int current = halfedge_[tri1edge[0]].pairedHalfedge; + const int endVert = halfedge_[tri1edge[1]].endVert; + while (current != tri0edge[1]) { + current = NextHalfedge(current); + if (halfedge_[current].endVert == endVert) { + FormLoop(tri0edge[2], current); + RemoveIfFolded(tri0edge[2]); + return; + } + current = halfedge_[current].pairedHalfedge; + } + }; + + // Only operate if the other triangles are not degenerate. + if (CCW(v[1], v[0], v[3], precision_) <= 0) { + if (!Is01Longest(v[1], v[0], v[3])) return; + // Two facing, long-edge degenerates can swap. + SwapEdge(); + const vec2 e23 = v[3] - v[2]; + if (glm::dot(e23, e23) < precision_ * precision_) { + tag++; + CollapseEdge(tri0edge[2], edges); + edges.resize(0); + } else { + visited[edge] = tag; + visited[pair] = tag; + edgeSwapStack.insert(edgeSwapStack.end(), {tri1edge[1], tri1edge[0], + tri0edge[1], tri0edge[0]}); + } + return; + } else if (CCW(v[0], v[3], v[2], precision_) <= 0 || + CCW(v[1], v[2], v[3], precision_) <= 0) { + return; + } + // Normal path + SwapEdge(); + visited[edge] = tag; + visited[pair] = tag; + edgeSwapStack.insert(edgeSwapStack.end(), + {halfedge_[tri1edge[0]].pairedHalfedge, + halfedge_[tri0edge[1]].pairedHalfedge}); +} + +void Manifold::Impl::SplitPinchedVerts() { + ZoneScoped; + std::vector vertProcessed(NumVert(), false); + std::vector halfedgeProcessed(halfedge_.size(), false); + for (size_t i = 0; i < halfedge_.size(); ++i) { + if (halfedgeProcessed[i]) continue; + int vert = halfedge_[i].startVert; + if (vertProcessed[vert]) { + vertPos_.push_back(vertPos_[vert]); + vert = NumVert() - 1; + } else { + vertProcessed[vert] = true; + } + ForVert(i, [this, &halfedgeProcessed, vert](int current) { + halfedgeProcessed[current] = true; + halfedge_[current].startVert = vert; + halfedge_[halfedge_[current].pairedHalfedge].endVert = vert; + }); + } +} +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/face_op.cpp b/thirdparty/manifold/src/manifold/src/face_op.cpp new file mode 100644 index 000000000000..2784a08b22d7 --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/face_op.cpp @@ -0,0 +1,318 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#if MANIFOLD_PAR == 'T' && __has_include() +#include +#define TBB_PREVIEW_CONCURRENT_ORDERED_CONTAINERS 1 +#include +#endif +#include + +#include "impl.h" +#include "manifold/polygon.h" + +namespace manifold { + +using GeneralTriangulation = std::function(int)>; +using AddTriangle = std::function; + +/** + * Triangulates the faces. In this case, the halfedge_ vector is not yet a set + * of triangles as required by this data structure, but is instead a set of + * general faces with the input faceEdge vector having length of the number of + * faces + 1. The values are indicies into the halfedge_ vector for the first + * edge of each face, with the final value being the length of the halfedge_ + * vector itself. Upon return, halfedge_ has been lengthened and properly + * represents the mesh as a set of triangles as usual. In this process the + * faceNormal_ values are retained, repeated as necessary. + */ +void Manifold::Impl::Face2Tri(const Vec& faceEdge, + const Vec& halfedgeRef) { + ZoneScoped; + Vec triVerts; + Vec triNormal; + Vec& triRef = meshRelation_.triRef; + triRef.resize(0); + auto processFace = [&](GeneralTriangulation general, AddTriangle addTri, + int face) { + const int firstEdge = faceEdge[face]; + const int lastEdge = faceEdge[face + 1]; + const int numEdge = lastEdge - firstEdge; + DEBUG_ASSERT(numEdge >= 3, topologyErr, "face has less than three edges."); + const vec3 normal = faceNormal_[face]; + + if (numEdge == 3) { // Single triangle + int mapping[3] = {halfedge_[firstEdge].startVert, + halfedge_[firstEdge + 1].startVert, + halfedge_[firstEdge + 2].startVert}; + ivec3 tri(halfedge_[firstEdge].startVert, + halfedge_[firstEdge + 1].startVert, + halfedge_[firstEdge + 2].startVert); + ivec3 ends(halfedge_[firstEdge].endVert, halfedge_[firstEdge + 1].endVert, + halfedge_[firstEdge + 2].endVert); + if (ends[0] == tri[2]) { + std::swap(tri[1], tri[2]); + std::swap(ends[1], ends[2]); + } + DEBUG_ASSERT(ends[0] == tri[1] && ends[1] == tri[2] && ends[2] == tri[0], + topologyErr, "These 3 edges do not form a triangle!"); + + addTri(face, tri, normal, halfedgeRef[firstEdge]); + } else if (numEdge == 4) { // Pair of triangles + int mapping[4] = {halfedge_[firstEdge].startVert, + halfedge_[firstEdge + 1].startVert, + halfedge_[firstEdge + 2].startVert, + halfedge_[firstEdge + 3].startVert}; + const mat3x2 projection = GetAxisAlignedProjection(normal); + auto triCCW = [&projection, this](const ivec3 tri) { + return CCW(projection * this->vertPos_[tri[0]], + projection * this->vertPos_[tri[1]], + projection * this->vertPos_[tri[2]], precision_) >= 0; + }; + + ivec3 tri0(halfedge_[firstEdge].startVert, halfedge_[firstEdge].endVert, + -1); + ivec3 tri1(-1, -1, tri0[0]); + for (const int i : {1, 2, 3}) { + if (halfedge_[firstEdge + i].startVert == tri0[1]) { + tri0[2] = halfedge_[firstEdge + i].endVert; + tri1[0] = tri0[2]; + } + if (halfedge_[firstEdge + i].endVert == tri0[0]) { + tri1[1] = halfedge_[firstEdge + i].startVert; + } + } + DEBUG_ASSERT(glm::all(glm::greaterThanEqual(tri0, ivec3(0))) && + glm::all(glm::greaterThanEqual(tri1, ivec3(0))), + topologyErr, "non-manifold quad!"); + bool firstValid = triCCW(tri0) && triCCW(tri1); + tri0[2] = tri1[1]; + tri1[2] = tri0[1]; + bool secondValid = triCCW(tri0) && triCCW(tri1); + + if (!secondValid) { + tri0[2] = tri1[0]; + tri1[2] = tri0[0]; + } else if (firstValid) { + vec3 firstCross = vertPos_[tri0[0]] - vertPos_[tri1[0]]; + vec3 secondCross = vertPos_[tri0[1]] - vertPos_[tri1[1]]; + if (glm::dot(firstCross, firstCross) < + glm::dot(secondCross, secondCross)) { + tri0[2] = tri1[0]; + tri1[2] = tri0[0]; + } + } + + for (const auto& tri : {tri0, tri1}) { + addTri(face, tri, normal, halfedgeRef[firstEdge]); + } + } else { // General triangulation + for (const auto& tri : general(face)) { + addTri(face, tri, normal, halfedgeRef[firstEdge]); + } + } + }; + auto generalTriangulation = [&](int face) { + const vec3 normal = faceNormal_[face]; + const mat3x2 projection = GetAxisAlignedProjection(normal); + const PolygonsIdx polys = + Face2Polygons(halfedge_.cbegin() + faceEdge[face], + halfedge_.cbegin() + faceEdge[face + 1], projection); + return TriangulateIdx(polys, precision_); + }; +#if MANIFOLD_PAR == 'T' && __has_include() + tbb::task_group group; + // map from face to triangle + tbb::concurrent_unordered_map> results; + Vec triCount(faceEdge.size()); + triCount.back() = 0; + // precompute number of triangles per face, and launch async tasks to + // triangulate complex faces + for_each(autoPolicy(faceEdge.size(), 1e5), countAt(0_uz), + countAt(faceEdge.size() - 1), [&](size_t face) { + triCount[face] = faceEdge[face + 1] - faceEdge[face] - 2; + DEBUG_ASSERT(triCount[face] >= 1, topologyErr, + "face has less than three edges."); + if (triCount[face] > 2) + group.run([&, face] { + std::vector newTris = generalTriangulation(face); + triCount[face] = newTris.size(); + results[face] = std::move(newTris); + }); + }); + group.wait(); + // prefix sum computation (assign unique index to each face) and preallocation + exclusive_scan(triCount.begin(), triCount.end(), triCount.begin(), 0_uz); + triVerts.resize(triCount.back()); + triNormal.resize(triCount.back()); + triRef.resize(triCount.back()); + + auto processFace2 = std::bind( + processFace, [&](size_t face) { return std::move(results[face]); }, + [&](size_t face, ivec3 tri, vec3 normal, TriRef r) { + triVerts[triCount[face]] = tri; + triNormal[triCount[face]] = normal; + triRef[triCount[face]] = r; + triCount[face]++; + }, + std::placeholders::_1); + // set triangles in parallel + for_each(autoPolicy(faceEdge.size(), 1e4), countAt(0_uz), + countAt(faceEdge.size() - 1), processFace2); +#else + triVerts.reserve(faceEdge.size()); + triNormal.reserve(faceEdge.size()); + triRef.reserve(faceEdge.size()); + auto processFace2 = std::bind( + processFace, generalTriangulation, + [&](size_t _face, ivec3 tri, vec3 normal, TriRef r) { + triVerts.push_back(tri); + triNormal.push_back(normal); + triRef.push_back(r); + }, + std::placeholders::_1); + for (size_t face = 0; face < faceEdge.size() - 1; ++face) { + processFace2(face); + } +#endif + + faceNormal_ = std::move(triNormal); + CreateHalfedges(triVerts); +} + +/** + * Returns a set of 2D polygons formed by the input projection of the vertices + * of the list of Halfedges, which must be an even-manifold, meaning each vert + * must be referenced the same number of times as a startVert and endVert. + */ +PolygonsIdx Manifold::Impl::Face2Polygons(VecView::IterC start, + VecView::IterC end, + mat3x2 projection) const { + std::multimap vert_edge; + for (auto edge = start; edge != end; ++edge) { + vert_edge.emplace( + std::make_pair(edge->startVert, static_cast(edge - start))); + } + + PolygonsIdx polys; + int startEdge = 0; + int thisEdge = startEdge; + while (1) { + if (thisEdge == startEdge) { + if (vert_edge.empty()) break; + startEdge = vert_edge.begin()->second; + thisEdge = startEdge; + polys.push_back({}); + } + int vert = (start + thisEdge)->startVert; + polys.back().push_back({projection * vertPos_[vert], vert}); + const auto result = vert_edge.find((start + thisEdge)->endVert); + DEBUG_ASSERT(result != vert_edge.end(), topologyErr, "non-manifold edge"); + thisEdge = result->second; + vert_edge.erase(result); + } + return polys; +} + +Polygons Manifold::Impl::Slice(double height) const { + Box plane = bBox_; + plane.min.z = plane.max.z = height; + Vec query; + query.push_back(plane); + const SparseIndices collisions = + collider_.Collisions(query.cview()); + + std::unordered_set tris; + for (size_t i = 0; i < collisions.size(); ++i) { + const int tri = collisions.Get(i, 1); + double min = std::numeric_limits::infinity(); + double max = -std::numeric_limits::infinity(); + for (const int j : {0, 1, 2}) { + const double z = vertPos_[halfedge_[3 * tri + j].startVert].z; + min = std::min(min, z); + max = std::max(max, z); + } + + if (min <= height && max > height) { + tris.insert(tri); + } + } + + Polygons polys; + while (!tris.empty()) { + const int startTri = *tris.begin(); + SimplePolygon poly; + + int k = 0; + for (const int j : {0, 1, 2}) { + if (vertPos_[halfedge_[3 * startTri + j].startVert].z > height && + vertPos_[halfedge_[3 * startTri + Next3(j)].startVert].z <= height) { + k = Next3(j); + break; + } + } + + int tri = startTri; + do { + tris.erase(tris.find(tri)); + if (vertPos_[halfedge_[3 * tri + k].endVert].z <= height) { + k = Next3(k); + } + + Halfedge up = halfedge_[3 * tri + k]; + const vec3 below = vertPos_[up.startVert]; + const vec3 above = vertPos_[up.endVert]; + const double a = (height - below.z) / (above.z - below.z); + poly.push_back(vec2(glm::mix(below, above, a))); + + const int pair = up.pairedHalfedge; + tri = pair / 3; + k = Next3(pair % 3); + } while (tri != startTri); + + polys.push_back(poly); + } + + return polys; +} + +Polygons Manifold::Impl::Project() const { + const mat3x2 projection = GetAxisAlignedProjection({0, 0, 1}); + Vec cusps(NumEdge()); + cusps.resize( + copy_if( + halfedge_.cbegin(), halfedge_.cend(), cusps.begin(), + [&](Halfedge edge) { + return faceNormal_[halfedge_[edge.pairedHalfedge].pairedHalfedge / + 3] + .z >= 0 && + faceNormal_[edge.pairedHalfedge / 3].z < 0; + }) - + cusps.begin()); + + PolygonsIdx polysIndexed = + Face2Polygons(cusps.cbegin(), cusps.cend(), projection); + + Polygons polys; + for (const auto& poly : polysIndexed) { + SimplePolygon simple; + for (const PolyVert& polyVert : poly) { + simple.push_back(polyVert.pos); + } + polys.push_back(simple); + } + + return polys; +} +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/impl.cpp b/thirdparty/manifold/src/manifold/src/impl.cpp new file mode 100644 index 000000000000..225eae704ef8 --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/impl.cpp @@ -0,0 +1,735 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "impl.h" + +#include +#include +#include + +#include "manifold/hashtable.h" +#include "manifold/parallel.h" +#include "manifold/svd.h" +#include "mesh_fixes.h" + +namespace { +using namespace manifold; + +constexpr uint64_t kRemove = std::numeric_limits::max(); + +void AtomicAddVec3(vec3& target, const vec3& add) { + for (int i : {0, 1, 2}) { + std::atomic& tar = + reinterpret_cast&>(target[i]); + double old_val = tar.load(std::memory_order_relaxed); + while (!tar.compare_exchange_weak(old_val, old_val + add[i], + std::memory_order_relaxed)) { + } + } +} + +struct Transform4x3 { + const mat4x3 transform; + + vec3 operator()(vec3 position) { return transform * vec4(position, 1.0); } +}; + +template +struct AssignNormals { + VecView faceNormal; + VecView vertNormal; + VecView vertPos; + VecView halfedges; + const double precision; + + void operator()(const int face) { + vec3& triNormal = faceNormal[face]; + + ivec3 triVerts; + for (int i : {0, 1, 2}) triVerts[i] = halfedges[3 * face + i].startVert; + + vec3 edge[3]; + for (int i : {0, 1, 2}) { + const int j = (i + 1) % 3; + edge[i] = glm::normalize(vertPos[triVerts[j]] - vertPos[triVerts[i]]); + } + + if (calculateTriNormal) { + triNormal = glm::normalize(glm::cross(edge[0], edge[1])); + if (isnan(triNormal.x)) triNormal = vec3(0, 0, 1); + } + + // corner angles + vec3 phi; + double dot = -glm::dot(edge[2], edge[0]); + phi[0] = dot >= 1 ? 0 : (dot <= -1 ? glm::pi() : std::acos(dot)); + dot = -glm::dot(edge[0], edge[1]); + phi[1] = dot >= 1 ? 0 : (dot <= -1 ? glm::pi() : std::acos(dot)); + phi[2] = glm::pi() - phi[0] - phi[1]; + + // assign weighted sum + for (int i : {0, 1, 2}) { + AtomicAddVec3(vertNormal[triVerts[i]], phi[i] * triNormal); + } + } +}; + +struct UpdateMeshID { + const HashTableD meshIDold2new; + + void operator()(TriRef& ref) { ref.meshID = meshIDold2new[ref.meshID]; } +}; + +struct CoplanarEdge { + VecView> face2face; + VecView> vert2vert; + VecView triArea; + VecView halfedge; + VecView vertPos; + VecView triRef; + VecView triProp; + VecView prop; + VecView propTol; + const int numProp; + const double precision; + + // FIXME: race condition + void operator()(const int edgeIdx) { + const Halfedge edge = halfedge[edgeIdx]; + const Halfedge pair = halfedge[edge.pairedHalfedge]; + const int edgeFace = edgeIdx / 3; + const int pairFace = edge.pairedHalfedge / 3; + + if (triRef[edgeFace].meshID != triRef[pairFace].meshID) return; + + const vec3 base = vertPos[edge.startVert]; + const int baseNum = edgeIdx - 3 * edgeFace; + const int jointNum = edge.pairedHalfedge - 3 * pairFace; + + if (numProp > 0) { + const int prop0 = triProp[edgeFace][baseNum]; + const int prop1 = triProp[pairFace][jointNum == 2 ? 0 : jointNum + 1]; + bool propEqual = true; + for (int p = 0; p < numProp; ++p) { + if (std::abs(prop[numProp * prop0 + p] - prop[numProp * prop1 + p]) > + propTol[p]) { + propEqual = false; + break; + } + } + if (propEqual) { + vert2vert[edgeIdx] = std::make_pair(prop0, prop1); + } + } + + if (!edge.IsForward()) return; + + const int edgeNum = baseNum == 0 ? 2 : baseNum - 1; + const int pairNum = jointNum == 0 ? 2 : jointNum - 1; + const vec3 jointVec = vertPos[pair.startVert] - base; + const vec3 edgeVec = + vertPos[halfedge[3 * edgeFace + edgeNum].startVert] - base; + const vec3 pairVec = + vertPos[halfedge[3 * pairFace + pairNum].startVert] - base; + + const double length = std::max(glm::length(jointVec), glm::length(edgeVec)); + const double lengthPair = + std::max(glm::length(jointVec), glm::length(pairVec)); + vec3 normal = glm::cross(jointVec, edgeVec); + const double area = glm::length(normal); + const double areaPair = glm::length(glm::cross(pairVec, jointVec)); + triArea[edgeFace] = area; + triArea[pairFace] = areaPair; + // Don't link degenerate triangles + if (area < length * precision || areaPair < lengthPair * precision) return; + + const double volume = std::abs(glm::dot(normal, pairVec)); + // Only operate on coplanar triangles + if (volume > std::max(area, areaPair) * precision) return; + + // Check property linearity + if (area > 0) { + normal /= area; + for (int i = 0; i < numProp; ++i) { + const double scale = precision / propTol[i]; + + const double baseProp = prop[numProp * triProp[edgeFace][baseNum] + i]; + const double jointProp = + prop[numProp * triProp[pairFace][jointNum] + i]; + const double edgeProp = prop[numProp * triProp[edgeFace][edgeNum] + i]; + const double pairProp = prop[numProp * triProp[pairFace][pairNum] + i]; + + const vec3 iJointVec = + jointVec + normal * scale * (jointProp - baseProp); + const vec3 iEdgeVec = edgeVec + normal * scale * (edgeProp - baseProp); + const vec3 iPairVec = pairVec + normal * scale * (pairProp - baseProp); + + vec3 cross = glm::cross(iJointVec, iEdgeVec); + const double areaP = std::max( + glm::length(cross), glm::length(glm::cross(iPairVec, iJointVec))); + const double volumeP = std::abs(glm::dot(cross, iPairVec)); + // Only operate on consistent triangles + if (volumeP > areaP * precision) return; + } + } + + face2face[edgeIdx] = std::make_pair(edgeFace, pairFace); + } +}; + +struct CheckCoplanarity { + VecView comp2tri; + VecView halfedge; + VecView vertPos; + std::vector* components; + const double precision; + + void operator()(int tri) { + const int component = (*components)[tri]; + const int referenceTri = comp2tri[component]; + if (referenceTri < 0 || referenceTri == tri) return; + + const vec3 origin = vertPos[halfedge[3 * referenceTri].startVert]; + const vec3 normal = glm::normalize( + glm::cross(vertPos[halfedge[3 * referenceTri + 1].startVert] - origin, + vertPos[halfedge[3 * referenceTri + 2].startVert] - origin)); + + for (const int i : {0, 1, 2}) { + const vec3 vert = vertPos[halfedge[3 * tri + i].startVert]; + // If any component vertex is not coplanar with the component's reference + // triangle, unmark the entire component so that none of its triangles are + // marked coplanar. + if (std::abs(glm::dot(normal, vert - origin)) > precision) { + reinterpret_cast*>(&comp2tri[component]) + ->store(-1, std::memory_order_relaxed); + break; + } + } + } +}; + +int GetLabels(std::vector& components, + const Vec>& edges, int numNodes) { + UnionFind<> uf(numNodes); + for (auto edge : edges) { + if (edge.first == -1 || edge.second == -1) continue; + uf.unionXY(edge.first, edge.second); + } + + return uf.connectedComponents(components); +} + +void DedupePropVerts(manifold::Vec& triProp, + const Vec>& vert2vert) { + ZoneScoped; + std::vector vertLabels; + const int numLabels = GetLabels(vertLabels, vert2vert, vert2vert.size()); + + std::vector label2vert(numLabels); + for (size_t v = 0; v < vert2vert.size(); ++v) label2vert[vertLabels[v]] = v; + for (auto& prop : triProp) + for (int i : {0, 1, 2}) prop[i] = label2vert[vertLabels[prop[i]]]; +} +} // namespace + +namespace manifold { + +std::atomic Manifold::Impl::meshIDCounter_(1); + +uint32_t Manifold::Impl::ReserveIDs(uint32_t n) { + return Manifold::Impl::meshIDCounter_.fetch_add(n, std::memory_order_relaxed); +} + +Manifold::Impl::Impl(const Mesh& mesh, const MeshRelationD& relation, + const std::vector& propertyTolerance, + bool hasFaceIDs) + : vertPos_(mesh.vertPos), halfedgeTangent_(mesh.halfedgeTangent) { + meshRelation_ = {relation.originalID, relation.numProp, relation.properties, + relation.meshIDtransform}; + + Vec triVerts; + for (size_t i = 0; i < mesh.triVerts.size(); ++i) { + const ivec3 tri = mesh.triVerts[i]; + // Remove topological degenerates + if (tri[0] != tri[1] && tri[1] != tri[2] && tri[2] != tri[0]) { + triVerts.push_back(tri); + if (relation.triRef.size() > 0) { + meshRelation_.triRef.push_back(relation.triRef[i]); + } + if (relation.triProperties.size() > 0) { + meshRelation_.triProperties.push_back(relation.triProperties[i]); + } + } + } + + if (!IsIndexInBounds(triVerts)) { + MarkFailure(Error::VertexOutOfBounds); + return; + } + + CreateHalfedges(triVerts); + if (!IsManifold()) { + MarkFailure(Error::NotManifold); + return; + } + + CalculateBBox(); + if (!IsFinite()) { + MarkFailure(Error::NonFiniteVertex); + return; + } + SetPrecision(mesh.precision); + + SplitPinchedVerts(); + + CalculateNormals(); + + InitializeOriginal(); + + SimplifyTopology(); + Finish(); +} + +/** + * Create either a unit tetrahedron, cube or octahedron. The cube is in the + * first octant, while the others are symmetric about the origin. + */ +Manifold::Impl::Impl(Shape shape, const mat4x3 m) { + std::vector vertPos; + std::vector triVerts; + switch (shape) { + case Shape::Tetrahedron: + vertPos = {{-1.0, -1.0, 1.0}, + {-1.0, 1.0, -1.0}, + {1.0, -1.0, -1.0}, + {1.0, 1.0, 1.0}}; + triVerts = {{2, 0, 1}, {0, 3, 1}, {2, 3, 0}, {3, 2, 1}}; + break; + case Shape::Cube: + vertPos = {{0.0, 0.0, 0.0}, // + {0.0, 0.0, 1.0}, // + {0.0, 1.0, 0.0}, // + {0.0, 1.0, 1.0}, // + {1.0, 0.0, 0.0}, // + {1.0, 0.0, 1.0}, // + {1.0, 1.0, 0.0}, // + {1.0, 1.0, 1.0}}; + triVerts = {{1, 0, 4}, {2, 4, 0}, // + {1, 3, 0}, {3, 1, 5}, // + {3, 2, 0}, {3, 7, 2}, // + {5, 4, 6}, {5, 1, 4}, // + {6, 4, 2}, {7, 6, 2}, // + {7, 3, 5}, {7, 5, 6}}; + break; + case Shape::Octahedron: + vertPos = {{1.0, 0.0, 0.0}, // + {-1.0, 0.0, 0.0}, // + {0.0, 1.0, 0.0}, // + {0.0, -1.0, 0.0}, // + {0.0, 0.0, 1.0}, // + {0.0, 0.0, -1.0}}; + triVerts = {{0, 2, 4}, {1, 5, 3}, // + {2, 1, 4}, {3, 5, 0}, // + {1, 3, 4}, {0, 5, 2}, // + {3, 0, 4}, {2, 5, 1}}; + break; + } + vertPos_ = vertPos; + for (auto& v : vertPos_) v = m * vec4(v, 1.0); + CreateHalfedges(triVerts); + Finish(); + InitializeOriginal(); + CreateFaces(); +} + +void Manifold::Impl::RemoveUnreferencedVerts() { + ZoneScoped; + Vec vertOld2New(NumVert(), 0); + auto policy = autoPolicy(NumVert(), 1e5); + for_each(policy, halfedge_.cbegin(), halfedge_.cend(), + [&vertOld2New](Halfedge h) { + reinterpret_cast*>(&vertOld2New[h.startVert]) + ->store(1, std::memory_order_relaxed); + }); + + const Vec oldVertPos = vertPos_; + + Vec tmpBuffer(oldVertPos.size()); + auto vertIdIter = TransformIterator(countAt(0_uz), [&vertOld2New](size_t i) { + if (vertOld2New[i] > 0) return i; + return std::numeric_limits::max(); + }); + + auto next = + copy_if(vertIdIter, vertIdIter + tmpBuffer.size(), tmpBuffer.begin(), + [](size_t v) { return v != std::numeric_limits::max(); }); + if (next == tmpBuffer.end()) return; + + gather(tmpBuffer.begin(), next, oldVertPos.begin(), vertPos_.begin()); + + vertPos_.resize(std::distance(tmpBuffer.begin(), next)); + + exclusive_scan(vertOld2New.begin(), vertOld2New.end(), vertOld2New.begin()); + + for_each(policy, halfedge_.begin(), halfedge_.end(), + [&vertOld2New](Halfedge& h) { + h.startVert = vertOld2New[h.startVert]; + h.endVert = vertOld2New[h.endVert]; + }); +} + +void Manifold::Impl::InitializeOriginal() { + const int meshID = ReserveIDs(1); + meshRelation_.originalID = meshID; + auto& triRef = meshRelation_.triRef; + triRef.resize(NumTri()); + for_each_n(autoPolicy(NumTri(), 1e5), countAt(0), NumTri(), + [meshID, &triRef](const int tri) { + triRef[tri] = {meshID, meshID, tri}; + }); + meshRelation_.meshIDtransform.clear(); + meshRelation_.meshIDtransform[meshID] = {meshID}; +} + +void Manifold::Impl::CreateFaces(const std::vector& propertyTolerance) { + ZoneScoped; + constexpr double kDefaultPropTolerance = 1e-5; + Vec propertyToleranceD = + propertyTolerance.empty() + ? Vec(meshRelation_.numProp, kDefaultPropTolerance) + : propertyTolerance; + + Vec> face2face(halfedge_.size(), {-1, -1}); + Vec> vert2vert(halfedge_.size(), {-1, -1}); + Vec triArea(NumTri()); + for_each_n(autoPolicy(halfedge_.size(), 1e4), countAt(0), halfedge_.size(), + CoplanarEdge({face2face, vert2vert, triArea, halfedge_, vertPos_, + meshRelation_.triRef, meshRelation_.triProperties, + meshRelation_.properties, propertyToleranceD, + meshRelation_.numProp, precision_})); + + if (meshRelation_.triProperties.size() > 0) { + DedupePropVerts(meshRelation_.triProperties, vert2vert); + } + + std::vector components; + const int numComponent = GetLabels(components, face2face, NumTri()); + + Vec comp2tri(numComponent, -1); + for (size_t tri = 0; tri < NumTri(); ++tri) { + const int comp = components[tri]; + const int current = comp2tri[comp]; + if (current < 0 || triArea[tri] > triArea[current]) { + comp2tri[comp] = tri; + triArea[comp] = triArea[tri]; + } + } + + for_each_n(autoPolicy(halfedge_.size(), 1e4), countAt(0), NumTri(), + CheckCoplanarity( + {comp2tri, halfedge_, vertPos_, &components, precision_})); + + Vec& triRef = meshRelation_.triRef; + for (size_t tri = 0; tri < NumTri(); ++tri) { + const int referenceTri = comp2tri[components[tri]]; + if (referenceTri >= 0) { + triRef[tri].tri = referenceTri; + } + } +} + +/** + * Create the halfedge_ data structure from an input triVerts array like Mesh. + */ +void Manifold::Impl::CreateHalfedges(const Vec& triVerts) { + ZoneScoped; + const size_t numTri = triVerts.size(); + const int numHalfedge = 3 * numTri; + // drop the old value first to avoid copy + halfedge_.resize(0); + halfedge_.resize(numHalfedge); + Vec edge(numHalfedge); + Vec ids(numHalfedge); + auto policy = autoPolicy(numTri, 1e5); + sequence(ids.begin(), ids.end()); + for_each_n(policy, countAt(0), numTri, + [this, &edge, &triVerts](const int tri) { + const ivec3& verts = triVerts[tri]; + for (const int i : {0, 1, 2}) { + const int j = (i + 1) % 3; + const int e = 3 * tri + i; + halfedge_[e] = {verts[i], verts[j], -1, tri}; + // Sort the forward halfedges in front of the backward ones + // by setting the highest-order bit. + edge[e] = uint64_t(verts[i] < verts[j] ? 1 : 0) << 63 | + ((uint64_t)std::min(verts[i], verts[j])) << 32 | + std::max(verts[i], verts[j]); + } + }); + // Stable sort is required here so that halfedges from the same face are + // paired together (the triangles were created in face order). In some + // degenerate situations the triangulator can add the same internal edge in + // two different faces, causing this edge to not be 2-manifold. These are + // fixed by duplicating verts in SimplifyTopology. + stable_sort(ids.begin(), ids.end(), [&edge](const int& a, const int& b) { + return edge[a] < edge[b]; + }); + + // Mark opposed triangles for removal + const int numEdge = numHalfedge / 2; + for (int i = 0; i < numEdge; ++i) { + const int pair0 = ids[i]; + Halfedge h0 = halfedge_[pair0]; + int k = i + numEdge; + while (1) { + const int pair1 = ids[k]; + Halfedge h1 = halfedge_[pair1]; + if (h0.startVert != h1.endVert || h0.endVert != h1.startVert) break; + if (halfedge_[NextHalfedge(pair0)].endVert == + halfedge_[NextHalfedge(pair1)].endVert) { + // Reorder so that remaining edges pair up + if (k != i + numEdge) std::swap(ids[i + numEdge], ids[k]); + break; + } + ++k; + if (k >= numHalfedge) break; + } + } + + // Once sorted, the first half of the range is the forward halfedges, which + // correspond to their backward pair at the same offset in the second half + // of the range. + for_each_n(policy, countAt(0), numEdge, [this, &ids, numEdge](int i) { + const int pair0 = ids[i]; + const int pair1 = ids[i + numEdge]; + halfedge_[pair0].pairedHalfedge = pair1; + halfedge_[pair1].pairedHalfedge = pair0; + }); + + // When opposed triangles are removed, they may strand unreferenced verts. + RemoveUnreferencedVerts(); +} + +/** + * Does a full recalculation of the face bounding boxes, including updating + * the collider, but does not resort the faces. + */ +void Manifold::Impl::Update() { + CalculateBBox(); + Vec faceBox; + Vec faceMorton; + GetFaceBoxMorton(faceBox, faceMorton); + collider_.UpdateBoxes(faceBox); +} + +void Manifold::Impl::MarkFailure(Error status) { + bBox_ = Box(); + vertPos_.resize(0); + halfedge_.resize(0); + vertNormal_.resize(0); + faceNormal_.resize(0); + halfedgeTangent_.resize(0); + meshRelation_ = MeshRelationD(); + status_ = status; +} + +void Manifold::Impl::Warp(std::function warpFunc) { + WarpBatch([&warpFunc](VecView vecs) { + for_each(ExecutionPolicy::Seq, vecs.begin(), vecs.end(), warpFunc); + }); +} + +void Manifold::Impl::WarpBatch(std::function)> warpFunc) { + warpFunc(vertPos_.view()); + CalculateBBox(); + if (!IsFinite()) { + MarkFailure(Error::NonFiniteVertex); + return; + } + Update(); + faceNormal_.resize(0); // force recalculation of triNormal + CalculateNormals(); + SetPrecision(); + InitializeOriginal(); + Finish(); +} + +Manifold::Impl Manifold::Impl::Transform(const mat4x3& transform_) const { + ZoneScoped; + if (transform_ == mat4x3(1.0)) return *this; + auto policy = autoPolicy(NumVert()); + Impl result; + if (status_ != Manifold::Error::NoError) { + result.status_ = status_; + return result; + } + result.collider_ = collider_; + result.meshRelation_ = meshRelation_; + result.precision_ = precision_; + result.bBox_ = bBox_; + result.halfedge_ = halfedge_; + result.halfedgeTangent_.resize(halfedgeTangent_.size()); + + result.meshRelation_.originalID = -1; + for (auto& m : result.meshRelation_.meshIDtransform) { + m.second.transform = transform_ * mat4(m.second.transform); + } + + result.vertPos_.resize(NumVert()); + result.faceNormal_.resize(faceNormal_.size()); + result.vertNormal_.resize(vertNormal_.size()); + transform(vertPos_.begin(), vertPos_.end(), result.vertPos_.begin(), + Transform4x3({transform_})); + + mat3 normalTransform = NormalTransform(transform_); + transform(faceNormal_.begin(), faceNormal_.end(), result.faceNormal_.begin(), + TransformNormals({normalTransform})); + transform(vertNormal_.begin(), vertNormal_.end(), result.vertNormal_.begin(), + TransformNormals({normalTransform})); + + const bool invert = glm::determinant(mat3(transform_)) < 0; + + if (halfedgeTangent_.size() > 0) { + for_each_n(policy, countAt(0), halfedgeTangent_.size(), + TransformTangents({result.halfedgeTangent_, 0, mat3(transform_), + invert, halfedgeTangent_, halfedge_})); + } + + if (invert) { + for_each_n(policy, countAt(0), result.NumTri(), + FlipTris({result.halfedge_})); + } + + // This optimization does a cheap collider update if the transform is + // axis-aligned. + if (!result.collider_.Transform(transform_)) result.Update(); + + result.CalculateBBox(); + // Scale the precision by the norm of the 3x3 portion of the transform. + result.precision_ *= SpectralNorm(mat3(transform_)); + // Maximum of inherited precision loss and translational precision loss. + result.SetPrecision(result.precision_); + return result; +} + +/** + * Sets the precision based on the bounding box, and limits its minimum value + * by the optional input. + */ +void Manifold::Impl::SetPrecision(double minPrecision) { + precision_ = MaxPrecision(minPrecision, bBox_); +} + +/** + * If face normals are already present, this function uses them to compute + * vertex normals (angle-weighted pseudo-normals); otherwise it also computes + * the face normals. Face normals are only calculated when needed because + * nearly degenerate faces will accrue rounding error, while the Boolean can + * retain their original normal, which is more accurate and can help with + * merging coplanar faces. + * + * If the face normals have been invalidated by an operation like Warp(), + * ensure you do faceNormal_.resize(0) before calling this function to force + * recalculation. + */ +void Manifold::Impl::CalculateNormals() { + ZoneScoped; + vertNormal_.resize(NumVert()); + auto policy = autoPolicy(NumTri(), 1e4); + fill(vertNormal_.begin(), vertNormal_.end(), vec3(0)); + bool calculateTriNormal = false; + if (faceNormal_.size() != NumTri()) { + faceNormal_.resize(NumTri()); + calculateTriNormal = true; + } + if (calculateTriNormal) + for_each_n(policy, countAt(0), NumTri(), + AssignNormals({faceNormal_, vertNormal_, vertPos_, + halfedge_, precision_})); + else + for_each_n(policy, countAt(0), NumTri(), + AssignNormals({faceNormal_, vertNormal_, vertPos_, + halfedge_, precision_})); + for_each(policy, vertNormal_.begin(), vertNormal_.end(), + [](vec3& v) { v = SafeNormalize(v); }); +} + +/** + * Remaps all the contained meshIDs to new unique values to represent new + * instances of these meshes. + */ +void Manifold::Impl::IncrementMeshIDs() { + HashTable meshIDold2new(meshRelation_.meshIDtransform.size() * 2); + // Update keys of the transform map + std::map oldTransforms; + std::swap(meshRelation_.meshIDtransform, oldTransforms); + const int numMeshIDs = oldTransforms.size(); + int nextMeshID = ReserveIDs(numMeshIDs); + for (const auto& pair : oldTransforms) { + meshIDold2new.D().Insert(pair.first, nextMeshID); + meshRelation_.meshIDtransform[nextMeshID++] = pair.second; + } + + const size_t numTri = NumTri(); + for_each_n(autoPolicy(numTri, 1e5), meshRelation_.triRef.begin(), numTri, + UpdateMeshID({meshIDold2new.D()})); +} + +/** + * Returns a sparse array of the bounding box overlaps between the edges of + * the input manifold, Q and the faces of this manifold. Returned indices only + * point to forward halfedges. + */ +SparseIndices Manifold::Impl::EdgeCollisions(const Impl& Q, + bool inverted) const { + ZoneScoped; + Vec edges = CreateTmpEdges(Q.halfedge_); + const size_t numEdge = edges.size(); + Vec QedgeBB(numEdge); + const auto& vertPos = Q.vertPos_; + auto policy = autoPolicy(numEdge, 1e5); + for_each_n( + policy, countAt(0), numEdge, [&QedgeBB, &edges, &vertPos](const int e) { + QedgeBB[e] = Box(vertPos[edges[e].first], vertPos[edges[e].second]); + }); + + SparseIndices q1p2(0); + if (inverted) + q1p2 = collider_.Collisions(QedgeBB.cview()); + else + q1p2 = collider_.Collisions(QedgeBB.cview()); + + if (inverted) + for_each(policy, countAt(0_uz), countAt(q1p2.size()), + ReindexEdge({edges, q1p2})); + else + for_each(policy, countAt(0_uz), countAt(q1p2.size()), + ReindexEdge({edges, q1p2})); + return q1p2; +} + +/** + * Returns a sparse array of the input vertices that project inside the XY + * bounding boxes of the faces of this manifold. + */ +SparseIndices Manifold::Impl::VertexCollisionsZ(VecView vertsIn, + bool inverted) const { + ZoneScoped; + if (inverted) + return collider_.Collisions(vertsIn); + else + return collider_.Collisions(vertsIn); +} + +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/impl.h b/thirdparty/manifold/src/manifold/src/impl.h new file mode 100644 index 000000000000..131321a96c2e --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/impl.h @@ -0,0 +1,351 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#include + +#include "manifold/collider.h" +#include "manifold/manifold.h" +#include "manifold/optional_assert.h" +#include "manifold/polygon.h" +#include "manifold/sparse.h" +#include "manifold/utils.h" +#include "manifold/vec.h" +#include "quickhull.h" +#include "shared.h" + +namespace manifold { + +/** @ingroup Private */ +struct Manifold::Impl { + struct Relation { + int originalID = -1; + mat4x3 transform = mat4x3(1); + bool backSide = false; + }; + struct MeshRelationD { + /// The originalID of this Manifold if it is an original; -1 otherwise. + int originalID = -1; + int numProp = 0; + Vec properties; + std::map meshIDtransform; + Vec triRef; + Vec triProperties; + }; + struct BaryIndices { + int tri, start4, end4; + }; + + Box bBox_; + double precision_ = -1; + Error status_ = Error::NoError; + Vec vertPos_; + Vec halfedge_; + Vec vertNormal_; + Vec faceNormal_; + Vec halfedgeTangent_; + MeshRelationD meshRelation_; + Collider collider_; + + static std::atomic meshIDCounter_; + static uint32_t ReserveIDs(uint32_t); + + Impl() {} + enum class Shape { Tetrahedron, Cube, Octahedron }; + Impl(Shape, const mat4x3 = mat4x3(1)); + + template + Impl(const MeshGLP& meshGL) { + const uint32_t numVert = meshGL.NumVert(); + const uint32_t numTri = meshGL.NumTri(); + + if (meshGL.numProp < 3) { + MarkFailure(Error::MissingPositionProperties); + return; + } + + if (meshGL.mergeFromVert.size() != meshGL.mergeToVert.size()) { + MarkFailure(Error::MergeVectorsDifferentLengths); + return; + } + + if (!meshGL.runTransform.empty() && + 12 * meshGL.runOriginalID.size() != meshGL.runTransform.size()) { + MarkFailure(Error::TransformWrongLength); + return; + } + + if (!meshGL.runOriginalID.empty() && !meshGL.runIndex.empty() && + meshGL.runOriginalID.size() + 1 != meshGL.runIndex.size() && + meshGL.runOriginalID.size() != meshGL.runIndex.size()) { + MarkFailure(Error::RunIndexWrongLength); + return; + } + + if (!meshGL.faceID.empty() && meshGL.faceID.size() != meshGL.NumTri()) { + MarkFailure(Error::FaceIDWrongLength); + return; + } + + std::vector prop2vert(numVert); + std::iota(prop2vert.begin(), prop2vert.end(), 0); + for (size_t i = 0; i < meshGL.mergeFromVert.size(); ++i) { + const uint32_t from = meshGL.mergeFromVert[i]; + const uint32_t to = meshGL.mergeToVert[i]; + if (from >= numVert || to >= numVert) { + MarkFailure(Error::MergeIndexOutOfBounds); + return; + } + prop2vert[from] = to; + } + + const auto numProp = meshGL.numProp - 3; + meshRelation_.numProp = numProp; + meshRelation_.properties.resize(meshGL.NumVert() * numProp); + // This will have unreferenced duplicate positions that will be removed by + // Impl::RemoveUnreferencedVerts(). + vertPos_.resize(meshGL.NumVert()); + + for (size_t i = 0; i < meshGL.NumVert(); ++i) { + for (const int j : {0, 1, 2}) + vertPos_[i][j] = meshGL.vertProperties[meshGL.numProp * i + j]; + for (size_t j = 0; j < numProp; ++j) + meshRelation_.properties[i * numProp + j] = + meshGL.vertProperties[meshGL.numProp * i + 3 + j]; + } + + halfedgeTangent_.resize(meshGL.halfedgeTangent.size() / 4); + for (size_t i = 0; i < halfedgeTangent_.size(); ++i) { + for (const int j : {0, 1, 2, 3}) + halfedgeTangent_[i][j] = meshGL.halfedgeTangent[4 * i + j]; + } + + Vec triRef; + if (!meshGL.runOriginalID.empty()) { + auto runIndex = meshGL.runIndex; + const auto runEnd = meshGL.triVerts.size(); + if (runIndex.empty()) { + runIndex = {0, static_cast(runEnd)}; + } else if (runIndex.size() == meshGL.runOriginalID.size()) { + runIndex.push_back(runEnd); + } + triRef.resize(meshGL.NumTri()); + const auto startID = Impl::ReserveIDs(meshGL.runOriginalID.size()); + for (size_t i = 0; i < meshGL.runOriginalID.size(); ++i) { + const int meshID = startID + i; + const int originalID = meshGL.runOriginalID[i]; + for (size_t tri = runIndex[i] / 3; tri < runIndex[i + 1] / 3; ++tri) { + TriRef& ref = triRef[tri]; + ref.meshID = meshID; + ref.originalID = originalID; + ref.tri = meshGL.faceID.empty() ? tri : meshGL.faceID[tri]; + } + + if (meshGL.runTransform.empty()) { + meshRelation_.meshIDtransform[meshID] = {originalID}; + } else { + const Precision* m = meshGL.runTransform.data() + 12 * i; + meshRelation_.meshIDtransform[meshID] = { + originalID, + {m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8], m[9], + m[10], m[11]}}; + } + } + } + + Vec triVerts; + triVerts.reserve(numTri); + for (size_t i = 0; i < numTri; ++i) { + ivec3 tri; + for (const size_t j : {0, 1, 2}) { + uint32_t vert = (uint32_t)meshGL.triVerts[3 * i + j]; + if (vert >= numVert) { + MarkFailure(Error::VertexOutOfBounds); + return; + } + tri[j] = prop2vert[vert]; + } + if (tri[0] != tri[1] && tri[1] != tri[2] && tri[2] != tri[0]) { + triVerts.push_back(tri); + if (triRef.size() > 0) { + meshRelation_.triRef.push_back(triRef[i]); + } + if (numProp > 0) { + meshRelation_.triProperties.push_back( + ivec3(static_cast(meshGL.triVerts[3 * i]), + static_cast(meshGL.triVerts[3 * i + 1]), + static_cast(meshGL.triVerts[3 * i + 2]))); + } + } + } + + CreateHalfedges(triVerts); + if (!IsManifold()) { + MarkFailure(Error::NotManifold); + return; + } + + CalculateBBox(); + if (!IsFinite()) { + MarkFailure(Error::NonFiniteVertex); + return; + } + SetPrecision(meshGL.precision); + + SplitPinchedVerts(); + + CalculateNormals(); + + if (meshGL.runOriginalID.empty()) { + InitializeOriginal(); + } + + SimplifyTopology(); + Finish(); + + // A Manifold created from an input mesh is never an original - the input is + // the original. + meshRelation_.originalID = -1; + } + + Impl(const Mesh&, const MeshRelationD& relation, + const std::vector& propertyTolerance = {}, + bool hasFaceIDs = false); + + inline void ForVert(int halfedge, std::function func) { + int current = halfedge; + do { + current = NextHalfedge(halfedge_[current].pairedHalfedge); + func(current); + } while (current != halfedge); + } + + template + void ForVert( + int halfedge, std::function transform, + std::function binaryOp) { + T here = transform(halfedge); + int current = halfedge; + do { + const int nextHalfedge = NextHalfedge(halfedge_[current].pairedHalfedge); + T next = transform(nextHalfedge); + binaryOp(current, here, next); + here = next; + current = nextHalfedge; + } while (current != halfedge); + } + + void CreateFaces(const std::vector& propertyTolerance = {}); + void RemoveUnreferencedVerts(); + void InitializeOriginal(); + void CreateHalfedges(const Vec& triVerts); + void CalculateNormals(); + void IncrementMeshIDs(); + + void Update(); + void MarkFailure(Error status); + void Warp(std::function warpFunc); + void WarpBatch(std::function)> warpFunc); + Impl Transform(const mat4x3& transform) const; + SparseIndices EdgeCollisions(const Impl& B, bool inverted = false) const; + SparseIndices VertexCollisionsZ(VecView vertsIn, + bool inverted = false) const; + + bool IsEmpty() const { return NumTri() == 0; } + size_t NumVert() const { return vertPos_.size(); } + size_t NumEdge() const { return halfedge_.size() / 2; } + size_t NumTri() const { return halfedge_.size() / 3; } + size_t NumProp() const { return meshRelation_.numProp; } + size_t NumPropVert() const { + return NumProp() == 0 ? NumVert() + : meshRelation_.properties.size() / NumProp(); + } + + // properties.cu + Properties GetProperties() const; + void CalculateCurvature(int gaussianIdx, int meanIdx); + void CalculateBBox(); + bool IsFinite() const; + bool IsIndexInBounds(VecView triVerts) const; + void SetPrecision(double minPrecision = -1); + bool IsManifold() const; + bool Is2Manifold() const; + bool MatchesTriNormals() const; + int NumDegenerateTris() const; + double MinGap(const Impl& other, double searchLength) const; + + // sort.cu + void Finish(); + void SortVerts(); + void ReindexVerts(const Vec& vertNew2Old, size_t numOldVert); + void CompactProps(); + void GetFaceBoxMorton(Vec& faceBox, Vec& faceMorton) const; + void SortFaces(Vec& faceBox, Vec& faceMorton); + void GatherFaces(const Vec& faceNew2Old); + void GatherFaces(const Impl& old, const Vec& faceNew2Old); + + // face_op.cu + void Face2Tri(const Vec& faceEdge, const Vec& halfedgeRef); + PolygonsIdx Face2Polygons(VecView::IterC start, + VecView::IterC end, + mat3x2 projection) const; + Polygons Slice(double height) const; + Polygons Project() const; + + // edge_op.cu + void CleanupTopology(); + void SimplifyTopology(); + void DedupeEdge(int edge); + void CollapseEdge(int edge, std::vector& edges); + void RecursiveEdgeSwap(int edge, int& tag, std::vector& visited, + std::vector& edgeSwapStack, + std::vector& edges); + void RemoveIfFolded(int edge); + void PairUp(int edge0, int edge1); + void UpdateVert(int vert, int startEdge, int endEdge); + void FormLoop(int current, int end); + void CollapseTri(const ivec3& triEdge); + void SplitPinchedVerts(); + + // subdivision.cpp + int GetNeighbor(int tri) const; + ivec4 GetHalfedges(int tri) const; + BaryIndices GetIndices(int halfedge) const; + void FillRetainedVerts(Vec& vertBary) const; + Vec Subdivide(std::function); + + // smoothing.cpp + bool IsInsideQuad(int halfedge) const; + bool IsMarkedInsideQuad(int halfedge) const; + vec3 GetNormal(int halfedge, int normalIdx) const; + vec4 TangentFromNormal(const vec3& normal, int halfedge) const; + std::vector UpdateSharpenedEdges( + const std::vector&) const; + Vec FlatFaces() const; + Vec VertFlatFace(const Vec&) const; + Vec VertHalfedge() const; + std::vector SharpenEdges(double minSharpAngle, + double minSmoothness) const; + void SharpenTangent(int halfedge, double smoothness); + void SetNormals(int normalIdx, double minSharpAngle); + void LinearizeFlatTangents(); + void DistributeTangents(const Vec& fixedHalfedges); + void CreateTangents(int normalIdx); + void CreateTangents(std::vector); + void Refine(std::function); + + // quickhull.cpp + void Hull(VecView vertPos); +}; +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/manifold.cpp b/thirdparty/manifold/src/manifold/src/manifold.cpp new file mode 100644 index 000000000000..004af1112dbb --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/manifold.cpp @@ -0,0 +1,1025 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include +#include +#include + +#include "boolean3.h" +#include "csg_tree.h" +#include "impl.h" +#include "manifold/parallel.h" + +namespace { +using namespace manifold; + +ExecutionParams manifoldParams; + +struct UpdateProperties { + double* properties; + const int numProp; + const double* oldProperties; + const int numOldProp; + const vec3* vertPos; + const ivec3* triProperties; + const Halfedge* halfedges; + std::function propFunc; + + void operator()(int tri) { + for (int i : {0, 1, 2}) { + const int vert = halfedges[3 * tri + i].startVert; + const int propVert = triProperties[tri][i]; + propFunc(properties + numProp * propVert, vertPos[vert], + oldProperties + numOldProp * propVert); + } + } +}; + +Manifold Halfspace(Box bBox, vec3 normal, double originOffset) { + normal = glm::normalize(normal); + Manifold cutter = Manifold::Cube(vec3(2.0), true).Translate({1.0, 0.0, 0.0}); + double size = glm::length(bBox.Center() - normal * originOffset) + + 0.5 * glm::length(bBox.Size()); + cutter = cutter.Scale(vec3(size)).Translate({originOffset, 0.0, 0.0}); + double yDeg = glm::degrees(-std::asin(normal.z)); + double zDeg = glm::degrees(std::atan2(normal.y, normal.x)); + return cutter.Rotate(0.0, yDeg, zDeg); +} + +template +MeshGLP GetMeshGLImpl(const manifold::Manifold::Impl& impl, + ivec3 normalIdx) { + ZoneScoped; + const int numProp = impl.NumProp(); + const int numVert = impl.NumPropVert(); + const int numTri = impl.NumTri(); + + const bool isOriginal = impl.meshRelation_.originalID >= 0; + const bool updateNormals = + !isOriginal && glm::all(glm::greaterThan(normalIdx, ivec3(2))); + + MeshGLP out; + out.precision = + std::max(impl.precision_, + std::numeric_limits::epsilon() * impl.bBox_.Scale()); + out.numProp = 3 + numProp; + out.triVerts.resize(3 * numTri); + + const int numHalfedge = impl.halfedgeTangent_.size(); + out.halfedgeTangent.resize(4 * numHalfedge); + for (int i = 0; i < numHalfedge; ++i) { + const vec4 t = impl.halfedgeTangent_[i]; + out.halfedgeTangent[4 * i] = t.x; + out.halfedgeTangent[4 * i + 1] = t.y; + out.halfedgeTangent[4 * i + 2] = t.z; + out.halfedgeTangent[4 * i + 3] = t.w; + } + // Sort the triangles into runs + out.faceID.resize(numTri); + std::vector triNew2Old(numTri); + std::iota(triNew2Old.begin(), triNew2Old.end(), 0); + VecView triRef = impl.meshRelation_.triRef; + // Don't sort originals - keep them in order + if (!isOriginal) { + std::sort(triNew2Old.begin(), triNew2Old.end(), [triRef](int a, int b) { + return triRef[a].originalID == triRef[b].originalID + ? triRef[a].meshID < triRef[b].meshID + : triRef[a].originalID < triRef[b].originalID; + }); + } + + std::vector runNormalTransform; + auto addRun = [updateNormals, isOriginal]( + MeshGLP& out, + std::vector& runNormalTransform, int tri, + const manifold::Manifold::Impl::Relation& rel) { + out.runIndex.push_back(3 * tri); + out.runOriginalID.push_back(rel.originalID); + if (updateNormals) { + runNormalTransform.push_back(NormalTransform(rel.transform) * + (rel.backSide ? -1.0 : 1.0)); + } + if (!isOriginal) { + for (const int col : {0, 1, 2, 3}) { + for (const int row : {0, 1, 2}) { + out.runTransform.push_back(rel.transform[col][row]); + } + } + } + }; + + auto meshIDtransform = impl.meshRelation_.meshIDtransform; + int lastID = -1; + for (int tri = 0; tri < numTri; ++tri) { + const int oldTri = triNew2Old[tri]; + const auto ref = triRef[oldTri]; + const int meshID = ref.meshID; + + out.faceID[tri] = ref.tri; + for (const int i : {0, 1, 2}) + out.triVerts[3 * tri + i] = impl.halfedge_[3 * oldTri + i].startVert; + + if (meshID != lastID) { + manifold::Manifold::Impl::Relation rel; + auto it = meshIDtransform.find(meshID); + if (it != meshIDtransform.end()) rel = it->second; + addRun(out, runNormalTransform, tri, rel); + meshIDtransform.erase(meshID); + lastID = meshID; + } + } + // Add runs for originals that did not contribute any faces to the output + for (const auto& pair : meshIDtransform) { + addRun(out, runNormalTransform, numTri, pair.second); + } + out.runIndex.push_back(3 * numTri); + + // Early return for no props + if (numProp == 0) { + out.vertProperties.resize(3 * numVert); + for (int i = 0; i < numVert; ++i) { + const vec3 v = impl.vertPos_[i]; + out.vertProperties[3 * i] = v.x; + out.vertProperties[3 * i + 1] = v.y; + out.vertProperties[3 * i + 2] = v.z; + } + return out; + } + // Duplicate verts with different props + std::vector vert2idx(impl.NumVert(), -1); + std::vector> vertPropPair(impl.NumVert()); + out.vertProperties.reserve(numVert * static_cast(out.numProp)); + + for (size_t run = 0; run < out.runOriginalID.size(); ++run) { + for (size_t tri = out.runIndex[run] / 3; tri < out.runIndex[run + 1] / 3; + ++tri) { + const ivec3 triProp = impl.meshRelation_.triProperties[triNew2Old[tri]]; + for (const int i : {0, 1, 2}) { + const int prop = triProp[i]; + const int vert = out.triVerts[3 * tri + i]; + + auto& bin = vertPropPair[vert]; + bool bFound = false; + for (const auto& b : bin) { + if (b.x == prop) { + bFound = true; + out.triVerts[3 * tri + i] = b.y; + break; + } + } + if (bFound) continue; + const int idx = out.vertProperties.size() / out.numProp; + out.triVerts[3 * tri + i] = idx; + bin.push_back({prop, idx}); + + for (int p : {0, 1, 2}) { + out.vertProperties.push_back(impl.vertPos_[vert][p]); + } + for (int p = 0; p < numProp; ++p) { + out.vertProperties.push_back( + impl.meshRelation_.properties[prop * numProp + p]); + } + + if (updateNormals) { + vec3 normal; + const int start = out.vertProperties.size() - out.numProp; + for (int i : {0, 1, 2}) { + normal[i] = out.vertProperties[start + normalIdx[i]]; + } + normal = glm::normalize(runNormalTransform[run] * normal); + for (int i : {0, 1, 2}) { + out.vertProperties[start + normalIdx[i]] = normal[i]; + } + } + + if (vert2idx[vert] == -1) { + vert2idx[vert] = idx; + } else { + out.mergeFromVert.push_back(idx); + out.mergeToVert.push_back(vert2idx[vert]); + } + } + } + } + return out; +} +} // namespace + +namespace manifold { + +/** + * Construct an empty Manifold. + * + */ +Manifold::Manifold() : pNode_{std::make_shared()} {} +Manifold::~Manifold() = default; +Manifold::Manifold(Manifold&&) noexcept = default; +Manifold& Manifold::operator=(Manifold&&) noexcept = default; + +Manifold::Manifold(const Manifold& other) : pNode_(other.pNode_) {} + +Manifold::Manifold(std::shared_ptr pNode) : pNode_(pNode) {} + +Manifold::Manifold(std::shared_ptr pImpl_) + : pNode_(std::make_shared(pImpl_)) {} + +Manifold Manifold::Invalid() { + auto pImpl_ = std::make_shared(); + pImpl_->status_ = Error::InvalidConstruction; + return Manifold(pImpl_); +} + +Manifold& Manifold::operator=(const Manifold& other) { + if (this != &other) { + pNode_ = other.pNode_; + } + return *this; +} + +CsgLeafNode& Manifold::GetCsgLeafNode() const { + if (pNode_->GetNodeType() != CsgNodeType::Leaf) { + pNode_ = pNode_->ToLeafNode(); + } + return *std::static_pointer_cast(pNode_); +} + +/** + * Convert a MeshGL into a Manifold, retaining its properties and merging only + * the positions according to the merge vectors. Will return an empty Manifold + * and set an Error Status if the result is not an oriented 2-manifold. Will + * collapse degenerate triangles and unnecessary vertices. + * + * All fields are read, making this structure suitable for a lossless round-trip + * of data from GetMeshGL. For multi-material input, use ReserveIDs to set a + * unique originalID for each material, and sort the materials into triangle + * runs. + * + * @param meshGL The input MeshGL. + */ +Manifold::Manifold(const MeshGL& meshGL) + : pNode_(std::make_shared(std::make_shared(meshGL))) {} + +/** + * Convert a MeshGL into a Manifold, retaining its properties and merging only + * the positions according to the merge vectors. Will return an empty Manifold + * and set an Error Status if the result is not an oriented 2-manifold. Will + * collapse degenerate triangles and unnecessary vertices. + * + * All fields are read, making this structure suitable for a lossless round-trip + * of data from GetMeshGL. For multi-material input, use ReserveIDs to set a + * unique originalID for each material, and sort the materials into triangle + * runs. + * + * @param meshGL The input MeshGL. + * @param propertyTolerance A vector of precision values for each property + * beyond position. If specified, the propertyTolerance vector must have size = + * numProp - 3. This is the amount of interpolation error allowed before two + * neighboring triangles are considered to be on a property boundary edge. + * Property boundary edges will be retained across operations even if the + * triangles are coplanar. Defaults to 1e-5, which works well for most + * properties in the [-1, 1] range. + */ +Manifold::Manifold(const MeshGL64& meshGL64) + : pNode_(std::make_shared(std::make_shared(meshGL64))) {} + +/** + * Convert a Mesh into a Manifold. Will return an empty Manifold + * and set an Error Status if the Mesh is not an oriented 2-manifold. Will + * collapse degenerate triangles and unnecessary vertices. + * + * @param mesh The input Mesh. + */ +Manifold::Manifold(const Mesh& mesh) { + Impl::MeshRelationD relation; + pNode_ = + std::make_shared(std::make_shared(mesh, relation)); +} + +/** + * This returns a Mesh of simple vectors of vertices and triangles suitable for + * saving or other operations outside of the context of this library. + */ +Mesh Manifold::GetMesh() const { + ZoneScoped; + const Impl& impl = *GetCsgLeafNode().GetImpl(); + + Mesh result; + result.precision = Precision(); + result.vertPos.insert(result.vertPos.end(), impl.vertPos_.begin(), + impl.vertPos_.end()); + result.vertNormal.insert(result.vertNormal.end(), impl.vertNormal_.begin(), + impl.vertNormal_.end()); + result.halfedgeTangent.insert(result.halfedgeTangent.end(), + impl.halfedgeTangent_.begin(), + impl.halfedgeTangent_.end()); + + result.triVerts.resize(NumTri()); + auto& triVerts = result.triVerts; + const auto& halfedges = impl.halfedge_; + for_each_n(autoPolicy(NumTri(), 1e5), countAt(0), NumTri(), + [&triVerts, &halfedges](const int tri) { + for (int i : {0, 1, 2}) { + triVerts[tri][i] = halfedges[3 * tri + i].startVert; + } + }); + + return result; +} + +/** + * The most complete output of this library, returning a MeshGL that is designed + * to easily push into a renderer, including all interleaved vertex properties + * that may have been input. It also includes relations to all the input meshes + * that form a part of this result and the transforms applied to each. + * + * @param normalIdx If the original MeshGL inputs that formed this manifold had + * properties corresponding to normal vectors, you can specify which property + * channels these are (x, y, z), which will cause this output MeshGL to + * automatically update these normals according to the applied transforms and + * front/back side. Each channel must be >= 3 and < numProp, and all original + * MeshGLs must use the same channels for their normals. + */ +MeshGL Manifold::GetMeshGL(ivec3 normalIdx) const { + const Impl& impl = *GetCsgLeafNode().GetImpl(); + return GetMeshGLImpl(impl, normalIdx); +} + +/** + * The most complete output of this library, returning a MeshGL that is designed + * to easily push into a renderer, including all interleaved vertex properties + * that may have been input. It also includes relations to all the input meshes + * that form a part of this result and the transforms applied to each. + * + * @param normalIdx If the original MeshGL inputs that formed this manifold had + * properties corresponding to normal vectors, you can specify which property + * channels these are (x, y, z), which will cause this output MeshGL to + * automatically update these normals according to the applied transforms and + * front/back side. Each channel must be >= 3 and < numProp, and all original + * MeshGLs must use the same channels for their normals. + */ +MeshGL64 Manifold::GetMeshGL64(ivec3 normalIdx) const { + const Impl& impl = *GetCsgLeafNode().GetImpl(); + return GetMeshGLImpl(impl, normalIdx); +} + +/** + * Does the Manifold have any triangles? + */ +bool Manifold::IsEmpty() const { return GetCsgLeafNode().GetImpl()->IsEmpty(); } +/** + * Returns the reason for an input Mesh producing an empty Manifold. This Status + * only applies to Manifolds newly-created from an input Mesh - once they are + * combined into a new Manifold via operations, the status reverts to NoError, + * simply processing the problem mesh as empty. Likewise, empty meshes may still + * show NoError, for instance if they are small enough relative to their + * precision to be collapsed to nothing. + */ +Manifold::Error Manifold::Status() const { + return GetCsgLeafNode().GetImpl()->status_; +} +/** + * The number of vertices in the Manifold. + */ +size_t Manifold::NumVert() const { + return GetCsgLeafNode().GetImpl()->NumVert(); +} +/** + * The number of edges in the Manifold. + */ +size_t Manifold::NumEdge() const { + return GetCsgLeafNode().GetImpl()->NumEdge(); +} +/** + * The number of triangles in the Manifold. + */ +size_t Manifold::NumTri() const { return GetCsgLeafNode().GetImpl()->NumTri(); } +/** + * The number of properties per vertex in the Manifold. + */ +size_t Manifold::NumProp() const { + return GetCsgLeafNode().GetImpl()->NumProp(); +} +/** + * The number of property vertices in the Manifold. This will always be >= + * NumVert, as some physical vertices may be duplicated to account for different + * properties on different neighboring triangles. + */ +size_t Manifold::NumPropVert() const { + return GetCsgLeafNode().GetImpl()->NumPropVert(); +} + +/** + * Returns the axis-aligned bounding box of all the Manifold's vertices. + */ +Box Manifold::BoundingBox() const { return GetCsgLeafNode().GetImpl()->bBox_; } + +/** + * Returns the precision of this Manifold's vertices, which tracks the + * approximate rounding error over all the transforms and operations that have + * led to this state. Any triangles that are colinear within this precision are + * considered degenerate and removed. This is the value of ε defining + * [ε-valid](https://github.com/elalish/manifold/wiki/Manifold-Library#definition-of-%CE%B5-valid). + */ +double Manifold::Precision() const { + return GetCsgLeafNode().GetImpl()->precision_; +} + +/** + * The genus is a topological property of the manifold, representing the number + * of "handles". A sphere is 0, torus 1, etc. It is only meaningful for a single + * mesh, so it is best to call Decompose() first. + */ +int Manifold::Genus() const { + int chi = NumVert() - NumEdge() + NumTri(); + return 1 - chi / 2; +} + +/** + * Returns the surface area and volume of the manifold. + */ +Properties Manifold::GetProperties() const { + return GetCsgLeafNode().GetImpl()->GetProperties(); +} + +/** + * If this mesh is an original, this returns its meshID that can be referenced + * by product manifolds' MeshRelation. If this manifold is a product, this + * returns -1. + */ +int Manifold::OriginalID() const { + return GetCsgLeafNode().GetImpl()->meshRelation_.originalID; +} + +/** + * This function condenses all coplanar faces in the relation, and + * collapses those edges. In the process the relation to ancestor meshes is lost + * and this new Manifold is marked an original. Properties are preserved, so if + * they do not match across an edge, that edge will be kept. + * + * @param propertyTolerance A vector of precision values for each property + * beyond position. If specified, the propertyTolerance vector must have size = + * numProp - 3. This is the amount of interpolation error allowed before two + * neighboring triangles are considered to be on a property boundary edge. + * Property boundary edges will be retained across operations even if the + * triangles are coplanar. Defaults to 1e-5, which works well for most + * single-precision properties in the [-1, 1] range. + */ +Manifold Manifold::AsOriginal( + const std::vector& propertyTolerance) const { + auto oldImpl = GetCsgLeafNode().GetImpl(); + if (oldImpl->status_ != Error::NoError) { + auto newImpl = std::make_shared(); + newImpl->status_ = oldImpl->status_; + return Manifold(std::make_shared(newImpl)); + } + auto newImpl = std::make_shared(*oldImpl); + newImpl->InitializeOriginal(); + newImpl->CreateFaces(propertyTolerance); + newImpl->SimplifyTopology(); + newImpl->Finish(); + return Manifold(std::make_shared(newImpl)); +} + +/** + * Returns the first of n sequential new unique mesh IDs for marking sets of + * triangles that can be looked up after further operations. Assign to + * MeshGL.runOriginalID vector. + */ +uint32_t Manifold::ReserveIDs(uint32_t n) { + return Manifold::Impl::ReserveIDs(n); +} + +/** + * The triangle normal vectors are saved over the course of operations rather + * than recalculated to avoid rounding error. This checks that triangles still + * match their normal vectors within Precision(). + */ +bool Manifold::MatchesTriNormals() const { + return GetCsgLeafNode().GetImpl()->MatchesTriNormals(); +} + +/** + * The number of triangles that are colinear within Precision(). This library + * attempts to remove all of these, but it cannot always remove all of them + * without changing the mesh by too much. + */ +size_t Manifold::NumDegenerateTris() const { + return GetCsgLeafNode().GetImpl()->NumDegenerateTris(); +} + +/** + * This is a checksum-style verification of the collider, simply returning the + * total number of edge-face bounding box overlaps between this and other. + * + * @param other A Manifold to overlap with. + */ +size_t Manifold::NumOverlaps(const Manifold& other) const { + SparseIndices overlaps = GetCsgLeafNode().GetImpl()->EdgeCollisions( + *other.GetCsgLeafNode().GetImpl()); + int num_overlaps = overlaps.size(); + + overlaps = other.GetCsgLeafNode().GetImpl()->EdgeCollisions( + *GetCsgLeafNode().GetImpl()); + return num_overlaps + overlaps.size(); +} + +/** + * Move this Manifold in space. This operation can be chained. Transforms are + * combined and applied lazily. + * + * @param v The vector to add to every vertex. + */ +Manifold Manifold::Translate(vec3 v) const { + return Manifold(pNode_->Translate(v)); +} + +/** + * Scale this Manifold in space. This operation can be chained. Transforms are + * combined and applied lazily. + * + * @param v The vector to multiply every vertex by per component. + */ +Manifold Manifold::Scale(vec3 v) const { return Manifold(pNode_->Scale(v)); } + +/** + * Applies an Euler angle rotation to the manifold, first about the X axis, then + * Y, then Z, in degrees. We use degrees so that we can minimize rounding error, + * and eliminate it completely for any multiples of 90 degrees. Additionally, + * more efficient code paths are used to update the manifold when the transforms + * only rotate by multiples of 90 degrees. This operation can be chained. + * Transforms are combined and applied lazily. + * + * @param xDegrees First rotation, degrees about the X-axis. + * @param yDegrees Second rotation, degrees about the Y-axis. + * @param zDegrees Third rotation, degrees about the Z-axis. + */ +Manifold Manifold::Rotate(double xDegrees, double yDegrees, + double zDegrees) const { + return Manifold(pNode_->Rotate(xDegrees, yDegrees, zDegrees)); +} + +/** + * Transform this Manifold in space. The first three columns form a 3x3 matrix + * transform and the last is a translation vector. This operation can be + * chained. Transforms are combined and applied lazily. + * + * @param m The affine transform matrix to apply to all the vertices. + */ +Manifold Manifold::Transform(const mat4x3& m) const { + return Manifold(pNode_->Transform(m)); +} + +/** + * Mirror this Manifold over the plane described by the unit form of the given + * normal vector. If the length of the normal is zero, an empty Manifold is + * returned. This operation can be chained. Transforms are combined and applied + * lazily. + * + * @param normal The normal vector of the plane to be mirrored over + */ +Manifold Manifold::Mirror(vec3 normal) const { + if (glm::length(normal) == 0.) { + return Manifold(); + } + auto n = glm::normalize(normal); + auto m = mat4x3(mat3(1.0) - 2.0 * glm::outerProduct(n, n)); + return Manifold(pNode_->Transform(m)); +} + +/** + * This function does not change the topology, but allows the vertices to be + * moved according to any arbitrary input function. It is easy to create a + * function that warps a geometrically valid object into one which overlaps, but + * that is not checked here, so it is up to the user to choose their function + * with discretion. + * + * @param warpFunc A function that modifies a given vertex position. + */ +Manifold Manifold::Warp(std::function warpFunc) const { + auto oldImpl = GetCsgLeafNode().GetImpl(); + if (oldImpl->status_ != Error::NoError) { + auto pImpl = std::make_shared(); + pImpl->status_ = oldImpl->status_; + return Manifold(std::make_shared(pImpl)); + } + auto pImpl = std::make_shared(*oldImpl); + pImpl->Warp(warpFunc); + return Manifold(std::make_shared(pImpl)); +} + +/** + * Same as Manifold::Warp but calls warpFunc with with + * a VecView which is roughly equivalent to std::span + * pointing to all vec3 elements to be modified in-place + * + * @param warpFunc A function that modifies multiple vertex positions. + */ +Manifold Manifold::WarpBatch( + std::function)> warpFunc) const { + auto oldImpl = GetCsgLeafNode().GetImpl(); + if (oldImpl->status_ != Error::NoError) { + auto pImpl = std::make_shared(); + pImpl->status_ = oldImpl->status_; + return Manifold(std::make_shared(pImpl)); + } + auto pImpl = std::make_shared(*oldImpl); + pImpl->WarpBatch(warpFunc); + return Manifold(std::make_shared(pImpl)); +} + +/** + * Create a new copy of this manifold with updated vertex properties by + * supplying a function that takes the existing position and properties as + * input. You may specify any number of output properties, allowing creation and + * removal of channels. Note: undefined behavior will result if you read past + * the number of input properties or write past the number of output properties. + * + * If propFunc is a nullptr, this function will just set the channel to zeroes. + * + * @param numProp The new number of properties per vertex. + * @param propFunc A function that modifies the properties of a given vertex. + */ +Manifold Manifold::SetProperties( + int numProp, + std::function + propFunc) const { + auto pImpl = std::make_shared(*GetCsgLeafNode().GetImpl()); + const int oldNumProp = NumProp(); + const Vec oldProperties = pImpl->meshRelation_.properties; + + auto& triProperties = pImpl->meshRelation_.triProperties; + if (numProp == 0) { + triProperties.resize(0); + pImpl->meshRelation_.properties.resize(0); + } else { + if (triProperties.size() == 0) { + const int numTri = NumTri(); + triProperties.resize(numTri); + for (int i = 0; i < numTri; ++i) { + for (const int j : {0, 1, 2}) { + triProperties[i][j] = pImpl->halfedge_[3 * i + j].startVert; + } + } + pImpl->meshRelation_.properties = Vec(numProp * NumVert(), 0); + } else { + pImpl->meshRelation_.properties = Vec(numProp * NumPropVert(), 0); + } + for_each_n( + propFunc == nullptr ? ExecutionPolicy::Par : ExecutionPolicy::Seq, + countAt(0), NumTri(), + UpdateProperties( + {pImpl->meshRelation_.properties.data(), numProp, + oldProperties.data(), oldNumProp, pImpl->vertPos_.data(), + triProperties.data(), pImpl->halfedge_.data(), + propFunc == nullptr ? [](double* newProp, vec3 position, + const double* oldProp) { *newProp = 0; } + : propFunc})); + } + + pImpl->meshRelation_.numProp = numProp; + return Manifold(std::make_shared(pImpl)); +} + +/** + * Curvature is the inverse of the radius of curvature, and signed such that + * positive is convex and negative is concave. There are two orthogonal + * principal curvatures at any point on a manifold, with one maximum and the + * other minimum. Gaussian curvature is their product, while mean + * curvature is their sum. This approximates them for every vertex and assigns + * them as vertex properties on the given channels. + * + * @param gaussianIdx The property channel index in which to store the Gaussian + * curvature. An index < 0 will be ignored (stores nothing). The property set + * will be automatically expanded to include the channel index specified. + * + * @param meanIdx The property channel index in which to store the mean + * curvature. An index < 0 will be ignored (stores nothing). The property set + * will be automatically expanded to include the channel index specified. + */ +Manifold Manifold::CalculateCurvature(int gaussianIdx, int meanIdx) const { + auto pImpl = std::make_shared(*GetCsgLeafNode().GetImpl()); + pImpl->CalculateCurvature(gaussianIdx, meanIdx); + return Manifold(std::make_shared(pImpl)); +} + +/** + * Fills in vertex properties for normal vectors, calculated from the mesh + * geometry. Flat faces composed of three or more triangles will remain flat. + * + * @param normalIdx The property channel in which to store the X + * values of the normals. The X, Y, and Z channels will be sequential. The + * property set will be automatically expanded such that NumProp will be at + * least normalIdx + 3. + * + * @param minSharpAngle Any edges with angles greater than this value will + * remain sharp, getting different normal vector properties on each side of the + * edge. By default, no edges are sharp and all normals are shared. With a value + * of zero, the model is faceted and all normals match their triangle normals, + * but in this case it would be better not to calculate normals at all. + */ +Manifold Manifold::CalculateNormals(int normalIdx, double minSharpAngle) const { + auto pImpl = std::make_shared(*GetCsgLeafNode().GetImpl()); + pImpl->SetNormals(normalIdx, minSharpAngle); + return Manifold(std::make_shared(pImpl)); +} + +/** + * Smooths out the Manifold by filling in the halfedgeTangent vectors. The + * geometry will remain unchanged until Refine or RefineToLength is called to + * interpolate the surface. This version uses the supplied vertex normal + * properties to define the tangent vectors. Faces of two coplanar triangles + * will be marked as quads, while faces with three or more will be flat. + * + * @param normalIdx The first property channel of the normals. NumProp must be + * at least normalIdx + 3. Any vertex where multiple normals exist and don't + * agree will result in a sharp edge. + */ +Manifold Manifold::SmoothByNormals(int normalIdx) const { + auto pImpl = std::make_shared(*GetCsgLeafNode().GetImpl()); + if (!IsEmpty()) { + pImpl->CreateTangents(normalIdx); + } + return Manifold(std::make_shared(pImpl)); +} + +/** + * Smooths out the Manifold by filling in the halfedgeTangent vectors. The + * geometry will remain unchanged until Refine or RefineToLength is called to + * interpolate the surface. This version uses the geometry of the triangles and + * pseudo-normals to define the tangent vectors. Faces of two coplanar triangles + * will be marked as quads. + * + * @param minSharpAngle degrees, default 60. Any edges with angles greater than + * this value will remain sharp. The rest will be smoothed to G1 continuity, + * with the caveat that flat faces of three or more triangles will always remain + * flat. With a value of zero, the model is faceted, but in this case there is + * no point in smoothing. + * + * @param minSmoothness range: 0 - 1, default 0. The smoothness applied to sharp + * angles. The default gives a hard edge, while values > 0 will give a small + * fillet on these sharp edges. A value of 1 is equivalent to a minSharpAngle of + * 180 - all edges will be smooth. + */ +Manifold Manifold::SmoothOut(double minSharpAngle, double minSmoothness) const { + auto pImpl = std::make_shared(*GetCsgLeafNode().GetImpl()); + if (!IsEmpty()) { + if (minSmoothness == 0) { + const int numProp = pImpl->meshRelation_.numProp; + Vec properties = pImpl->meshRelation_.properties; + Vec triProperties = pImpl->meshRelation_.triProperties; + pImpl->SetNormals(0, minSharpAngle); + pImpl->CreateTangents(0); + pImpl->meshRelation_.numProp = numProp; + pImpl->meshRelation_.properties.swap(properties); + pImpl->meshRelation_.triProperties.swap(triProperties); + } else { + pImpl->CreateTangents(pImpl->SharpenEdges(minSharpAngle, minSmoothness)); + } + } + return Manifold(std::make_shared(pImpl)); +} + +/** + * Increase the density of the mesh by splitting every edge into n pieces. For + * instance, with n = 2, each triangle will be split into 4 triangles. Quads + * will ignore their interior triangle bisector. These will all be coplanar (and + * will not be immediately collapsed) unless the Mesh/Manifold has + * halfedgeTangents specified (e.g. from the Smooth() constructor), in which + * case the new vertices will be moved to the interpolated surface according to + * their barycentric coordinates. + * + * @param n The number of pieces to split every edge into. Must be > 1. + */ +Manifold Manifold::Refine(int n) const { + auto pImpl = std::make_shared(*GetCsgLeafNode().GetImpl()); + if (n > 1) { + pImpl->Refine([n](vec3 edge) { return n - 1; }); + } + return Manifold(std::make_shared(pImpl)); +} + +/** + * Increase the density of the mesh by splitting each edge into pieces of + * roughly the input length. Interior verts are added to keep the rest of the + * triangulation edges also of roughly the same length. If halfedgeTangents are + * present (e.g. from the Smooth() constructor), the new vertices will be moved + * to the interpolated surface according to their barycentric coordinates. Quads + * will ignore their interior triangle bisector. + * + * @param length The length that edges will be broken down to. + */ +Manifold Manifold::RefineToLength(double length) const { + length = std::abs(length); + auto pImpl = std::make_shared(*GetCsgLeafNode().GetImpl()); + pImpl->Refine([length](vec3 edge) { + return static_cast(glm::length(edge) / length); + }); + return Manifold(std::make_shared(pImpl)); +} + +/** + * The central operation of this library: the Boolean combines two manifolds + * into another by calculating their intersections and removing the unused + * portions. + * [ε-valid](https://github.com/elalish/manifold/wiki/Manifold-Library#definition-of-%CE%B5-valid) + * inputs will produce ε-valid output. ε-invalid input may fail + * triangulation. + * + * These operations are optimized to produce nearly-instant results if either + * input is empty or their bounding boxes do not overlap. + * + * @param second The other Manifold. + * @param op The type of operation to perform. + */ +Manifold Manifold::Boolean(const Manifold& second, OpType op) const { + return Manifold(pNode_->Boolean(second.pNode_, op)); +} + +/** + * Perform the given boolean operation on a list of Manifolds. In case of + * Subtract, all Manifolds in the tail are differenced from the head. + */ +Manifold Manifold::BatchBoolean(const std::vector& manifolds, + OpType op) { + if (manifolds.size() == 0) + return Manifold(); + else if (manifolds.size() == 1) + return manifolds[0]; + std::vector> children; + children.reserve(manifolds.size()); + for (const auto& m : manifolds) children.push_back(m.pNode_); + return Manifold(std::make_shared(children, op)); +} + +/** + * Shorthand for Boolean Union. + */ +Manifold Manifold::operator+(const Manifold& Q) const { + return Boolean(Q, OpType::Add); +} + +/** + * Shorthand for Boolean Union assignment. + */ +Manifold& Manifold::operator+=(const Manifold& Q) { + *this = *this + Q; + return *this; +} + +/** + * Shorthand for Boolean Difference. + */ +Manifold Manifold::operator-(const Manifold& Q) const { + return Boolean(Q, OpType::Subtract); +} + +/** + * Shorthand for Boolean Difference assignment. + */ +Manifold& Manifold::operator-=(const Manifold& Q) { + *this = *this - Q; + return *this; +} + +/** + * Shorthand for Boolean Intersection. + */ +Manifold Manifold::operator^(const Manifold& Q) const { + return Boolean(Q, OpType::Intersect); +} + +/** + * Shorthand for Boolean Intersection assignment. + */ +Manifold& Manifold::operator^=(const Manifold& Q) { + *this = *this ^ Q; + return *this; +} + +/** + * Split cuts this manifold in two using the cutter manifold. The first result + * is the intersection, second is the difference. This is more efficient than + * doing them separately. + * + * @param cutter + */ +std::pair Manifold::Split(const Manifold& cutter) const { + auto impl1 = GetCsgLeafNode().GetImpl(); + auto impl2 = cutter.GetCsgLeafNode().GetImpl(); + + Boolean3 boolean(*impl1, *impl2, OpType::Subtract); + auto result1 = std::make_shared( + std::make_unique(boolean.Result(OpType::Intersect))); + auto result2 = std::make_shared( + std::make_unique(boolean.Result(OpType::Subtract))); + return std::make_pair(Manifold(result1), Manifold(result2)); +} + +/** + * Convenient version of Split() for a half-space. + * + * @param normal This vector is normal to the cutting plane and its length does + * not matter. The first result is in the direction of this vector, the second + * result is on the opposite side. + * @param originOffset The distance of the plane from the origin in the + * direction of the normal vector. + */ +std::pair Manifold::SplitByPlane( + vec3 normal, double originOffset) const { + return Split(Halfspace(BoundingBox(), normal, originOffset)); +} + +/** + * Identical to SplitByPlane(), but calculating and returning only the first + * result. + * + * @param normal This vector is normal to the cutting plane and its length does + * not matter. The result is in the direction of this vector from the plane. + * @param originOffset The distance of the plane from the origin in the + * direction of the normal vector. + */ +Manifold Manifold::TrimByPlane(vec3 normal, double originOffset) const { + return *this ^ Halfspace(BoundingBox(), normal, originOffset); +} + +/** + * Returns the cross section of this object parallel to the X-Y plane at the + * specified Z height, defaulting to zero. Using a height equal to the bottom of + * the bounding box will return the bottom faces, while using a height equal to + * the top of the bounding box will return empty. + */ +Polygons Manifold::Slice(double height) const { + return GetCsgLeafNode().GetImpl()->Slice(height); +} + +/** + * Returns polygons representing the projected outline of this object + * onto the X-Y plane. These polygons will often self-intersect, so it is + * recommended to run them through the positive fill rule of CrossSection to get + * a sensible result before using them. + */ +Polygons Manifold::Project() const { + return GetCsgLeafNode().GetImpl()->Project(); +} + +ExecutionParams& ManifoldParams() { return manifoldParams; } + +/** + * Compute the convex hull of a set of points. If the given points are fewer + * than 4, or they are all coplanar, an empty Manifold will be returned. + * + * @param pts A vector of 3-dimensional points over which to compute a convex + * hull. + */ +Manifold Manifold::Hull(const std::vector& pts) { + std::shared_ptr impl = std::make_shared(); + impl->Hull(Vec(pts)); + return Manifold(std::make_shared(impl)); +} + +/** + * Compute the convex hull of this manifold. + */ +Manifold Manifold::Hull() const { + std::shared_ptr impl = std::make_shared(); + impl->Hull(GetCsgLeafNode().GetImpl()->vertPos_); + return Manifold(std::make_shared(impl)); +} + +/** + * Compute the convex hull enveloping a set of manifolds. + * + * @param manifolds A vector of manifolds over which to compute a convex hull. + */ +Manifold Manifold::Hull(const std::vector& manifolds) { + return Compose(manifolds).Hull(); +} + +/** + * Returns the minimum gap between two manifolds. Returns a double between + * 0 and searchLength. + * + * @param other The other manifold to compute the minimum gap to. + * @param searchLength The maximum distance to search for a minimum gap. + */ +double Manifold::MinGap(const Manifold& other, double searchLength) const { + auto intersect = *this ^ other; + auto prop = intersect.GetProperties(); + + if (prop.volume != 0) return 0.0; + + return GetCsgLeafNode().GetImpl()->MinGap(*other.GetCsgLeafNode().GetImpl(), + searchLength); +} +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/mesh_fixes.h b/thirdparty/manifold/src/manifold/src/mesh_fixes.h new file mode 100644 index 000000000000..cc2a103e6b98 --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/mesh_fixes.h @@ -0,0 +1,51 @@ +#include "impl.h" + +namespace { +using namespace manifold; + +inline int FlipHalfedge(int halfedge) { + const int tri = halfedge / 3; + const int vert = 2 - (halfedge - 3 * tri); + return 3 * tri + vert; +} + +struct TransformNormals { + mat3 transform; + + vec3 operator()(vec3 normal) const { + normal = glm::normalize(transform * normal); + if (isnan(normal.x)) normal = vec3(0.0); + return normal; + } +}; + +struct TransformTangents { + VecView tangent; + const int edgeOffset; + const mat3 transform; + const bool invert; + VecView oldTangents; + VecView halfedge; + + void operator()(const int edgeOut) { + const int edgeIn = + invert ? halfedge[FlipHalfedge(edgeOut)].pairedHalfedge : edgeOut; + tangent[edgeOut + edgeOffset] = + vec4(transform * vec3(oldTangents[edgeIn]), oldTangents[edgeIn].w); + } +}; + +struct FlipTris { + VecView halfedge; + + void operator()(const int tri) { + std::swap(halfedge[3 * tri], halfedge[3 * tri + 2]); + + for (const int i : {0, 1, 2}) { + std::swap(halfedge[3 * tri + i].startVert, halfedge[3 * tri + i].endVert); + halfedge[3 * tri + i].pairedHalfedge = + FlipHalfedge(halfedge[3 * tri + i].pairedHalfedge); + } + } +}; +} // namespace diff --git a/thirdparty/manifold/src/manifold/src/properties.cpp b/thirdparty/manifold/src/manifold/src/properties.cpp new file mode 100644 index 000000000000..4eb31b6c91f2 --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/properties.cpp @@ -0,0 +1,401 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include + +#include "impl.h" +#include "manifold/parallel.h" +#include "manifold/tri_dist.h" + +namespace { +using namespace manifold; + +struct FaceAreaVolume { + VecView halfedges; + VecView vertPos; + const double precision; + + std::pair operator()(int face) { + double perimeter = 0; + vec3 edge[3]; + for (int i : {0, 1, 2}) { + const int j = (i + 1) % 3; + edge[i] = vertPos[halfedges[3 * face + j].startVert] - + vertPos[halfedges[3 * face + i].startVert]; + perimeter += glm::length(edge[i]); + } + vec3 crossP = glm::cross(edge[0], edge[1]); + + double area = glm::length(crossP); + double volume = glm::dot(crossP, vertPos[halfedges[3 * face].startVert]); + + return std::make_pair(area / 2.0, volume / 6.0); + } +}; + +struct CurvatureAngles { + VecView meanCurvature; + VecView gaussianCurvature; + VecView area; + VecView degree; + VecView halfedge; + VecView vertPos; + VecView triNormal; + + void operator()(size_t tri) { + vec3 edge[3]; + vec3 edgeLength(0.0); + for (int i : {0, 1, 2}) { + const int startVert = halfedge[3 * tri + i].startVert; + const int endVert = halfedge[3 * tri + i].endVert; + edge[i] = vertPos[endVert] - vertPos[startVert]; + edgeLength[i] = glm::length(edge[i]); + edge[i] /= edgeLength[i]; + const int neighborTri = halfedge[3 * tri + i].pairedHalfedge / 3; + const double dihedral = + 0.25 * edgeLength[i] * + std::asin(glm::dot(glm::cross(triNormal[tri], triNormal[neighborTri]), + edge[i])); + AtomicAdd(meanCurvature[startVert], dihedral); + AtomicAdd(meanCurvature[endVert], dihedral); + AtomicAdd(degree[startVert], 1.0); + } + + vec3 phi; + phi[0] = std::acos(-glm::dot(edge[2], edge[0])); + phi[1] = std::acos(-glm::dot(edge[0], edge[1])); + phi[2] = glm::pi() - phi[0] - phi[1]; + const double area3 = edgeLength[0] * edgeLength[1] * + glm::length(glm::cross(edge[0], edge[1])) / 6; + + for (int i : {0, 1, 2}) { + const int vert = halfedge[3 * tri + i].startVert; + AtomicAdd(gaussianCurvature[vert], -phi[i]); + AtomicAdd(area[vert], area3); + } + } +}; + +struct UpdateProperties { + VecView triProp; + VecView properties; + + VecView oldProperties; + VecView halfedge; + VecView meanCurvature; + VecView gaussianCurvature; + const int oldNumProp; + const int numProp; + const int gaussianIdx; + const int meanIdx; + + // FIXME: race condition + void operator()(const size_t tri) { + for (const int i : {0, 1, 2}) { + const int vert = halfedge[3 * tri + i].startVert; + if (oldNumProp == 0) { + triProp[tri][i] = vert; + } + const int propVert = triProp[tri][i]; + + for (int p = 0; p < oldNumProp; ++p) { + properties[numProp * propVert + p] = + oldProperties[oldNumProp * propVert + p]; + } + + if (gaussianIdx >= 0) { + properties[numProp * propVert + gaussianIdx] = gaussianCurvature[vert]; + } + if (meanIdx >= 0) { + properties[numProp * propVert + meanIdx] = meanCurvature[vert]; + } + } + } +}; + +struct CheckHalfedges { + VecView halfedges; + VecView vertPos; + + bool operator()(size_t edge) const { + const Halfedge halfedge = halfedges[edge]; + if (halfedge.startVert == -1 || halfedge.endVert == -1) return true; + if (halfedge.pairedHalfedge == -1) return false; + + if (!isfinite(vertPos[halfedge.startVert][0])) return false; + if (!isfinite(vertPos[halfedge.endVert][0])) return false; + + const Halfedge paired = halfedges[halfedge.pairedHalfedge]; + bool good = true; + good &= paired.pairedHalfedge == static_cast(edge); + good &= halfedge.startVert != halfedge.endVert; + good &= halfedge.startVert == paired.endVert; + good &= halfedge.endVert == paired.startVert; + return good; + } +}; + +struct CheckCCW { + VecView halfedges; + VecView vertPos; + VecView triNormal; + const double tol; + + bool operator()(size_t face) const { + if (halfedges[3 * face].pairedHalfedge < 0) return true; + + const mat3x2 projection = GetAxisAlignedProjection(triNormal[face]); + vec2 v[3]; + for (int i : {0, 1, 2}) + v[i] = projection * vertPos[halfedges[3 * face + i].startVert]; + + int ccw = CCW(v[0], v[1], v[2], std::abs(tol)); + bool check = tol > 0 ? ccw >= 0 : ccw == 0; + +#ifdef MANIFOLD_DEBUG + if (tol > 0 && !check) { + vec2 v1 = v[1] - v[0]; + vec2 v2 = v[2] - v[0]; + double area = v1.x * v2.y - v1.y * v2.x; + double base2 = std::max(glm::dot(v1, v1), glm::dot(v2, v2)); + double base = std::sqrt(base2); + vec3 V0 = vertPos[halfedges[3 * face].startVert]; + vec3 V1 = vertPos[halfedges[3 * face + 1].startVert]; + vec3 V2 = vertPos[halfedges[3 * face + 2].startVert]; + vec3 norm = glm::cross(V1 - V0, V2 - V0); + printf( + "Tri %ld does not match normal, approx height = %g, base = %g\n" + "tol = %g, area2 = %g, base2*tol2 = %g\n" + "normal = %g, %g, %g\n" + "norm = %g, %g, %g\nverts: %d, %d, %d\n", + face, area / base, base, tol, area * area, base2 * tol * tol, + triNormal[face].x, triNormal[face].y, triNormal[face].z, norm.x, + norm.y, norm.z, halfedges[3 * face].startVert, + halfedges[3 * face + 1].startVert, halfedges[3 * face + 2].startVert); + } +#endif + return check; + } +}; +} // namespace + +namespace manifold { + +/** + * Returns true if this manifold is in fact an oriented even manifold and all of + * the data structures are consistent. + */ +bool Manifold::Impl::IsManifold() const { + if (halfedge_.size() == 0) return true; + return all_of(countAt(0_uz), countAt(halfedge_.size()), + CheckHalfedges({halfedge_, vertPos_})); +} + +/** + * Returns true if this manifold is in fact an oriented 2-manifold and all of + * the data structures are consistent. + */ +bool Manifold::Impl::Is2Manifold() const { + if (halfedge_.size() == 0) return true; + if (!IsManifold()) return false; + + Vec halfedge(halfedge_); + stable_sort(halfedge.begin(), halfedge.end()); + + return all_of( + countAt(0_uz), countAt(2 * NumEdge() - 1), [halfedge](size_t edge) { + const Halfedge h = halfedge[edge]; + if (h.startVert == -1 && h.endVert == -1 && h.pairedHalfedge == -1) + return true; + return h.startVert != halfedge[edge + 1].startVert || + h.endVert != halfedge[edge + 1].endVert; + }); +} + +/** + * Returns true if all triangles are CCW relative to their triNormals_. + */ +bool Manifold::Impl::MatchesTriNormals() const { + if (halfedge_.size() == 0 || faceNormal_.size() != NumTri()) return true; + return all_of(countAt(0_uz), countAt(NumTri()), + CheckCCW({halfedge_, vertPos_, faceNormal_, 2 * precision_})); +} + +/** + * Returns the number of triangles that are colinear within precision_. + */ +int Manifold::Impl::NumDegenerateTris() const { + if (halfedge_.size() == 0 || faceNormal_.size() != NumTri()) return true; + return count_if( + countAt(0_uz), countAt(NumTri()), + CheckCCW({halfedge_, vertPos_, faceNormal_, -1 * precision_ / 2})); +} + +Properties Manifold::Impl::GetProperties() const { + ZoneScoped; + if (IsEmpty()) return {0, 0}; + // Kahan summation + double area = 0; + double volume = 0; + double areaCompensation = 0; + double volumeCompensation = 0; + for (size_t i = 0; i < NumTri(); ++i) { + auto [area1, volume1] = + FaceAreaVolume({halfedge_, vertPos_, precision_})(i); + const double t1 = area + area1; + const double t2 = volume + volume1; + areaCompensation += (area - t1) + area1; + volumeCompensation += (volume - t2) + volume1; + area = t1; + volume = t2; + } + area += areaCompensation; + volume += volumeCompensation; + + return {area, volume}; +} + +void Manifold::Impl::CalculateCurvature(int gaussianIdx, int meanIdx) { + ZoneScoped; + if (IsEmpty()) return; + if (gaussianIdx < 0 && meanIdx < 0) return; + Vec vertMeanCurvature(NumVert(), 0); + Vec vertGaussianCurvature(NumVert(), glm::two_pi()); + Vec vertArea(NumVert(), 0); + Vec degree(NumVert(), 0); + auto policy = autoPolicy(NumTri(), 1e4); + for_each(policy, countAt(0_uz), countAt(NumTri()), + CurvatureAngles({vertMeanCurvature, vertGaussianCurvature, vertArea, + degree, halfedge_, vertPos_, faceNormal_})); + for_each_n(policy, countAt(0), NumVert(), + [&vertMeanCurvature, &vertGaussianCurvature, &vertArea, + °ree](const int vert) { + const double factor = degree[vert] / (6 * vertArea[vert]); + vertMeanCurvature[vert] *= factor; + vertGaussianCurvature[vert] *= factor; + }); + + const int oldNumProp = NumProp(); + const int numProp = std::max(oldNumProp, std::max(gaussianIdx, meanIdx) + 1); + const Vec oldProperties = meshRelation_.properties; + meshRelation_.properties = Vec(numProp * NumPropVert(), 0); + meshRelation_.numProp = numProp; + if (meshRelation_.triProperties.size() == 0) { + meshRelation_.triProperties.resize(NumTri()); + } + + for_each_n( + policy, countAt(0_uz), NumTri(), + UpdateProperties({meshRelation_.triProperties, meshRelation_.properties, + oldProperties, halfedge_, vertMeanCurvature, + vertGaussianCurvature, oldNumProp, numProp, gaussianIdx, + meanIdx})); +} + +/** + * Calculates the bounding box of the entire manifold, which is stored + * internally to short-cut Boolean operations and to serve as the precision + * range for Morton code calculation. Ignores NaNs. + */ +void Manifold::Impl::CalculateBBox() { + bBox_.min = + reduce(vertPos_.begin(), vertPos_.end(), + vec3(std::numeric_limits::infinity()), [](auto a, auto b) { + if (isnan(a.x)) return b; + if (isnan(b.x)) return a; + return glm::min(a, b); + }); + bBox_.max = reduce(vertPos_.begin(), vertPos_.end(), + vec3(-std::numeric_limits::infinity()), + [](auto a, auto b) { + if (isnan(a.x)) return b; + if (isnan(b.x)) return a; + return glm::max(a, b); + }); +} + +/** + * Determines if all verts are finite. Checking just the bounding box dimensions + * is insufficient as it ignores NaNs. + */ +bool Manifold::Impl::IsFinite() const { + return transform_reduce( + vertPos_.begin(), vertPos_.end(), true, + [](bool a, bool b) { return a && b; }, + [](auto v) { return glm::all(glm::isfinite(v)); }); +} + +/** + * Checks that the input triVerts array has all indices inside bounds of the + * vertPos_ array. + */ +bool Manifold::Impl::IsIndexInBounds(VecView triVerts) const { + ivec2 minmax = transform_reduce( + triVerts.begin(), triVerts.end(), + ivec2(std::numeric_limits::max(), std::numeric_limits::min()), + [](auto a, auto b) { + a[0] = std::min(a[0], b[0]); + a[1] = std::max(a[1], b[1]); + return a; + }, + [](auto tri) { + return ivec2(std::min(tri[0], std::min(tri[1], tri[2])), + std::max(tri[0], std::max(tri[1], tri[2]))); + }); + + return minmax[0] >= 0 && minmax[1] < static_cast(NumVert()); +} + +/* + * Returns the minimum gap between two manifolds. Returns a double between + * 0 and searchLength. + */ +double Manifold::Impl::MinGap(const Manifold::Impl& other, + double searchLength) const { + ZoneScoped; + Vec faceBoxOther; + Vec faceMortonOther; + + other.GetFaceBoxMorton(faceBoxOther, faceMortonOther); + + transform(faceBoxOther.begin(), faceBoxOther.end(), faceBoxOther.begin(), + [searchLength](const Box& box) { + return Box(box.min - vec3(searchLength), + box.max + vec3(searchLength)); + }); + + SparseIndices collisions = collider_.Collisions(faceBoxOther.cview()); + + double minDistanceSquared = transform_reduce( + countAt(0_uz), countAt(collisions.size()), searchLength * searchLength, + [](double a, double b) { return std::min(a, b); }, + [&collisions, this, &other](int i) { + const int tri = collisions.Get(i, 1); + const int triOther = collisions.Get(i, 0); + + std::array p; + std::array q; + + for (const int j : {0, 1, 2}) { + p[j] = vertPos_[halfedge_[3 * tri + j].startVert]; + q[j] = other.vertPos_[other.halfedge_[3 * triOther + j].startVert]; + } + + return DistanceTriangleTriangleSquared(p, q); + }); + + return sqrt(minDistanceSquared); +}; + +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/quickhull.cpp b/thirdparty/manifold/src/manifold/src/quickhull.cpp new file mode 100644 index 000000000000..2cec252dda2e --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/quickhull.cpp @@ -0,0 +1,856 @@ +// Copyright 2024 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// Derived from the public domain work of Antti Kuukka at +// https://github.com/akuukka/quickhull + +#include "quickhull.h" + +#include +#include + +#include "impl.h" + +namespace manifold { + +double defaultEps() { return 0.0000001; } + +inline double getSquaredDistanceBetweenPointAndRay(const vec3& p, + const Ray& r) { + const vec3 s = p - r.S; + double t = glm::dot(s, r.V); + return glm::dot(s, s) - t * t * r.VInvLengthSquared; +} + +inline double getSquaredDistance(const vec3& p1, const vec3& p2) { + return glm::dot(p1 - p2, p1 - p2); +} +// Note that the unit of distance returned is relative to plane's normal's +// length (divide by N.getNormalized() if needed to get the "real" distance). +inline double getSignedDistanceToPlane(const vec3& v, const Plane& p) { + return glm::dot(p.N, v) + p.D; +} + +inline vec3 getTriangleNormal(const vec3& a, const vec3& b, const vec3& c) { + // We want to get (a-c).crossProduct(b-c) without constructing temp vectors + double x = a.x - c.x; + double y = a.y - c.y; + double z = a.z - c.z; + double rhsx = b.x - c.x; + double rhsy = b.y - c.y; + double rhsz = b.z - c.z; + double px = y * rhsz - z * rhsy; + double py = z * rhsx - x * rhsz; + double pz = x * rhsy - y * rhsx; + return glm::normalize(vec3(px, py, pz)); +} + +size_t MeshBuilder::addFace() { + if (disabledFaces.size()) { + size_t index = disabledFaces.back(); + auto& f = faces[index]; + ASSERT(f.isDisabled(), logicErr("f should be disabled")); + ASSERT(!f.pointsOnPositiveSide, + logicErr("f should not be on the positive side")); + f.mostDistantPointDist = 0; + disabledFaces.pop_back(); + return index; + } + faces.emplace_back(); + return faces.size() - 1; +} + +size_t MeshBuilder::addHalfedge() { + if (disabledHalfedges.size()) { + const size_t index = disabledHalfedges.back(); + disabledHalfedges.pop_back(); + return index; + } + halfedges.push_back({}); + halfedgeToFace.push_back(0); + halfedgeNext.push_back(0); + return halfedges.size() - 1; +} + +void MeshBuilder::setup(int a, int b, int c, int d) { + faces.clear(); + halfedges.clear(); + halfedgeToFace.clear(); + halfedgeNext.clear(); + disabledFaces.clear(); + disabledHalfedges.clear(); + + faces.reserve(4); + halfedges.reserve(12); + + // Create halfedges + // AB + halfedges.push_back({0, b, 6}); + halfedgeToFace.push_back(0); + halfedgeNext.push_back(1); + // BC + halfedges.push_back({0, c, 9}); + halfedgeToFace.push_back(0); + halfedgeNext.push_back(2); + // CA + halfedges.push_back({0, a, 3}); + halfedgeToFace.push_back(0); + halfedgeNext.push_back(0); + // AC + halfedges.push_back({0, c, 2}); + halfedgeToFace.push_back(1); + halfedgeNext.push_back(4); + // CD + halfedges.push_back({0, d, 11}); + halfedgeToFace.push_back(1); + halfedgeNext.push_back(5); + // DA + halfedges.push_back({0, a, 7}); + halfedgeToFace.push_back(1); + halfedgeNext.push_back(3); + // BA + halfedges.push_back({0, a, 0}); + halfedgeToFace.push_back(2); + halfedgeNext.push_back(7); + // AD + halfedges.push_back({0, d, 5}); + halfedgeToFace.push_back(2); + halfedgeNext.push_back(8); + // DB + halfedges.push_back({0, b, 10}); + halfedgeToFace.push_back(2); + halfedgeNext.push_back(6); + // CB + halfedges.push_back({0, b, 1}); + halfedgeToFace.push_back(3); + halfedgeNext.push_back(10); + // BD + halfedges.push_back({0, d, 8}); + halfedgeToFace.push_back(3); + halfedgeNext.push_back(11); + // DC + halfedges.push_back({0, c, 4}); + halfedgeToFace.push_back(3); + halfedgeNext.push_back(9); + + // Create faces + faces.emplace_back(0); + faces.emplace_back(3); + faces.emplace_back(6); + faces.emplace_back(9); +} + +std::array MeshBuilder::getVertexIndicesOfFace(const Face& f) const { + std::array v; + size_t index = f.he; + auto* he = &halfedges[index]; + v[0] = he->endVert; + + index = halfedgeNext[index]; + he = &halfedges[index]; + v[1] = he->endVert; + + index = halfedgeNext[index]; + he = &halfedges[index]; + v[2] = he->endVert; + return v; +} + +HalfEdgeMesh::HalfEdgeMesh(const MeshBuilder& builderObject, + const VecView& vertexData) { + std::unordered_map faceMapping; + std::unordered_map halfEdgeMapping; + std::unordered_map vertexMapping; + + size_t i = 0; + for (const auto& face : builderObject.faces) { + if (!face.isDisabled()) { + halfEdgeIndexFaces.emplace_back(static_cast(face.he)); + faceMapping[i] = halfEdgeIndexFaces.size() - 1; + + const auto heIndices = builderObject.getHalfEdgeIndicesOfFace(face); + for (const auto heIndex : heIndices) { + const auto vertexIndex = builderObject.halfedges[heIndex].endVert; + if (vertexMapping.count(vertexIndex) == 0) { + vertices.push_back(vertexData[vertexIndex]); + vertexMapping[vertexIndex] = vertices.size() - 1; + } + } + } + i++; + } + + i = 0; + for (const auto& halfEdge : builderObject.halfedges) { + if (halfEdge.pairedHalfedge != -1) { + halfedges.push_back({halfEdge.endVert, halfEdge.pairedHalfedge, + builderObject.halfedgeToFace[i]}); + halfedgeToFace.push_back(builderObject.halfedgeToFace[i]); + halfedgeNext.push_back(builderObject.halfedgeNext[i]); + halfEdgeMapping[i] = halfedges.size() - 1; + } + i++; + } + + for (auto& halfEdgeIndexFace : halfEdgeIndexFaces) { + ASSERT(halfEdgeMapping.count(halfEdgeIndexFace) == 1, + logicErr("invalid halfedge mapping")); + halfEdgeIndexFace = halfEdgeMapping[halfEdgeIndexFace]; + } + + for (size_t i = 0; i < halfedges.size(); i++) { + auto& he = halfedges[i]; + halfedgeToFace[i] = faceMapping[halfedgeToFace[i]]; + he.pairedHalfedge = halfEdgeMapping[he.pairedHalfedge]; + halfedgeNext[i] = halfEdgeMapping[halfedgeNext[i]]; + he.endVert = vertexMapping[he.endVert]; + } +} + +/* + * Implementation of the algorithm + */ +std::pair, Vec> QuickHull::buildMesh(double epsilon) { + if (originalVertexData.size() == 0) { + return {Vec(), Vec()}; + } + + // Very first: find extreme values and use them to compute the scale of the + // point cloud. + extremeValues = getExtremeValues(); + scale = getScale(extremeValues); + + // Epsilon we use depends on the scale + m_epsilon = epsilon * scale; + epsilonSquared = m_epsilon * m_epsilon; + + // The planar case happens when all the points appear to lie on a two + // dimensional subspace of R^3. + planar = false; + createConvexHalfedgeMesh(); + if (planar) { + const int extraPointIndex = planarPointCloudTemp.size() - 1; + for (auto& he : mesh.halfedges) { + if (he.endVert == extraPointIndex) { + he.endVert = 0; + } + } + planarPointCloudTemp.clear(); + } + + // reorder halfedges + Vec halfedges(mesh.halfedges.size()); + Vec halfedgeToFace(mesh.halfedges.size()); + Vec counts(mesh.halfedges.size(), 0); + Vec mapping(mesh.halfedges.size()); + Vec faceMap(mesh.faces.size()); + + // Some faces are disabled and should not go into the halfedge vector, we can + // update the face indices of the halfedges at the end using index/3 + int j = 0; + for_each( + autoPolicy(mesh.halfedges.size()), countAt(0_uz), + countAt(mesh.halfedges.size()), [&](size_t i) { + if (mesh.halfedges[i].pairedHalfedge < 0) return; + if (mesh.faces[mesh.halfedgeToFace[i]].isDisabled()) return; + if (AtomicAdd(counts[mesh.halfedgeToFace[i]], 1) > 0) return; + int currIndex = AtomicAdd(j, 3); + mapping[i] = currIndex; + halfedges[currIndex + 0] = mesh.halfedges[i]; + halfedgeToFace[currIndex + 0] = mesh.halfedgeToFace[i]; + + size_t k = mesh.halfedgeNext[i]; + mapping[k] = currIndex + 1; + halfedges[currIndex + 1] = mesh.halfedges[k]; + halfedgeToFace[currIndex + 1] = mesh.halfedgeToFace[k]; + + k = mesh.halfedgeNext[k]; + mapping[k] = currIndex + 2; + halfedges[currIndex + 2] = mesh.halfedges[k]; + halfedgeToFace[currIndex + 2] = mesh.halfedgeToFace[k]; + halfedges[currIndex + 0].startVert = halfedges[currIndex + 2].endVert; + halfedges[currIndex + 1].startVert = halfedges[currIndex + 0].endVert; + halfedges[currIndex + 2].startVert = halfedges[currIndex + 1].endVert; + }); + halfedges.resize(j); + halfedgeToFace.resize(j); + // fix pairedHalfedge id + for_each( + autoPolicy(halfedges.size()), halfedges.begin(), halfedges.end(), + [&](Halfedge& he) { he.pairedHalfedge = mapping[he.pairedHalfedge]; }); + counts.resize(originalVertexData.size() + 1); + fill(counts.begin(), counts.end(), 0); + + // remove unused vertices + for_each(autoPolicy(halfedges.size() / 3), countAt(0_uz), + countAt(halfedges.size() / 3), [&](size_t i) { + AtomicAdd(counts[halfedges[3 * i].startVert], 1); + AtomicAdd(counts[halfedges[3 * i + 1].startVert], 1); + AtomicAdd(counts[halfedges[3 * i + 2].startVert], 1); + }); + auto saturate = [](int c) { return c > 0 ? 1 : 0; }; + exclusive_scan(TransformIterator(counts.begin(), saturate), + TransformIterator(counts.end(), saturate), counts.begin(), 0); + Vec vertices(counts.back()); + for_each(autoPolicy(originalVertexData.size()), countAt(0_uz), + countAt(originalVertexData.size()), [&](size_t i) { + if (counts[i + 1] - counts[i] > 0) { + vertices[counts[i]] = originalVertexData[i]; + } + }); + for_each(autoPolicy(halfedges.size()), halfedges.begin(), halfedges.end(), + [&](Halfedge& he) { + he.startVert = counts[he.startVert]; + he.endVert = counts[he.endVert]; + }); + return {std::move(halfedges), std::move(vertices)}; +} + +void QuickHull::createConvexHalfedgeMesh() { + visibleFaces.clear(); + horizonEdgesData.clear(); + possiblyVisibleFaces.clear(); + + // Compute base tetrahedron + setupInitialTetrahedron(); + ASSERT(mesh.faces.size() == 4, logicErr("not a tetrahedron")); + + // Init face stack with those faces that have points assigned to them + faceList.clear(); + for (size_t i = 0; i < 4; i++) { + auto& f = mesh.faces[i]; + if (f.pointsOnPositiveSide && f.pointsOnPositiveSide->size() > 0) { + faceList.push_back(i); + f.inFaceStack = 1; + } + } + + // Process faces until the face list is empty. + size_t iter = 0; + while (!faceList.empty()) { + iter++; + if (iter == std::numeric_limits::max()) { + // Visible face traversal marks visited faces with iteration counter (to + // mark that the face has been visited on this iteration) and the max + // value represents unvisited faces. At this point we have to reset + // iteration counter. This shouldn't be an issue on 64 bit machines. + iter = 0; + } + + const auto topFaceIndex = faceList.front(); + faceList.pop_front(); + + auto& tf = mesh.faces[topFaceIndex]; + tf.inFaceStack = 0; + + ASSERT(!tf.pointsOnPositiveSide || tf.pointsOnPositiveSide->size() > 0, + logicErr("there should be points on the positive side")); + if (!tf.pointsOnPositiveSide || tf.isDisabled()) { + continue; + } + + // Pick the most distant point to this triangle plane as the point to which + // we extrude + const vec3& activePoint = originalVertexData[tf.mostDistantPoint]; + const size_t activePointIndex = tf.mostDistantPoint; + + // Find out the faces that have our active point on their positive side + // (these are the "visible faces"). The face on top of the stack of course + // is one of them. At the same time, we create a list of horizon edges. + horizonEdgesData.clear(); + possiblyVisibleFaces.clear(); + visibleFaces.clear(); + possiblyVisibleFaces.push_back({topFaceIndex, -1}); + while (possiblyVisibleFaces.size()) { + const auto faceData = possiblyVisibleFaces.back(); + possiblyVisibleFaces.pop_back(); + auto& pvf = mesh.faces[faceData.faceIndex]; + ASSERT(!pvf.isDisabled(), logicErr("pvf should not be disabled")); + + if (pvf.visibilityCheckedOnIteration == iter) { + if (pvf.isVisibleFaceOnCurrentIteration) { + continue; + } + } else { + const Plane& P = pvf.P; + pvf.visibilityCheckedOnIteration = iter; + const double d = glm::dot(P.N, activePoint) + P.D; + if (d > 0) { + pvf.isVisibleFaceOnCurrentIteration = 1; + pvf.horizonEdgesOnCurrentIteration = 0; + visibleFaces.push_back(faceData.faceIndex); + for (auto heIndex : mesh.getHalfEdgeIndicesOfFace(pvf)) { + if (mesh.halfedges[heIndex].pairedHalfedge != + faceData.enteredFromHalfedge) { + possiblyVisibleFaces.push_back( + {mesh.halfedgeToFace[mesh.halfedges[heIndex].pairedHalfedge], + heIndex}); + } + } + continue; + } + ASSERT(faceData.faceIndex != topFaceIndex, + logicErr("face index invalid")); + } + + // The face is not visible. Therefore, the halfedge we came from is part + // of the horizon edge. + pvf.isVisibleFaceOnCurrentIteration = 0; + horizonEdgesData.push_back(faceData.enteredFromHalfedge); + // Store which half edge is the horizon edge. The other half edges of the + // face will not be part of the final mesh so their data slots can by + // recycled. + const auto halfEdgesMesh = mesh.getHalfEdgeIndicesOfFace( + mesh.faces[mesh.halfedgeToFace[faceData.enteredFromHalfedge]]); + const std::int8_t ind = + (halfEdgesMesh[0] == faceData.enteredFromHalfedge) + ? 0 + : (halfEdgesMesh[1] == faceData.enteredFromHalfedge ? 1 : 2); + mesh.faces[mesh.halfedgeToFace[faceData.enteredFromHalfedge]] + .horizonEdgesOnCurrentIteration |= (1 << ind); + } + const size_t horizonEdgeCount = horizonEdgesData.size(); + + // Order horizon edges so that they form a loop. This may fail due to + // numerical instability in which case we give up trying to solve horizon + // edge for this point and accept a minor degeneration in the convex hull. + if (!reorderHorizonEdges(horizonEdgesData)) { + failedHorizonEdges++; + int change_flag = 0; + for (size_t index = 0; index < tf.pointsOnPositiveSide->size(); index++) { + if ((*tf.pointsOnPositiveSide)[index] == activePointIndex) { + change_flag = 1; + } else if (change_flag == 1) { + change_flag = 2; + (*tf.pointsOnPositiveSide)[index - 1] = + (*tf.pointsOnPositiveSide)[index]; + } + } + if (change_flag == 1) + tf.pointsOnPositiveSide->resize(tf.pointsOnPositiveSide->size() - 1); + + if (tf.pointsOnPositiveSide->size() == 0) { + reclaimToIndexVectorPool(tf.pointsOnPositiveSide); + } + continue; + } + + // Except for the horizon edges, all half edges of the visible faces can be + // marked as disabled. Their data slots will be reused. The faces will be + // disabled as well, but we need to remember the points that were on the + // positive side of them - therefore we save pointers to them. + newFaceIndices.clear(); + newHalfedgeIndices.clear(); + disabledFacePointVectors.clear(); + size_t disableCounter = 0; + for (auto faceIndex : visibleFaces) { + auto& disabledFace = mesh.faces[faceIndex]; + auto halfEdgesMesh = mesh.getHalfEdgeIndicesOfFace(disabledFace); + for (size_t j = 0; j < 3; j++) { + if ((disabledFace.horizonEdgesOnCurrentIteration & (1 << j)) == 0) { + if (disableCounter < horizonEdgeCount * 2) { + // Use on this iteration + newHalfedgeIndices.push_back(halfEdgesMesh[j]); + disableCounter++; + } else { + // Mark for reusal on later iteration step + mesh.disableHalfedge(halfEdgesMesh[j]); + } + } + } + // Disable the face, but retain pointer to the points that were on the + // positive side of it. We need to assign those points to the new faces we + // create shortly. + auto t = mesh.disableFace(faceIndex); + if (t) { + // Because we should not assign point vectors to faces unless needed... + ASSERT(t->size(), logicErr("t should not be empty")); + disabledFacePointVectors.push_back(std::move(t)); + } + } + if (disableCounter < horizonEdgeCount * 2) { + const size_t newHalfEdgesNeeded = horizonEdgeCount * 2 - disableCounter; + for (size_t i = 0; i < newHalfEdgesNeeded; i++) { + newHalfedgeIndices.push_back(mesh.addHalfedge()); + } + } + + // Create new faces using the edgeloop + for (size_t i = 0; i < horizonEdgeCount; i++) { + const size_t AB = horizonEdgesData[i]; + + auto horizonEdgeVertexIndices = + mesh.getVertexIndicesOfHalfEdge(mesh.halfedges[AB]); + size_t A, B, C; + A = horizonEdgeVertexIndices[0]; + B = horizonEdgeVertexIndices[1]; + C = activePointIndex; + + const size_t newFaceIndex = mesh.addFace(); + newFaceIndices.push_back(newFaceIndex); + + const size_t CA = newHalfedgeIndices[2 * i + 0]; + const size_t BC = newHalfedgeIndices[2 * i + 1]; + + mesh.halfedgeNext[AB] = BC; + mesh.halfedgeNext[BC] = CA; + mesh.halfedgeNext[CA] = AB; + + mesh.halfedgeToFace[BC] = newFaceIndex; + mesh.halfedgeToFace[CA] = newFaceIndex; + mesh.halfedgeToFace[AB] = newFaceIndex; + + mesh.halfedges[CA].endVert = A; + mesh.halfedges[BC].endVert = C; + + auto& newFace = mesh.faces[newFaceIndex]; + + const vec3 planeNormal = getTriangleNormal( + originalVertexData[A], originalVertexData[B], activePoint); + newFace.P = Plane(planeNormal, activePoint); + newFace.he = AB; + + mesh.halfedges[CA].pairedHalfedge = + newHalfedgeIndices[i > 0 ? i * 2 - 1 : 2 * horizonEdgeCount - 1]; + mesh.halfedges[BC].pairedHalfedge = + newHalfedgeIndices[((i + 1) * 2) % (horizonEdgeCount * 2)]; + } + + // Assign points that were on the positive side of the disabled faces to the + // new faces. + for (auto& disabledPoints : disabledFacePointVectors) { + ASSERT(disabledPoints, logicErr("disabledPoints should not be null")); + for (const auto& point : *(disabledPoints)) { + if (point == activePointIndex) { + continue; + } + for (size_t j = 0; j < horizonEdgeCount; j++) { + if (addPointToFace(mesh.faces[newFaceIndices[j]], point)) { + break; + } + } + } + // The points are no longer needed: we can move them to the vector pool + // for reuse. + reclaimToIndexVectorPool(disabledPoints); + } + + // Increase face stack size if needed + for (const auto newFaceIndex : newFaceIndices) { + auto& newFace = mesh.faces[newFaceIndex]; + if (newFace.pointsOnPositiveSide) { + ASSERT(newFace.pointsOnPositiveSide->size() > 0, + logicErr("there should be points on the positive side")); + if (!newFace.inFaceStack) { + faceList.push_back(newFaceIndex); + newFace.inFaceStack = 1; + } + } + } + } + + // Cleanup + indexVectorPool.clear(); +} + +/* + * Private helper functions + */ + +std::array QuickHull::getExtremeValues() { + std::array outIndices{0, 0, 0, 0, 0, 0}; + double extremeVals[6] = {originalVertexData[0].x, originalVertexData[0].x, + originalVertexData[0].y, originalVertexData[0].y, + originalVertexData[0].z, originalVertexData[0].z}; + const size_t vCount = originalVertexData.size(); + for (size_t i = 1; i < vCount; i++) { + const vec3& pos = originalVertexData[i]; + if (pos.x > extremeVals[0]) { + extremeVals[0] = pos.x; + outIndices[0] = i; + } else if (pos.x < extremeVals[1]) { + extremeVals[1] = pos.x; + outIndices[1] = i; + } + if (pos.y > extremeVals[2]) { + extremeVals[2] = pos.y; + outIndices[2] = i; + } else if (pos.y < extremeVals[3]) { + extremeVals[3] = pos.y; + outIndices[3] = i; + } + if (pos.z > extremeVals[4]) { + extremeVals[4] = pos.z; + outIndices[4] = i; + } else if (pos.z < extremeVals[5]) { + extremeVals[5] = pos.z; + outIndices[5] = i; + } + } + return outIndices; +} + +bool QuickHull::reorderHorizonEdges(VecView& horizonEdges) { + const size_t horizonEdgeCount = horizonEdges.size(); + for (size_t i = 0; i + 1 < horizonEdgeCount; i++) { + const size_t endVertexCheck = mesh.halfedges[horizonEdges[i]].endVert; + bool foundNext = false; + for (size_t j = i + 1; j < horizonEdgeCount; j++) { + const size_t beginVertex = + mesh.halfedges[mesh.halfedges[horizonEdges[j]].pairedHalfedge] + .endVert; + if (beginVertex == endVertexCheck) { + std::swap(horizonEdges[i + 1], horizonEdges[j]); + foundNext = true; + break; + } + } + if (!foundNext) { + return false; + } + } + ASSERT(mesh.halfedges[horizonEdges[horizonEdges.size() - 1]].endVert == + mesh.halfedges[mesh.halfedges[horizonEdges[0]].pairedHalfedge] + .endVert, + logicErr("invalid halfedge")); + return true; +} + +double QuickHull::getScale(const std::array& extremeValuesInput) { + double s = 0; + for (size_t i = 0; i < 6; i++) { + const double* v = + (const double*)(&originalVertexData[extremeValuesInput[i]]); + v += i / 2; + auto a = std::abs(*v); + if (a > s) { + s = a; + } + } + return s; +} + +void QuickHull::setupInitialTetrahedron() { + const size_t vertexCount = originalVertexData.size(); + + // If we have at most 4 points, just return a degenerate tetrahedron: + if (vertexCount <= 4) { + size_t v[4] = {0, std::min((size_t)1, vertexCount - 1), + std::min((size_t)2, vertexCount - 1), + std::min((size_t)3, vertexCount - 1)}; + const vec3 N = + getTriangleNormal(originalVertexData[v[0]], originalVertexData[v[1]], + originalVertexData[v[2]]); + const Plane trianglePlane(N, originalVertexData[v[0]]); + if (trianglePlane.isPointOnPositiveSide(originalVertexData[v[3]])) { + std::swap(v[0], v[1]); + } + return mesh.setup(v[0], v[1], v[2], v[3]); + } + + // Find two most distant extreme points. + double maxD = epsilonSquared; + std::pair selectedPoints; + for (size_t i = 0; i < 6; i++) { + for (size_t j = i + 1; j < 6; j++) { + // I found a function for squaredDistance but i can't seem to include it + // like this for some reason + const double d = getSquaredDistance(originalVertexData[extremeValues[i]], + originalVertexData[extremeValues[j]]); + if (d > maxD) { + maxD = d; + selectedPoints = {extremeValues[i], extremeValues[j]}; + } + } + } + if (maxD == epsilonSquared) { + // A degenerate case: the point cloud seems to consists of a single point + return mesh.setup(0, std::min((size_t)1, vertexCount - 1), + std::min((size_t)2, vertexCount - 1), + std::min((size_t)3, vertexCount - 1)); + } + ASSERT(selectedPoints.first != selectedPoints.second, + logicErr("degenerate selectedPoints")); + + // Find the most distant point to the line between the two chosen extreme + // points. + const Ray r(originalVertexData[selectedPoints.first], + (originalVertexData[selectedPoints.second] - + originalVertexData[selectedPoints.first])); + maxD = epsilonSquared; + size_t maxI = std::numeric_limits::max(); + const size_t vCount = originalVertexData.size(); + for (size_t i = 0; i < vCount; i++) { + const double distToRay = + getSquaredDistanceBetweenPointAndRay(originalVertexData[i], r); + if (distToRay > maxD) { + maxD = distToRay; + maxI = i; + } + } + if (maxD == epsilonSquared) { + // It appears that the point cloud belongs to a 1 dimensional subspace of + // R^3: convex hull has no volume => return a thin triangle Pick any point + // other than selectedPoints.first and selectedPoints.second as the third + // point of the triangle + auto it = + std::find_if(originalVertexData.begin(), originalVertexData.end(), + [&](const vec3& ve) { + return ve != originalVertexData[selectedPoints.first] && + ve != originalVertexData[selectedPoints.second]; + }); + const size_t thirdPoint = + (it == originalVertexData.end()) + ? selectedPoints.first + : std::distance(originalVertexData.begin(), it); + it = + std::find_if(originalVertexData.begin(), originalVertexData.end(), + [&](const vec3& ve) { + return ve != originalVertexData[selectedPoints.first] && + ve != originalVertexData[selectedPoints.second] && + ve != originalVertexData[thirdPoint]; + }); + const size_t fourthPoint = + (it == originalVertexData.end()) + ? selectedPoints.first + : std::distance(originalVertexData.begin(), it); + return mesh.setup(selectedPoints.first, selectedPoints.second, thirdPoint, + fourthPoint); + } + + // These three points form the base triangle for our tetrahedron. + ASSERT(selectedPoints.first != maxI && selectedPoints.second != maxI, + logicErr("degenerate selectedPoints")); + std::array baseTriangle{selectedPoints.first, + selectedPoints.second, maxI}; + const vec3 baseTriangleVertices[] = {originalVertexData[baseTriangle[0]], + originalVertexData[baseTriangle[1]], + originalVertexData[baseTriangle[2]]}; + + // Next step is to find the 4th vertex of the tetrahedron. We naturally choose + // the point farthest away from the triangle plane. + maxD = m_epsilon; + maxI = 0; + const vec3 N = + getTriangleNormal(baseTriangleVertices[0], baseTriangleVertices[1], + baseTriangleVertices[2]); + Plane trianglePlane(N, baseTriangleVertices[0]); + for (size_t i = 0; i < vCount; i++) { + const double d = std::abs( + getSignedDistanceToPlane(originalVertexData[i], trianglePlane)); + if (d > maxD) { + maxD = d; + maxI = i; + } + } + if (maxD == m_epsilon) { + // All the points seem to lie on a 2D subspace of R^3. How to handle this? + // Well, let's add one extra point to the point cloud so that the convex + // hull will have volume. + planar = true; + const vec3 N1 = + getTriangleNormal(baseTriangleVertices[1], baseTriangleVertices[2], + baseTriangleVertices[0]); + planarPointCloudTemp = Vec(originalVertexData); + const vec3 extraPoint = N1 + originalVertexData[0]; + planarPointCloudTemp.push_back(extraPoint); + maxI = planarPointCloudTemp.size() - 1; + originalVertexData = planarPointCloudTemp; + } + + // Enforce CCW orientation (if user prefers clockwise orientation, swap two + // vertices in each triangle when final mesh is created) + const Plane triPlane(N, baseTriangleVertices[0]); + if (triPlane.isPointOnPositiveSide(originalVertexData[maxI])) { + std::swap(baseTriangle[0], baseTriangle[1]); + } + + // Create a tetrahedron half edge mesh and compute planes defined by each + // triangle + mesh.setup(baseTriangle[0], baseTriangle[1], baseTriangle[2], maxI); + for (auto& f : mesh.faces) { + auto v = mesh.getVertexIndicesOfFace(f); + const vec3 N1 = + getTriangleNormal(originalVertexData[v[0]], originalVertexData[v[1]], + originalVertexData[v[2]]); + const Plane plane(N1, originalVertexData[v[0]]); + f.P = plane; + } + + // Finally we assign a face for each vertex outside the tetrahedron (vertices + // inside the tetrahedron have no role anymore) + for (size_t i = 0; i < vCount; i++) { + for (auto& face : mesh.faces) { + if (addPointToFace(face, i)) { + break; + } + } + } +} + +std::unique_ptr> QuickHull::getIndexVectorFromPool() { + auto r = indexVectorPool.get(); + r->resize(0); + return r; +} + +void QuickHull::reclaimToIndexVectorPool(std::unique_ptr>& ptr) { + const size_t oldSize = ptr->size(); + if ((oldSize + 1) * 128 < ptr->capacity()) { + // Reduce memory usage! Huge vectors are needed at the beginning of + // iteration when faces have many points on their positive side. Later on, + // smaller vectors will suffice. + ptr.reset(nullptr); + return; + } + indexVectorPool.reclaim(ptr); +} + +bool QuickHull::addPointToFace(typename MeshBuilder::Face& f, + size_t pointIndex) { + const double D = + getSignedDistanceToPlane(originalVertexData[pointIndex], f.P); + if (D > 0 && D * D > epsilonSquared * f.P.sqrNLength) { + if (!f.pointsOnPositiveSide) { + f.pointsOnPositiveSide = getIndexVectorFromPool(); + } + f.pointsOnPositiveSide->push_back(pointIndex); + if (D > f.mostDistantPointDist) { + f.mostDistantPointDist = D; + f.mostDistantPoint = pointIndex; + } + return true; + } + return false; +} + +// Wrapper to call the QuickHull algorithm with the given vertex data to build +// the Impl +void Manifold::Impl::Hull(VecView vertPos) { + size_t numVert = vertPos.size(); + if (numVert < 4) { + status_ = Error::InvalidConstruction; + return; + } + + QuickHull qh(vertPos); + std::tie(halfedge_, vertPos_) = qh.buildMesh(); + CalculateBBox(); + SetPrecision(bBox_.Scale() * kTolerance); + CalculateNormals(); + InitializeOriginal(); + Finish(); +} + +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/quickhull.h b/thirdparty/manifold/src/manifold/src/quickhull.h new file mode 100644 index 000000000000..088973737389 --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/quickhull.h @@ -0,0 +1,288 @@ +// Copyright 2024 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// Derived from the public domain work of Antti Kuukka at +// https://github.com/akuukka/quickhull + +/* + * INPUT: a list of points in 3D space (for example, vertices of a 3D mesh) + * + * OUTPUT: a ConvexHull object which provides vertex and index buffers of the + *generated convex hull as a triangle mesh. + * + * + * + * The implementation is thread-safe if each thread is using its own QuickHull + *object. + * + * + * SUMMARY OF THE ALGORITHM: + * - Create initial simplex (tetrahedron) using extreme points. We have + *four faces now and they form a convex mesh M. + * - For each point, assign them to the first face for which they are on + *the positive side of (so each point is assigned to at most one face). Points + *inside the initial tetrahedron are left behind now and no longer affect the + *calculations. + * - Add all faces that have points assigned to them to Face Stack. + * - Iterate until Face Stack is empty: + * - Pop topmost face F from the stack + * - From the points assigned to F, pick the point P that is + *farthest away from the plane defined by F. + * - Find all faces of M that have P on their positive side. Let us + *call these the "visible faces". + * - Because of the way M is constructed, these faces are + *connected. Solve their horizon edge loop. + * - "Extrude to P": Create new faces by connecting + *P with the points belonging to the horizon edge. Add the new faces to M and + *remove the visible faces from M. + * - Each point that was assigned to visible faces is now assigned + *to at most one of the newly created faces. + * - Those new faces that have points assigned to them are added to + *the top of Face Stack. + * - M is now the convex hull. + * + * */ +#pragma once +#include +#include +#include + +#include "manifold/vec.h" +#include "shared.h" + +namespace manifold { + +class Pool { + std::vector>> data; + + public: + void clear() { data.clear(); } + + void reclaim(std::unique_ptr>& ptr) { + data.push_back(std::move(ptr)); + } + + std::unique_ptr> get() { + if (data.size() == 0) { + return std::make_unique>(); + } + auto it = data.end() - 1; + std::unique_ptr> r = std::move(*it); + data.erase(it); + return r; + } +}; + +class Plane { + public: + vec3 N; + + // Signed distance (if normal is of length 1) to the plane from origin + double D; + + // Normal length squared + double sqrNLength; + + bool isPointOnPositiveSide(const vec3& Q) const { + double d = glm::dot(N, Q) + D; + if (d >= 0) return true; + return false; + } + + Plane() = default; + + // Construct a plane using normal N and any point P on the plane + Plane(const vec3& N, const vec3& P) + : N(N), D(glm::dot(-N, P)), sqrNLength(glm::dot(N, N)) {} +}; + +struct Ray { + const vec3 S; + const vec3 V; + const double VInvLengthSquared; + + Ray(const vec3& S, const vec3& V) + : S(S), V(V), VInvLengthSquared(1 / (glm::dot(V, V))) {} +}; + +class MeshBuilder { + public: + struct Face { + int he; + Plane P{}; + double mostDistantPointDist = 0.0; + size_t mostDistantPoint = 0; + size_t visibilityCheckedOnIteration = 0; + std::uint8_t isVisibleFaceOnCurrentIteration : 1; + std::uint8_t inFaceStack : 1; + // Bit for each half edge assigned to this face, each being 0 or 1 depending + // on whether the edge belongs to horizon edge + std::uint8_t horizonEdgesOnCurrentIteration : 3; + std::unique_ptr> pointsOnPositiveSide; + + Face(size_t he) + : he(he), + isVisibleFaceOnCurrentIteration(0), + inFaceStack(0), + horizonEdgesOnCurrentIteration(0) {} + + Face() + : he(-1), + isVisibleFaceOnCurrentIteration(0), + inFaceStack(0), + horizonEdgesOnCurrentIteration(0) {} + + void disable() { he = -1; } + + bool isDisabled() const { return he == -1; } + }; + + // Mesh data + std::vector faces; + Vec halfedges; + Vec halfedgeToFace; + Vec halfedgeNext; + + // When the mesh is modified and faces and half edges are removed from it, we + // do not actually remove them from the container vectors. Insted, they are + // marked as disabled which means that the indices can be reused when we need + // to add new faces and half edges to the mesh. We store the free indices in + // the following vectors. + Vec disabledFaces, disabledHalfedges; + + size_t addFace(); + + size_t addHalfedge(); + + // Mark a face as disabled and return a pointer to the points that were on the + // positive of it. + std::unique_ptr> disableFace(size_t faceIndex) { + auto& f = faces[faceIndex]; + f.disable(); + disabledFaces.push_back(faceIndex); + return std::move(f.pointsOnPositiveSide); + } + + void disableHalfedge(size_t heIndex) { + auto& he = halfedges[heIndex]; + he.pairedHalfedge = -1; + disabledHalfedges.push_back(heIndex); + } + + MeshBuilder() = default; + + // Create a mesh with initial tetrahedron ABCD. Dot product of AB with the + // normal of triangle ABC should be negative. + void setup(int a, int b, int c, int d); + + std::array getVertexIndicesOfFace(const Face& f) const; + + std::array getVertexIndicesOfHalfEdge(const Halfedge& he) const { + return {halfedges[he.pairedHalfedge].endVert, he.endVert}; + } + + std::array getHalfEdgeIndicesOfFace(const Face& f) const { + return {f.he, halfedgeNext[f.he], halfedgeNext[halfedgeNext[f.he]]}; + } +}; + +class HalfEdgeMesh { + public: + Vec vertices; + // Index of one of the half edges of the faces + std::vector halfEdgeIndexFaces; + Vec halfedges; + Vec halfedgeToFace; + Vec halfedgeNext; + + HalfEdgeMesh(const MeshBuilder& builderObject, + const VecView& vertexData); +}; + +double defaultEps(); + +class QuickHull { + struct FaceData { + int faceIndex; + // If the face turns out not to be visible, this half edge will be marked as + // horizon edge + int enteredFromHalfedge; + }; + + double m_epsilon, epsilonSquared, scale; + bool planar; + Vec planarPointCloudTemp; + VecView originalVertexData; + MeshBuilder mesh; + std::array extremeValues; + size_t failedHorizonEdges = 0; + + // Temporary variables used during iteration process + Vec newFaceIndices; + Vec newHalfedgeIndices; + Vec visibleFaces; + Vec horizonEdgesData; + Vec possiblyVisibleFaces; + std::vector>> disabledFacePointVectors; + std::deque faceList; + + // Create a half edge mesh representing the base tetrahedron from which the + // QuickHull iteration proceeds. extremeValues must be properly set up when + // this is called. + void setupInitialTetrahedron(); + + // Given a list of half edges, try to rearrange them so that they form a loop. + // Return true on success. + bool reorderHorizonEdges(VecView& horizonEdges); + + // Find indices of extreme values (max x, min x, max y, min y, max z, min z) + // for the given point cloud + std::array getExtremeValues(); + + // Compute scale of the vertex data. + double getScale(const std::array& extremeValuesInput); + + // Each face contains a unique pointer to a vector of indices. However, many - + // often most - faces do not have any points on the positive side of them + // especially at the the end of the iteration. When a face is removed from the + // mesh, its associated point vector, if such exists, is moved to the index + // vector pool, and when we need to add new faces with points on the positive + // side to the mesh, we reuse these vectors. This reduces the amount of + // std::vectors we have to deal with, and impact on performance is remarkable. + Pool indexVectorPool; + inline std::unique_ptr> getIndexVectorFromPool(); + inline void reclaimToIndexVectorPool(std::unique_ptr>& ptr); + + // Associates a point with a face if the point resides on the positive side of + // the plane. Returns true if the points was on the positive side. + inline bool addPointToFace(typename MeshBuilder::Face& f, size_t pointIndex); + + // This will create HalfedgeMesh from which we create the ConvexHull object + // that buildMesh function returns + void createConvexHalfedgeMesh(); + + public: + // This function assumes that the pointCloudVec data resides in memory in the + // following format: x_0,y_0,z_0,x_1,y_1,z_1,... + QuickHull(VecView pointCloudVec) + : originalVertexData(VecView(pointCloudVec)) {} + + // Computes convex hull for a given point cloud. Params: eps: minimum distance + // to a plane to consider a point being on positive side of it (for a point + // cloud with scale 1) Returns: Convex hull of the point cloud as halfEdge + // vector and vertex vector + std::pair, Vec> buildMesh(double eps = defaultEps()); +}; + +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/sdf.cpp b/thirdparty/manifold/src/manifold/src/sdf.cpp new file mode 100644 index 000000000000..a7a96c176148 --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/sdf.cpp @@ -0,0 +1,537 @@ +// Copyright 2023 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include + +#include "impl.h" +#include "manifold/hashtable.h" +#include "manifold/manifold.h" +#include "manifold/parallel.h" +#include "manifold/utils.h" +#include "manifold/vec.h" + +namespace { +using namespace manifold; + +constexpr int kCrossing = -2; +constexpr int kNone = -1; +constexpr ivec4 kVoxelOffset(1, 1, 1, 0); +// Maximum fraction of spacing that a vert can move. +constexpr double kS = 0.25; +// Corresponding approximate distance ratio bound. +constexpr double kD = 1 / kS - 1; +// Maximum number of opposed verts (of 7) to allow collapse. +constexpr int kMaxOpposed = 3; + +ivec3 TetTri0(int i) { + constexpr ivec3 tetTri0[16] = {{-1, -1, -1}, // + {0, 3, 4}, // + {0, 1, 5}, // + {1, 5, 3}, // + {1, 4, 2}, // + {1, 0, 3}, // + {2, 5, 0}, // + {5, 3, 2}, // + {2, 3, 5}, // + {0, 5, 2}, // + {3, 0, 1}, // + {2, 4, 1}, // + {3, 5, 1}, // + {5, 1, 0}, // + {4, 3, 0}, // + {-1, -1, -1}}; + return tetTri0[i]; +} + +ivec3 TetTri1(int i) { + constexpr ivec3 tetTri1[16] = {{-1, -1, -1}, // + {-1, -1, -1}, // + {-1, -1, -1}, // + {3, 4, 1}, // + {-1, -1, -1}, // + {3, 2, 1}, // + {0, 4, 2}, // + {-1, -1, -1}, // + {-1, -1, -1}, // + {2, 4, 0}, // + {1, 2, 3}, // + {-1, -1, -1}, // + {1, 4, 3}, // + {-1, -1, -1}, // + {-1, -1, -1}, // + {-1, -1, -1}}; + return tetTri1[i]; +} + +ivec4 Neighbor(ivec4 base, int i) { + constexpr ivec4 neighbors[14] = {{0, 0, 0, 1}, // + {1, 0, 0, 0}, // + {0, 1, 0, 0}, // + {0, 0, 1, 0}, // + {-1, 0, 0, 1}, // + {0, -1, 0, 1}, // + {0, 0, -1, 1}, // + {-1, -1, -1, 1}, // + {-1, 0, 0, 0}, // + {0, -1, 0, 0}, // + {0, 0, -1, 0}, // + {0, -1, -1, 1}, // + {-1, 0, -1, 1}, // + {-1, -1, 0, 1}}; + ivec4 neighborIndex = base + neighbors[i]; + if (neighborIndex.w == 2) { + neighborIndex += 1; + neighborIndex.w = 0; + } + return neighborIndex; +} + +Uint64 EncodeIndex(ivec4 gridPos, ivec3 gridPow) { + return static_cast(gridPos.w) | static_cast(gridPos.z) << 1 | + static_cast(gridPos.y) << (1 + gridPow.z) | + static_cast(gridPos.x) << (1 + gridPow.z + gridPow.y); +} + +ivec4 DecodeIndex(Uint64 idx, ivec3 gridPow) { + ivec4 gridPos; + gridPos.w = idx & 1; + idx = idx >> 1; + gridPos.z = idx & ((1 << gridPow.z) - 1); + idx = idx >> gridPow.z; + gridPos.y = idx & ((1 << gridPow.y) - 1); + idx = idx >> gridPow.y; + gridPos.x = idx & ((1 << gridPow.x) - 1); + return gridPos; +} + +vec3 Position(ivec4 gridIndex, vec3 origin, vec3 spacing) { + return origin + spacing * (vec3(gridIndex) + (gridIndex.w == 1 ? 0.0 : -0.5)); +} + +double BoundedSDF(ivec4 gridIndex, vec3 origin, vec3 spacing, ivec3 gridSize, + double level, std::function sdf) { + auto Min = [](ivec3 p) { return std::min(p.x, std::min(p.y, p.z)); }; + + const ivec3 xyz(gridIndex); + const int lowerBoundDist = Min(xyz); + const int upperBoundDist = Min(gridSize - xyz); + const int boundDist = std::min(lowerBoundDist, upperBoundDist - gridIndex.w); + + if (boundDist < 0) { + return 0.0; + } + const double d = sdf(Position(gridIndex, origin, spacing)) - level; + return boundDist == 0 ? std::min(d, 0.0) : d; +} + +// Simplified ITP root finding algorithm - same worst-case performance as +// bisection, better average performance. +inline vec3 FindSurface(vec3 pos0, double d0, vec3 pos1, double d1, double tol, + double level, std::function sdf) { + if (d0 == 0) { + return pos0; + } else if (d1 == 0) { + return pos1; + } + + // Sole tuning parameter, k: (0, 1) - smaller value gets better median + // performance, but also hits the worst case more often. + const double k = 0.1; + const double check = 2 * tol / glm::length(pos0 - pos1); + double frac = 1; + double biFrac = 1; + while (frac > check) { + const double t = glm::mix(d0 / (d0 - d1), 0.5, k); + const double r = biFrac / frac - 0.5; + const double x = glm::abs(t - 0.5) < r ? t : 0.5 - r * (t < 0.5 ? 1 : -1); + + const vec3 mid = glm::mix(pos0, pos1, x); + const double d = sdf(mid) - level; + + if ((d > 0) == (d0 > 0)) { + d0 = d; + pos0 = mid; + frac *= 1 - x; + } else { + d1 = d; + pos1 = mid; + frac *= x; + } + biFrac /= 2; + } + + return glm::mix(pos0, pos1, d0 / (d0 - d1)); +} + +/** + * Each GridVert is connected to 14 others, and in charge of 7 of these edges + * (see Neighbor() above). Each edge that changes sign contributes one vert, + * unless the GridVert is close enough to the surface, in which case it + * contributes only a single movedVert and all crossing edgeVerts refer to that. + */ +struct GridVert { + double distance = NAN; + int movedVert = kNone; + int edgeVerts[7] = {kNone, kNone, kNone, kNone, kNone, kNone, kNone}; + + inline bool HasMoved() const { return movedVert >= 0; } + + inline bool SameSide(double dist) const { + return (dist > 0) == (distance > 0); + } + + inline int Inside() const { return distance > 0 ? 1 : -1; } + + inline int NeighborInside(int i) const { + return Inside() * (edgeVerts[i] == kNone ? 1 : -1); + } +}; + +struct NearSurface { + VecView vertPos; + VecView vertIndex; + HashTableD gridVerts; + VecView voxels; + const std::function sdf; + const vec3 origin; + const ivec3 gridSize; + const ivec3 gridPow; + const vec3 spacing; + const double level; + const double tol; + + inline void operator()(Uint64 index) { + ZoneScoped; + if (gridVerts.Full()) return; + + const ivec4 gridIndex = DecodeIndex(index, gridPow); + + if (glm::any(glm::greaterThan(ivec3(gridIndex), gridSize))) return; + + GridVert gridVert; + gridVert.distance = voxels[EncodeIndex(gridIndex + kVoxelOffset, gridPow)]; + + bool keep = false; + double vMax = 0; + int closestNeighbor = -1; + int opposedVerts = 0; + for (int i = 0; i < 7; ++i) { + const double val = + voxels[EncodeIndex(Neighbor(gridIndex, i) + kVoxelOffset, gridPow)]; + const double valOp = voxels[EncodeIndex( + Neighbor(gridIndex, i + 7) + kVoxelOffset, gridPow)]; + + if (!gridVert.SameSide(val)) { + gridVert.edgeVerts[i] = kCrossing; + keep = true; + if (!gridVert.SameSide(valOp)) { + ++opposedVerts; + } + // Approximate bound on vert movement. + if (glm::abs(val) > kD * glm::abs(gridVert.distance) && + glm::abs(val) > glm::abs(vMax)) { + vMax = val; + closestNeighbor = i; + } + } else if (!gridVert.SameSide(valOp) && + glm::abs(valOp) > kD * glm::abs(gridVert.distance) && + glm::abs(valOp) > glm::abs(vMax)) { + vMax = valOp; + closestNeighbor = i + 7; + } + } + + // This is where we collapse all the crossing edge verts into this GridVert, + // speeding up the algorithm and avoiding poor quality triangles. Without + // this step the result is guaranteed 2-manifold, but with this step it can + // become an even-manifold with kissing verts. These must be removed in a + // post-process: CleanupTopology(). + if (closestNeighbor >= 0 && opposedVerts <= kMaxOpposed) { + const vec3 gridPos = Position(gridIndex, origin, spacing); + const ivec4 neighborIndex = Neighbor(gridIndex, closestNeighbor); + const vec3 pos = FindSurface(gridPos, gridVert.distance, + Position(neighborIndex, origin, spacing), + vMax, tol, level, sdf); + // Bound the delta of each vert to ensure the tetrahedron cannot invert. + if (glm::all(glm::lessThan(glm::abs(pos - gridPos), kS * spacing))) { + const int idx = AtomicAdd(vertIndex[0], 1); + vertPos[idx] = pos; + gridVert.movedVert = idx; + for (int j = 0; j < 7; ++j) { + if (gridVert.edgeVerts[j] == kCrossing) gridVert.edgeVerts[j] = idx; + } + keep = true; + } + } else { + for (int j = 0; j < 7; ++j) gridVert.edgeVerts[j] = kNone; + } + + if (keep) gridVerts.Insert(index, gridVert); + } +}; + +struct ComputeVerts { + VecView vertPos; + VecView vertIndex; + HashTableD gridVerts; + VecView voxels; + const std::function sdf; + const vec3 origin; + const ivec3 gridSize; + const ivec3 gridPow; + const vec3 spacing; + const double level; + const double tol; + + void operator()(int idx) { + ZoneScoped; + Uint64 baseKey = gridVerts.KeyAt(idx); + if (baseKey == kOpen) return; + + GridVert& gridVert = gridVerts.At(idx); + + if (gridVert.HasMoved()) return; + + const ivec4 gridIndex = DecodeIndex(baseKey, gridPow); + + const vec3 position = Position(gridIndex, origin, spacing); + + // These seven edges are uniquely owned by this gridVert; any of them + // which intersect the surface create a vert. + for (int i = 0; i < 7; ++i) { + const ivec4 neighborIndex = Neighbor(gridIndex, i); + const GridVert& neighbor = gridVerts[EncodeIndex(neighborIndex, gridPow)]; + + const double val = + isfinite(neighbor.distance) + ? neighbor.distance + : voxels[EncodeIndex(neighborIndex + kVoxelOffset, gridPow)]; + if (gridVert.SameSide(val)) continue; + + if (neighbor.HasMoved()) { + gridVert.edgeVerts[i] = neighbor.movedVert; + continue; + } + + const int idx = AtomicAdd(vertIndex[0], 1); + vertPos[idx] = FindSurface(position, gridVert.distance, + Position(neighborIndex, origin, spacing), val, + tol, level, sdf); + gridVert.edgeVerts[i] = idx; + } + } +}; + +struct BuildTris { + VecView triVerts; + VecView triIndex; + const HashTableD gridVerts; + const ivec3 gridPow; + + void CreateTri(const ivec3& tri, const int edges[6]) { + if (tri[0] < 0) return; + const ivec3 verts(edges[tri[0]], edges[tri[1]], edges[tri[2]]); + if (verts[0] == verts[1] || verts[1] == verts[2] || verts[2] == verts[0]) + return; + int idx = AtomicAdd(triIndex[0], 1); + triVerts[idx] = verts; + } + + void CreateTris(const ivec4& tet, const int edges[6]) { + const int i = (tet[0] > 0 ? 1 : 0) + (tet[1] > 0 ? 2 : 0) + + (tet[2] > 0 ? 4 : 0) + (tet[3] > 0 ? 8 : 0); + CreateTri(TetTri0(i), edges); + CreateTri(TetTri1(i), edges); + } + + void operator()(int idx) { + ZoneScoped; + Uint64 baseKey = gridVerts.KeyAt(idx); + if (baseKey == kOpen) return; + + const GridVert& base = gridVerts.At(idx); + const ivec4 baseIndex = DecodeIndex(baseKey, gridPow); + + ivec4 leadIndex = baseIndex; + if (leadIndex.w == 0) + leadIndex.w = 1; + else { + leadIndex += 1; + leadIndex.w = 0; + } + + // This GridVert is in charge of the 6 tetrahedra surrounding its edge in + // the (1,1,1) direction (edge 0). + ivec4 tet(base.NeighborInside(0), base.Inside(), -2, -2); + ivec4 thisIndex = baseIndex; + thisIndex.x += 1; + + GridVert thisVert = gridVerts[EncodeIndex(thisIndex, gridPow)]; + + tet[2] = base.NeighborInside(1); + for (const int i : {0, 1, 2}) { + thisIndex = leadIndex; + --thisIndex[Prev3(i)]; + // Indices take unsigned input, so check for negatives, given the + // decrement. If negative, the vert is outside and only connected to other + // outside verts - no edgeVerts. + GridVert nextVert = thisIndex[Prev3(i)] < 0 + ? GridVert() + : gridVerts[EncodeIndex(thisIndex, gridPow)]; + tet[3] = base.NeighborInside(Prev3(i) + 4); + + const int edges1[6] = {base.edgeVerts[0], + base.edgeVerts[i + 1], + nextVert.edgeVerts[Next3(i) + 4], + nextVert.edgeVerts[Prev3(i) + 1], + thisVert.edgeVerts[i + 4], + base.edgeVerts[Prev3(i) + 4]}; + thisVert = nextVert; + CreateTris(tet, edges1); + + thisIndex = baseIndex; + ++thisIndex[Next3(i)]; + nextVert = gridVerts[EncodeIndex(thisIndex, gridPow)]; + tet[2] = tet[3]; + tet[3] = base.NeighborInside(Next3(i) + 1); + + const int edges2[6] = {base.edgeVerts[0], + edges1[5], + thisVert.edgeVerts[i + 4], + nextVert.edgeVerts[Next3(i) + 4], + edges1[3], + base.edgeVerts[Next3(i) + 1]}; + thisVert = nextVert; + CreateTris(tet, edges2); + + tet[2] = tet[3]; + } + } +}; +} // namespace + +namespace manifold { + +/** @addtogroup Core + * @{ + */ + +/** + * Constructs a level-set manifold from the input Signed-Distance Function + * (SDF). This uses a form of Marching Tetrahedra (akin to Marching Cubes, but + * better for manifoldness). Instead of using a cubic grid, it uses a + * body-centered cubic grid (two shifted cubic grids). This means if your + * function's interior exceeds the given bounds, you will see a kind of + * egg-crate shape closing off the manifold, which is due to the underlying + * grid. + * + * @param sdf The signed-distance functor, containing this function signature: + * `double operator()(vec3 point)`, which returns the + * signed distance of a given point in R^3. Positive values are inside, + * negative outside. + * @param bounds An axis-aligned box that defines the extent of the grid. + * @param edgeLength Approximate maximum edge length of the triangles in the + * final result. This affects grid spacing, and hence has a strong effect on + * performance. + * @param level You can inset your Mesh by using a positive value, or outset + * it with a negative value. + * @param precision Ensure each vertex is within this distance of the true + * surface. Defaults to -1, which will return the interpolated + * crossing-point based on the two nearest grid points. Small positive values + * will require more sdf evaluations per output vertex. + * @param canParallel Parallel policies violate will crash language runtimes + * with runtime locks that expect to not be called back by unregistered threads. + * This allows bindings use LevelSet despite being compiled with MANIFOLD_PAR + * active. + */ +Manifold Manifold::LevelSet(std::function sdf, Box bounds, + double edgeLength, double level, double precision, + bool canParallel) { + if (precision <= 0) { + precision = std::numeric_limits::infinity(); + } + + auto pImpl_ = std::make_shared(); + auto& vertPos = pImpl_->vertPos_; + + const vec3 dim = bounds.Size(); + const ivec3 gridSize(dim / edgeLength + 1.0); + const vec3 spacing = dim / (vec3(gridSize - 1)); + + const ivec3 gridPow(glm::log2(gridSize + 2) + 1); + const Uint64 maxIndex = EncodeIndex(ivec4(gridSize + 2, 1), gridPow); + + // Parallel policies violate will crash language runtimes with runtime locks + // that expect to not be called back by unregistered threads. This allows + // bindings use LevelSet despite being compiled with MANIFOLD_PAR + // active. + const auto pol = canParallel ? autoPolicy(maxIndex) : ExecutionPolicy::Seq; + + const vec3 origin = bounds.min; + Vec voxels(maxIndex); + for_each_n( + pol, countAt(0_uz), maxIndex, + [&voxels, sdf, level, origin, spacing, gridSize, gridPow](Uint64 idx) { + voxels[idx] = BoundedSDF(DecodeIndex(idx, gridPow) - kVoxelOffset, + origin, spacing, gridSize, level, sdf); + }); + + size_t tableSize = std::min( + 2 * maxIndex, static_cast(10 * glm::pow(maxIndex, 0.667))); + HashTable gridVerts(tableSize); + vertPos.resize(gridVerts.Size() * 7); + + while (1) { + Vec index(1, 0); + for_each_n(pol, countAt(0_uz), EncodeIndex(ivec4(gridSize, 1), gridPow), + NearSurface({vertPos, index, gridVerts.D(), voxels, sdf, origin, + gridSize, gridPow, spacing, level, precision})); + + if (gridVerts.Full()) { // Resize HashTable + const vec3 lastVert = vertPos[index[0] - 1]; + const Uint64 lastIndex = + EncodeIndex(ivec4((lastVert - origin) / spacing, 1), gridPow); + const double ratio = static_cast(maxIndex) / lastIndex; + + if (ratio > 1000) // do not trust the ratio if it is too large + tableSize *= 2; + else + tableSize *= ratio; + gridVerts = HashTable(tableSize); + vertPos = Vec(gridVerts.Size() * 7); + } else { // Success + for_each_n( + pol, countAt(0), gridVerts.Size(), + ComputeVerts({vertPos, index, gridVerts.D(), voxels, sdf, origin, + gridSize, gridPow, spacing, level, precision})); + vertPos.resize(index[0]); + break; + } + } + + Vec triVerts(gridVerts.Entries() * 12); // worst case + + Vec index(1, 0); + for_each_n(pol, countAt(0), gridVerts.Size(), + BuildTris({triVerts, index, gridVerts.D(), gridPow})); + triVerts.resize(index[0]); + + pImpl_->CreateHalfedges(triVerts); + pImpl_->CleanupTopology(); + pImpl_->Finish(); + pImpl_->InitializeOriginal(); + return Manifold(pImpl_); +} +/** @} */ +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/shared.h b/thirdparty/manifold/src/manifold/src/shared.h new file mode 100644 index 000000000000..9d18f273cc35 --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/shared.h @@ -0,0 +1,221 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "manifold/parallel.h" +#include "manifold/sparse.h" +#include "manifold/utils.h" +#include "manifold/vec.h" + +namespace manifold { + +/** @addtogroup Private + * @{ + */ +inline vec3 SafeNormalize(vec3 v) { + v = glm::normalize(v); + return std::isfinite(v.x) ? v : vec3(0); +} + +inline double MaxPrecision(double minPrecision, const Box& bBox) { + double precision = std::max(minPrecision, kTolerance * bBox.Scale()); + return std::isfinite(precision) ? precision : -1; +} + +inline int NextHalfedge(int current) { + ++current; + if (current % 3 == 0) current -= 3; + return current; +} + +inline mat3 NormalTransform(const mat4x3& transform) { + return glm::inverse(glm::transpose(mat3(transform))); +} + +/** + * By using the closest axis-aligned projection to the normal instead of a + * projection along the normal, we avoid introducing any rounding error. + */ +inline mat3x2 GetAxisAlignedProjection(vec3 normal) { + vec3 absNormal = glm::abs(normal); + double xyzMax; + mat2x3 projection; + if (absNormal.z > absNormal.x && absNormal.z > absNormal.y) { + projection = mat2x3(1.0, 0.0, 0.0, // + 0.0, 1.0, 0.0); + xyzMax = normal.z; + } else if (absNormal.y > absNormal.x) { + projection = mat2x3(0.0, 0.0, 1.0, // + 1.0, 0.0, 0.0); + xyzMax = normal.y; + } else { + projection = mat2x3(0.0, 1.0, 0.0, // + 0.0, 0.0, 1.0); + xyzMax = normal.x; + } + if (xyzMax < 0) projection[0] *= -1.0; + return glm::transpose(projection); +} + +inline vec3 GetBarycentric(const vec3& v, const mat3& triPos, + double precision) { + const mat3 edges(triPos[2] - triPos[1], triPos[0] - triPos[2], + triPos[1] - triPos[0]); + const vec3 d2(glm::dot(edges[0], edges[0]), glm::dot(edges[1], edges[1]), + glm::dot(edges[2], edges[2])); + const int longSide = d2[0] > d2[1] && d2[0] > d2[2] ? 0 + : d2[1] > d2[2] ? 1 + : 2; + const vec3 crossP = glm::cross(edges[0], edges[1]); + const double area2 = glm::dot(crossP, crossP); + const double tol2 = precision * precision; + + vec3 uvw(0); + for (const int i : {0, 1, 2}) { + const vec3 dv = v - triPos[i]; + if (glm::dot(dv, dv) < tol2) { + // Return exactly equal if within tolerance of vert. + uvw[i] = 1; + return uvw; + } + } + + if (d2[longSide] < tol2) { // point + return vec3(1, 0, 0); + } else if (area2 > d2[longSide] * tol2) { // triangle + for (const int i : {0, 1, 2}) { + const int j = Next3(i); + const vec3 crossPv = glm::cross(edges[i], v - triPos[j]); + const double area2v = glm::dot(crossPv, crossPv); + // Return exactly equal if within tolerance of edge. + uvw[i] = area2v < d2[i] * tol2 ? 0 : glm::dot(crossPv, crossP); + } + uvw /= (uvw[0] + uvw[1] + uvw[2]); + return uvw; + } else { // line + const int nextV = Next3(longSide); + const double alpha = + glm::dot(v - triPos[nextV], edges[longSide]) / d2[longSide]; + uvw[longSide] = 0; + uvw[nextV] = 1 - alpha; + const int lastV = Next3(nextV); + uvw[lastV] = alpha; + return uvw; + } +} + +/** + * The fundamental component of the halfedge data structure used for storing and + * operating on the Manifold. + */ +struct Halfedge { + int startVert, endVert; + int pairedHalfedge; + int face; + bool IsForward() const { return startVert < endVert; } + bool operator<(const Halfedge& other) const { + return startVert == other.startVert ? endVert < other.endVert + : startVert < other.startVert; + } +}; + +struct Barycentric { + int tri; + vec4 uvw; +}; + +struct TriRef { + /// The unique ID of the mesh instance of this triangle. If .meshID and .tri + /// match for two triangles, then they are coplanar and came from the same + /// face. + int meshID; + /// The OriginalID of the mesh this triangle came from. This ID is ideal for + /// reapplying properties like UV coordinates to the output mesh. + int originalID; + /// The triangle index of the original triangle this was part of: + /// Mesh.triVerts[tri]. + int tri; + + bool SameFace(const TriRef& other) const { + return meshID == other.meshID && tri == other.tri; + } +}; + +/** + * This is a temporary edge structure which only stores edges forward and + * references the halfedge it was created from. + */ +struct TmpEdge { + int first, second, halfedgeIdx; + + TmpEdge() {} + TmpEdge(int start, int end, int idx) { + first = std::min(start, end); + second = std::max(start, end); + halfedgeIdx = idx; + } + + bool operator<(const TmpEdge& other) const { + return first == other.first ? second < other.second : first < other.first; + } +}; +/** @} */ + +Vec inline CreateTmpEdges(const Vec& halfedge) { + Vec edges(halfedge.size()); + for_each_n(autoPolicy(edges.size()), countAt(0), edges.size(), + [&edges, &halfedge](const int idx) { + const Halfedge& half = halfedge[idx]; + edges[idx] = TmpEdge(half.startVert, half.endVert, + half.IsForward() ? idx : -1); + }); + + size_t numEdge = + remove_if(edges.begin(), edges.end(), + [](const TmpEdge& edge) { return edge.halfedgeIdx < 0; }) - + edges.begin(); + DEBUG_ASSERT(numEdge == halfedge.size() / 2, topologyErr, "Not oriented!"); + edges.resize(numEdge); + return edges; +} + +template +struct ReindexEdge { + VecView edges; + SparseIndices& indices; + + void operator()(size_t i) { + int& edge = indices.Get(i, inverted); + edge = edges[edge].halfedgeIdx; + } +}; + +#ifdef MANIFOLD_DEBUG +inline std::ostream& operator<<(std::ostream& stream, const Halfedge& edge) { + return stream << "startVert = " << edge.startVert + << ", endVert = " << edge.endVert + << ", pairedHalfedge = " << edge.pairedHalfedge; +} + +inline std::ostream& operator<<(std::ostream& stream, const Barycentric& bary) { + return stream << "tri = " << bary.tri << ", uvw = " << bary.uvw; +} + +inline std::ostream& operator<<(std::ostream& stream, const TriRef& ref) { + return stream << "meshID: " << ref.meshID + << ", originalID: " << ref.originalID << ", tri: " << ref.tri; +} +#endif +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/smoothing.cpp b/thirdparty/manifold/src/manifold/src/smoothing.cpp new file mode 100644 index 000000000000..d085127184e7 --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/smoothing.cpp @@ -0,0 +1,1002 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#define GLM_ENABLE_EXPERIMENTAL +#include + +#include "impl.h" +#include "manifold/parallel.h" + +namespace { +using namespace manifold; + +// Returns a normalized vector orthogonal to ref, in the plane of ref and in, +// unless in and ref are colinear, in which case it falls back to the plane of +// ref and altIn. +vec3 OrthogonalTo(vec3 in, vec3 altIn, vec3 ref) { + vec3 out = in - glm::dot(in, ref) * ref; + if (glm::dot(out, out) < kTolerance * glm::dot(in, in)) { + out = altIn - glm::dot(altIn, ref) * ref; + } + return SafeNormalize(out); +} + +double Wrap(double radians) { + return radians < -glm::pi() ? radians + glm::two_pi() + : radians > glm::pi() ? radians - glm::two_pi() + : radians; +} + +// Get the angle between two unit-vectors. +double AngleBetween(vec3 a, vec3 b) { + const double dot = glm::dot(a, b); + return dot >= 1 ? 0 : (dot <= -1 ? glm::pi() : glm::acos(dot)); +} + +// Calculate a tangent vector in the form of a weighted cubic Bezier taking as +// input the desired tangent direction (length doesn't matter) and the edge +// vector to the neighboring vertex. In a symmetric situation where the tangents +// at each end are mirror images of each other, this will result in a circular +// arc. +vec4 CircularTangent(const vec3& tangent, const vec3& edgeVec) { + const vec3 dir = SafeNormalize(tangent); + + double weight = std::max(0.5, glm::dot(dir, SafeNormalize(edgeVec))); + // Quadratic weighted bezier for circular interpolation + const vec4 bz2 = vec4(dir * 0.5 * glm::length(edgeVec), weight); + // Equivalent cubic weighted bezier + const vec4 bz3 = glm::mix(vec4(0, 0, 0, 1), bz2, 2 / 3.0); + // Convert from homogeneous form to geometric form + return vec4(vec3(bz3) / bz3.w, bz3.w); +} + +struct InterpTri { + VecView vertPos; + VecView vertBary; + const Manifold::Impl* impl; + + static vec4 Homogeneous(vec4 v) { + v.x *= v.w; + v.y *= v.w; + v.z *= v.w; + return v; + } + + static vec4 Homogeneous(vec3 v) { return vec4(v, 1.0); } + + static vec3 HNormalize(vec4 v) { + return v.w == 0 ? vec3(v) : (vec3(v) / v.w); + } + + static vec4 Scale(vec4 v, double scale) { return vec4(scale * vec3(v), v.w); } + + static vec4 Bezier(vec3 point, vec4 tangent) { + return Homogeneous(vec4(point, 0) + tangent); + } + + static mat2x4 CubicBezier2Linear(vec4 p0, vec4 p1, vec4 p2, vec4 p3, + double x) { + mat2x4 out; + vec4 p12 = glm::mix(p1, p2, x); + out[0] = glm::mix(glm::mix(p0, p1, x), p12, x); + out[1] = glm::mix(p12, glm::mix(p2, p3, x), x); + return out; + } + + static vec3 BezierPoint(mat2x4 points, double x) { + return HNormalize(glm::mix(points[0], points[1], x)); + } + + static vec3 BezierTangent(mat2x4 points) { + return SafeNormalize(HNormalize(points[1]) - HNormalize(points[0])); + } + + static vec3 RotateFromTo(vec3 v, quat start, quat end) { + return end * glm::conjugate(start) * v; + } + + static quat Slerp(const quat& x, const quat& y, double a, bool longWay) { + quat z = y; + double cosTheta = glm::dot(x, y); + + // Take the long way around the sphere only when requested + if ((cosTheta < 0) != longWay) { + z = -y; + cosTheta = -cosTheta; + } + + if (cosTheta > 1.0 - glm::epsilon()) { + return glm::lerp(x, z, a); // for numerical stability + } else { + double angle = std::acos(cosTheta); + return (std::sin((1.0 - a) * angle) * x + std::sin(a * angle) * z) / + std::sin(angle); + } + } + + static mat2x4 Bezier2Bezier(const mat2x3& corners, const mat2x4& tangentsX, + const mat2x4& tangentsY, double x, + const vec3& anchor) { + const mat2x4 bez = CubicBezier2Linear( + Homogeneous(corners[0]), Bezier(corners[0], tangentsX[0]), + Bezier(corners[1], tangentsX[1]), Homogeneous(corners[1]), x); + const vec3 end = BezierPoint(bez, x); + const vec3 tangent = BezierTangent(bez); + + const mat2x3 nTangentsX(SafeNormalize(vec3(tangentsX[0])), + -SafeNormalize(vec3(tangentsX[1]))); + const mat2x3 biTangents = { + OrthogonalTo(vec3(tangentsY[0]), (anchor - corners[0]), nTangentsX[0]), + OrthogonalTo(vec3(tangentsY[1]), (anchor - corners[1]), nTangentsX[1])}; + + const quat q0 = + glm::quat_cast(mat3(nTangentsX[0], biTangents[0], + glm::cross(nTangentsX[0], biTangents[0]))); + const quat q1 = + glm::quat_cast(mat3(nTangentsX[1], biTangents[1], + glm::cross(nTangentsX[1], biTangents[1]))); + const vec3 edge = corners[1] - corners[0]; + const bool longWay = + glm::dot(nTangentsX[0], edge) + glm::dot(nTangentsX[1], edge) < 0; + const quat qTmp = Slerp(q0, q1, x, longWay); + const quat q = glm::rotation(qTmp * vec3(1, 0, 0), tangent) * qTmp; + + const vec3 delta = glm::mix(RotateFromTo(vec3(tangentsY[0]), q0, q), + RotateFromTo(vec3(tangentsY[1]), q1, q), x); + const double deltaW = glm::mix(tangentsY[0].w, tangentsY[1].w, x); + + return {Homogeneous(end), vec4(delta, deltaW)}; + } + + static vec3 Bezier2D(const mat4x3& corners, const mat4& tangentsX, + const mat4& tangentsY, double x, double y, + const vec3& centroid) { + mat2x4 bez0 = + Bezier2Bezier({corners[0], corners[1]}, {tangentsX[0], tangentsX[1]}, + {tangentsY[0], tangentsY[1]}, x, centroid); + mat2x4 bez1 = + Bezier2Bezier({corners[2], corners[3]}, {tangentsX[2], tangentsX[3]}, + {tangentsY[2], tangentsY[3]}, 1 - x, centroid); + + const mat2x4 bez = + CubicBezier2Linear(bez0[0], Bezier(vec3(bez0[0]), bez0[1]), + Bezier(vec3(bez1[0]), bez1[1]), bez1[0], y); + return BezierPoint(bez, y); + } + + void operator()(const int vert) { + vec3& pos = vertPos[vert]; + const int tri = vertBary[vert].tri; + const vec4 uvw = vertBary[vert].uvw; + + const ivec4 halfedges = impl->GetHalfedges(tri); + const mat4x3 corners = { + impl->vertPos_[impl->halfedge_[halfedges[0]].startVert], + impl->vertPos_[impl->halfedge_[halfedges[1]].startVert], + impl->vertPos_[impl->halfedge_[halfedges[2]].startVert], + halfedges[3] < 0 + ? vec3(0) + : impl->vertPos_[impl->halfedge_[halfedges[3]].startVert]}; + + for (const int i : {0, 1, 2, 3}) { + if (uvw[i] == 1) { + pos = corners[i]; + return; + } + } + + vec4 posH(0); + + if (halfedges[3] < 0) { // tri + const mat3x4 tangentR = {impl->halfedgeTangent_[halfedges[0]], + impl->halfedgeTangent_[halfedges[1]], + impl->halfedgeTangent_[halfedges[2]]}; + const mat3x4 tangentL = { + impl->halfedgeTangent_[impl->halfedge_[halfedges[2]].pairedHalfedge], + impl->halfedgeTangent_[impl->halfedge_[halfedges[0]].pairedHalfedge], + impl->halfedgeTangent_[impl->halfedge_[halfedges[1]].pairedHalfedge]}; + const vec3 centroid = mat3(corners) * vec3(1.0 / 3); + + for (const int i : {0, 1, 2}) { + const int j = Next3(i); + const int k = Prev3(i); + const double x = uvw[k] / (1 - uvw[i]); + + const mat2x4 bez = + Bezier2Bezier({corners[j], corners[k]}, {tangentR[j], tangentL[k]}, + {tangentL[j], tangentR[k]}, x, centroid); + + const mat2x4 bez1 = CubicBezier2Linear( + bez[0], Bezier(vec3(bez[0]), bez[1]), + Bezier(corners[i], glm::mix(tangentR[i], tangentL[i], x)), + Homogeneous(corners[i]), uvw[i]); + const vec3 p = BezierPoint(bez1, uvw[i]); + posH += Homogeneous(vec4(p, uvw[j] * uvw[k])); + } + } else { // quad + const mat4 tangentsX = { + impl->halfedgeTangent_[halfedges[0]], + impl->halfedgeTangent_[impl->halfedge_[halfedges[0]].pairedHalfedge], + impl->halfedgeTangent_[halfedges[2]], + impl->halfedgeTangent_[impl->halfedge_[halfedges[2]].pairedHalfedge]}; + const mat4 tangentsY = { + impl->halfedgeTangent_[impl->halfedge_[halfedges[3]].pairedHalfedge], + impl->halfedgeTangent_[halfedges[1]], + impl->halfedgeTangent_[impl->halfedge_[halfedges[1]].pairedHalfedge], + impl->halfedgeTangent_[halfedges[3]]}; + const vec3 centroid = corners * vec4(0.25); + const double x = uvw[1] + uvw[2]; + const double y = uvw[2] + uvw[3]; + const vec3 pX = Bezier2D(corners, tangentsX, tangentsY, x, y, centroid); + const vec3 pY = + Bezier2D({corners[1], corners[2], corners[3], corners[0]}, + {tangentsY[1], tangentsY[2], tangentsY[3], tangentsY[0]}, + {tangentsX[1], tangentsX[2], tangentsX[3], tangentsX[0]}, y, + 1 - x, centroid); + posH += Homogeneous(vec4(pX, x * (1 - x))); + posH += Homogeneous(vec4(pY, y * (1 - y))); + } + pos = HNormalize(posH); + } +}; +} // namespace + +namespace manifold { + +/** + * Get the property normal associated with the startVert of this halfedge, where + * normalIdx shows the beginning of where normals are stored in the properties. + */ +vec3 Manifold::Impl::GetNormal(int halfedge, int normalIdx) const { + const int tri = halfedge / 3; + const int j = halfedge % 3; + const int prop = meshRelation_.triProperties[tri][j]; + vec3 normal; + for (const int i : {0, 1, 2}) { + normal[i] = + meshRelation_.properties[prop * meshRelation_.numProp + normalIdx + i]; + } + return normal; +} + +/** + * Returns a circular tangent for the requested halfedge, orthogonal to the + * given normal vector, and avoiding folding. + */ +vec4 Manifold::Impl::TangentFromNormal(const vec3& normal, int halfedge) const { + const Halfedge edge = halfedge_[halfedge]; + const vec3 edgeVec = vertPos_[edge.endVert] - vertPos_[edge.startVert]; + const vec3 edgeNormal = + faceNormal_[halfedge / 3] + faceNormal_[edge.pairedHalfedge / 3]; + vec3 dir = glm::cross(glm::cross(edgeNormal, edgeVec), normal); + return CircularTangent(dir, edgeVec); +} + +/** + * Returns true if this halfedge should be marked as the interior of a quad, as + * defined by its two triangles referring to the same face, and those triangles + * having no further face neighbors beyond. + */ +bool Manifold::Impl::IsInsideQuad(int halfedge) const { + if (halfedgeTangent_.size() > 0) { + return halfedgeTangent_[halfedge].w < 0; + } + const int tri = halfedge / 3; + const TriRef ref = meshRelation_.triRef[tri]; + const int pair = halfedge_[halfedge].pairedHalfedge; + const int pairTri = pair / 3; + const TriRef pairRef = meshRelation_.triRef[pairTri]; + if (!ref.SameFace(pairRef)) return false; + + auto SameFace = [this](int halfedge, const TriRef& ref) { + return ref.SameFace( + meshRelation_.triRef[halfedge_[halfedge].pairedHalfedge / 3]); + }; + + int neighbor = NextHalfedge(halfedge); + if (SameFace(neighbor, ref)) return false; + neighbor = NextHalfedge(neighbor); + if (SameFace(neighbor, ref)) return false; + neighbor = NextHalfedge(pair); + if (SameFace(neighbor, pairRef)) return false; + neighbor = NextHalfedge(neighbor); + if (SameFace(neighbor, pairRef)) return false; + return true; +} + +/** + * Returns true if this halfedge is an interior of a quad, as defined by its + * halfedge tangent having negative weight. + */ +bool Manifold::Impl::IsMarkedInsideQuad(int halfedge) const { + return halfedgeTangent_.size() > 0 && halfedgeTangent_[halfedge].w < 0; +} + +// sharpenedEdges are referenced to the input Mesh, but the triangles have +// been sorted in creating the Manifold, so the indices are converted using +// meshRelation_. +std::vector Manifold::Impl::UpdateSharpenedEdges( + const std::vector& sharpenedEdges) const { + std::unordered_map oldHalfedge2New; + for (size_t tri = 0; tri < NumTri(); ++tri) { + int oldTri = meshRelation_.triRef[tri].tri; + for (int i : {0, 1, 2}) oldHalfedge2New[3 * oldTri + i] = 3 * tri + i; + } + std::vector newSharp = sharpenedEdges; + for (Smoothness& edge : newSharp) { + edge.halfedge = oldHalfedge2New[edge.halfedge]; + } + return newSharp; +} + +// Find faces containing at least 3 triangles - these will not have +// interpolated normals - all their vert normals must match their face normal. +Vec Manifold::Impl::FlatFaces() const { + const int numTri = NumTri(); + Vec triIsFlatFace(numTri, false); + for_each_n(autoPolicy(numTri, 1e5), countAt(0), numTri, + [this, &triIsFlatFace](const int tri) { + const TriRef& ref = meshRelation_.triRef[tri]; + int faceNeighbors = 0; + ivec3 faceTris = {-1, -1, -1}; + for (const int j : {0, 1, 2}) { + const int neighborTri = + halfedge_[3 * tri + j].pairedHalfedge / 3; + const TriRef& jRef = meshRelation_.triRef[neighborTri]; + if (jRef.SameFace(ref)) { + ++faceNeighbors; + faceTris[j] = neighborTri; + } + } + if (faceNeighbors > 1) { + triIsFlatFace[tri] = true; + for (const int j : {0, 1, 2}) { + if (faceTris[j] >= 0) { + triIsFlatFace[faceTris[j]] = true; + } + } + } + }); + return triIsFlatFace; +} + +// Returns a vector of length numVert that has a tri that is part of a +// neighboring flat face if there is only one flat face. If there are none it +// gets -1, and if there are more than one it gets -2. +Vec Manifold::Impl::VertFlatFace(const Vec& flatFaces) const { + Vec vertFlatFace(NumVert(), -1); + Vec vertRef(NumVert(), {-1, -1, -1}); + for (size_t tri = 0; tri < NumTri(); ++tri) { + if (flatFaces[tri]) { + for (const int j : {0, 1, 2}) { + const int vert = halfedge_[3 * tri + j].startVert; + if (vertRef[vert].SameFace(meshRelation_.triRef[tri])) continue; + vertRef[vert] = meshRelation_.triRef[tri]; + vertFlatFace[vert] = vertFlatFace[vert] == -1 ? tri : -2; + } + } + } + return vertFlatFace; +} + +Vec Manifold::Impl::VertHalfedge() const { + Vec vertHalfedge(NumVert()); + for_each_n(autoPolicy(halfedge_.size(), 1e5), countAt(0), halfedge_.size(), + [&vertHalfedge, this](const int idx) { + // arbitrary, last one wins. + vertHalfedge[halfedge_[idx].startVert] = idx; + }); + return vertHalfedge; +} + +std::vector Manifold::Impl::SharpenEdges( + double minSharpAngle, double minSmoothness) const { + std::vector sharpenedEdges; + const double minRadians = glm::radians(minSharpAngle); + for (size_t e = 0; e < halfedge_.size(); ++e) { + if (!halfedge_[e].IsForward()) continue; + const size_t pair = halfedge_[e].pairedHalfedge; + const double dihedral = + std::acos(glm::dot(faceNormal_[e / 3], faceNormal_[pair / 3])); + if (dihedral > minRadians) { + sharpenedEdges.push_back({e, minSmoothness}); + sharpenedEdges.push_back({pair, minSmoothness}); + } + } + return sharpenedEdges; +} + +/** + * Sharpen tangents that intersect an edge to sharpen that edge. The weight is + * unchanged, as this has a squared effect on radius of curvature, except + * in the case of zero radius, which is marked with weight = 0. + */ +void Manifold::Impl::SharpenTangent(int halfedge, double smoothness) { + halfedgeTangent_[halfedge] = + vec4(smoothness * vec3(halfedgeTangent_[halfedge]), + smoothness == 0 ? 0 : halfedgeTangent_[halfedge].w); +} + +/** + * Instead of calculating the internal shared normals like CalculateNormals + * does, this method fills in vertex properties, unshared across edges that + * are bent more than minSharpAngle. + */ +void Manifold::Impl::SetNormals(int normalIdx, double minSharpAngle) { + if (IsEmpty()) return; + if (normalIdx < 0) return; + + const int oldNumProp = NumProp(); + const int numTri = NumTri(); + + Vec triIsFlatFace = FlatFaces(); + Vec vertFlatFace = VertFlatFace(triIsFlatFace); + Vec vertNumSharp(NumVert(), 0); + for (size_t e = 0; e < halfedge_.size(); ++e) { + if (!halfedge_[e].IsForward()) continue; + const int pair = halfedge_[e].pairedHalfedge; + const int tri1 = e / 3; + const int tri2 = pair / 3; + const double dihedral = + glm::degrees(std::acos(glm::dot(faceNormal_[tri1], faceNormal_[tri2]))); + if (dihedral > minSharpAngle) { + ++vertNumSharp[halfedge_[e].startVert]; + ++vertNumSharp[halfedge_[e].endVert]; + } else { + const bool faceSplit = + triIsFlatFace[tri1] != triIsFlatFace[tri2] || + (triIsFlatFace[tri1] && triIsFlatFace[tri2] && + !meshRelation_.triRef[tri1].SameFace(meshRelation_.triRef[tri2])); + if (vertFlatFace[halfedge_[e].startVert] == -2 && faceSplit) { + ++vertNumSharp[halfedge_[e].startVert]; + } + if (vertFlatFace[halfedge_[e].endVert] == -2 && faceSplit) { + ++vertNumSharp[halfedge_[e].endVert]; + } + } + } + + const int numProp = std::max(oldNumProp, normalIdx + 3); + Vec oldProperties(numProp * NumPropVert(), 0); + meshRelation_.properties.swap(oldProperties); + meshRelation_.numProp = numProp; + if (meshRelation_.triProperties.size() == 0) { + meshRelation_.triProperties.resize(numTri); + for_each_n(autoPolicy(numTri, 1e5), countAt(0), numTri, [this](int tri) { + for (const int j : {0, 1, 2}) + meshRelation_.triProperties[tri][j] = halfedge_[3 * tri + j].startVert; + }); + } + Vec oldTriProp(numTri, {-1, -1, -1}); + meshRelation_.triProperties.swap(oldTriProp); + + for (int tri = 0; tri < numTri; ++tri) { + for (const int i : {0, 1, 2}) { + if (meshRelation_.triProperties[tri][i] >= 0) continue; + int startEdge = 3 * tri + i; + const int vert = halfedge_[startEdge].startVert; + + if (vertNumSharp[vert] < 2) { // vertex has single normal + const vec3 normal = vertFlatFace[vert] >= 0 + ? faceNormal_[vertFlatFace[vert]] + : vertNormal_[vert]; + int lastProp = -1; + ForVert(startEdge, [&](int current) { + const int thisTri = current / 3; + const int j = current - 3 * thisTri; + const int prop = oldTriProp[thisTri][j]; + meshRelation_.triProperties[thisTri][j] = prop; + if (prop == lastProp) return; + lastProp = prop; + // update property vertex + auto start = oldProperties.begin() + prop * oldNumProp; + std::copy(start, start + oldNumProp, + meshRelation_.properties.begin() + prop * numProp); + for (const int i : {0, 1, 2}) + meshRelation_.properties[prop * numProp + normalIdx + i] = + normal[i]; + }); + } else { // vertex has multiple normals + const vec3 centerPos = vertPos_[vert]; + // Length degree + std::vector group; + // Length number of normals + std::vector normals; + int current = startEdge; + int prevFace = current / 3; + + do { // find a sharp edge to start on + int next = NextHalfedge(halfedge_[current].pairedHalfedge); + const int face = next / 3; + + const double dihedral = glm::degrees( + std::acos(glm::dot(faceNormal_[face], faceNormal_[prevFace]))); + if (dihedral > minSharpAngle || + triIsFlatFace[face] != triIsFlatFace[prevFace] || + (triIsFlatFace[face] && triIsFlatFace[prevFace] && + !meshRelation_.triRef[face].SameFace( + meshRelation_.triRef[prevFace]))) { + break; + } + current = next; + prevFace = face; + } while (current != startEdge); + + const int endEdge = current; + + struct FaceEdge { + int face; + vec3 edgeVec; + }; + + // calculate pseudo-normals between each sharp edge + ForVert( + endEdge, + [this, centerPos, &vertNumSharp, &vertFlatFace](int current) { + if (IsInsideQuad(current)) { + return FaceEdge({current / 3, vec3(NAN)}); + } + const int vert = halfedge_[current].endVert; + vec3 pos = vertPos_[vert]; + const vec3 edgeVec = centerPos - pos; + if (vertNumSharp[vert] < 2) { + // opposite vert has fixed normal + const vec3 normal = vertFlatFace[vert] >= 0 + ? faceNormal_[vertFlatFace[vert]] + : vertNormal_[vert]; + // Flair out the normal we're calculating to give the edge a + // more constant curvature to meet the opposite normal. Achieve + // this by pointing the tangent toward the opposite bezier + // control point instead of the vert itself. + pos += vec3(TangentFromNormal( + normal, halfedge_[current].pairedHalfedge)); + } + return FaceEdge({current / 3, SafeNormalize(pos - centerPos)}); + }, + [this, &triIsFlatFace, &normals, &group, minSharpAngle]( + int current, const FaceEdge& here, FaceEdge& next) { + const double dihedral = glm::degrees(std::acos( + glm::dot(faceNormal_[here.face], faceNormal_[next.face]))); + if (dihedral > minSharpAngle || + triIsFlatFace[here.face] != triIsFlatFace[next.face] || + (triIsFlatFace[here.face] && triIsFlatFace[next.face] && + !meshRelation_.triRef[here.face].SameFace( + meshRelation_.triRef[next.face]))) { + normals.push_back(vec3(0)); + } + group.push_back(normals.size() - 1); + if (std::isfinite(next.edgeVec.x)) { + normals.back() += + SafeNormalize(glm::cross(next.edgeVec, here.edgeVec)) * + AngleBetween(here.edgeVec, next.edgeVec); + } else { + next.edgeVec = here.edgeVec; + } + }); + + for (auto& normal : normals) { + normal = SafeNormalize(normal); + } + + int lastGroup = 0; + int lastProp = -1; + int newProp = -1; + int idx = 0; + ForVert(endEdge, [&](int current1) { + const int thisTri = current1 / 3; + const int j = current1 - 3 * thisTri; + const int prop = oldTriProp[thisTri][j]; + auto start = oldProperties.begin() + prop * oldNumProp; + + if (group[idx] != lastGroup && group[idx] != 0 && prop == lastProp) { + // split property vertex, duplicating but with an updated normal + lastGroup = group[idx]; + newProp = NumPropVert(); + meshRelation_.properties.resize(meshRelation_.properties.size() + + numProp); + std::copy(start, start + oldNumProp, + meshRelation_.properties.begin() + newProp * numProp); + for (const int i : {0, 1, 2}) { + meshRelation_.properties[newProp * numProp + normalIdx + i] = + normals[group[idx]][i]; + } + } else if (prop != lastProp) { + // update property vertex + lastProp = prop; + newProp = prop; + std::copy(start, start + oldNumProp, + meshRelation_.properties.begin() + prop * numProp); + for (const int i : {0, 1, 2}) + meshRelation_.properties[prop * numProp + normalIdx + i] = + normals[group[idx]][i]; + } + + // point to updated property vertex + meshRelation_.triProperties[thisTri][j] = newProp; + ++idx; + }); + } + } + } +} + +/** + * Tangents get flattened to create sharp edges by setting their weight to zero. + * This is the natural limit of reducing the weight to increase the sharpness + * smoothly. This limit gives a decent shape, but it causes the parameterization + * to be stretched and compresses it near the edges, which is good for resolving + * tight curvature, but bad for property interpolation. This function fixes the + * parameter stretch at the limit for sharp edges, since there is no curvature + * to resolve. Note this also changes the overall shape - making it more evenly + * curved. + */ +void Manifold::Impl::LinearizeFlatTangents() { + const int n = halfedgeTangent_.size(); + for_each_n(autoPolicy(n, 1e4), countAt(0), n, [this](const int halfedge) { + vec4& tangent = halfedgeTangent_[halfedge]; + vec4& otherTangent = halfedgeTangent_[halfedge_[halfedge].pairedHalfedge]; + + const bool flat[2] = {tangent.w == 0, otherTangent.w == 0}; + if (!halfedge_[halfedge].IsForward() || (!flat[0] && !flat[1])) { + return; + } + + const vec3 edgeVec = vertPos_[halfedge_[halfedge].endVert] - + vertPos_[halfedge_[halfedge].startVert]; + + if (flat[0] && flat[1]) { + tangent = vec4(edgeVec / 3.0, 1); + otherTangent = vec4(-edgeVec / 3.0, 1); + } else if (flat[0]) { + tangent = vec4((edgeVec + vec3(otherTangent)) / 2.0, 1); + } else { + otherTangent = vec4((-edgeVec + vec3(tangent)) / 2.0, 1); + } + }); +} + +/** + * Redistribute the tangents around each vertex so that the angles between them + * have the same ratios as the angles of the triangles between the corresponding + * edges. This avoids folding the output shape and gives smoother results. There + * must be at least one fixed halfedge on a vertex for that vertex to be + * operated on. If there is only one, then that halfedge is not treated as + * fixed, but the whole circle is turned to an average orientation. + */ +void Manifold::Impl::DistributeTangents(const Vec& fixedHalfedges) { + const int numHalfedge = fixedHalfedges.size(); + for_each_n( + autoPolicy(numHalfedge, 1e4), countAt(0), numHalfedge, + [this, &fixedHalfedges](int halfedge) { + if (!fixedHalfedges[halfedge]) return; + + if (IsMarkedInsideQuad(halfedge)) { + halfedge = NextHalfedge(halfedge_[halfedge].pairedHalfedge); + } + + vec3 normal(0); + Vec currentAngle; + Vec desiredAngle; + + const vec3 approxNormal = vertNormal_[halfedge_[halfedge].startVert]; + const vec3 center = vertPos_[halfedge_[halfedge].startVert]; + vec3 lastEdgeVec = + SafeNormalize(vertPos_[halfedge_[halfedge].endVert] - center); + const vec3 firstTangent = + SafeNormalize(vec3(halfedgeTangent_[halfedge])); + vec3 lastTangent = firstTangent; + int current = halfedge; + do { + current = NextHalfedge(halfedge_[current].pairedHalfedge); + if (IsMarkedInsideQuad(current)) continue; + const vec3 thisEdgeVec = + SafeNormalize(vertPos_[halfedge_[current].endVert] - center); + const vec3 thisTangent = + SafeNormalize(vec3(halfedgeTangent_[current])); + normal += glm::cross(thisTangent, lastTangent); + // cumulative sum + desiredAngle.push_back( + AngleBetween(thisEdgeVec, lastEdgeVec) + + (desiredAngle.size() > 0 ? desiredAngle.back() : 0)); + if (current == halfedge) { + currentAngle.push_back(glm::two_pi()); + } else { + currentAngle.push_back(AngleBetween(thisTangent, firstTangent)); + if (glm::dot(approxNormal, glm::cross(thisTangent, firstTangent)) < + 0) { + currentAngle.back() = glm::two_pi() - currentAngle.back(); + } + } + lastEdgeVec = thisEdgeVec; + lastTangent = thisTangent; + } while (!fixedHalfedges[current]); + + if (currentAngle.size() == 1 || glm::dot(normal, normal) == 0) return; + + const double scale = currentAngle.back() / desiredAngle.back(); + double offset = 0; + if (current == halfedge) { // only one - find average offset + for (size_t i = 0; i < currentAngle.size(); ++i) { + offset += Wrap(currentAngle[i] - scale * desiredAngle[i]); + } + offset /= currentAngle.size(); + } + + current = halfedge; + size_t i = 0; + do { + current = NextHalfedge(halfedge_[current].pairedHalfedge); + if (IsMarkedInsideQuad(current)) continue; + desiredAngle[i] *= scale; + const double lastAngle = i > 0 ? desiredAngle[i - 1] : 0; + // shrink obtuse angles + if (desiredAngle[i] - lastAngle > glm::pi()) { + desiredAngle[i] = lastAngle + glm::pi(); + } else if (i + 1 < desiredAngle.size() && + scale * desiredAngle[i + 1] - desiredAngle[i] > + glm::pi()) { + desiredAngle[i] = scale * desiredAngle[i + 1] - glm::pi(); + } + const double angle = currentAngle[i] - desiredAngle[i] - offset; + vec3 tangent(halfedgeTangent_[current]); + halfedgeTangent_[current] = vec4(glm::rotate(tangent, angle, normal), + halfedgeTangent_[current].w); + ++i; + } while (!fixedHalfedges[current]); + }); +} + +/** + * Calculates halfedgeTangent_, allowing the manifold to be refined and + * smoothed. The tangents form weighted cubic Beziers along each edge. This + * function creates circular arcs where possible (minimizing maximum curvature), + * constrained to the indicated property normals. Across edges that form + * discontinuities in the normals, the tangent vectors are zero-length, allowing + * the shape to form a sharp corner with minimal oscillation. + */ +void Manifold::Impl::CreateTangents(int normalIdx) { + ZoneScoped; + const int numVert = NumVert(); + const int numHalfedge = halfedge_.size(); + halfedgeTangent_.resize(0); + Vec tangent(numHalfedge); + Vec fixedHalfedge(numHalfedge, false); + + Vec vertHalfedge = VertHalfedge(); + for_each_n( + autoPolicy(numVert, 1e4), vertHalfedge.begin(), numVert, + [this, &tangent, &fixedHalfedge, normalIdx](int e) { + struct FlatNormal { + bool isFlatFace; + vec3 normal; + }; + + ivec2 faceEdges(-1, -1); + + ForVert( + e, + [normalIdx, this](int halfedge) { + const vec3 normal = GetNormal(halfedge, normalIdx); + const vec3 diff = faceNormal_[halfedge / 3] - normal; + return FlatNormal( + {glm::dot(diff, diff) < kTolerance * kTolerance, normal}); + }, + [&faceEdges, &tangent, &fixedHalfedge, this]( + int halfedge, const FlatNormal& here, const FlatNormal& next) { + if (IsInsideQuad(halfedge)) { + tangent[halfedge] = {0, 0, 0, -1}; + return; + } + // mark special edges + const vec3 diff = next.normal - here.normal; + const bool differentNormals = + glm::dot(diff, diff) > kTolerance * kTolerance; + if (differentNormals || here.isFlatFace != next.isFlatFace) { + fixedHalfedge[halfedge] = true; + if (faceEdges[0] == -1) { + faceEdges[0] = halfedge; + } else if (faceEdges[1] == -1) { + faceEdges[1] = halfedge; + } else { + faceEdges[0] = -2; + } + } + // calculate tangents + if (differentNormals) { + const vec3 edgeVec = vertPos_[halfedge_[halfedge].endVert] - + vertPos_[halfedge_[halfedge].startVert]; + const vec3 dir = glm::cross(here.normal, next.normal); + tangent[halfedge] = CircularTangent( + glm::sign(glm::dot(dir, edgeVec)) * dir, edgeVec); + } else { + tangent[halfedge] = TangentFromNormal(here.normal, halfedge); + } + }); + + if (faceEdges[0] >= 0 && faceEdges[1] >= 0) { + const vec3 edge0 = vertPos_[halfedge_[faceEdges[0]].endVert] - + vertPos_[halfedge_[faceEdges[0]].startVert]; + const vec3 edge1 = vertPos_[halfedge_[faceEdges[1]].endVert] - + vertPos_[halfedge_[faceEdges[1]].startVert]; + const vec3 newTangent = glm::normalize(edge0) - glm::normalize(edge1); + tangent[faceEdges[0]] = CircularTangent(newTangent, edge0); + tangent[faceEdges[1]] = CircularTangent(-newTangent, edge1); + } else if (faceEdges[0] == -1 && faceEdges[0] == -1) { + fixedHalfedge[e] = true; + } + }); + + halfedgeTangent_.swap(tangent); + DistributeTangents(fixedHalfedge); +} + +/** + * Calculates halfedgeTangent_, allowing the manifold to be refined and + * smoothed. The tangents form weighted cubic Beziers along each edge. This + * function creates circular arcs where possible (minimizing maximum curvature), + * constrained to the vertex normals. Where sharpenedEdges are specified, the + * tangents are shortened that intersect the sharpened edge, concentrating the + * curvature there, while the tangents of the sharp edges themselves are aligned + * for continuity. + */ +void Manifold::Impl::CreateTangents(std::vector sharpenedEdges) { + ZoneScoped; + const int numHalfedge = halfedge_.size(); + halfedgeTangent_.resize(0); + Vec tangent(numHalfedge); + Vec fixedHalfedge(numHalfedge, false); + + Vec vertHalfedge = VertHalfedge(); + Vec triIsFlatFace = FlatFaces(); + Vec vertFlatFace = VertFlatFace(triIsFlatFace); + Vec vertNormal = vertNormal_; + for (size_t v = 0; v < NumVert(); ++v) { + if (vertFlatFace[v] >= 0) { + vertNormal[v] = faceNormal_[vertFlatFace[v]]; + } + } + + for_each_n(autoPolicy(numHalfedge, 1e4), countAt(0), numHalfedge, + [&tangent, &vertNormal, this](const int edgeIdx) { + tangent[edgeIdx] = + IsInsideQuad(edgeIdx) + ? vec4(0, 0, 0, -1) + : TangentFromNormal( + vertNormal[halfedge_[edgeIdx].startVert], edgeIdx); + }); + + halfedgeTangent_.swap(tangent); + + // Add sharpened edges around faces, just on the face side. + for (size_t tri = 0; tri < NumTri(); ++tri) { + if (!triIsFlatFace[tri]) continue; + for (const int j : {0, 1, 2}) { + const int tri2 = halfedge_[3 * tri + j].pairedHalfedge / 3; + if (!triIsFlatFace[tri2] || + !meshRelation_.triRef[tri].SameFace(meshRelation_.triRef[tri2])) { + sharpenedEdges.push_back({3 * tri + j, 0}); + } + } + } + + using Pair = std::pair; + // Fill in missing pairs with default smoothness = 1. + std::map edges; + for (Smoothness edge : sharpenedEdges) { + if (edge.smoothness >= 1) continue; + const bool forward = halfedge_[edge.halfedge].IsForward(); + const int pair = halfedge_[edge.halfedge].pairedHalfedge; + const int idx = forward ? edge.halfedge : pair; + if (edges.find(idx) == edges.end()) { + edges[idx] = {edge, {static_cast(pair), 1}}; + if (!forward) std::swap(edges[idx].first, edges[idx].second); + } else { + Smoothness& e = forward ? edges[idx].first : edges[idx].second; + e.smoothness = std::min(edge.smoothness, e.smoothness); + } + } + + std::map> vertTangents; + for (const auto& value : edges) { + const Pair edge = value.second; + vertTangents[halfedge_[edge.first.halfedge].startVert].push_back(edge); + vertTangents[halfedge_[edge.second.halfedge].startVert].push_back( + {edge.second, edge.first}); + } + + const int numVert = NumVert(); + for_each_n( + autoPolicy(numVert, 1e4), countAt(0), numVert, + [this, &vertTangents, &fixedHalfedge, &vertHalfedge, + &triIsFlatFace](int v) { + auto it = vertTangents.find(v); + if (it == vertTangents.end()) { + fixedHalfedge[vertHalfedge[v]] = true; + return; + } + const std::vector& vert = it->second; + // Sharp edges that end are smooth at their terminal vert. + if (vert.size() == 1) return; + if (vert.size() == 2) { // Make continuous edge + const int first = vert[0].first.halfedge; + const int second = vert[1].first.halfedge; + fixedHalfedge[first] = true; + fixedHalfedge[second] = true; + const vec3 newTangent = glm::normalize( + vec3(halfedgeTangent_[first]) - vec3(halfedgeTangent_[second])); + + const vec3 pos = vertPos_[halfedge_[first].startVert]; + halfedgeTangent_[first] = CircularTangent( + newTangent, vertPos_[halfedge_[first].endVert] - pos); + halfedgeTangent_[second] = CircularTangent( + -newTangent, vertPos_[halfedge_[second].endVert] - pos); + + double smoothness = + (vert[0].second.smoothness + vert[1].first.smoothness) / 2; + ForVert(first, [this, &smoothness, &vert, first, + second](int current) { + if (current == second) { + smoothness = + (vert[1].second.smoothness + vert[0].first.smoothness) / 2; + } else if (current != first && !IsMarkedInsideQuad(current)) { + SharpenTangent(current, smoothness); + } + }); + } else { // Sharpen vertex uniformly + double smoothness = 0; + double denom = 0; + for (const Pair& pair : vert) { + smoothness += pair.first.smoothness; + smoothness += pair.second.smoothness; + denom += pair.first.smoothness == 0 ? 0 : 1; + denom += pair.second.smoothness == 0 ? 0 : 1; + } + smoothness /= denom; + + ForVert(vert[0].first.halfedge, + [this, &triIsFlatFace, smoothness](int current) { + if (!IsMarkedInsideQuad(current)) { + const int pair = halfedge_[current].pairedHalfedge; + SharpenTangent(current, triIsFlatFace[current / 3] || + triIsFlatFace[pair / 3] + ? 0 + : smoothness); + } + }); + } + }); + + LinearizeFlatTangents(); + DistributeTangents(fixedHalfedge); +} + +void Manifold::Impl::Refine(std::function edgeDivisions) { + if (IsEmpty()) return; + Manifold::Impl old = *this; + Vec vertBary = Subdivide(edgeDivisions); + if (vertBary.size() == 0) return; + + if (old.halfedgeTangent_.size() == old.halfedge_.size()) { + for_each_n(autoPolicy(NumTri(), 1e4), countAt(0), NumVert(), + InterpTri({vertPos_, vertBary, &old})); + // Make original since the subdivided faces have been warped into + // being non-coplanar, and hence not being related to the original faces. + InitializeOriginal(); + } + + halfedgeTangent_.resize(0); + Finish(); +} + +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/sort.cpp b/thirdparty/manifold/src/manifold/src/sort.cpp new file mode 100644 index 000000000000..6a1c5653b181 --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/sort.cpp @@ -0,0 +1,530 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include +#include + +#include "impl.h" +#include "manifold/parallel.h" + +namespace { +using namespace manifold; + +constexpr uint32_t kNoCode = 0xFFFFFFFFu; + +uint32_t MortonCode(vec3 position, Box bBox) { + // Unreferenced vertices are marked NaN, and this will sort them to the end + // (the Morton code only uses the first 30 of 32 bits). + if (isnan(position.x)) return kNoCode; + + return Collider::MortonCode(position, bBox); +} + +struct Reindex { + VecView indexInv; + + void operator()(Halfedge& edge) { + if (edge.startVert < 0) return; + edge.startVert = indexInv[edge.startVert]; + edge.endVert = indexInv[edge.endVert]; + } +}; + +struct MarkProp { + VecView keep; + + void operator()(ivec3 triProp) { + for (const int i : {0, 1, 2}) { + reinterpret_cast*>(&keep[triProp[i]]) + ->store(1, std::memory_order_relaxed); + } + } +}; + +struct ReindexProps { + VecView old2new; + + void operator()(ivec3& triProp) { + for (const int i : {0, 1, 2}) { + triProp[i] = old2new[triProp[i]]; + } + } +}; + +struct ReindexFace { + VecView halfedge; + VecView halfedgeTangent; + VecView oldHalfedge; + VecView oldHalfedgeTangent; + VecView faceNew2Old; + VecView faceOld2New; + + void operator()(int newFace) { + const int oldFace = faceNew2Old[newFace]; + for (const int i : {0, 1, 2}) { + const int oldEdge = 3 * oldFace + i; + Halfedge edge = oldHalfedge[oldEdge]; + const int pairedFace = edge.pairedHalfedge / 3; + const int offset = edge.pairedHalfedge - 3 * pairedFace; + edge.pairedHalfedge = 3 * faceOld2New[pairedFace] + offset; + const int newEdge = 3 * newFace + i; + halfedge[newEdge] = edge; + if (!oldHalfedgeTangent.empty()) { + halfedgeTangent[newEdge] = oldHalfedgeTangent[oldEdge]; + } + } + } +}; + +template +bool MergeMeshGLP(MeshGLP& mesh) { + ZoneScoped; + std::multiset> openEdges; + + std::vector merge(mesh.NumVert()); + std::iota(merge.begin(), merge.end(), 0); + for (size_t i = 0; i < mesh.mergeFromVert.size(); ++i) { + merge[mesh.mergeFromVert[i]] = mesh.mergeToVert[i]; + } + + const auto numVert = mesh.NumVert(); + const auto numTri = mesh.NumTri(); + const int next[3] = {1, 2, 0}; + for (size_t tri = 0; tri < numTri; ++tri) { + for (int i : {0, 1, 2}) { + auto edge = std::make_pair(merge[mesh.triVerts[3 * tri + next[i]]], + merge[mesh.triVerts[3 * tri + i]]); + auto it = openEdges.find(edge); + if (it == openEdges.end()) { + std::swap(edge.first, edge.second); + openEdges.insert(edge); + } else { + openEdges.erase(it); + } + } + } + if (openEdges.empty()) { + return false; + } + + const auto numOpenVert = openEdges.size(); + Vec openVerts(numOpenVert); + int i = 0; + for (const auto& edge : openEdges) { + const int vert = edge.first; + openVerts[i++] = vert; + } + + Vec vertPropD(mesh.vertProperties); + Box bBox; + for (const int i : {0, 1, 2}) { + auto iPos = + StridedRange(vertPropD.begin() + i, vertPropD.end(), mesh.numProp); + auto minMax = manifold::transform_reduce( + iPos.begin(), iPos.end(), + std::make_pair(std::numeric_limits::infinity(), + -std::numeric_limits::infinity()), + [](auto a, auto b) { + return std::make_pair(std::min(a.first, b.first), + std::max(a.second, b.second)); + }, + [](double f) { return std::make_pair(f, f); }); + bBox.min[i] = minMax.first; + bBox.max[i] = minMax.second; + } + mesh.precision = MaxPrecision(mesh.precision, bBox); + if (mesh.precision < 0) return false; + auto policy = autoPolicy(numOpenVert, 1e5); + Vec vertBox(numOpenVert); + Vec vertMorton(numOpenVert); + + for_each_n(policy, countAt(0), numOpenVert, + [&vertMorton, &vertBox, &openVerts, &bBox, &mesh](const int i) { + int vert = openVerts[i]; + + const vec3 center(mesh.vertProperties[mesh.numProp * vert], + mesh.vertProperties[mesh.numProp * vert + 1], + mesh.vertProperties[mesh.numProp * vert + 2]); + + vertBox[i].min = center - mesh.precision / 2.0; + vertBox[i].max = center + mesh.precision / 2.0; + + vertMorton[i] = MortonCode(center, bBox); + }); + + Vec vertNew2Old(numOpenVert); + sequence(vertNew2Old.begin(), vertNew2Old.end()); + + stable_sort(vertNew2Old.begin(), vertNew2Old.end(), + [&vertMorton](const int& a, const int& b) { + return vertMorton[a] < vertMorton[b]; + }); + + Permute(vertMorton, vertNew2Old); + Permute(vertBox, vertNew2Old); + Permute(openVerts, vertNew2Old); + Collider collider(vertBox, vertMorton); + SparseIndices toMerge = collider.Collisions(vertBox.cview()); + + UnionFind<> uf(numVert); + for (size_t i = 0; i < mesh.mergeFromVert.size(); ++i) { + uf.unionXY(static_cast(mesh.mergeFromVert[i]), + static_cast(mesh.mergeToVert[i])); + } + for (size_t i = 0; i < toMerge.size(); ++i) { + uf.unionXY(openVerts[toMerge.Get(i, false)], + openVerts[toMerge.Get(i, true)]); + } + + mesh.mergeToVert.clear(); + mesh.mergeFromVert.clear(); + for (size_t v = 0; v < numVert; ++v) { + const size_t mergeTo = uf.find(v); + if (mergeTo != v) { + mesh.mergeFromVert.push_back(v); + mesh.mergeToVert.push_back(mergeTo); + } + } + + return true; +} +} // namespace + +namespace manifold { + +/** + * Once halfedge_ has been filled in, this function can be called to create the + * rest of the internal data structures. This function also removes the verts + * and halfedges flagged for removal (NaN verts and -1 halfedges). + */ +void Manifold::Impl::Finish() { + if (halfedge_.size() == 0) return; + + CalculateBBox(); + SetPrecision(precision_); + if (!bBox_.IsFinite()) { + // Decimated out of existence - early out. + MarkFailure(Error::NoError); + return; + } + + SortVerts(); + Vec faceBox; + Vec faceMorton; + GetFaceBoxMorton(faceBox, faceMorton); + SortFaces(faceBox, faceMorton); + if (halfedge_.size() == 0) return; + CompactProps(); + + DEBUG_ASSERT(halfedge_.size() % 6 == 0, topologyErr, + "Not an even number of faces after sorting faces!"); + +#ifdef MANIFOLD_DEBUG + auto MaxOrMinus = [](int a, int b) { + return std::min(a, b) < 0 ? -1 : std::max(a, b); + }; + int face = 0; + Halfedge extrema = {0, 0, 0, 0}; + for (size_t i = 0; i < halfedge_.size(); i++) { + Halfedge e = halfedge_[i]; + if (!e.IsForward()) std::swap(e.startVert, e.endVert); + extrema.startVert = std::min(extrema.startVert, e.startVert); + extrema.endVert = std::min(extrema.endVert, e.endVert); + extrema.pairedHalfedge = + MaxOrMinus(extrema.pairedHalfedge, e.pairedHalfedge); + face = MaxOrMinus(face, i / 3); + } + DEBUG_ASSERT(extrema.startVert >= 0, topologyErr, + "Vertex index is negative!"); + DEBUG_ASSERT(extrema.endVert < static_cast(NumVert()), topologyErr, + "Vertex index exceeds number of verts!"); + DEBUG_ASSERT(extrema.pairedHalfedge >= 0, topologyErr, + "Halfedge index is negative!"); + DEBUG_ASSERT(extrema.pairedHalfedge < 2 * static_cast(NumEdge()), + topologyErr, "Halfedge index exceeds number of halfedges!"); + DEBUG_ASSERT(face >= 0, topologyErr, "Face index is negative!"); + DEBUG_ASSERT(face < static_cast(NumTri()), topologyErr, + "Face index exceeds number of faces!"); +#endif + + DEBUG_ASSERT(meshRelation_.triRef.size() == NumTri() || + meshRelation_.triRef.size() == 0, + logicErr, "Mesh Relation doesn't fit!"); + DEBUG_ASSERT(faceNormal_.size() == NumTri() || faceNormal_.size() == 0, + logicErr, + "faceNormal size = " + std::to_string(faceNormal_.size()) + + ", NumTri = " + std::to_string(NumTri())); + // TODO: figure out why this has a flaky failure and then enable reading + // vertNormals from a Mesh. + // DEBUG_ASSERT(vertNormal_.size() == NumVert() || vertNormal_.size() == 0, + // logicErr, + // "vertNormal size = " + std::to_string(vertNormal_.size()) + + // ", NumVert = " + std::to_string(NumVert())); + + CalculateNormals(); + collider_ = Collider(faceBox, faceMorton); + + DEBUG_ASSERT(Is2Manifold(), logicErr, "mesh is not 2-manifold!"); +} + +/** + * Sorts the vertices according to their Morton code. + */ +void Manifold::Impl::SortVerts() { + ZoneScoped; + const auto numVert = NumVert(); + Vec vertMorton(numVert); + auto policy = autoPolicy(numVert, 1e5); + for_each_n(policy, countAt(0), numVert, [this, &vertMorton](const int vert) { + vertMorton[vert] = MortonCode(vertPos_[vert], bBox_); + }); + + Vec vertNew2Old(numVert); + sequence(vertNew2Old.begin(), vertNew2Old.end()); + + stable_sort(vertNew2Old.begin(), vertNew2Old.end(), + [&vertMorton](const int& a, const int& b) { + return vertMorton[a] < vertMorton[b]; + }); + + ReindexVerts(vertNew2Old, numVert); + + // Verts were flagged for removal with NaNs and assigned kNoCode to sort + // them to the end, which allows them to be removed. + const auto newNumVert = std::find_if(vertNew2Old.begin(), vertNew2Old.end(), + [&vertMorton](const int vert) { + return vertMorton[vert] == kNoCode; + }) - + vertNew2Old.begin(); + + vertNew2Old.resize(newNumVert); + Permute(vertPos_, vertNew2Old); + + if (vertNormal_.size() == numVert) { + Permute(vertNormal_, vertNew2Old); + } +} + +/** + * Updates the halfedges to point to new vert indices based on a mapping, + * vertNew2Old. This may be a subset, so the total number of original verts is + * also given. + */ +void Manifold::Impl::ReindexVerts(const Vec& vertNew2Old, + size_t oldNumVert) { + ZoneScoped; + Vec vertOld2New(oldNumVert); + scatter(countAt(0), countAt(static_cast(NumVert())), vertNew2Old.begin(), + vertOld2New.begin()); + for_each(autoPolicy(oldNumVert, 1e5), halfedge_.begin(), halfedge_.end(), + Reindex({vertOld2New})); +} + +/** + * Removes unreferenced property verts and reindexes triProperties. + */ +void Manifold::Impl::CompactProps() { + ZoneScoped; + if (meshRelation_.numProp == 0) return; + + const auto numVerts = meshRelation_.properties.size() / meshRelation_.numProp; + Vec keep(numVerts, 0); + auto policy = autoPolicy(numVerts, 1e5); + + for_each(policy, meshRelation_.triProperties.cbegin(), + meshRelation_.triProperties.cend(), MarkProp({keep})); + Vec propOld2New(numVerts + 1, 0); + inclusive_scan(keep.begin(), keep.end(), propOld2New.begin() + 1); + + Vec oldProp = meshRelation_.properties; + const int numVertsNew = propOld2New[numVerts]; + const int numProp = meshRelation_.numProp; + auto& properties = meshRelation_.properties; + properties.resize(numProp * numVertsNew); + for_each_n( + policy, countAt(0), numVerts, + [&properties, &oldProp, &propOld2New, &keep, &numProp](const int oldIdx) { + if (keep[oldIdx] == 0) return; + for (int p = 0; p < numProp; ++p) { + properties[propOld2New[oldIdx] * numProp + p] = + oldProp[oldIdx * numProp + p]; + } + }); + for_each_n(policy, meshRelation_.triProperties.begin(), NumTri(), + ReindexProps({propOld2New})); +} + +/** + * Fills the faceBox and faceMorton input with the bounding boxes and Morton + * codes of the faces, respectively. The Morton code is based on the center of + * the bounding box. + */ +void Manifold::Impl::GetFaceBoxMorton(Vec& faceBox, + Vec& faceMorton) const { + ZoneScoped; + faceBox.resize(NumTri()); + faceMorton.resize(NumTri()); + for_each_n(autoPolicy(NumTri(), 1e5), countAt(0), NumTri(), + [this, &faceBox, &faceMorton](const int face) { + // Removed tris are marked by all halfedges having pairedHalfedge + // = -1, and this will sort them to the end (the Morton code only + // uses the first 30 of 32 bits). + if (halfedge_[3 * face].pairedHalfedge < 0) { + faceMorton[face] = kNoCode; + return; + } + + vec3 center(0.0); + + for (const int i : {0, 1, 2}) { + const vec3 pos = vertPos_[halfedge_[3 * face + i].startVert]; + center += pos; + faceBox[face].Union(pos); + } + center /= 3; + + faceMorton[face] = MortonCode(center, bBox_); + }); +} + +/** + * Sorts the faces of this manifold according to their input Morton code. The + * bounding box and Morton code arrays are also sorted accordingly. + */ +void Manifold::Impl::SortFaces(Vec& faceBox, Vec& faceMorton) { + ZoneScoped; + Vec faceNew2Old(NumTri()); + sequence(faceNew2Old.begin(), faceNew2Old.end()); + + stable_sort(faceNew2Old.begin(), faceNew2Old.end(), + [&faceMorton](const int& a, const int& b) { + return faceMorton[a] < faceMorton[b]; + }); + + // Tris were flagged for removal with pairedHalfedge = -1 and assigned kNoCode + // to sort them to the end, which allows them to be removed. + const int newNumTri = std::find_if(faceNew2Old.begin(), faceNew2Old.end(), + [&faceMorton](const int face) { + return faceMorton[face] == kNoCode; + }) - + faceNew2Old.begin(); + faceNew2Old.resize(newNumTri); + + Permute(faceMorton, faceNew2Old); + Permute(faceBox, faceNew2Old); + GatherFaces(faceNew2Old); +} + +/** + * Creates the halfedge_ vector for this manifold by copying a set of faces from + * another manifold, given by oldHalfedge. Input faceNew2Old defines the old + * faces to gather into this. + */ +void Manifold::Impl::GatherFaces(const Vec& faceNew2Old) { + ZoneScoped; + const auto numTri = faceNew2Old.size(); + if (meshRelation_.triRef.size() == NumTri()) + Permute(meshRelation_.triRef, faceNew2Old); + if (meshRelation_.triProperties.size() == NumTri()) + Permute(meshRelation_.triProperties, faceNew2Old); + if (faceNormal_.size() == NumTri()) Permute(faceNormal_, faceNew2Old); + + Vec oldHalfedge(std::move(halfedge_)); + Vec oldHalfedgeTangent(std::move(halfedgeTangent_)); + Vec faceOld2New(oldHalfedge.size() / 3); + auto policy = autoPolicy(numTri, 1e5); + scatter(countAt(0_uz), countAt(numTri), faceNew2Old.begin(), + faceOld2New.begin()); + + halfedge_.resize(3 * numTri); + if (oldHalfedgeTangent.size() != 0) halfedgeTangent_.resize(3 * numTri); + for_each_n(policy, countAt(0), numTri, + ReindexFace({halfedge_, halfedgeTangent_, oldHalfedge, + oldHalfedgeTangent, faceNew2Old, faceOld2New})); +} + +void Manifold::Impl::GatherFaces(const Impl& old, const Vec& faceNew2Old) { + ZoneScoped; + const auto numTri = faceNew2Old.size(); + + meshRelation_.triRef.resize(numTri); + gather(faceNew2Old.begin(), faceNew2Old.end(), + old.meshRelation_.triRef.begin(), meshRelation_.triRef.begin()); + + for (const auto& pair : old.meshRelation_.meshIDtransform) { + meshRelation_.meshIDtransform[pair.first] = pair.second; + } + + if (old.meshRelation_.triProperties.size() > 0) { + meshRelation_.triProperties.resize(numTri); + gather(faceNew2Old.begin(), faceNew2Old.end(), + old.meshRelation_.triProperties.begin(), + meshRelation_.triProperties.begin()); + meshRelation_.numProp = old.meshRelation_.numProp; + meshRelation_.properties = old.meshRelation_.properties; + } + + if (old.faceNormal_.size() == old.NumTri()) { + faceNormal_.resize(numTri); + gather(faceNew2Old.begin(), faceNew2Old.end(), old.faceNormal_.begin(), + faceNormal_.begin()); + } + + Vec faceOld2New(old.NumTri()); + scatter(countAt(0_uz), countAt(numTri), faceNew2Old.begin(), + faceOld2New.begin()); + + halfedge_.resize(3 * numTri); + if (old.halfedgeTangent_.size() != 0) halfedgeTangent_.resize(3 * numTri); + for_each_n(autoPolicy(numTri, 1e5), countAt(0), numTri, + ReindexFace({halfedge_, halfedgeTangent_, old.halfedge_, + old.halfedgeTangent_, faceNew2Old, faceOld2New})); +} + +/** + * Updates the mergeFromVert and mergeToVert vectors in order to create a + * manifold solid. If the MeshGL is already manifold, no change will occur and + * the function will return false. Otherwise, this will merge verts along open + * edges within precision (the maximum of the MeshGL precision and the baseline + * bounding-box precision), keeping any from the existing merge vectors. + * + * There is no guarantee the result will be manifold - this is a best-effort + * helper function designed primarily to aid in the case where a manifold + * multi-material MeshGL was produced, but its merge vectors were lost due to a + * round-trip through a file format. Constructing a Manifold from the result + * will report a Status if it is not manifold. + */ +template <> +bool MeshGL::Merge() { + return MergeMeshGLP(*this); +} + +/** + * Updates the mergeFromVert and mergeToVert vectors in order to create a + * manifold solid. If the MeshGL is already manifold, no change will occur and + * the function will return false. Otherwise, this will merge verts along open + * edges within precision (the maximum of the MeshGL precision and the baseline + * bounding-box precision), keeping any from the existing merge vectors. + * + * There is no guarantee the result will be manifold - this is a best-effort + * helper function designed primarily to aid in the case where a manifold + * multi-material MeshGL was produced, but its merge vectors were lost due to a + * round-trip through a file format. Constructing a Manifold from the result + * will report a Status if it is not manifold. + */ +template <> +bool MeshGL64::Merge() { + return MergeMeshGLP(*this); +} +} // namespace manifold diff --git a/thirdparty/manifold/src/manifold/src/subdivision.cpp b/thirdparty/manifold/src/manifold/src/subdivision.cpp new file mode 100644 index 000000000000..fca2a9aaf8ab --- /dev/null +++ b/thirdparty/manifold/src/manifold/src/subdivision.cpp @@ -0,0 +1,759 @@ +// Copyright 2024 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "impl.h" +#include "manifold/parallel.h" + +template <> +struct std::hash { + size_t operator()(const manifold::ivec4& p) const { + return std::hash()(p.x) ^ std::hash()(p.y) ^ + std::hash()(p.z) ^ std::hash()(p.w); + } +}; + +namespace { +using namespace manifold; + +class Partition { + public: + // The cached partitions don't have idx - it's added to the copy returned + // from GetPartition that contains the mapping of the input divisions into the + // sorted divisions that are uniquely cached. + ivec4 idx; + ivec4 sortedDivisions; + Vec vertBary; + Vec triVert; + + int InteriorOffset() const { + return sortedDivisions[0] + sortedDivisions[1] + sortedDivisions[2] + + sortedDivisions[3]; + } + + int NumInterior() const { return vertBary.size() - InteriorOffset(); } + + static Partition GetPartition(ivec4 divisions) { + if (divisions[0] == 0) return Partition(); // skip wrong side of quad + + ivec4 sortedDiv = divisions; + ivec4 triIdx = {0, 1, 2, 3}; + if (divisions[3] == 0) { // triangle + if (sortedDiv[2] > sortedDiv[1]) { + std::swap(sortedDiv[2], sortedDiv[1]); + std::swap(triIdx[2], triIdx[1]); + } + if (sortedDiv[1] > sortedDiv[0]) { + std::swap(sortedDiv[1], sortedDiv[0]); + std::swap(triIdx[1], triIdx[0]); + if (sortedDiv[2] > sortedDiv[1]) { + std::swap(sortedDiv[2], sortedDiv[1]); + std::swap(triIdx[2], triIdx[1]); + } + } + } else { // quad + int minIdx = 0; + int min = divisions[minIdx]; + int next = divisions[1]; + for (const int i : {1, 2, 3}) { + const int n = divisions[(i + 1) % 4]; + if (divisions[i] < min || (divisions[i] == min && n < next)) { + minIdx = i; + min = divisions[i]; + next = n; + } + } + // Backwards (mirrored) quads get a separate cache key for now for + // simplicity, so there is no reversal necessary for quads when + // re-indexing. + ivec4 tmp = sortedDiv; + for (const int i : {0, 1, 2, 3}) { + triIdx[i] = (i + minIdx) % 4; + sortedDiv[i] = tmp[triIdx[i]]; + } + } + + Partition partition = GetCachedPartition(sortedDiv); + partition.idx = triIdx; + + return partition; + } + + Vec Reindex(ivec4 triVerts, ivec4 edgeOffsets, glm::bvec4 edgeFwd, + int interiorOffset) const { + Vec newVerts; + newVerts.reserve(vertBary.size()); + ivec4 triIdx = idx; + ivec4 outTri = {0, 1, 2, 3}; + if (triVerts[3] < 0 && idx[1] != Next3(idx[0])) { + triIdx = {idx[2], idx[0], idx[1], idx[3]}; + edgeFwd = glm::not_(edgeFwd); + std::swap(outTri[0], outTri[1]); + } + for (const int i : {0, 1, 2, 3}) { + if (triVerts[triIdx[i]] >= 0) newVerts.push_back(triVerts[triIdx[i]]); + } + for (const int i : {0, 1, 2, 3}) { + const int n = sortedDivisions[i] - 1; + int offset = edgeOffsets[idx[i]] + (edgeFwd[idx[i]] ? 0 : n - 1); + for (int j = 0; j < n; ++j) { + newVerts.push_back(offset); + offset += edgeFwd[idx[i]] ? 1 : -1; + } + } + const int offset = interiorOffset - newVerts.size(); + size_t old = newVerts.size(); + newVerts.resize(vertBary.size()); + std::iota(newVerts.begin() + old, newVerts.end(), old + offset); + + const int numTri = triVert.size(); + Vec newTriVert(numTri); + for_each_n(autoPolicy(numTri), countAt(0), numTri, + [&newTriVert, &outTri, &newVerts, this](const int tri) { + for (const int j : {0, 1, 2}) { + newTriVert[tri][outTri[j]] = newVerts[triVert[tri][j]]; + } + }); + return newTriVert; + } + + private: + static inline auto cacheLock = std::mutex(); + static inline auto cache = + std::unordered_map>(); + + // This triangulation is purely topological - it depends only on the number of + // divisions of the three sides of the triangle. This allows them to be cached + // and reused for similar triangles. The shape of the final surface is defined + // by the tangents and the barycentric coordinates of the new verts. For + // triangles, the input must be sorted: n[0] >= n[1] >= n[2] > 0. + static Partition GetCachedPartition(ivec4 n) { + { + auto lockGuard = std::lock_guard(cacheLock); + auto cached = cache.find(n); + if (cached != cache.end()) { + return *cached->second; + } + } + Partition partition; + partition.sortedDivisions = n; + if (n[3] > 0) { // quad + partition.vertBary.push_back({1, 0, 0, 0}); + partition.vertBary.push_back({0, 1, 0, 0}); + partition.vertBary.push_back({0, 0, 1, 0}); + partition.vertBary.push_back({0, 0, 0, 1}); + ivec4 edgeOffsets; + edgeOffsets[0] = 4; + for (const int i : {0, 1, 2, 3}) { + if (i > 0) { + edgeOffsets[i] = edgeOffsets[i - 1] + n[i - 1] - 1; + } + const vec4 nextBary = partition.vertBary[(i + 1) % 4]; + for (int j = 1; j < n[i]; ++j) { + partition.vertBary.push_back( + glm::mix(partition.vertBary[i], nextBary, (double)j / n[i])); + } + } + PartitionQuad(partition.triVert, partition.vertBary, {0, 1, 2, 3}, + edgeOffsets, n - 1, {true, true, true, true}); + } else { // tri + partition.vertBary.push_back({1, 0, 0, 0}); + partition.vertBary.push_back({0, 1, 0, 0}); + partition.vertBary.push_back({0, 0, 1, 0}); + for (const int i : {0, 1, 2}) { + const vec4 nextBary = partition.vertBary[(i + 1) % 3]; + for (int j = 1; j < n[i]; ++j) { + partition.vertBary.push_back( + glm::mix(partition.vertBary[i], nextBary, (double)j / n[i])); + } + } + const ivec3 edgeOffsets = {3, 3 + n[0] - 1, 3 + n[0] - 1 + n[1] - 1}; + + const double f = n[2] * n[2] + n[0] * n[0]; + if (n[1] == 1) { + if (n[0] == 1) { + partition.triVert.push_back({0, 1, 2}); + } else { + PartitionFan(partition.triVert, {0, 1, 2}, n[0] - 1, edgeOffsets[0]); + } + } else if (n[1] * n[1] > f - std::sqrt(2.0) * n[0] * n[2]) { // acute-ish + partition.triVert.push_back({edgeOffsets[1] - 1, 1, edgeOffsets[1]}); + PartitionQuad(partition.triVert, partition.vertBary, + {edgeOffsets[1] - 1, edgeOffsets[1], 2, 0}, + {-1, edgeOffsets[1] + 1, edgeOffsets[2], edgeOffsets[0]}, + {0, n[1] - 2, n[2] - 1, n[0] - 2}, + {true, true, true, true}); + } else { // obtuse -> spit into two acute + // portion of n[0] under n[2] + const int ns = + std::min(n[0] - 2, (int)std::round((f - n[1] * n[1]) / (2 * n[0]))); + // height from n[0]: nh <= n[2] + const int nh = + std::max(1., std::round(std::sqrt(n[2] * n[2] - ns * ns))); + + const int hOffset = partition.vertBary.size(); + const vec4 middleBary = partition.vertBary[edgeOffsets[0] + ns - 1]; + for (int j = 1; j < nh; ++j) { + partition.vertBary.push_back( + glm::mix(partition.vertBary[2], middleBary, (double)j / nh)); + } + + partition.triVert.push_back({edgeOffsets[1] - 1, 1, edgeOffsets[1]}); + PartitionQuad( + partition.triVert, partition.vertBary, + {edgeOffsets[1] - 1, edgeOffsets[1], 2, edgeOffsets[0] + ns - 1}, + {-1, edgeOffsets[1] + 1, hOffset, edgeOffsets[0] + ns}, + {0, n[1] - 2, nh - 1, n[0] - ns - 2}, {true, true, true, true}); + + if (n[2] == 1) { + PartitionFan(partition.triVert, {0, edgeOffsets[0] + ns - 1, 2}, + ns - 1, edgeOffsets[0]); + } else { + if (ns == 1) { + partition.triVert.push_back({hOffset, 2, edgeOffsets[2]}); + PartitionQuad(partition.triVert, partition.vertBary, + {hOffset, edgeOffsets[2], 0, edgeOffsets[0]}, + {-1, edgeOffsets[2] + 1, -1, hOffset + nh - 2}, + {0, n[2] - 2, ns - 1, nh - 2}, + {true, true, true, false}); + } else { + partition.triVert.push_back({hOffset - 1, 0, edgeOffsets[0]}); + PartitionQuad( + partition.triVert, partition.vertBary, + {hOffset - 1, edgeOffsets[0], edgeOffsets[0] + ns - 1, 2}, + {-1, edgeOffsets[0] + 1, hOffset + nh - 2, edgeOffsets[2]}, + {0, ns - 2, nh - 1, n[2] - 2}, {true, true, false, true}); + } + } + } + } + + auto lockGuard = std::lock_guard(cacheLock); + cache.insert({n, std::make_unique(partition)}); + return partition; + } + + // Side 0 has added edges while sides 1 and 2 do not. Fan spreads from vert 2. + static void PartitionFan(Vec& triVert, ivec3 cornerVerts, int added, + int edgeOffset) { + int last = cornerVerts[0]; + for (int i = 0; i < added; ++i) { + const int next = edgeOffset + i; + triVert.push_back({last, next, cornerVerts[2]}); + last = next; + } + triVert.push_back({last, cornerVerts[1], cornerVerts[2]}); + } + + // Partitions are parallel to the first edge unless two consecutive edgeAdded + // are zero, in which case a terminal triangulation is performed. + static void PartitionQuad(Vec& triVert, Vec& vertBary, + ivec4 cornerVerts, ivec4 edgeOffsets, + ivec4 edgeAdded, glm::bvec4 edgeFwd) { + auto GetEdgeVert = [&](int edge, int idx) { + return edgeOffsets[edge] + (edgeFwd[edge] ? 1 : -1) * idx; + }; + + DEBUG_ASSERT(glm::all(glm::greaterThanEqual(edgeAdded, ivec4(0))), logicErr, + "negative divisions!"); + + int corner = -1; + int last = 3; + int maxEdge = -1; + for (const int i : {0, 1, 2, 3}) { + if (corner == -1 && edgeAdded[i] == 0 && edgeAdded[last] == 0) { + corner = i; + } + if (edgeAdded[i] > 0) { + maxEdge = maxEdge == -1 ? i : -2; + } + last = i; + } + if (corner >= 0) { // terminate + if (maxEdge >= 0) { + ivec4 edge = (ivec4(0, 1, 2, 3) + maxEdge) % 4; + const int middle = edgeAdded[maxEdge] / 2; + triVert.push_back({cornerVerts[edge[2]], cornerVerts[edge[3]], + GetEdgeVert(maxEdge, middle)}); + int last = cornerVerts[edge[0]]; + for (int i = 0; i <= middle; ++i) { + const int next = GetEdgeVert(maxEdge, i); + triVert.push_back({cornerVerts[edge[3]], last, next}); + last = next; + } + last = cornerVerts[edge[1]]; + for (int i = edgeAdded[maxEdge] - 1; i >= middle; --i) { + const int next = GetEdgeVert(maxEdge, i); + triVert.push_back({cornerVerts[edge[2]], next, last}); + last = next; + } + } else { + int sideVert = cornerVerts[0]; // initial value is unused + for (const int j : {1, 2}) { + const int side = (corner + j) % 4; + if (j == 2 && edgeAdded[side] > 0) { + triVert.push_back( + {cornerVerts[side], GetEdgeVert(side, 0), sideVert}); + } else { + sideVert = cornerVerts[side]; + } + for (int i = 0; i < edgeAdded[side]; ++i) { + const int nextVert = GetEdgeVert(side, i); + triVert.push_back({cornerVerts[corner], sideVert, nextVert}); + sideVert = nextVert; + } + if (j == 2 || edgeAdded[side] == 0) { + triVert.push_back({cornerVerts[corner], sideVert, + cornerVerts[(corner + j + 1) % 4]}); + } + } + } + return; + } + // recursively partition + const int partitions = 1 + std::min(edgeAdded[1], edgeAdded[3]); + ivec4 newCornerVerts = {cornerVerts[1], -1, -1, cornerVerts[0]}; + ivec4 newEdgeOffsets = {edgeOffsets[1], -1, + GetEdgeVert(3, edgeAdded[3] + 1), edgeOffsets[0]}; + ivec4 newEdgeAdded = {0, -1, 0, edgeAdded[0]}; + glm::bvec4 newEdgeFwd = {edgeFwd[1], true, edgeFwd[3], edgeFwd[0]}; + + for (int i = 1; i < partitions; ++i) { + const int cornerOffset1 = (edgeAdded[1] * i) / partitions; + const int cornerOffset3 = + edgeAdded[3] - 1 - (edgeAdded[3] * i) / partitions; + const int nextOffset1 = GetEdgeVert(1, cornerOffset1 + 1); + const int nextOffset3 = GetEdgeVert(3, cornerOffset3 + 1); + const int added = std::round(glm::mix( + (double)edgeAdded[0], (double)edgeAdded[2], (double)i / partitions)); + + newCornerVerts[1] = GetEdgeVert(1, cornerOffset1); + newCornerVerts[2] = GetEdgeVert(3, cornerOffset3); + newEdgeAdded[0] = std::abs(nextOffset1 - newEdgeOffsets[0]) - 1; + newEdgeAdded[1] = added; + newEdgeAdded[2] = std::abs(nextOffset3 - newEdgeOffsets[2]) - 1; + newEdgeOffsets[1] = vertBary.size(); + newEdgeOffsets[2] = nextOffset3; + + for (int j = 0; j < added; ++j) { + vertBary.push_back(glm::mix(vertBary[newCornerVerts[1]], + vertBary[newCornerVerts[2]], + (j + 1.0) / (added + 1.0))); + } + + PartitionQuad(triVert, vertBary, newCornerVerts, newEdgeOffsets, + newEdgeAdded, newEdgeFwd); + + newCornerVerts[0] = newCornerVerts[1]; + newCornerVerts[3] = newCornerVerts[2]; + newEdgeAdded[3] = newEdgeAdded[1]; + newEdgeOffsets[0] = nextOffset1; + newEdgeOffsets[3] = newEdgeOffsets[1] + newEdgeAdded[1] - 1; + newEdgeFwd[3] = false; + } + + newCornerVerts[1] = cornerVerts[2]; + newCornerVerts[2] = cornerVerts[3]; + newEdgeOffsets[1] = edgeOffsets[2]; + newEdgeAdded[0] = + edgeAdded[1] - std::abs(newEdgeOffsets[0] - edgeOffsets[1]); + newEdgeAdded[1] = edgeAdded[2]; + newEdgeAdded[2] = std::abs(newEdgeOffsets[2] - edgeOffsets[3]) - 1; + newEdgeOffsets[2] = edgeOffsets[3]; + newEdgeFwd[1] = edgeFwd[2]; + + PartitionQuad(triVert, vertBary, newCornerVerts, newEdgeOffsets, + newEdgeAdded, newEdgeFwd); + } +}; +} // namespace + +namespace manifold { + +/** + * Returns the tri side index (0-2) connected to the other side of this quad if + * this tri is part of a quad, or -1 otherwise. + */ +int Manifold::Impl::GetNeighbor(int tri) const { + int neighbor = -1; + for (const int i : {0, 1, 2}) { + if (IsMarkedInsideQuad(3 * tri + i)) { + neighbor = neighbor == -1 ? i : -2; + } + } + return neighbor; +} + +/** + * For the given triangle index, returns either the three halfedge indices of + * that triangle and halfedges[3] = -1, or if the triangle is part of a quad, it + * returns those four indices. If the triangle is part of a quad and is not the + * lower of the two triangle indices, it returns all -1s. + */ +ivec4 Manifold::Impl::GetHalfedges(int tri) const { + ivec4 halfedges(-1); + for (const int i : {0, 1, 2}) { + halfedges[i] = 3 * tri + i; + } + const int neighbor = GetNeighbor(tri); + if (neighbor >= 0) { // quad + const int pair = halfedge_[3 * tri + neighbor].pairedHalfedge; + if (pair / 3 < tri) { + return ivec4(-1); // only process lower tri index + } + // The order here matters to keep small quads split the way they started, or + // else it can create a 4-manifold edge. + halfedges[2] = NextHalfedge(halfedges[neighbor]); + halfedges[3] = NextHalfedge(halfedges[2]); + halfedges[0] = NextHalfedge(pair); + halfedges[1] = NextHalfedge(halfedges[0]); + } + return halfedges; +} + +/** + * Returns the BaryIndices, which gives the tri and indices (0-3), such that + * GetHalfedges(val.tri)[val.start4] points back to this halfedge, and val.end4 + * will point to the next one. This function handles this for both triangles and + * quads. Returns {-1, -1, -1} if the edge is the interior of a quad. + */ +Manifold::Impl::BaryIndices Manifold::Impl::GetIndices(int halfedge) const { + int tri = halfedge / 3; + int idx = halfedge % 3; + const int neighbor = GetNeighbor(tri); + if (idx == neighbor) { + return {-1, -1, -1}; + } + + if (neighbor < 0) { // tri + return {tri, idx, Next3(idx)}; + } else { // quad + const int pair = halfedge_[3 * tri + neighbor].pairedHalfedge; + if (pair / 3 < tri) { + tri = pair / 3; + idx = Next3(neighbor) == idx ? 0 : 1; + } else { + idx = Next3(neighbor) == idx ? 2 : 3; + } + return {tri, idx, (idx + 1) % 4}; + } +} + +/** + * Retained verts are part of several triangles, and it doesn't matter which one + * the vertBary refers to. Here, whichever is last will win and it's done on the + * CPU for simplicity for now. Using AtomicCAS on .tri should work for a GPU + * version if desired. + */ +void Manifold::Impl::FillRetainedVerts(Vec& vertBary) const { + const int numTri = halfedge_.size() / 3; + for (int tri = 0; tri < numTri; ++tri) { + for (const int i : {0, 1, 2}) { + const BaryIndices indices = GetIndices(3 * tri + i); + if (indices.start4 < 0) continue; // skip quad interiors + vec4 uvw(0); + uvw[indices.start4] = 1; + vertBary[halfedge_[3 * tri + i].startVert] = {indices.tri, uvw}; + } + } +} + +/** + * Split each edge into n pieces as defined by calling the edgeDivisions + * function, and sub-triangulate each triangle accordingly. This function + * doesn't run Finish(), as that is expensive and it'll need to be run after + * the new vertices have moved, which is a likely scenario after refinement + * (smoothing). + */ +Vec Manifold::Impl::Subdivide( + std::function edgeDivisions) { + Vec edges = CreateTmpEdges(halfedge_); + const int numVert = NumVert(); + const int numEdge = edges.size(); + const int numTri = NumTri(); + Vec half2Edge(2 * numEdge); + auto policy = autoPolicy(numEdge, 1e4); + for_each_n(policy, countAt(0), numEdge, + [&half2Edge, &edges, this](const int edge) { + const int idx = edges[edge].halfedgeIdx; + half2Edge[idx] = edge; + half2Edge[halfedge_[idx].pairedHalfedge] = edge; + }); + + Vec faceHalfedges(numTri); + for_each_n(policy, countAt(0), numTri, [&faceHalfedges, this](const int tri) { + faceHalfedges[tri] = GetHalfedges(tri); + }); + + Vec edgeAdded(numEdge); + for_each_n(policy, countAt(0), numEdge, + [&edgeAdded, &edges, edgeDivisions, this](const int i) { + const TmpEdge edge = edges[i]; + if (IsMarkedInsideQuad(edge.halfedgeIdx)) { + edgeAdded[i] = 0; + return; + } + const vec3 vec = vertPos_[edge.first] - vertPos_[edge.second]; + edgeAdded[i] = edgeDivisions(vec); + }); + + Vec edgeOffset(numEdge); + exclusive_scan(edgeAdded.begin(), edgeAdded.end(), edgeOffset.begin(), + numVert); + + Vec vertBary(edgeOffset.back() + edgeAdded.back()); + const int totalEdgeAdded = vertBary.size() - numVert; + FillRetainedVerts(vertBary); + for_each_n(policy, countAt(0), numEdge, + [&vertBary, &edges, &edgeAdded, &edgeOffset, this](const int i) { + const int n = edgeAdded[i]; + const int offset = edgeOffset[i]; + + const BaryIndices indices = GetIndices(edges[i].halfedgeIdx); + if (indices.tri < 0) { + return; // inside quad + } + const double frac = 1.0 / (n + 1); + + for (int i = 0; i < n; ++i) { + vec4 uvw(0); + uvw[indices.end4] = (i + 1) * frac; + uvw[indices.start4] = 1 - uvw[indices.end4]; + vertBary[offset + i].uvw = uvw; + vertBary[offset + i].tri = indices.tri; + } + }); + + std::vector subTris(numTri); + for_each_n(policy, countAt(0), numTri, + [this, &subTris, &half2Edge, &edgeAdded, &faceHalfedges](int tri) { + const ivec4 halfedges = faceHalfedges[tri]; + ivec4 divisions(0); + for (const int i : {0, 1, 2, 3}) { + if (halfedges[i] >= 0) { + divisions[i] = edgeAdded[half2Edge[halfedges[i]]] + 1; + } + } + subTris[tri] = Partition::GetPartition(divisions); + }); + + Vec triOffset(numTri); + auto numSubTris = + TransformIterator(subTris.begin(), [](const Partition& part) { + return static_cast(part.triVert.size()); + }); + manifold::exclusive_scan(numSubTris, numSubTris + numTri, triOffset.begin(), + 0); + + Vec interiorOffset(numTri); + auto numInterior = + TransformIterator(subTris.begin(), [](const Partition& part) { + return static_cast(part.NumInterior()); + }); + manifold::exclusive_scan(numInterior, numInterior + numTri, + interiorOffset.begin(), + static_cast(vertBary.size())); + + Vec triVerts(triOffset.back() + subTris.back().triVert.size()); + vertBary.resize(interiorOffset.back() + subTris.back().NumInterior()); + Vec triRef(triVerts.size()); + for_each_n( + policy, countAt(0), numTri, + [this, &triVerts, &triRef, &vertBary, &subTris, &edgeOffset, &half2Edge, + &triOffset, &interiorOffset, &faceHalfedges](int tri) { + const ivec4 halfedges = faceHalfedges[tri]; + if (halfedges[0] < 0) return; + ivec4 tri3; + ivec4 edgeOffsets; + glm::bvec4 edgeFwd(false); + for (const int i : {0, 1, 2, 3}) { + if (halfedges[i] < 0) { + tri3[i] = -1; + continue; + } + const Halfedge& halfedge = halfedge_[halfedges[i]]; + tri3[i] = halfedge.startVert; + edgeOffsets[i] = edgeOffset[half2Edge[halfedges[i]]]; + edgeFwd[i] = halfedge.IsForward(); + } + + Vec newTris = subTris[tri].Reindex(tri3, edgeOffsets, edgeFwd, + interiorOffset[tri]); + copy(newTris.begin(), newTris.end(), triVerts.begin() + triOffset[tri]); + auto start = triRef.begin() + triOffset[tri]; + fill(start, start + newTris.size(), meshRelation_.triRef[tri]); + + const ivec4 idx = subTris[tri].idx; + const ivec4 vIdx = halfedges[3] >= 0 || idx[1] == Next3(idx[0]) + ? idx + : ivec4(idx[2], idx[0], idx[1], idx[3]); + ivec4 rIdx; + for (const int i : {0, 1, 2, 3}) { + rIdx[vIdx[i]] = i; + } + + const auto& subBary = subTris[tri].vertBary; + transform(subBary.begin() + subTris[tri].InteriorOffset(), + subBary.end(), vertBary.begin() + interiorOffset[tri], + [tri, rIdx](vec4 bary) { + return Barycentric({tri, + {bary[rIdx[0]], bary[rIdx[1]], + bary[rIdx[2]], bary[rIdx[3]]}}); + }); + }); + meshRelation_.triRef = triRef; + + Vec newVertPos(vertBary.size()); + for_each_n(policy, countAt(0), vertBary.size(), + [&newVertPos, &vertBary, &faceHalfedges, this](const int vert) { + const Barycentric bary = vertBary[vert]; + const ivec4 halfedges = faceHalfedges[bary.tri]; + if (halfedges[3] < 0) { + mat3 triPos; + for (const int i : {0, 1, 2}) { + triPos[i] = vertPos_[halfedge_[halfedges[i]].startVert]; + } + newVertPos[vert] = triPos * vec3(bary.uvw); + } else { + mat4x3 quadPos; + for (const int i : {0, 1, 2, 3}) { + quadPos[i] = vertPos_[halfedge_[halfedges[i]].startVert]; + } + newVertPos[vert] = quadPos * bary.uvw; + } + }); + vertPos_ = newVertPos; + + faceNormal_.resize(0); + + if (meshRelation_.numProp > 0) { + const int numPropVert = NumPropVert(); + const int addedVerts = NumVert() - numVert; + const int propOffset = numPropVert - numVert; + Vec prop(meshRelation_.numProp * + (numPropVert + addedVerts + totalEdgeAdded)); + + // copy retained prop verts + copy(meshRelation_.properties.begin(), meshRelation_.properties.end(), + prop.begin()); + + // copy interior prop verts and forward edge prop verts + for_each_n( + policy, countAt(0), addedVerts, + [&prop, &vertBary, &faceHalfedges, numVert, numPropVert, + this](const int i) { + const int vert = numPropVert + i; + const Barycentric bary = vertBary[numVert + i]; + const ivec4 halfedges = faceHalfedges[bary.tri]; + auto& rel = meshRelation_; + + for (int p = 0; p < rel.numProp; ++p) { + if (halfedges[3] < 0) { + vec3 triProp; + for (const int i : {0, 1, 2}) { + triProp[i] = rel.properties[rel.triProperties[bary.tri][i] * + rel.numProp + + p]; + } + prop[vert * rel.numProp + p] = glm::dot(triProp, vec3(bary.uvw)); + } else { + vec4 quadProp; + for (const int i : {0, 1, 2, 3}) { + const int tri = halfedges[i] / 3; + const int j = halfedges[i] % 3; + quadProp[i] = + rel.properties[rel.triProperties[tri][j] * rel.numProp + p]; + } + prop[vert * rel.numProp + p] = glm::dot(quadProp, bary.uvw); + } + } + }); + + // copy backward edge prop verts + for_each_n(policy, countAt(0), numEdge, + [this, &prop, &edges, &edgeAdded, &edgeOffset, propOffset, + addedVerts](const int i) { + const int n = edgeAdded[i]; + const int offset = edgeOffset[i] + propOffset + addedVerts; + auto& rel = meshRelation_; + + const double frac = 1.0 / (n + 1); + const int halfedgeIdx = + halfedge_[edges[i].halfedgeIdx].pairedHalfedge; + const int v0 = halfedgeIdx % 3; + const int tri = halfedgeIdx / 3; + const int prop0 = rel.triProperties[tri][v0]; + const int prop1 = rel.triProperties[tri][Next3(v0)]; + for (int i = 0; i < n; ++i) { + for (int p = 0; p < rel.numProp; ++p) { + prop[(offset + i) * rel.numProp + p] = + glm::mix(rel.properties[prop0 * rel.numProp + p], + rel.properties[prop1 * rel.numProp + p], + (i + 1) * frac); + } + } + }); + + Vec triProp(triVerts.size()); + for_each_n(policy, countAt(0), numTri, + [this, &triProp, &subTris, &edgeOffset, &half2Edge, &triOffset, + &interiorOffset, &faceHalfedges, propOffset, + addedVerts](const int tri) { + const ivec4 halfedges = faceHalfedges[tri]; + if (halfedges[0] < 0) return; + + auto& rel = meshRelation_; + ivec4 tri3; + ivec4 edgeOffsets; + glm::bvec4 edgeFwd(true); + for (const int i : {0, 1, 2, 3}) { + if (halfedges[i] < 0) { + tri3[i] = -1; + continue; + } + const int thisTri = halfedges[i] / 3; + const int j = halfedges[i] % 3; + const Halfedge& halfedge = halfedge_[halfedges[i]]; + tri3[i] = rel.triProperties[thisTri][j]; + edgeOffsets[i] = edgeOffset[half2Edge[halfedges[i]]]; + if (!halfedge.IsForward()) { + const int pairTri = halfedge.pairedHalfedge / 3; + const int k = halfedge.pairedHalfedge % 3; + if (rel.triProperties[pairTri][k] != + rel.triProperties[thisTri][Next3(j)] || + rel.triProperties[pairTri][Next3(k)] != + rel.triProperties[thisTri][j]) { + edgeOffsets[i] += addedVerts; + } else { + edgeFwd[i] = false; + } + } + } + + Vec newTris = subTris[tri].Reindex( + tri3, edgeOffsets + propOffset, edgeFwd, + interiorOffset[tri] + propOffset); + copy(newTris.begin(), newTris.end(), + triProp.begin() + triOffset[tri]); + }); + + meshRelation_.properties = prop; + meshRelation_.triProperties = triProp; + } + + CreateHalfedges(triVerts); + + return vertBary; +} + +} // namespace manifold diff --git a/thirdparty/manifold/src/polygon/include/manifold/polygon.h b/thirdparty/manifold/src/polygon/include/manifold/polygon.h new file mode 100644 index 000000000000..789b405b9713 --- /dev/null +++ b/thirdparty/manifold/src/polygon/include/manifold/polygon.h @@ -0,0 +1,48 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#include "manifold/common.h" + +namespace manifold { + +/** @addtogroup Private + * @{ + */ + +/** + * Polygon vertex. + */ +struct PolyVert { + /// X-Y position + vec2 pos; + /// ID or index into another vertex vector + int idx; +}; + +using SimplePolygonIdx = std::vector; +using PolygonsIdx = std::vector; + +std::vector TriangulateIdx(const PolygonsIdx &polys, + double precision = -1); +/** @} */ + +/** @ingroup Connections + * @{ + */ +std::vector Triangulate(const Polygons &polygons, double precision = -1); + +ExecutionParams &PolygonParams(); +/** @} */ +} // namespace manifold diff --git a/thirdparty/manifold/src/polygon/src/polygon.cpp b/thirdparty/manifold/src/polygon/src/polygon.cpp new file mode 100644 index 000000000000..0843db7137d2 --- /dev/null +++ b/thirdparty/manifold/src/polygon/src/polygon.cpp @@ -0,0 +1,1010 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "manifold/polygon.h" + +#include +#include +#include + +#include "manifold/collider.h" +#include "manifold/optional_assert.h" +#include "manifold/utils.h" + +namespace { +using namespace manifold; + +static ExecutionParams params; + +constexpr double kBest = -std::numeric_limits::infinity(); + +// it seems that MSVC cannot optimize glm::determinant(mat2(a, b)) +constexpr double determinant2x2(vec2 a, vec2 b) { + return a.x * b.y - a.y * b.x; +} + +#ifdef MANIFOLD_DEBUG +struct PolyEdge { + int startVert, endVert; +}; + +std::vector Polygons2Edges(const PolygonsIdx &polys) { + std::vector halfedges; + for (const auto &poly : polys) { + for (size_t i = 1; i < poly.size(); ++i) { + halfedges.push_back({poly[i - 1].idx, poly[i].idx}); + } + halfedges.push_back({poly.back().idx, poly[0].idx}); + } + return halfedges; +} + +std::vector Triangles2Edges(const std::vector &triangles) { + std::vector halfedges; + halfedges.reserve(triangles.size() * 3); + for (const ivec3 &tri : triangles) { + halfedges.push_back({tri[0], tri[1]}); + halfedges.push_back({tri[1], tri[2]}); + halfedges.push_back({tri[2], tri[0]}); + } + return halfedges; +} + +void CheckTopology(const std::vector &halfedges) { + DEBUG_ASSERT(halfedges.size() % 2 == 0, topologyErr, + "Odd number of halfedges."); + size_t n_edges = halfedges.size() / 2; + std::vector forward(halfedges.size()), backward(halfedges.size()); + + auto end = std::copy_if(halfedges.begin(), halfedges.end(), forward.begin(), + [](PolyEdge e) { return e.endVert > e.startVert; }); + DEBUG_ASSERT( + static_cast(std::distance(forward.begin(), end)) == n_edges, + topologyErr, "Half of halfedges should be forward."); + forward.resize(n_edges); + + end = std::copy_if(halfedges.begin(), halfedges.end(), backward.begin(), + [](PolyEdge e) { return e.endVert < e.startVert; }); + DEBUG_ASSERT( + static_cast(std::distance(backward.begin(), end)) == n_edges, + topologyErr, "Half of halfedges should be backward."); + backward.resize(n_edges); + + std::for_each(backward.begin(), backward.end(), + [](PolyEdge &e) { std::swap(e.startVert, e.endVert); }); + auto cmp = [](const PolyEdge &a, const PolyEdge &b) { + return a.startVert < b.startVert || + (a.startVert == b.startVert && a.endVert < b.endVert); + }; + std::stable_sort(forward.begin(), forward.end(), cmp); + std::stable_sort(backward.begin(), backward.end(), cmp); + for (size_t i = 0; i < n_edges; ++i) { + DEBUG_ASSERT(forward[i].startVert == backward[i].startVert && + forward[i].endVert == backward[i].endVert, + topologyErr, "Not manifold."); + } +} + +void CheckTopology(const std::vector &triangles, + const PolygonsIdx &polys) { + std::vector halfedges = Triangles2Edges(triangles); + std::vector openEdges = Polygons2Edges(polys); + for (PolyEdge e : openEdges) { + halfedges.push_back({e.endVert, e.startVert}); + } + CheckTopology(halfedges); +} + +void CheckGeometry(const std::vector &triangles, + const PolygonsIdx &polys, double precision) { + std::unordered_map vertPos; + for (const auto &poly : polys) { + for (size_t i = 0; i < poly.size(); ++i) { + vertPos[poly[i].idx] = poly[i].pos; + } + } + DEBUG_ASSERT(std::all_of(triangles.begin(), triangles.end(), + [&vertPos, precision](const ivec3 &tri) { + return CCW(vertPos[tri[0]], vertPos[tri[1]], + vertPos[tri[2]], precision) >= 0; + }), + geometryErr, "triangulation is not entirely CCW!"); +} + +void Dump(const PolygonsIdx &polys, double precision) { + std::cout << "Polygon 0 " << precision << " " << polys.size() << std::endl; + for (auto poly : polys) { + std::cout << poly.size() << std::endl; + for (auto v : poly) { + std::cout << v.pos.x << " " << v.pos.y << std::endl; + } + } + std::cout << "# ... " << std::endl; + for (auto poly : polys) { + std::cout << "show(array([" << std::endl; + for (auto v : poly) { + std::cout << " [" << v.pos.x << ", " << v.pos.y << "]," << std::endl; + } + std::cout << "]))" << std::endl; + } +} + +void PrintFailure(const std::exception &e, const PolygonsIdx &polys, + std::vector &triangles, double precision) { + std::cout << "-----------------------------------" << std::endl; + std::cout << "Triangulation failed! Precision = " << precision << std::endl; + std::cout << e.what() << std::endl; + if (triangles.size() > 1000 && !PolygonParams().verbose) { + std::cout << "Output truncated due to producing " << triangles.size() + << " triangles." << std::endl; + return; + } + Dump(polys, precision); + std::cout << "produced this triangulation:" << std::endl; + for (size_t j = 0; j < triangles.size(); ++j) { + std::cout << triangles[j][0] << ", " << triangles[j][1] << ", " + << triangles[j][2] << std::endl; + } +} + +#define PRINT(msg) \ + if (params.verbose) std::cout << msg << std::endl; +#else +#define PRINT(msg) +#endif + +/** + * Tests if the input polygons are convex by searching for any reflex vertices. + * Exactly colinear edges and zero-length edges are treated conservatively as + * reflex. Does not check for overlaps. + */ +bool IsConvex(const PolygonsIdx &polys, double precision) { + for (const SimplePolygonIdx &poly : polys) { + const vec2 firstEdge = poly[0].pos - poly[poly.size() - 1].pos; + // Zero-length edges comes out NaN, which won't trip the early return, but + // it's okay because that zero-length edge will also get tested + // non-normalized and will trip det == 0. + vec2 lastEdge = glm::normalize(firstEdge); + for (size_t v = 0; v < poly.size(); ++v) { + const vec2 edge = + v + 1 < poly.size() ? poly[v + 1].pos - poly[v].pos : firstEdge; + const double det = determinant2x2(lastEdge, edge); + if (det <= 0 || + (std::abs(det) < precision && glm::dot(lastEdge, edge) < 0)) + return false; + lastEdge = glm::normalize(edge); + } + } + return true; +} + +/** + * Triangulates a set of convex polygons by alternating instead of a fan, to + * avoid creating high-degree vertices. + */ +std::vector TriangulateConvex(const PolygonsIdx &polys) { + const size_t numTri = manifold::transform_reduce( + polys.begin(), polys.end(), 0_uz, + [](size_t a, size_t b) { return a + b; }, + [](const SimplePolygonIdx &poly) { return poly.size() - 2; }); + std::vector triangles; + triangles.reserve(numTri); + for (const SimplePolygonIdx &poly : polys) { + size_t i = 0; + size_t k = poly.size() - 1; + bool right = true; + while (i + 1 < k) { + const size_t j = right ? i + 1 : k - 1; + triangles.push_back({poly[i].idx, poly[j].idx, poly[k].idx}); + if (right) { + i = j; + } else { + k = j; + } + right = !right; + } + } + return triangles; +} + +/** + * Ear-clipping triangulator based on David Eberly's approach from Geometric + * Tools, but adjusted to handle epsilon-valid polygons, and including a + * fallback that ensures a manifold triangulation even for overlapping polygons. + * This is an O(n^2) algorithm, but hopefully this is not a big problem as the + * number of edges in a given polygon is generally much less than the number of + * triangles in a mesh, and relatively few faces even need triangulation. + * + * The main adjustments for robustness involve clipping the sharpest ears first + * (a known technique to get higher triangle quality), and doing an exhaustive + * search to determine ear convexity exactly if the first geometric result is + * within precision. + */ + +class EarClip { + public: + EarClip(const PolygonsIdx &polys, double precision) : precision_(precision) { + ZoneScoped; + + size_t numVert = 0; + for (const SimplePolygonIdx &poly : polys) { + numVert += poly.size(); + } + polygon_.reserve(numVert + 2 * polys.size()); + + std::vector starts = Initialize(polys); + + for (VertItr v = polygon_.begin(); v != polygon_.end(); ++v) { + ClipIfDegenerate(v); + } + + for (const VertItr first : starts) { + FindStart(first); + } + } + + std::vector Triangulate() { + ZoneScoped; + + for (const VertItr start : holes_) { + CutKeyhole(start); + } + + for (const VertItr start : simples_) { + TriangulatePoly(start); + } + + return triangles_; + } + + double GetPrecision() const { return precision_; } + + private: + struct Vert; + typedef std::vector::iterator VertItr; + typedef std::vector::const_iterator VertItrC; + struct MaxX { + bool operator()(const VertItr &a, const VertItr &b) const { + return a->pos.x > b->pos.x; + } + }; + struct MinCost { + bool operator()(const VertItr &a, const VertItr &b) const { + return a->cost < b->cost; + } + }; + typedef std::set::iterator qItr; + + // The flat list where all the Verts are stored. Not used much for traversal. + std::vector polygon_; + // The set of right-most starting points, one for each negative-area contour. + std::multiset holes_; + // The set of starting points, one for each positive-area contour. + std::vector outers_; + // The set of starting points, one for each simple polygon. + std::vector simples_; + // Maps each hole (by way of starting point) to its bounding box. + std::map hole2BBox_; + // A priority queue of valid ears - the multiset allows them to be updated. + std::multiset earsQueue_; + // The output triangulation. + std::vector triangles_; + // Bounding box of the entire set of polygons + Rect bBox_; + // Working precision: max of float error and input value. + double precision_; + + struct IdxCollider { + Collider collider; + std::vector itr; + }; + + // A circularly-linked list representing the polygon(s) that still need to be + // triangulated. This gets smaller as ears are clipped until it degenerates to + // two points and terminates. + struct Vert { + int mesh_idx; + double cost; + qItr ear; + vec2 pos, rightDir; + VertItr left, right; + + // Shorter than half of precision, to be conservative so that it doesn't + // cause CW triangles that exceed precision due to rounding error. + bool IsShort(double precision) const { + const vec2 edge = right->pos - pos; + return glm::dot(edge, edge) * 4 < precision * precision; + } + + // Like CCW, returns 1 if v is on the inside of the angle formed at this + // vert, -1 on the outside, and 0 if it's within precision of the boundary. + // Ensure v is more than precision from pos, as case this will not return 0. + int Interior(vec2 v, double precision) const { + const vec2 diff = v - pos; + if (glm::dot(diff, diff) < precision * precision) { + return 0; + } + return CCW(pos, left->pos, right->pos, precision) + + CCW(pos, right->pos, v, precision) + + CCW(pos, v, left->pos, precision); + } + + // Returns true if Vert is on the inside of the edge that goes from tail to + // tail->right. This will walk the edges if necessary until a clear answer + // is found (beyond precision). If toLeft is true, this Vert will walk its + // edges to the left. This should be chosen so that the edges walk in the + // same general direction - tail always walks to the right. + bool InsideEdge(VertItr tail, double precision, bool toLeft) const { + const double p2 = precision * precision; + VertItr nextL = left->right; + VertItr nextR = tail->right; + VertItr center = tail; + VertItr last = center; + + while (nextL != nextR && tail != nextR && + nextL != (toLeft ? right : left)) { + const vec2 edgeL = nextL->pos - center->pos; + const double l2 = glm::dot(edgeL, edgeL); + if (l2 <= p2) { + nextL = toLeft ? nextL->left : nextL->right; + continue; + } + + const vec2 edgeR = nextR->pos - center->pos; + const double r2 = glm::dot(edgeR, edgeR); + if (r2 <= p2) { + nextR = nextR->right; + continue; + } + + const vec2 vecLR = nextR->pos - nextL->pos; + const double lr2 = glm::dot(vecLR, vecLR); + if (lr2 <= p2) { + last = center; + center = nextL; + nextL = toLeft ? nextL->left : nextL->right; + if (nextL == nextR) break; + nextR = nextR->right; + continue; + } + + int convexity = CCW(nextL->pos, center->pos, nextR->pos, precision); + if (center != last) { + convexity += CCW(last->pos, center->pos, nextL->pos, precision) + + CCW(nextR->pos, center->pos, last->pos, precision); + } + if (convexity != 0) return convexity > 0; + + if (l2 < r2) { + center = nextL; + nextL = toLeft ? nextL->left : nextL->right; + } else { + center = nextR; + nextR = nextR->right; + } + last = center; + } + // The whole polygon is degenerate - consider this to be convex. + return true; + } + + // A major key to robustness is to only clip convex ears, but this is + // difficult to determine when an edge is folded back on itself. This + // function walks down the kinks in a degenerate portion of a polygon until + // it finds a clear geometric result. In the vast majority of cases the loop + // will only need one or two iterations. + bool IsConvex(double precision) const { + const int convexity = CCW(left->pos, pos, right->pos, precision); + if (convexity != 0) { + return convexity > 0; + } + if (glm::dot(left->pos - pos, right->pos - pos) <= 0) { + return true; + } + return left->InsideEdge(left->right, precision, true); + } + + // Subtly different from !IsConvex because IsConvex will return true for + // colinear non-folded verts, while IsReflex will always check until actual + // certainty is determined. + bool IsReflex(double precision) const { + return !left->InsideEdge(left->right, precision, true); + } + + // Returns the x-value on this edge corresponding to the start.y value, + // returning NAN if the edge does not cross the value from below to above, + // right of start - all within a precision tolerance. If onTop != 0, this + // restricts which end is allowed to terminate within the precision band. + double InterpY2X(vec2 start, int onTop, double precision) const { + if (glm::abs(pos.y - start.y) <= precision) { + if (right->pos.y <= start.y + precision || onTop == 1) { + return NAN; + } else { + return pos.x; + } + } else if (pos.y < start.y - precision) { + if (right->pos.y > start.y + precision) { + return pos.x + (start.y - pos.y) * (right->pos.x - pos.x) / + (right->pos.y - pos.y); + } else if (right->pos.y < start.y - precision || onTop == -1) { + return NAN; + } else { + return right->pos.x; + } + } else { + return NAN; + } + } + + // This finds the cost of this vert relative to one of the two closed sides + // of the ear. Points are valid even when they touch, so long as their edge + // goes to the outside. No need to check the other side, since all verts are + // processed in the EarCost loop. + double SignedDist(VertItr v, vec2 unit, double precision) const { + double d = determinant2x2(unit, v->pos - pos); + if (std::abs(d) < precision) { + double dR = determinant2x2(unit, v->right->pos - pos); + if (std::abs(dR) > precision) return dR; + double dL = determinant2x2(unit, v->left->pos - pos); + if (std::abs(dL) > precision) return dL; + } + return d; + } + + // Find the cost of Vert v within this ear, where openSide is the unit + // vector from Verts right to left - passed in for reuse. + double Cost(VertItr v, vec2 openSide, double precision) const { + double cost = std::min(SignedDist(v, rightDir, precision), + SignedDist(v, left->rightDir, precision)); + + const double openCost = determinant2x2(openSide, v->pos - right->pos); + return std::min(cost, openCost); + } + + // For verts outside the ear, apply a cost based on the Delaunay condition + // to aid in prioritization and produce cleaner triangulations. This doesn't + // affect robustness, but may be adjusted to improve output. + static double DelaunayCost(vec2 diff, double scale, double precision) { + return -precision - scale * glm::dot(diff, diff); + } + + // This is the expensive part of the algorithm, checking this ear against + // every Vert to ensure none are inside. The Collider brings the total + // triangulator cost down from O(n^2) to O(nlogn) for most large polygons. + // + // Think of a cost as vaguely a distance metric - 0 is right on the edge of + // being invalid. cost > precision is definitely invalid. Cost < -precision + // is definitely valid, so all improvement costs are designed to always give + // values < -precision so they will never affect validity. The first + // totalCost is designed to give priority to sharper angles. Any cost < (-1 + // - precision) has satisfied the Delaunay condition. + double EarCost(double precision, const IdxCollider &collider) const { + vec2 openSide = left->pos - right->pos; + const vec2 center = 0.5 * (left->pos + right->pos); + const double scale = 4 / glm::dot(openSide, openSide); + const double radius = glm::length(openSide) / 2; + openSide = glm::normalize(openSide); + + double totalCost = glm::dot(left->rightDir, rightDir) - 1 - precision; + if (CCW(pos, left->pos, right->pos, precision) == 0) { + // Clip folded ears first + return totalCost; + } + + Vec earBox; + earBox.push_back({vec3(center.x - radius, center.y - radius, 0), + vec3(center.x + radius, center.y + radius, 0)}); + earBox.back().Union(vec3(pos, 0)); + const SparseIndices toTest = collider.collider.Collisions(earBox.cview()); + + const int lid = left->mesh_idx; + const int rid = right->mesh_idx; + for (size_t i = 0; i < toTest.size(); ++i) { + const VertItr test = collider.itr[toTest.Get(i, true)]; + if (!Clipped(test) && test->mesh_idx != mesh_idx && + test->mesh_idx != lid && + test->mesh_idx != rid) { // Skip duplicated verts + double cost = Cost(test, openSide, precision); + if (cost < -precision) { + cost = DelaunayCost(test->pos - center, scale, precision); + } + totalCost = std::max(totalCost, cost); + } + } + + return totalCost; + } + + void PrintVert() const { +#ifdef MANIFOLD_DEBUG + if (!params.verbose) return; + std::cout << "vert: " << mesh_idx << ", left: " << left->mesh_idx + << ", right: " << right->mesh_idx << ", cost: " << cost + << std::endl; +#endif + } + }; + + static vec2 SafeNormalize(vec2 v) { + vec2 n = glm::normalize(v); + return std::isfinite(n.x) ? n : vec2(0, 0); + } + + // This function and JoinPolygons are the only functions that affect the + // circular list data structure. This helps ensure it remains circular. + static void Link(VertItr left, VertItr right) { + left->right = right; + right->left = left; + left->rightDir = SafeNormalize(right->pos - left->pos); + } + + // When an ear vert is clipped, its neighbors get linked, so they get unlinked + // from it, but it is still linked to them. + static bool Clipped(VertItr v) { return v->right->left != v; } + + // Apply func to each un-clipped vert in a polygon and return an un-clipped + // vert. + VertItrC Loop(VertItr first, std::function func) const { + VertItr v = first; + do { + if (Clipped(v)) { + // Update first to an un-clipped vert so we will return to it instead + // of infinite-looping. + first = v->right->left; + if (!Clipped(first)) { + v = first; + if (v->right == v->left) { + return polygon_.end(); + } + func(v); + } + } else { + if (v->right == v->left) { + return polygon_.end(); + } + func(v); + } + v = v->right; + } while (v != first); + return v; + } + + // Remove this vert from the circular list and output a corresponding + // triangle. + void ClipEar(VertItrC ear) { + Link(ear->left, ear->right); + if (ear->left->mesh_idx != ear->mesh_idx && + ear->mesh_idx != ear->right->mesh_idx && + ear->right->mesh_idx != ear->left->mesh_idx) { + // Filter out topological degenerates, which can form in bad + // triangulations of polygons with holes, due to vert duplication. + triangles_.push_back( + {ear->left->mesh_idx, ear->mesh_idx, ear->right->mesh_idx}); + } else { + PRINT("Topological degenerate!"); + } + } + + // If an ear will make a degenerate triangle, clip it early to avoid + // difficulty in key-holing. This function is recursive, as the process of + // clipping may cause the neighbors to degenerate. Reflex degenerates *must + // not* be clipped, unless they have a short edge. + void ClipIfDegenerate(VertItr ear) { + if (Clipped(ear)) { + return; + } + if (ear->left == ear->right) { + return; + } + if (ear->IsShort(precision_) || + (CCW(ear->left->pos, ear->pos, ear->right->pos, precision_) == 0 && + glm::dot(ear->left->pos - ear->pos, ear->right->pos - ear->pos) > 0 && + ear->IsConvex(precision_))) { + ClipEar(ear); + ClipIfDegenerate(ear->left); + ClipIfDegenerate(ear->right); + } + } + + // Build the circular list polygon structures. + std::vector Initialize(const PolygonsIdx &polys) { + std::vector starts; + for (const SimplePolygonIdx &poly : polys) { + auto vert = poly.begin(); + polygon_.push_back({vert->idx, 0.0, earsQueue_.end(), vert->pos}); + const VertItr first = std::prev(polygon_.end()); + + bBox_.Union(first->pos); + VertItr last = first; + // This is not the real rightmost start, but just an arbitrary vert for + // now to identify each polygon. + starts.push_back(first); + + for (++vert; vert != poly.end(); ++vert) { + bBox_.Union(vert->pos); + + polygon_.push_back({vert->idx, 0.0, earsQueue_.end(), vert->pos}); + VertItr next = std::prev(polygon_.end()); + + Link(last, next); + last = next; + } + Link(last, first); + } + + if (precision_ < 0) precision_ = bBox_.Scale() * kTolerance; + + // Slightly more than enough, since each hole can cause two extra triangles. + triangles_.reserve(polygon_.size() + 2 * starts.size()); + return starts; + } + + // Find the actual rightmost starts after degenerate removal. Also calculate + // the polygon bounding boxes. + void FindStart(VertItr first) { + const vec2 origin = first->pos; + + VertItr start = first; + double maxX = -std::numeric_limits::infinity(); + Rect bBox; + // Kahan summation + double area = 0; + double areaCompensation = 0; + + auto AddPoint = [&](VertItr v) { + bBox.Union(v->pos); + const double area1 = + determinant2x2(v->pos - origin, v->right->pos - origin); + const double t1 = area + area1; + areaCompensation += (area - t1) + area1; + area = t1; + + if (v->pos.x > maxX) { + maxX = v->pos.x; + start = v; + } + }; + + if (Loop(first, AddPoint) == polygon_.end()) { + // No polygon left if all ears were degenerate and already clipped. + return; + } + + area += areaCompensation; + const vec2 size = bBox.Size(); + const double minArea = precision_ * std::max(size.x, size.y); + + if (std::isfinite(maxX) && area < -minArea) { + holes_.insert(start); + hole2BBox_.insert({start, bBox}); + } else { + simples_.push_back(start); + if (area > minArea) { + outers_.push_back(start); + } + } + } + + // All holes must be key-holed (attached to an outer polygon) before ear + // clipping can commence. Instead of relying on sorting, which may be + // incorrect due to precision, we check for polygon edges both ahead and + // behind to ensure all valid options are found. + void CutKeyhole(const VertItr start) { + const Rect bBox = hole2BBox_[start]; + const int onTop = start->pos.y >= bBox.max.y - precision_ ? 1 + : start->pos.y <= bBox.min.y + precision_ ? -1 + : 0; + VertItr connector = polygon_.end(); + + auto CheckEdge = [&](VertItr edge) { + const double x = edge->InterpY2X(start->pos, onTop, precision_); + if (isfinite(x) && start->InsideEdge(edge, precision_, true) && + (connector == polygon_.end() || + CCW({x, start->pos.y}, connector->pos, connector->right->pos, + precision_) == 1 || + (connector->pos.y < edge->pos.y + ? edge->InsideEdge(connector, precision_, false) + : !connector->InsideEdge(edge, precision_, false)))) { + connector = edge; + } + }; + + for (const VertItr first : outers_) { + Loop(first, CheckEdge); + } + + if (connector == polygon_.end()) { + PRINT("hole did not find an outer contour!"); + simples_.push_back(start); + return; + } + + connector = FindCloserBridge(start, connector); + + JoinPolygons(start, connector); + +#ifdef MANIFOLD_DEBUG + if (params.verbose) { + std::cout << "connected " << start->mesh_idx << " to " + << connector->mesh_idx << std::endl; + } +#endif + } + + // This converts the initial guess for the keyhole location into the final one + // and returns it. It does so by finding any reflex verts inside the triangle + // containing the best connection and the initial horizontal line. + VertItr FindCloserBridge(VertItr start, VertItr edge) { + VertItr connector = + edge->pos.x < start->pos.x ? edge->right + : edge->right->pos.x < start->pos.x ? edge + : edge->right->pos.y - start->pos.y > start->pos.y - edge->pos.y + ? edge + : edge->right; + if (glm::abs(connector->pos.y - start->pos.y) <= precision_) { + return connector; + } + const double above = connector->pos.y > start->pos.y ? 1 : -1; + + auto CheckVert = [&](VertItr vert) { + const double inside = + above * CCW(start->pos, vert->pos, connector->pos, precision_); + if (vert->pos.x > start->pos.x - precision_ && + vert->pos.y * above > start->pos.y * above - precision_ && + (inside > 0 || (inside == 0 && vert->pos.x < connector->pos.x)) && + vert->InsideEdge(edge, precision_, true) && + vert->IsReflex(precision_)) { + connector = vert; + } + }; + + for (const VertItr first : outers_) { + Loop(first, CheckVert); + } + + return connector; + } + + // Creates a keyhole between the start vert of a hole and the connector vert + // of an outer polygon. To do this, both verts are duplicated and reattached. + // This process may create degenerate ears, so these are clipped if necessary + // to keep from confusing subsequent key-holing operations. + void JoinPolygons(VertItr start, VertItr connector) { + polygon_.push_back(*start); + const VertItr newStart = std::prev(polygon_.end()); + polygon_.push_back(*connector); + const VertItr newConnector = std::prev(polygon_.end()); + + start->right->left = newStart; + connector->left->right = newConnector; + Link(start, connector); + Link(newConnector, newStart); + + ClipIfDegenerate(start); + ClipIfDegenerate(newStart); + ClipIfDegenerate(connector); + ClipIfDegenerate(newConnector); + } + + // Recalculate the cost of the Vert v ear, updating it in the queue by + // removing and reinserting it. + void ProcessEar(VertItr v, const IdxCollider &collider) { + if (v->ear != earsQueue_.end()) { + earsQueue_.erase(v->ear); + v->ear = earsQueue_.end(); + } + if (v->IsShort(precision_)) { + v->cost = kBest; + v->ear = earsQueue_.insert(v); + } else if (v->IsConvex(2 * precision_)) { + v->cost = v->EarCost(precision_, collider); + v->ear = earsQueue_.insert(v); + } else { + v->cost = 1; // not used, but marks reflex verts for debug + } + } + + // Create a collider of all vertices in this polygon, each expanded by + // precision_. Each ear uses this BVH to quickly find a subset of vertices to + // check for cost. + IdxCollider VertCollider(VertItr start) const { + Vec vertBox; + Vec vertMorton; + std::vector itr; + const Box box(vec3(bBox_.min, 0), vec3(bBox_.max, 0)); + + Loop(start, [&vertBox, &vertMorton, &itr, &box, this](VertItr v) { + itr.push_back(v); + const vec3 pos(v->pos, 0); + vertBox.push_back({pos - precision_, pos + precision_}); + vertMorton.push_back(Collider::MortonCode(pos, box)); + }); + + if (itr.empty()) { + return {Collider(), itr}; + } + + const int numVert = itr.size(); + Vec vertNew2Old(numVert); + sequence(vertNew2Old.begin(), vertNew2Old.end()); + + stable_sort(vertNew2Old.begin(), vertNew2Old.end(), + [&vertMorton](const int a, const int b) { + return vertMorton[a] < vertMorton[b]; + }); + Permute(vertMorton, vertNew2Old); + Permute(vertBox, vertNew2Old); + Permute(itr, vertNew2Old); + + return {Collider(vertBox, vertMorton), itr}; + } + + // The main ear-clipping loop. This is called once for each simple polygon - + // all holes have already been key-holed and joined to an outer polygon. + void TriangulatePoly(VertItr start) { + ZoneScoped; + + const IdxCollider vertCollider = VertCollider(start); + + if (vertCollider.itr.empty()) { + PRINT("Empty poly"); + return; + } + + // A simple polygon always creates two fewer triangles than it has verts. + int numTri = -2; + earsQueue_.clear(); + + auto QueueVert = [&](VertItr v) { + ProcessEar(v, vertCollider); + ++numTri; + v->PrintVert(); + }; + + VertItrC v = Loop(start, QueueVert); + if (v == polygon_.end()) return; + Dump(v); + + while (numTri > 0) { + const qItr ear = earsQueue_.begin(); + if (ear != earsQueue_.end()) { + v = *ear; + // Cost should always be negative, generally < -precision. + v->PrintVert(); + earsQueue_.erase(ear); + } else { + PRINT("No ear found!"); + } + + ClipEar(v); + --numTri; + + ProcessEar(v->left, vertCollider); + ProcessEar(v->right, vertCollider); + // This is a backup vert that is used if the queue is empty (geometrically + // invalid polygon), to ensure manifoldness. + v = v->right; + } + + DEBUG_ASSERT(v->right == v->left, logicErr, "Triangulator error!"); + PRINT("Finished poly"); + } + + void Dump(VertItrC start) const { +#ifdef MANIFOLD_DEBUG + if (!params.verbose) return; + VertItrC v = start; + std::cout << "show(array([" << std::setprecision(15) << std::endl; + do { + std::cout << " [" << v->pos.x << ", " << v->pos.y << "],# " + << v->mesh_idx << ", cost: " << v->cost << std::endl; + v = v->right; + } while (v != start); + std::cout << " [" << v->pos.x << ", " << v->pos.y << "],# " << v->mesh_idx + << std::endl; + std::cout << "]))" << std::endl; + + v = start; + std::cout << "polys.push_back({" << std::setprecision(15) << std::endl; + do { + std::cout << " {" << v->pos.x << ", " << v->pos.y << "}, //" + << std::endl; + v = v->right; + } while (v != start); + std::cout << "});" << std::endl; +#endif + } +}; +} // namespace + +namespace manifold { + +/** + * @brief Triangulates a set of ε-valid polygons. If the input is not + * ε-valid, the triangulation may overlap, but will always return a + * manifold result that matches the input edge directions. + * + * @param polys The set of polygons, wound CCW and representing multiple + * polygons and/or holes. These have 2D-projected positions as well as + * references back to the original vertices. + * @param precision The value of ε, bounding the uncertainty of the + * input. + * @return std::vector The triangles, referencing the original + * vertex indicies. + */ +std::vector TriangulateIdx(const PolygonsIdx &polys, double precision) { + std::vector triangles; + double updatedPrecision = precision; +#ifdef MANIFOLD_EXCEPTIONS + try { +#endif + if (IsConvex(polys, precision)) { // fast path + triangles = TriangulateConvex(polys); + } else { + EarClip triangulator(polys, precision); + triangles = triangulator.Triangulate(); + updatedPrecision = triangulator.GetPrecision(); + } +#ifdef MANIFOLD_EXCEPTIONS +#ifdef MANIFOLD_DEBUG + if (params.intermediateChecks) { + CheckTopology(triangles, polys); + if (!params.processOverlaps) { + CheckGeometry(triangles, polys, 2 * updatedPrecision); + } + } + } catch (const geometryErr &e) { + if (!params.suppressErrors) { + PrintFailure(e, polys, triangles, updatedPrecision); + } + throw; + } catch (const std::exception &e) { + PrintFailure(e, polys, triangles, updatedPrecision); + throw; +#else + } catch (const std::exception &e) { +#endif + } +#endif + return triangles; +} + +/** + * @brief Triangulates a set of ε-valid polygons. If the input is not + * ε-valid, the triangulation may overlap, but will always return a + * manifold result that matches the input edge directions. + * + * @param polygons The set of polygons, wound CCW and representing multiple + * polygons and/or holes. + * @param precision The value of ε, bounding the uncertainty of the + * input. + * @return std::vector The triangles, referencing the original + * polygon points in order. + */ +std::vector Triangulate(const Polygons &polygons, double precision) { + int idx = 0; + PolygonsIdx polygonsIndexed; + for (const auto &poly : polygons) { + SimplePolygonIdx simpleIndexed; + for (const vec2 &polyVert : poly) { + simpleIndexed.push_back({polyVert, idx++}); + } + polygonsIndexed.push_back(simpleIndexed); + } + return TriangulateIdx(polygonsIndexed, precision); +} + +ExecutionParams &PolygonParams() { return params; } + +} // namespace manifold diff --git a/thirdparty/manifold/src/utilities/include/manifold/common.h b/thirdparty/manifold/src/utilities/include/manifold/common.h new file mode 100644 index 000000000000..256def20ce37 --- /dev/null +++ b/thirdparty/manifold/src/utilities/include/manifold/common.h @@ -0,0 +1,737 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#define GLM_ENABLE_EXPERIMENTAL // needed for glm/gtx/compatibility.hpp +#define GLM_FORCE_EXPLICIT_CTOR +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#ifdef MANIFOLD_DEBUG +#include +#include +#include +#endif + +namespace manifold { + +/** + * Stand-in for C++23's operator""uz (P0330R8)[https://wg21.link/P0330R8]. + */ +[[nodiscard]] constexpr std::size_t operator""_uz( + unsigned long long n) noexcept { + return n; +} + +constexpr double kTolerance = 1e-12; + +/** @defgroup Math data structure definitions + * @brief Abstract away from glm. + * In the future the underlying data type can change. + * @{ + */ +using vec2 = glm::dvec2; +using vec3 = glm::dvec3; +using vec4 = glm::dvec4; +using mat2 = glm::dmat2; +using mat2x3 = glm::dmat2x3; +using mat2x4 = glm::dmat2x4; +using mat3x2 = glm::dmat3x2; +using mat3 = glm::dmat3; +using mat3x4 = glm::dmat3x4; +using mat4x3 = glm::dmat4x3; +using mat4 = glm::dmat4; +using ivec2 = glm::vec<2, int>; +using ivec3 = glm::vec<3, int>; +using ivec4 = glm::vec<4, int>; +using quat = glm::dquat; +///@} + +/** @defgroup Connections + * @brief Move data in and out of the Manifold class. + * @{ + */ + +/** + * Sine function where multiples of 90 degrees come out exact. + * + * @param x Angle in degrees. + */ +inline double sind(double x) { + if (!std::isfinite(x)) return sin(x); + if (x < 0.0) return -sind(-x); + int quo; + x = remquo(fabs(x), 90.0, &quo); + switch (quo % 4) { + case 0: + return sin(glm::radians(x)); + case 1: + return cos(glm::radians(x)); + case 2: + return -sin(glm::radians(x)); + case 3: + return -cos(glm::radians(x)); + } + return 0.0; +} + +/** + * Cosine function where multiples of 90 degrees come out exact. + * + * @param x Angle in degrees. + */ +inline double cosd(double x) { return sind(x + 90.0); } + +/** + * This 4x3 matrix can be used as an input to Manifold.Transform() to turn an + * object. Turns along the shortest path from given up-vector to (0, 0, 1). + * + * @param up The vector to be turned to point upwards. Length does not matter. + */ +inline mat4x3 RotateUp(vec3 up) { + up = glm::normalize(up); + vec3 axis = glm::cross(up, {0, 0, 1}); + double angle = glm::asin(glm::length(axis)); + if (glm::dot(up, {0, 0, 1}) < 0) angle = glm::pi() - angle; + return mat4x3(glm::rotate(mat4(1), angle, axis)); +} + +/** + * Determines if the three points are wound counter-clockwise, clockwise, or + * colinear within the specified tolerance. + * + * @param p0 First point + * @param p1 Second point + * @param p2 Third point + * @param tol Tolerance value for colinearity + * @return int, like Signum, this returns 1 for CCW, -1 for CW, and 0 if within + * tol of colinear. + */ +inline int CCW(vec2 p0, vec2 p1, vec2 p2, double tol) { + vec2 v1 = p1 - p0; + vec2 v2 = p2 - p0; + double area = fma(v1.x, v2.y, -v1.y * v2.x); + double base2 = glm::max(glm::dot(v1, v1), glm::dot(v2, v2)); + if (area * area * 4 <= base2 * tol * tol) + return 0; + else + return area > 0 ? 1 : -1; +} + +/** + * Single polygon contour, wound CCW. First and last point are implicitly + * connected. Should ensure all input is + * [ε-valid](https://github.com/elalish/manifold/wiki/Manifold-Library#definition-of-%CE%B5-valid). + */ +using SimplePolygon = std::vector; + +/** + * Set of polygons with holes. Order of contours is arbitrary. Can contain any + * depth of nested holes and any number of separate polygons. Should ensure all + * input is + * [ε-valid](https://github.com/elalish/manifold/wiki/Manifold-Library#definition-of-%CE%B5-valid). + */ +using Polygons = std::vector; + +/** + * The triangle-mesh input and output of this library. + */ +struct Mesh { + /// Required: The X-Y-Z positions of all vertices. + std::vector vertPos; + /// Required: The vertex indices of the three triangle corners in CCW (from + /// the outside) order, for each triangle. + std::vector triVerts; + /// Optional: The X-Y-Z normal vectors of each vertex. If non-empty, must have + /// the same length as vertPos. If empty, these will be calculated + /// automatically. + std::vector vertNormal; + /// Optional: The X-Y-Z-W weighted tangent vectors for smooth Refine(). If + /// non-empty, must be exactly three times as long as Mesh.triVerts. Indexed + /// as 3 * tri + i, representing the tangent from Mesh.triVerts[tri][i] along + /// the CCW edge. If empty, mesh is faceted. + std::vector halfedgeTangent; + /// The absolute precision of the vertex positions, based on accrued rounding + /// errors. When creating a Manifold, the precision used will be the maximum + /// of this and a baseline precision from the size of the bounding box. Any + /// edge shorter than precision may be collapsed. + double precision = 0; +}; + +/** + * Defines which edges to sharpen and how much for the Manifold.Smooth() + * constructor. + */ +struct Smoothness { + /// The halfedge index = 3 * tri + i, referring to Mesh.triVerts[tri][i]. + size_t halfedge; + /// A value between 0 and 1, where 0 is sharp and 1 is the default and the + /// curvature is interpolated between these values. The two paired halfedges + /// can have different values while maintaining C-1 continuity (except for 0). + double smoothness; +}; + +/** + * Geometric properties of the manifold, created with Manifold.GetProperties(). + */ +struct Properties { + double surfaceArea, volume; +}; + +struct Box { + vec3 min = vec3(std::numeric_limits::infinity()); + vec3 max = vec3(-std::numeric_limits::infinity()); + + /** + * Default constructor is an infinite box that contains all space. + */ + Box() {} + + /** + * Creates a box that contains the two given points. + */ + Box(const vec3 p1, const vec3 p2) { + min = glm::min(p1, p2); + max = glm::max(p1, p2); + } + + /** + * Returns the dimensions of the Box. + */ + vec3 Size() const { return max - min; } + + /** + * Returns the center point of the Box. + */ + vec3 Center() const { return 0.5 * (max + min); } + + /** + * Returns the absolute-largest coordinate value of any contained + * point. + */ + double Scale() const { + vec3 absMax = glm::max(glm::abs(min), glm::abs(max)); + return glm::max(absMax.x, glm::max(absMax.y, absMax.z)); + } + + /** + * Does this box contain (includes equal) the given point? + */ + bool Contains(const vec3& p) const { + return glm::all(glm::greaterThanEqual(p, min)) && + glm::all(glm::greaterThanEqual(max, p)); + } + + /** + * Does this box contain (includes equal) the given box? + */ + bool Contains(const Box& box) const { + return glm::all(glm::greaterThanEqual(box.min, min)) && + glm::all(glm::greaterThanEqual(max, box.max)); + } + + /** + * Expand this box to include the given point. + */ + void Union(const vec3 p) { + min = glm::min(min, p); + max = glm::max(max, p); + } + + /** + * Expand this box to include the given box. + */ + Box Union(const Box& box) const { + Box out; + out.min = glm::min(min, box.min); + out.max = glm::max(max, box.max); + return out; + } + + /** + * Transform the given box by the given axis-aligned affine transform. + * + * Ensure the transform passed in is axis-aligned (rotations are all + * multiples of 90 degrees), or else the resulting bounding box will no longer + * bound properly. + */ + Box Transform(const mat4x3& transform) const { + Box out; + vec3 minT = transform * vec4(min, 1.0); + vec3 maxT = transform * vec4(max, 1.0); + out.min = glm::min(minT, maxT); + out.max = glm::max(minT, maxT); + return out; + } + + /** + * Shift this box by the given vector. + */ + Box operator+(vec3 shift) const { + Box out; + out.min = min + shift; + out.max = max + shift; + return out; + } + + /** + * Shift this box in-place by the given vector. + */ + Box& operator+=(vec3 shift) { + min += shift; + max += shift; + return *this; + } + + /** + * Scale this box by the given vector. + */ + Box operator*(vec3 scale) const { + Box out; + out.min = min * scale; + out.max = max * scale; + return out; + } + + /** + * Scale this box in-place by the given vector. + */ + Box& operator*=(vec3 scale) { + min *= scale; + max *= scale; + return *this; + } + + /** + * Does this box overlap the one given (including equality)? + */ + inline bool DoesOverlap(const Box& box) const { + return min.x <= box.max.x && min.y <= box.max.y && min.z <= box.max.z && + max.x >= box.min.x && max.y >= box.min.y && max.z >= box.min.z; + } + + /** + * Does the given point project within the XY extent of this box + * (including equality)? + */ + inline bool DoesOverlap(vec3 p) const { // projected in z + return p.x <= max.x && p.x >= min.x && p.y <= max.y && p.y >= min.y; + } + + /** + * Does this box have finite bounds? + */ + bool IsFinite() const { + return glm::all(glm::isfinite(min)) && glm::all(glm::isfinite(max)); + } +}; + +/** + * Axis-aligned rectangular bounds. + */ +struct Rect { + vec2 min = vec2(std::numeric_limits::infinity()); + vec2 max = vec2(-std::numeric_limits::infinity()); + + /** + * Default constructor is an empty rectangle.. + */ + Rect() {} + + /** + * Create a rectangle that contains the two given points. + */ + Rect(const vec2 a, const vec2 b) { + min = glm::min(a, b); + max = glm::max(a, b); + } + + /** @name Information + * Details of the rectangle + */ + ///@{ + + /** + * Return the dimensions of the rectangle. + */ + vec2 Size() const { return max - min; } + + /** + * Return the area of the rectangle. + */ + double Area() const { + auto sz = Size(); + return sz.x * sz.y; + } + + /** + * Returns the absolute-largest coordinate value of any contained + * point. + */ + double Scale() const { + vec2 absMax = glm::max(glm::abs(min), glm::abs(max)); + return glm::max(absMax.x, absMax.y); + } + + /** + * Returns the center point of the rectangle. + */ + vec2 Center() const { return 0.5 * (max + min); } + + /** + * Does this rectangle contain (includes on border) the given point? + */ + bool Contains(const vec2& p) const { + return glm::all(glm::greaterThanEqual(p, min)) && + glm::all(glm::greaterThanEqual(max, p)); + } + + /** + * Does this rectangle contain (includes equal) the given rectangle? + */ + bool Contains(const Rect& rect) const { + return glm::all(glm::greaterThanEqual(rect.min, min)) && + glm::all(glm::greaterThanEqual(max, rect.max)); + } + + /** + * Does this rectangle overlap the one given (including equality)? + */ + bool DoesOverlap(const Rect& rect) const { + return min.x <= rect.max.x && min.y <= rect.max.y && max.x >= rect.min.x && + max.y >= rect.min.y; + } + + /** + * Is the rectangle empty (containing no space)? + */ + bool IsEmpty() const { return max.y <= min.y || max.x <= min.x; }; + + /** + * Does this recangle have finite bounds? + */ + bool IsFinite() const { + return glm::all(glm::isfinite(min)) && glm::all(glm::isfinite(max)); + } + + ///@} + + /** @name Modification + */ + ///@{ + + /** + * Expand this rectangle (in place) to include the given point. + */ + void Union(const vec2 p) { + min = glm::min(min, p); + max = glm::max(max, p); + } + + /** + * Expand this rectangle to include the given Rect. + */ + Rect Union(const Rect& rect) const { + Rect out; + out.min = glm::min(min, rect.min); + out.max = glm::max(max, rect.max); + return out; + } + + /** + * Shift this rectangle by the given vector. + */ + Rect operator+(const vec2 shift) const { + Rect out; + out.min = min + shift; + out.max = max + shift; + return out; + } + + /** + * Shift this rectangle in-place by the given vector. + */ + Rect& operator+=(const vec2 shift) { + min += shift; + max += shift; + return *this; + } + + /** + * Scale this rectangle by the given vector. + */ + Rect operator*(const vec2 scale) const { + Rect out; + out.min = min * scale; + out.max = max * scale; + return out; + } + + /** + * Scale this rectangle in-place by the given vector. + */ + Rect& operator*=(const vec2 scale) { + min *= scale; + max *= scale; + return *this; + } + + /** + * Transform the rectangle by the given axis-aligned affine transform. + * + * Ensure the transform passed in is axis-aligned (rotations are all + * multiples of 90 degrees), or else the resulting rectangle will no longer + * bound properly. + */ + Rect Transform(const mat3x2& m) const { + Rect rect; + rect.min = m * vec3(min, 1); + rect.max = m * vec3(max, 1); + return rect; + } + ///@} +}; +/** @} */ + +/** @addtogroup Core + * @{ + */ + +/** + * Boolean operation type: Add (Union), Subtract (Difference), and Intersect. + */ +enum class OpType { Add, Subtract, Intersect }; + +constexpr int DEFAULT_SEGMENTS = 0; +constexpr double DEFAULT_ANGLE = 10.0; +constexpr double DEFAULT_LENGTH = 1.0; +/** + * These static properties control how circular shapes are quantized by + * default on construction. If circularSegments is specified, it takes + * precedence. If it is zero, then instead the minimum is used of the segments + * calculated based on edge length and angle, rounded up to the nearest + * multiple of four. To get numbers not divisible by four, circularSegments + * must be specified. + */ +class Quality { + private: + inline static int circularSegments_ = DEFAULT_SEGMENTS; + inline static double circularAngle_ = DEFAULT_ANGLE; + inline static double circularEdgeLength_ = DEFAULT_LENGTH; + + public: + /** + * Sets an angle constraint the default number of circular segments for the + * CrossSection::Circle(), Manifold::Cylinder(), Manifold::Sphere(), and + * Manifold::Revolve() constructors. The number of segments will be rounded up + * to the nearest factor of four. + * + * @param angle The minimum angle in degrees between consecutive segments. The + * angle will increase if the the segments hit the minimum edge length. + * Default is 10 degrees. + */ + static void SetMinCircularAngle(double angle) { + if (angle <= 0) return; + circularAngle_ = angle; + } + + /** + * Sets a length constraint the default number of circular segments for the + * CrossSection::Circle(), Manifold::Cylinder(), Manifold::Sphere(), and + * Manifold::Revolve() constructors. The number of segments will be rounded up + * to the nearest factor of four. + * + * @param length The minimum length of segments. The length will + * increase if the the segments hit the minimum angle. Default is 1.0. + */ + static void SetMinCircularEdgeLength(double length) { + if (length <= 0) return; + circularEdgeLength_ = length; + } + + /** + * Sets the default number of circular segments for the + * CrossSection::Circle(), Manifold::Cylinder(), Manifold::Sphere(), and + * Manifold::Revolve() constructors. Overrides the edge length and angle + * constraints and sets the number of segments to exactly this value. + * + * @param number Number of circular segments. Default is 0, meaning no + * constraint is applied. + */ + static void SetCircularSegments(int number) { + if (number < 3 && number != 0) return; + circularSegments_ = number; + } + + /** + * Determine the result of the SetMinCircularAngle(), + * SetMinCircularEdgeLength(), and SetCircularSegments() defaults. + * + * @param radius For a given radius of circle, determine how many default + * segments there will be. + */ + static int GetCircularSegments(double radius) { + if (circularSegments_ > 0) return circularSegments_; + int nSegA = 360.0 / circularAngle_; + int nSegL = 2.0 * radius * glm::pi() / circularEdgeLength_; + int nSeg = fmin(nSegA, nSegL) + 3; + nSeg -= nSeg % 4; + return std::max(nSeg, 3); + } + + /** + * Resets the circular construction parameters to their defaults if + * SetMinCircularAngle, SetMinCircularEdgeLength, or SetCircularSegments have + * been called. + */ + static void ResetToDefaults() { + circularSegments_ = DEFAULT_SEGMENTS; + circularAngle_ = DEFAULT_ANGLE; + circularEdgeLength_ = DEFAULT_LENGTH; + } +}; +/** @} */ + +/** @defgroup Debug + * @brief Debugging features + * + * The features require compiler flags to be enabled. Assertions are enabled + * with the MANIFOLD_DEBUG flag and then controlled with ExecutionParams. + * Exceptions are only thrown if the MANIFOLD_EXCEPTIONS flag is set. Import and + * Export of 3D models is only supported with the MANIFOLD_EXPORT flag, which + * also requires linking in the Assimp dependency. + * @{ + */ + +/** @defgroup Exceptions + * @brief Custom Exceptions + * @{ + */ +struct userErr : public virtual std::runtime_error { + using std::runtime_error::runtime_error; +}; +struct topologyErr : public virtual std::runtime_error { + using std::runtime_error::runtime_error; +}; +struct geometryErr : public virtual std::runtime_error { + using std::runtime_error::runtime_error; +}; +using logicErr = std::logic_error; +/** @} */ + +/** + * Global parameters that control debugging output. Only has an + * effect when compiled with the MANIFOLD_DEBUG flag. + */ +struct ExecutionParams { + /// Perform extra sanity checks and assertions on the intermediate data + /// structures. + bool intermediateChecks = false; + /// Verbose output primarily of the Boolean, including timing info and vector + /// sizes. + bool verbose = false; + /// If processOverlaps is false, a geometric check will be performed to assert + /// all triangles are CCW. + bool processOverlaps = true; + /// Suppresses printed errors regarding CW triangles. Has no effect if + /// processOverlaps is true. + bool suppressErrors = false; + /// Deterministic outputs. Will disable some parallel optimizations. + bool deterministic = false; + /// Perform optional but recommended triangle cleanups in SimplifyTopology() + bool cleanupTriangles = true; +}; + +#ifdef MANIFOLD_DEBUG + +template +inline std::ostream& operator<<(std::ostream& stream, const glm::tvec2& v) { + return stream << "x = " << v.x << ", y = " << v.y; +} + +template +inline std::ostream& operator<<(std::ostream& stream, const glm::tvec3& v) { + return stream << "x = " << v.x << ", y = " << v.y << ", z = " << v.z; +} + +template +inline std::ostream& operator<<(std::ostream& stream, const glm::tvec4& v) { + return stream << "x = " << v.x << ", y = " << v.y << ", z = " << v.z + << ", w = " << v.w; +} + +inline std::ostream& operator<<(std::ostream& stream, const mat3& mat) { + mat3 tam = glm::transpose(mat); + return stream << tam[0] << std::endl + << tam[1] << std::endl + << tam[2] << std::endl; +} + +inline std::ostream& operator<<(std::ostream& stream, const mat4x3& mat) { + mat3x4 tam = glm::transpose(mat); + return stream << tam[0] << std::endl + << tam[1] << std::endl + << tam[2] << std::endl; +} + +inline std::ostream& operator<<(std::ostream& stream, const Box& box) { + return stream << "min: " << box.min << ", " + << "max: " << box.max; +} + +inline std::ostream& operator<<(std::ostream& stream, const Rect& box) { + return stream << "min: " << box.min << ", " + << "max: " << box.max; +} + +/** + * Print the contents of this vector to standard output. Only exists if compiled + * with MANIFOLD_DEBUG flag. + */ +template +void Dump(const std::vector& vec) { + std::cout << "Vec = " << std::endl; + for (size_t i = 0; i < vec.size(); ++i) { + std::cout << i << ", " << vec[i] << ", " << std::endl; + } + std::cout << std::endl; +} + +template +void Diff(const std::vector& a, const std::vector& b) { + std::cout << "Diff = " << std::endl; + if (a.size() != b.size()) { + std::cout << "a and b must have the same length, aborting Diff" + << std::endl; + return; + } + for (size_t i = 0; i < a.size(); ++i) { + if (a[i] != b[i]) + std::cout << i << ": " << a[i] << ", " << b[i] << std::endl; + } + std::cout << std::endl; +} +/** @} */ +#endif +} // namespace manifold + +#undef HOST_DEVICE diff --git a/thirdparty/manifold/src/utilities/include/manifold/hashtable.h b/thirdparty/manifold/src/utilities/include/manifold/hashtable.h new file mode 100644 index 000000000000..8a4e11e37dd5 --- /dev/null +++ b/thirdparty/manifold/src/utilities/include/manifold/hashtable.h @@ -0,0 +1,173 @@ +// Copyright 2022 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +#pragma once +#include + +#include + +#include "manifold/common.h" +#include "manifold/vec.h" + +namespace { +typedef unsigned long long int Uint64; +typedef Uint64 (*hash_fun_t)(Uint64); +inline constexpr Uint64 kOpen = std::numeric_limits::max(); + +template +T AtomicCAS(T& target, T compare, T val) { + std::atomic& tar = reinterpret_cast&>(target); + tar.compare_exchange_strong(compare, val, std::memory_order_acq_rel); + return compare; +} + +template +void AtomicStore(T& target, T val) { + std::atomic& tar = reinterpret_cast&>(target); + // release is good enough, although not really something general + tar.store(val, std::memory_order_release); +} + +template +T AtomicLoad(const T& target) { + const std::atomic& tar = reinterpret_cast&>(target); + // acquire is good enough, although not general + return tar.load(std::memory_order_acquire); +} + +// https://stackoverflow.com/questions/664014/what-integer-hash-function-are-good-that-accepts-an-integer-hash-key +inline Uint64 hash64bit(Uint64 x) { + x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9ull; + x = (x ^ (x >> 27)) * 0x94d049bb133111ebull; + x = x ^ (x >> 31); + return x; +} +} // namespace + +namespace manifold { +/** @addtogroup Private + * @{ + */ + +template +class HashTableD { + public: + HashTableD(Vec& keys, Vec& values, std::atomic& used, + uint32_t step = 1) + : step_{step}, keys_{keys}, values_{values}, used_{used} {} + + int Size() const { return keys_.size(); } + + bool Full() const { + return used_.load(std::memory_order_relaxed) * 2 > + static_cast(Size()); + } + + void Insert(Uint64 key, const V& val) { + uint32_t idx = H(key) & (Size() - 1); + while (1) { + if (Full()) return; + Uint64& k = keys_[idx]; + const Uint64 found = AtomicCAS(k, kOpen, key); + if (found == kOpen) { + used_.fetch_add(1, std::memory_order_relaxed); + values_[idx] = val; + return; + } + if (found == key) return; + idx = (idx + step_) & (Size() - 1); + } + } + + V& operator[](Uint64 key) { + uint32_t idx = H(key) & (Size() - 1); + while (1) { + const Uint64 k = AtomicLoad(keys_[idx]); + if (k == key || k == kOpen) { + return values_[idx]; + } + idx = (idx + step_) & (Size() - 1); + } + } + + const V& operator[](Uint64 key) const { + uint32_t idx = H(key) & (Size() - 1); + while (1) { + const Uint64 k = AtomicLoad(keys_[idx]); + if (k == key || k == kOpen) { + return values_[idx]; + } + idx = (idx + step_) & (Size() - 1); + } + } + + Uint64 KeyAt(int idx) const { return AtomicLoad(keys_[idx]); } + V& At(int idx) { return values_[idx]; } + const V& At(int idx) const { return values_[idx]; } + + private: + uint32_t step_; + VecView keys_; + VecView values_; + std::atomic& used_; +}; + +template +class HashTable { + public: + HashTable(size_t size, uint32_t step = 1) + : keys_{size == 0 ? 0 : 1_uz << (int)ceil(log2(size)), kOpen}, + values_{size == 0 ? 0 : 1_uz << (int)ceil(log2(size)), {}}, + step_(step) {} + + HashTable(const HashTable& other) + : keys_(other.keys_), values_(other.values_), step_(other.step_) { + used_.store(other.used_.load()); + } + + HashTable& operator=(const HashTable& other) { + if (this == &other) return *this; + keys_ = other.keys_; + values_ = other.values_; + used_.store(other.used_.load()); + step_ = other.step_; + return *this; + } + + HashTableD D() { return {keys_, values_, used_, step_}; } + + int Entries() const { return used_.load(std::memory_order_relaxed); } + + size_t Size() const { return keys_.size(); } + + bool Full() const { + return used_.load(std::memory_order_relaxed) * 2 > Size(); + } + + double FilledFraction() const { + return static_cast(used_.load(std::memory_order_relaxed)) / Size(); + } + + Vec& GetValueStore() { return values_; } + + static Uint64 Open() { return kOpen; } + + private: + Vec keys_; + Vec values_; + std::atomic used_ = 0; + uint32_t step_; +}; + +/** @} */ +} // namespace manifold diff --git a/thirdparty/manifold/src/utilities/include/manifold/iters.h b/thirdparty/manifold/src/utilities/include/manifold/iters.h new file mode 100644 index 000000000000..e910acd89ed0 --- /dev/null +++ b/thirdparty/manifold/src/utilities/include/manifold/iters.h @@ -0,0 +1,305 @@ +// Copyright 2024 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +#pragma once + +#include +#include + +namespace manifold { + +template +struct TransformIterator { + private: + Iter iter; + F f; + + public: + using pointer = void; + using reference = std::invoke_result_t< + F, typename std::iterator_traits>::value_type>; + using difference_type = + typename std::iterator_traits>::difference_type; + using value_type = reference; + using iterator_category = typename std::iterator_traits< + std::remove_const_t>::iterator_category; + + TransformIterator(Iter iter, F f) : iter(iter), f(f) {} + + TransformIterator& operator=(const TransformIterator& other) { + if (this == &other) return *this; + // don't copy function, should be the same + iter = other.iter; + return *this; + } + + reference operator*() const { return f(*iter); } + + reference operator[](size_t i) const { return f(iter[i]); } + + // prefix increment + TransformIterator& operator++() { + iter += 1; + return *this; + } + + // postfix + TransformIterator operator++(int) { + auto old = *this; + operator++(); + return old; + } + + // prefix increment + TransformIterator& operator--() { + iter -= 1; + return *this; + } + + // postfix + TransformIterator operator--(int) { + auto old = *this; + operator--(); + return old; + } + + TransformIterator operator+(size_t n) const { + return TransformIterator(iter + n, f); + } + + TransformIterator& operator+=(size_t n) { + iter += n; + return *this; + } + + TransformIterator operator-(size_t n) const { + return TransformIterator(iter - n, f); + } + + TransformIterator& operator-=(size_t n) { + iter -= n; + return *this; + } + + bool operator==(TransformIterator other) const { return iter == other.iter; } + + bool operator!=(TransformIterator other) const { + return !(iter == other.iter); + } + + bool operator<(TransformIterator other) const { return iter < other.iter; } + + difference_type operator-(TransformIterator other) const { + return iter - other.iter; + } + + operator TransformIterator() const { + return TransformIterator(f, iter); + } +}; + +template +struct CountingIterator { + private: + T counter; + + public: + using pointer = void; + using reference = T; + using difference_type = std::make_signed_t; + using value_type = T; + using iterator_category = std::random_access_iterator_tag; + + constexpr CountingIterator(T counter) : counter(counter) {} + + value_type operator*() const { return counter; } + value_type operator[](T i) const { return counter + i; } + + // prefix increment + CountingIterator& operator++() { + counter += 1; + return *this; + } + + // postfix + CountingIterator operator++(int) { + auto old = *this; + operator++(); + return old; + } + + // prefix increment + CountingIterator& operator--() { + counter -= 1; + return *this; + } + + // postfix + CountingIterator operator--(int) { + auto old = *this; + operator--(); + return old; + } + + CountingIterator operator+(T n) const { + return CountingIterator(counter + n); + } + + CountingIterator& operator+=(T n) { + counter += n; + return *this; + } + + CountingIterator operator-(T n) const { + return CountingIterator(counter - n); + } + + CountingIterator& operator-=(T n) { + counter -= n; + return *this; + } + + friend bool operator==(CountingIterator a, CountingIterator b) { + return a.counter == b.counter; + } + + friend bool operator!=(CountingIterator a, CountingIterator b) { + return a.counter != b.counter; + } + + friend bool operator<(CountingIterator a, CountingIterator b) { + return a.counter < b.counter; + } + + friend difference_type operator-(CountingIterator a, CountingIterator b) { + return a.counter - b.counter; + } + + operator CountingIterator() const { + return CountingIterator(counter); + } +}; + +constexpr CountingIterator countAt(size_t i) { + return CountingIterator(i); +} + +template +struct StridedRange { + private: + struct StridedRangeIter { + private: + Iter iter; + size_t stride; + + public: + using pointer = + typename std::iterator_traits>::pointer; + using reference = + typename std::iterator_traits>::reference; + using difference_type = typename std::iterator_traits< + std::remove_const_t>::difference_type; + using value_type = + typename std::iterator_traits>::value_type; + using iterator_category = typename std::iterator_traits< + std::remove_const_t>::iterator_category; + + StridedRangeIter(Iter iter, int stride) : iter(iter), stride(stride) {} + + reference operator*() { return *iter; } + + std::add_const_t operator*() const { return *iter; } + + reference operator[](size_t i) { return iter[i * stride]; } + + std::add_const_t operator[](size_t i) const { + return iter[i * stride]; + } + + // prefix increment + StridedRangeIter& operator++() { + iter += stride; + return *this; + } + + // postfix + StridedRangeIter operator++(int) { + auto old = *this; + operator++(); + return old; + } + + // prefix increment + StridedRangeIter& operator--() { + iter -= stride; + return *this; + } + + // postfix + StridedRangeIter operator--(int) { + auto old = *this; + operator--(); + return old; + } + + StridedRangeIter operator+(size_t n) const { + return StridedRangeIter(iter + n * stride, stride); + } + + StridedRangeIter& operator+=(size_t n) { + iter += n * stride; + return *this; + } + + StridedRangeIter operator-(size_t n) const { + return StridedRangeIter(iter - n * stride, stride); + } + + StridedRangeIter& operator-=(size_t n) { + iter -= n * stride; + return *this; + } + + friend bool operator==(StridedRangeIter a, StridedRangeIter b) { + return a.iter == b.iter; + } + + friend bool operator!=(StridedRangeIter a, StridedRangeIter b) { + return !(a.iter == b.iter); + } + + friend bool operator<(StridedRangeIter a, StridedRangeIter b) { + return a.iter < b.iter; + } + + friend difference_type operator-(StridedRangeIter a, StridedRangeIter b) { + // note that this is not well-defined if a.stride != b.stride... + return (a.iter - b.iter) / a.stride; + } + }; + Iter _start, _end; + const size_t stride; + + public: + StridedRange(Iter start, Iter end, size_t stride) + : _start(start), _end(end), stride(stride) {} + + StridedRangeIter begin() const { return StridedRangeIter(_start, stride); } + + StridedRangeIter end() const { + return StridedRangeIter(_start, stride) + + ((std::distance(_start, _end) + (stride - 1)) / stride); + } +}; + +} // namespace manifold diff --git a/thirdparty/manifold/src/utilities/include/manifold/optional_assert.h b/thirdparty/manifold/src/utilities/include/manifold/optional_assert.h new file mode 100644 index 000000000000..6997b17da1a9 --- /dev/null +++ b/thirdparty/manifold/src/utilities/include/manifold/optional_assert.h @@ -0,0 +1,47 @@ +// Copyright 2022 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#ifdef MANIFOLD_EXCEPTIONS +#include +#endif + +#ifdef MANIFOLD_DEBUG +#include +#include +#include + +template +void Assert(bool condition, const char* file, int line, const std::string& cond, + const std::string& msg) { + if (!condition) { + std::ostringstream output; + output << "Error in file: " << file << " (" << line << "): \'" << cond + << "\' is false: " << msg; + throw Ex(output.str()); + } +} +#define DEBUG_ASSERT(condition, EX, msg) \ + Assert(condition, __FILE__, __LINE__, #condition, msg); +#else +#define DEBUG_ASSERT(condition, EX, msg) +#endif + +#ifdef MANIFOLD_EXCEPTIONS +#define ASSERT(condition, EX) \ + if (!(condition)) throw(EX); +#else +#define ASSERT(condition, EX) +#endif diff --git a/thirdparty/manifold/src/utilities/include/manifold/parallel.h b/thirdparty/manifold/src/utilities/include/manifold/parallel.h new file mode 100644 index 000000000000..de88926a078d --- /dev/null +++ b/thirdparty/manifold/src/utilities/include/manifold/parallel.h @@ -0,0 +1,1118 @@ +// Copyright 2022 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// Simple implementation of selected functions in PSTL. +// Iterators must be RandomAccessIterator. + +#pragma once +#if MANIFOLD_PAR == 'T' +#include +#include +#include +#include +#include +#endif +#include +#include + +#include "manifold/common.h" +#include "manifold/iters.h" +namespace manifold { + +enum class ExecutionPolicy { + Par, + Seq, +}; + +constexpr size_t kSeqThreshold = 1e4; +// ExecutionPolicy: +// - Sequential for small workload, +// - Parallel (CPU) for medium workload, +inline constexpr ExecutionPolicy autoPolicy(size_t size, + size_t threshold = kSeqThreshold) { + if (size <= threshold) { + return ExecutionPolicy::Seq; + } + return ExecutionPolicy::Par; +} + +template >> +inline constexpr ExecutionPolicy autoPolicy(Iter first, Iter last, + size_t threshold = kSeqThreshold) { + if (static_cast(std::distance(first, last)) <= threshold) { + return ExecutionPolicy::Seq; + } + return ExecutionPolicy::Par; +} + +template +void copy(ExecutionPolicy policy, InputIter first, InputIter last, + OutputIter d_first); +template +void copy(InputIter first, InputIter last, OutputIter d_first); + +#if MANIFOLD_PAR == 'T' +namespace details { +using manifold::kSeqThreshold; +// implementation from +// https://duvanenko.tech.blog/2018/01/14/parallel-merge/ +// https://github.com/DragonSpit/ParallelAlgorithms +// note that the ranges are now [p, r) to fit our convention. +template +void mergeRec(SrcIter src, DestIter dest, size_t p1, size_t r1, size_t p2, + size_t r2, size_t p3, Comp comp) { + size_t length1 = r1 - p1; + size_t length2 = r2 - p2; + if (length1 < length2) { + std::swap(p1, p2); + std::swap(r1, r2); + std::swap(length1, length2); + } + if (length1 == 0) return; + if (length1 + length2 <= kSeqThreshold) { + std::merge(src + p1, src + r1, src + p2, src + r2, dest + p3, comp); + } else { + size_t q1 = p1 + length1 / 2; + size_t q2 = + std::distance(src, std::lower_bound(src + p2, src + r2, src[q1], comp)); + size_t q3 = p3 + (q1 - p1) + (q2 - p2); + dest[q3] = src[q1]; + tbb::parallel_invoke( + [=] { mergeRec(src, dest, p1, q1, p2, q2, p3, comp); }, + [=] { mergeRec(src, dest, q1 + 1, r1, q2, r2, q3 + 1, comp); }); + } +} + +template +void mergeSortRec(SrcIter src, DestIter dest, size_t begin, size_t end, + Comp comp) { + size_t numElements = end - begin; + if (numElements <= kSeqThreshold) { + std::copy(src + begin, src + end, dest + begin); + std::stable_sort(dest + begin, dest + end, comp); + } else { + size_t middle = begin + numElements / 2; + tbb::parallel_invoke([=] { mergeSortRec(dest, src, begin, middle, comp); }, + [=] { mergeSortRec(dest, src, middle, end, comp); }); + mergeRec(src, dest, begin, middle, middle, end, begin, comp); + } +} + +template +struct ScanBody { + T sum; + T identity; + BinOp &f; + InputIter input; + OutputIter output; + + ScanBody(T sum, T identity, BinOp &f, InputIter input, OutputIter output) + : sum(sum), identity(identity), f(f), input(input), output(output) {} + ScanBody(ScanBody &b, tbb::split) + : sum(b.identity), + identity(b.identity), + f(b.f), + input(b.input), + output(b.output) {} + template + void operator()(const tbb::blocked_range &r, Tag) { + T temp = sum; + for (size_t i = r.begin(); i < r.end(); ++i) { + T inputTmp = input[i]; + if (Tag::is_final_scan()) output[i] = temp; + temp = f(temp, inputTmp); + } + sum = temp; + } + T get_sum() const { return sum; } + void reverse_join(ScanBody &a) { sum = f(a.sum, sum); } + void assign(ScanBody &b) { sum = b.sum; } +}; + +template +struct CopyIfScanBody { + size_t sum; + P &pred; + InputIter input; + OutputIter output; + + CopyIfScanBody(P &pred, InputIter input, OutputIter output) + : sum(0), pred(pred), input(input), output(output) {} + CopyIfScanBody(CopyIfScanBody &b, tbb::split) + : sum(0), pred(b.pred), input(b.input), output(b.output) {} + template + void operator()(const tbb::blocked_range &r, Tag) { + size_t temp = sum; + for (size_t i = r.begin(); i < r.end(); ++i) { + if (pred(i)) { + temp += 1; + if (Tag::is_final_scan()) output[temp - 1] = input[i]; + } + } + sum = temp; + } + size_t get_sum() const { return sum; } + void reverse_join(CopyIfScanBody &a) { sum = a.sum + sum; } + void assign(CopyIfScanBody &b) { sum = b.sum; } +}; + +template +struct Hist { + using SizeType = N; + static constexpr int k = K; + N hist[k][256] = {{0}}; + void merge(const Hist &other) { + for (int i = 0; i < k; ++i) + for (int j = 0; j < 256; ++j) hist[i][j] += other.hist[i][j]; + } + void prefixSum(N total, bool *canSkip) { + for (int i = 0; i < k; ++i) { + size_t count = 0; + for (int j = 0; j < 256; ++j) { + N tmp = hist[i][j]; + hist[i][j] = count; + count += tmp; + if (tmp == total) canSkip[i] = true; + } + } + } +}; + +template +void histogram(T *ptr, typename H::SizeType n, H &hist) { + auto worker = [](T *ptr, typename H::SizeType n, H &hist) { + for (typename H::SizeType i = 0; i < n; ++i) + for (int k = 0; k < hist.k; ++k) + ++hist.hist[k][(ptr[i] >> (8 * k)) & 0xFF]; + }; + if (n < kSeqThreshold) { + worker(ptr, n, hist); + } else { + tbb::combinable store; + tbb::parallel_for( + tbb::blocked_range(0, n, kSeqThreshold), + [&worker, &store, ptr](const auto &r) { + worker(ptr + r.begin(), r.end() - r.begin(), store.local()); + }); + store.combine_each([&hist](const H &h) { hist.merge(h); }); + } +} + +template +void shuffle(T *src, T *target, typename H::SizeType n, H &hist, int k) { + for (typename H::SizeType i = 0; i < n; ++i) + target[hist.hist[k][(src[i] >> (8 * k)) & 0xFF]++] = src[i]; +} + +template +bool LSB_radix_sort(T *input, T *tmp, SizeType n) { + Hist hist; + if (std::is_sorted(input, input + n)) return false; + histogram(input, n, hist); + bool canSkip[hist.k] = {0}; + hist.prefixSum(n, canSkip); + T *a = input, *b = tmp; + for (int k = 0; k < hist.k; ++k) { + if (!canSkip[k]) { + shuffle(a, b, n, hist, k); + std::swap(a, b); + } + } + return a == tmp; +} + +// LSB radix sort with merge +template +struct SortedRange { + T *input, *tmp; + SizeType offset = 0, length = 0; + bool inTmp = false; + + SortedRange(T *input, T *tmp, SizeType offset = 0, SizeType length = 0) + : input(input), tmp(tmp), offset(offset), length(length) {} + SortedRange(SortedRange &r, tbb::split) + : input(r.input), tmp(r.tmp) {} + void operator()(const tbb::blocked_range &range) { + SortedRange rhs(input, tmp, range.begin(), + range.end() - range.begin()); + rhs.inTmp = + LSB_radix_sort(input + rhs.offset, tmp + rhs.offset, rhs.length); + if (length == 0) + *this = rhs; + else + join(rhs); + } + bool swapBuffer() const { + T *src = input, *target = tmp; + if (inTmp) std::swap(src, target); + copy(src + offset, src + offset + length, target + offset); + return !inTmp; + } + void join(const SortedRange &rhs) { + if (inTmp != rhs.inTmp) { + if (length < rhs.length) + inTmp = swapBuffer(); + else + rhs.swapBuffer(); + } + T *src = input, *target = tmp; + if (inTmp) std::swap(src, target); + if (src[offset + length - 1] > src[rhs.offset]) { + mergeRec(src, target, offset, offset + length, rhs.offset, + rhs.offset + rhs.length, offset, std::less()); + inTmp = !inTmp; + } + length += rhs.length; + } +}; + +template +void radix_sort(T *input, SizeTy n) { + T *aux = new T[n]; + SizeTy blockSize = std::max(n / tbb::this_task_arena::max_concurrency() / 4, + static_cast(kSeqThreshold / sizeof(T))); + SortedRange result(input, aux); + tbb::parallel_reduce(tbb::blocked_range(0, n, blockSize), result); + if (result.inTmp) copy(aux, aux + n, input); + delete[] aux; +} + +template ::value_type, + typename Comp = decltype(std::less())> +void mergeSort(ExecutionPolicy policy, Iterator first, Iterator last, + Comp comp) { +#if MANIFOLD_PAR == 'T' + if (policy == ExecutionPolicy::Par) { + // apparently this prioritizes threads inside here? + tbb::this_task_arena::isolate([&] { + size_t length = std::distance(first, last); + T *tmp = new T[length]; + copy(policy, first, last, tmp); + details::mergeSortRec(tmp, first, 0, length, comp); + delete[] tmp; + }); + return; + } +#endif + std::stable_sort(first, last, comp); +} + +// stable_sort using merge sort. +// +// For simpler implementation, we do not support types that are not trivially +// destructable. +template ::value_type, + typename Dummy = void> +struct SortFunctor { + void operator()(ExecutionPolicy policy, Iterator first, Iterator last) { + static_assert( + std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); + static_assert(std::is_trivially_destructible_v, + "Our simple implementation does not support types that are " + "not trivially destructable."); + return mergeSort(policy, first, last, std::less()); + } +}; + +// stable_sort specialized with radix sort for integral types. +// Typically faster than merge sort. +template +struct SortFunctor< + Iterator, T, + std::enable_if_t< + std::is_integral_v && + std::is_pointer_v::pointer>>> { + void operator()(ExecutionPolicy policy, Iterator first, Iterator last) { + static_assert( + std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); + static_assert(std::is_trivially_destructible_v, + "Our simple implementation does not support types that are " + "not trivially destructable."); +#if MANIFOLD_PAR == 'T' + if (policy == ExecutionPolicy::Par) { + radix_sort(&*first, static_cast(std::distance(first, last))); + return; + } +#endif + stable_sort(policy, first, last, std::less()); + } +}; + +} // namespace details + +#endif + +// Applies the function `f` to each element in the range `[first, last)` +template +void for_each(ExecutionPolicy policy, Iter first, Iter last, F f) { + static_assert(std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); +#if MANIFOLD_PAR == 'T' + if (policy == ExecutionPolicy::Par) { + tbb::parallel_for(tbb::blocked_range(first, last), + [&f](const tbb::blocked_range &range) { + for (Iter i = range.begin(); i != range.end(); i++) + f(*i); + }); + return; + } +#endif + std::for_each(first, last, f); +} + +// Applies the function `f` to each element in the range `[first, last)` +template +void for_each_n(ExecutionPolicy policy, Iter first, size_t n, F f) { + static_assert(std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); + for_each(policy, first, first + n, f); +} + +// Reduce the range `[first, last)` using a binary operation `f` with an initial +// value `init`. +// +// The binary operation should be commutative and associative. Otherwise, the +// result is non-deterministic. +template ::value_type> +T reduce(ExecutionPolicy policy, InputIter first, InputIter last, T init, + BinaryOp f) { + static_assert(std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); +#if MANIFOLD_PAR == 'T' + if (policy == ExecutionPolicy::Par) { + // should we use deterministic reduce here? + return tbb::parallel_reduce( + tbb::blocked_range(first, last, details::kSeqThreshold), + init, + [&f](const tbb::blocked_range &range, T value) { + return std::reduce(range.begin(), range.end(), value, f); + }, + f); + } +#endif + return std::reduce(first, last, init, f); +} + +// Reduce the range `[first, last)` using a binary operation `f` with an initial +// value `init`. +// +// The binary operation should be commutative and associative. Otherwise, the +// result is non-deterministic. +template ::value_type> +T reduce(InputIter first, InputIter last, T init, BinaryOp f) { + return reduce(autoPolicy(first, last, 1e5), first, last, init, f); +} + +// Transform and reduce the range `[first, last)` by first applying a unary +// function `g`, and then combining the results using a binary operation `f` +// with an initial value `init`. +// +// The binary operation should be commutative and associative. Otherwise, the +// result is non-deterministic. +template ::value_type>> +T transform_reduce(ExecutionPolicy policy, InputIter first, InputIter last, + T init, BinaryOp f, UnaryOp g) { + return reduce(policy, TransformIterator(first, g), TransformIterator(last, g), + init, f); +} + +// Transform and reduce the range `[first, last)` by first applying a unary +// function `g`, and then combining the results using a binary operation `f` +// with an initial value `init`. +// +// The binary operation should be commutative and associative. Otherwise, the +// result is non-deterministic. +template ::value_type>> +T transform_reduce(InputIter first, InputIter last, T init, BinaryOp f, + UnaryOp g) { + return manifold::reduce(TransformIterator(first, g), + TransformIterator(last, g), init, f); +} + +// Compute the inclusive prefix sum for the range `[first, last)` +// using the summation operator, and store the result in the range +// starting from `d_first`. +// +// The input range `[first, last)` and +// the output range `[d_first, d_first + last - first)` +// must be equal or non-overlapping. +template ::value_type> +void inclusive_scan(ExecutionPolicy policy, InputIter first, InputIter last, + OutputIter d_first) { + static_assert(std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); + static_assert( + std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); +#if MANIFOLD_PAR == 'T' + if (policy == ExecutionPolicy::Par) { + tbb::parallel_scan( + tbb::blocked_range(0, std::distance(first, last)), + static_cast(0), + [&](const tbb::blocked_range &range, T sum, + bool is_final_scan) { + T temp = sum; + for (size_t i = range.begin(); i < range.end(); ++i) { + temp = temp + first[i]; + if (is_final_scan) d_first[i] = temp; + } + return temp; + }, + std::plus()); + return; + } +#endif + std::inclusive_scan(first, last, d_first); +} + +// Compute the inclusive prefix sum for the range `[first, last)` using the +// summation operator, and store the result in the range +// starting from `d_first`. +// +// The input range `[first, last)` and +// the output range `[d_first, d_first + last - first)` +// must be equal or non-overlapping. +template ::value_type> +void inclusive_scan(InputIter first, InputIter last, OutputIter d_first) { + return inclusive_scan(autoPolicy(first, last, 1e5), first, last, d_first); +} + +// Compute the inclusive prefix sum for the range `[first, last)` using the +// binary operator `f`, with initial value `init` and +// identity element `identity`, and store the result in the range +// starting from `d_first`. +// +// This is different from `exclusive_scan` in the sequential algorithm by +// requiring an identity element. This is needed so that each block can be +// scanned in parallel and combined later. +// +// The input range `[first, last)` and +// the output range `[d_first, d_first + last - first)` +// must be equal or non-overlapping. +template ::value_type>()), + typename T = typename std::iterator_traits::value_type> +void exclusive_scan(ExecutionPolicy policy, InputIter first, InputIter last, + OutputIter d_first, T init = static_cast(0), + BinOp f = std::plus(), T identity = static_cast(0)) { + static_assert(std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); + static_assert( + std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); +#if MANIFOLD_PAR == 'T' + if (policy == ExecutionPolicy::Par) { + details::ScanBody body(init, identity, f, + first, d_first); + tbb::parallel_scan( + tbb::blocked_range(0, std::distance(first, last)), body); + return; + } +#endif + std::exclusive_scan(first, last, d_first, init, f); +} + +// Compute the inclusive prefix sum for the range `[first, last)` using the +// binary operator `f`, with initial value `init` and +// identity element `identity`, and store the result in the range +// starting from `d_first`. +// +// This is different from `exclusive_scan` in the sequential algorithm by +// requiring an identity element. This is needed so that each block can be +// scanned in parallel and combined later. +// +// The input range `[first, last)` and +// the output range `[d_first, d_first + last - first)` +// must be equal or non-overlapping. +template ::value_type>()), + typename T = typename std::iterator_traits::value_type> +void exclusive_scan(InputIter first, InputIter last, OutputIter d_first, + T init = static_cast(0), BinOp f = std::plus(), + T identity = static_cast(0)) { + exclusive_scan(autoPolicy(first, last, 1e5), first, last, d_first, init, f, + identity); +} + +// Apply function `f` on the input range `[first, last)` and store the result in +// the range starting from `d_first`. +// +// The input range `[first, last)` and +// the output range `[d_first, d_first + last - first)` +// must be equal or non-overlapping. +template +void transform(ExecutionPolicy policy, InputIter first, InputIter last, + OutputIter d_first, F f) { + static_assert(std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); + static_assert( + std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); +#if MANIFOLD_PAR == 'T' + if (policy == ExecutionPolicy::Par) { + tbb::parallel_for( + tbb::blocked_range( + 0_uz, static_cast(std::distance(first, last))), + [&](const tbb::blocked_range &range) { + std::transform(first + range.begin(), first + range.end(), + d_first + range.begin(), f); + }); + return; + } +#endif + std::transform(first, last, d_first, f); +} + +// Apply function `f` on the input range `[first, last)` and store the result in +// the range starting from `d_first`. +// +// The input range `[first, last)` and +// the output range `[d_first, d_first + last - first)` +// must be equal or non-overlapping. +template +void transform(InputIter first, InputIter last, OutputIter d_first, F f) { + transform(autoPolicy(first, last, 1e5), first, last, d_first, f); +} + +// Copy the input range `[first, last)` to the output range +// starting from `d_first`. +// +// The input range `[first, last)` and +// the output range `[d_first, d_first + last - first)` +// must not overlap. +template +void copy(ExecutionPolicy policy, InputIter first, InputIter last, + OutputIter d_first) { + static_assert(std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); + static_assert( + std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); +#if MANIFOLD_PAR == 'T' + if (policy == ExecutionPolicy::Par) { + tbb::parallel_for(tbb::blocked_range( + 0_uz, static_cast(std::distance(first, last)), + details::kSeqThreshold), + [&](const tbb::blocked_range &range) { + std::copy(first + range.begin(), first + range.end(), + d_first + range.begin()); + }); + return; + } +#endif + std::copy(first, last, d_first); +} + +// Copy the input range `[first, last)` to the output range +// starting from `d_first`. +// +// The input range `[first, last)` and +// the output range `[d_first, d_first + last - first)` +// must not overlap. +template +void copy(InputIter first, InputIter last, OutputIter d_first) { + copy(autoPolicy(first, last, 1e6), first, last, d_first); +} + +// Copy the input range `[first, first + n)` to the output range +// starting from `d_first`. +// +// The input range `[first, first + n)` and +// the output range `[d_first, d_first + n)` +// must not overlap. +template +void copy_n(ExecutionPolicy policy, InputIter first, size_t n, + OutputIter d_first) { + copy(policy, first, first + n, d_first); +} + +// Copy the input range `[first, first + n)` to the output range +// starting from `d_first`. +// +// The input range `[first, first + n)` and +// the output range `[d_first, d_first + n)` +// must not overlap. +template +void copy_n(InputIter first, size_t n, OutputIter d_first) { + copy(autoPolicy(n, 1e6), first, first + n, d_first); +} + +// Fill the range `[first, last)` with `value`. +template +void fill(ExecutionPolicy policy, OutputIter first, OutputIter last, T value) { + static_assert( + std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); +#if MANIFOLD_PAR == 'T' + if (policy == ExecutionPolicy::Par) { + tbb::parallel_for(tbb::blocked_range(first, last), + [&](const tbb::blocked_range &range) { + std::fill(range.begin(), range.end(), value); + }); + return; + } +#endif + std::fill(first, last, value); +} + +// Fill the range `[first, last)` with `value`. +template +void fill(OutputIter first, OutputIter last, T value) { + fill(autoPolicy(first, last, 5e5), first, last, value); +} + +// Count the number of elements in the input range `[first, last)` satisfying +// predicate `pred`, i.e. `pred(x) == true`. +template +size_t count_if(ExecutionPolicy policy, InputIter first, InputIter last, + P pred) { +#if MANIFOLD_PAR == 'T' + if (policy == ExecutionPolicy::Par) { + return reduce(policy, TransformIterator(first, pred), + TransformIterator(last, pred), 0_uz, std::plus()); + } +#endif + return std::count_if(first, last, pred); +} + +// Count the number of elements in the input range `[first, last)` satisfying +// predicate `pred`, i.e. `pred(x) == true`. +template +size_t count_if(InputIter first, InputIter last, P pred) { + return count_if(autoPolicy(first, last, 1e4), first, last, pred); +} + +// Check if all elements in the input range `[first, last)` satisfy +// predicate `pred`, i.e. `pred(x) == true`. +template +bool all_of(ExecutionPolicy policy, InputIter first, InputIter last, P pred) { + static_assert(std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); +#if MANIFOLD_PAR == 'T' + if (policy == ExecutionPolicy::Par) { + // should we use deterministic reduce here? + return tbb::parallel_reduce( + tbb::blocked_range(first, last), true, + [&](const tbb::blocked_range &range, bool value) { + if (!value) return false; + for (InputIter i = range.begin(); i != range.end(); i++) + if (!pred(*i)) return false; + return true; + }, + [](bool a, bool b) { return a && b; }); + } +#endif + return std::all_of(first, last, pred); +} + +// Check if all elements in the input range `[first, last)` satisfy +// predicate `pred`, i.e. `pred(x) == true`. +template +bool all_of(InputIter first, InputIter last, P pred) { + return all_of(autoPolicy(first, last, 1e5), first, last, pred); +} + +// Copy values in the input range `[first, last)` to the output range +// starting from `d_first` that satisfies the predicate `pred`, +// i.e. `pred(x) == true`, and returns `d_first + n` where `n` is the number of +// times the predicate is evaluated to true. +// +// This function is stable, meaning that the relative order of elements in the +// output range remains unchanged. +// +// The input range `[first, last)` and +// the output range `[d_first, d_first + last - first)` +// must not overlap. +template +OutputIter copy_if(ExecutionPolicy policy, InputIter first, InputIter last, + OutputIter d_first, P pred) { + static_assert(std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); + static_assert( + std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); +#if MANIFOLD_PAR == 'T' + if (policy == ExecutionPolicy::Par) { + auto pred2 = [&](size_t i) { return pred(first[i]); }; + details::CopyIfScanBody body(pred2, first, d_first); + tbb::parallel_scan( + tbb::blocked_range(0, std::distance(first, last)), body); + return d_first + body.get_sum(); + } +#endif + return std::copy_if(first, last, d_first, pred); +} + +// Copy values in the input range `[first, last)` to the output range +// starting from `d_first` that satisfies the predicate `pred`, i.e. `pred(x) == +// true`, and returns `d_first + n` where `n` is the number of times the +// predicate is evaluated to true. +// +// This function is stable, meaning that the relative order of elements in the +// output range remains unchanged. +// +// The input range `[first, last)` and +// the output range `[d_first, d_first + last - first)` +// must not overlap. +template +OutputIter copy_if(InputIter first, InputIter last, OutputIter d_first, + P pred) { + return copy_if(autoPolicy(first, last, 1e5), first, last, d_first, pred); +} + +// Remove values in the input range `[first, last)` that satisfies +// the predicate `pred`, i.e. `pred(x) == true`, and returns `first + n` +// where `n` is the number of times the predicate is evaluated to false. +// +// This function is stable, meaning that the relative order of elements that +// remained are unchanged. +// +// Only trivially destructable types are supported. +template ::value_type> +Iter remove_if(ExecutionPolicy policy, Iter first, Iter last, P pred) { + static_assert(std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); + static_assert(std::is_trivially_destructible_v, + "Our simple implementation does not support types that are " + "not trivially destructable."); +#if MANIFOLD_PAR == 'T' + if (policy == ExecutionPolicy::Par) { + T *tmp = new T[std::distance(first, last)]; + auto back = + copy_if(policy, first, last, tmp, [&](T v) { return !pred(v); }); + copy(policy, tmp, back, first); + auto d = std::distance(tmp, back); + delete[] tmp; + return first + d; + } +#endif + return std::remove_if(first, last, pred); +} + +// Remove values in the input range `[first, last)` that satisfies +// the predicate `pred`, i.e. `pred(x) == true`, and +// returns `first + n` where `n` is the number of times the predicate is +// evaluated to false. +// +// This function is stable, meaning that the relative order of elements that +// remained are unchanged. +// +// Only trivially destructable types are supported. +template ::value_type> +Iter remove_if(Iter first, Iter last, P pred) { + return remove_if(autoPolicy(first, last, 1e4), first, last, pred); +} + +// Remove values in the input range `[first, last)` that are equal to `value`. +// Returns `first + n` where `n` is the number of values +// that are not equal to `value`. +// +// This function is stable, meaning that the relative order of elements that +// remained are unchanged. +// +// Only trivially destructable types are supported. +template ::value_type> +Iter remove(ExecutionPolicy policy, Iter first, Iter last, T value) { + static_assert(std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); + static_assert(std::is_trivially_destructible_v, + "Our simple implementation does not support types that are " + "not trivially destructable."); +#if MANIFOLD_PAR == 'T' + if (policy == ExecutionPolicy::Par) { + T *tmp = new T[std::distance(first, last)]; + auto back = + copy_if(policy, first, last, tmp, [&](T v) { return v != value; }); + copy(policy, tmp, back, first); + auto d = std::distance(tmp, back); + delete[] tmp; + return first + d; + } +#endif + return std::remove(first, last, value); +} + +// Remove values in the input range `[first, last)` that are equal to `value`. +// Returns `first + n` where `n` is the number of values +// that are not equal to `value`. +// +// This function is stable, meaning that the relative order of elements that +// remained are unchanged. +// +// Only trivially destructable types are supported. +template ::value_type> +Iter remove(Iter first, Iter last, T value) { + return remove(autoPolicy(first, last, 1e4), first, last, value); +} + +// For each group of consecutive elements in the range `[first, last)` with the +// same value, unique removes all but the first element of the group. The return +// value is an iterator `new_last` such that no two consecutive elements in the +// range `[first, new_last)` are equal. +// +// This function is stable, meaning that the relative order of elements that +// remained are unchanged. +// +// Only trivially destructable types are supported. +template ::value_type> +Iter unique(ExecutionPolicy policy, Iter first, Iter last) { + static_assert(std::is_convertible_v< + typename std::iterator_traits::iterator_category, + std::random_access_iterator_tag>, + "You can only parallelize RandomAccessIterator."); + static_assert(std::is_trivially_destructible_v, + "Our simple implementation does not support types that are " + "not trivially destructable."); +#if MANIFOLD_PAR == 'T' + if (policy == ExecutionPolicy::Par && first != last) { + Iter newSrcStart = first; + // cap the maximum buffer size, proved to be beneficial for unique with huge + // array size + constexpr size_t MAX_BUFFER_SIZE = 1 << 16; + T *tmp = new T[std::min(MAX_BUFFER_SIZE, + static_cast(std::distance(first, last)))]; + auto pred = [&](size_t i) { return tmp[i] != tmp[i + 1]; }; + do { + size_t length = + std::min(MAX_BUFFER_SIZE, + static_cast(std::distance(newSrcStart, last))); + copy(policy, newSrcStart, newSrcStart + length, tmp); + *first = *newSrcStart; + // this is not a typo, the index i is offset by 1, so to compare an + // element with its predecessor we need to compare i and i + 1. + details::CopyIfScanBody body(pred, tmp + 1, first + 1); + tbb::parallel_scan(tbb::blocked_range(0, length - 1), body); + first += body.get_sum() + 1; + newSrcStart += length; + } while (newSrcStart != last); + delete[] tmp; + return first; + } +#endif + return std::unique(first, last); +} + +// For each group of consecutive elements in the range `[first, last)` with the +// same value, unique removes all but the first element of the group. The return +// value is an iterator `new_last` such that no two consecutive elements in the +// range `[first, new_last)` are equal. +// +// This function is stable, meaning that the relative order of elements that +// remained are unchanged. +// +// Only trivially destructable types are supported. +template ::value_type> +Iter unique(Iter first, Iter last) { + return unique(autoPolicy(first, last, 1e4), first, last); +} + +// Sort the input range `[first, last)` in ascending order. +// +// This function is stable, meaning that the relative order of elements that are +// incomparable remains unchanged. +// +// Only trivially destructable types are supported. +template ::value_type> +void stable_sort(ExecutionPolicy policy, Iterator first, Iterator last) { +#if MANIFOLD_PAR == 'T' + details::SortFunctor()(policy, first, last); +#else + std::stable_sort(first, last); +#endif +} + +// Sort the input range `[first, last)` in ascending order. +// +// This function is stable, meaning that the relative order of elements that are +// incomparable remains unchanged. +// +// Only trivially destructable types are supported. +template ::value_type> +void stable_sort(Iterator first, Iterator last) { + stable_sort(autoPolicy(first, last, 1e4), first, last); +} + +// Sort the input range `[first, last)` in ascending order using the comparison +// function `comp`. +// +// This function is stable, meaning that the relative order of elements that are +// incomparable remains unchanged. +// +// Only trivially destructable types are supported. +template ::value_type, + typename Comp = decltype(std::less())> +void stable_sort(ExecutionPolicy policy, Iterator first, Iterator last, + Comp comp) { +#if MANIFOLD_PAR == 'T' + details::mergeSort(policy, first, last, comp); +#else + std::stable_sort(first, last, comp); +#endif +} + +// Sort the input range `[first, last)` in ascending order using the comparison +// function `comp`. +// +// This function is stable, meaning that the relative order of elements that are +// incomparable remains unchanged. +// +// Only trivially destructable types are supported. +template ::value_type, + typename Comp = decltype(std::less())> +void stable_sort(Iterator first, Iterator last, Comp comp) { + stable_sort(autoPolicy(first, last, 1e4), first, last, comp); +} + +// `scatter` copies elements from a source range into an output array according +// to a map. For each iterator `i` in the range `[first, last)`, the value `*i` +// is assigned to `outputFirst[mapFirst[i - first]]`. If the same index appears +// more than once in the range `[mapFirst, mapFirst + (last - first))`, the +// result is undefined. +// +// The map range, input range and the output range must not overlap. +template +void scatter(ExecutionPolicy policy, InputIterator1 first, InputIterator1 last, + InputIterator2 mapFirst, OutputIterator outputFirst) { + for_each(policy, countAt(0_uz), + countAt(static_cast(std::distance(first, last))), + [first, mapFirst, outputFirst](size_t i) { + outputFirst[mapFirst[i]] = first[i]; + }); +} + +// `scatter` copies elements from a source range into an output array according +// to a map. For each iterator `i` in the range `[first, last)`, the value `*i` +// is assigned to `outputFirst[mapFirst[i - first]]`. If the same index appears +// more than once in the range `[mapFirst, mapFirst + (last - first))`, +// the result is undefined. +// +// The map range, input range and the output range must not overlap. +template +void scatter(InputIterator1 first, InputIterator1 last, InputIterator2 mapFirst, + OutputIterator outputFirst) { + scatter(autoPolicy(first, last, 1e5), first, last, mapFirst, outputFirst); +} + +// `gather` copies elements from a source array into a destination range +// according to a map. For each input iterator `i` +// in the range `[mapFirst, mapLast)`, the value `inputFirst[*i]` +// is assigned to `outputFirst[i - map_first]`. +// +// The map range, input range and the output range must not overlap. +template +void gather(ExecutionPolicy policy, InputIterator mapFirst, + InputIterator mapLast, RandomAccessIterator inputFirst, + OutputIterator outputFirst) { + for_each(policy, countAt(0_uz), + countAt(static_cast(std::distance(mapFirst, mapLast))), + [mapFirst, inputFirst, outputFirst](size_t i) { + outputFirst[i] = inputFirst[mapFirst[i]]; + }); +} + +// `gather` copies elements from a source array into a destination range +// according to a map. For each input iterator `i` +// in the range `[mapFirst, mapLast)`, the value `inputFirst[*i]` +// is assigned to `outputFirst[i - map_first]`. +// +// The map range, input range and the output range must not overlap. +template +void gather(InputIterator mapFirst, InputIterator mapLast, + RandomAccessIterator inputFirst, OutputIterator outputFirst) { + gather(autoPolicy(std::distance(mapFirst, mapLast), 1e5), mapFirst, mapLast, + inputFirst, outputFirst); +} + +// Write `[0, last - first)` to the range `[first, last)`. +template +void sequence(ExecutionPolicy policy, Iterator first, Iterator last) { + for_each(policy, countAt(0_uz), + countAt(static_cast(std::distance(first, last))), + [first](size_t i) { first[i] = i; }); +} + +// Write `[0, last - first)` to the range `[first, last)`. +template +void sequence(Iterator first, Iterator last) { + sequence(autoPolicy(first, last, 1e5), first, last); +} + +} // namespace manifold diff --git a/thirdparty/manifold/src/utilities/include/manifold/sparse.h b/thirdparty/manifold/src/utilities/include/manifold/sparse.h new file mode 100644 index 000000000000..337490d77857 --- /dev/null +++ b/thirdparty/manifold/src/utilities/include/manifold/sparse.h @@ -0,0 +1,211 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#include + +#include "manifold/common.h" +#include "manifold/optional_assert.h" +#include "manifold/parallel.h" +#include "manifold/utils.h" +#include "manifold/vec.h" + +namespace { +template +inline bool FirstFinite(T v) { + return std::isfinite(v[0]); +} + +template <> +inline bool FirstFinite(double v) { + return std::isfinite(v); +} +} // namespace + +namespace manifold { + +/** @ingroup Private */ +class SparseIndices { + // sparse indices where {p1: q1, p2: q2, ...} are laid out as + // p1 q1 p2 q2 or q1 p1 q2 p2, depending on endianness + // such that the indices are sorted by (p << 32) | q + public: +#if defined(__BYTE_ORDER) && __BYTE_ORDER == __BIG_ENDIAN || \ + defined(__BIG_ENDIAN__) || defined(__ARMEB__) || defined(__THUMBEB__) || \ + defined(__AARCH64EB__) || defined(_MIBSEB) || defined(__MIBSEB) || \ + defined(__MIBSEB__) + static constexpr size_t pOffset = 0; +#elif defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN || \ + defined(__LITTLE_ENDIAN__) || defined(__ARMEL__) || \ + defined(__THUMBEL__) || defined(__AARCH64EL__) || defined(_MIPSEL) || \ + defined(__MIPSEL) || defined(__MIPSEL__) || defined(__EMSCRIPTEN__) || \ + defined(_WIN32) + static constexpr size_t pOffset = 1; +#else +#error "unknown architecture" +#endif + static constexpr int64_t EncodePQ(int p, int q) { + return (int64_t(p) << 32) | q; + } + + SparseIndices() = default; + SparseIndices(size_t size) { data_ = Vec(size * sizeof(int64_t)); } + + size_t size() const { return data_.size() / sizeof(int64_t); } + + Vec Copy(bool use_q) const { + Vec out(size()); + size_t offset = pOffset; + if (use_q) offset = 1 - offset; + const int* p = ptr(); + for_each(autoPolicy(out.size()), countAt(0_uz), countAt(out.size()), + [&](size_t i) { out[i] = p[i * 2 + offset]; }); + return out; + } + + void Sort() { + VecView view = AsVec64(); + stable_sort(view.begin(), view.end()); + } + + void Resize(size_t size) { data_.resize(size * sizeof(int64_t), -1); } + + inline int& Get(size_t i, bool use_q) { + if (use_q) + return ptr()[2 * i + 1 - pOffset]; + else + return ptr()[2 * i + pOffset]; + } + + inline int Get(size_t i, bool use_q) const { + if (use_q) + return ptr()[2 * i + 1 - pOffset]; + else + return ptr()[2 * i + pOffset]; + } + + inline int64_t GetPQ(size_t i) const { + VecView view = AsVec64(); + return view[i]; + } + + inline void Set(size_t i, int p, int q) { + VecView view = AsVec64(); + view[i] = EncodePQ(p, q); + } + + inline void SetPQ(size_t i, int64_t pq) { + VecView view = AsVec64(); + view[i] = pq; + } + + VecView AsVec64() { + return VecView(reinterpret_cast(data_.data()), + data_.size() / sizeof(int64_t)); + } + + VecView AsVec64() const { + return VecView( + reinterpret_cast(data_.data()), + data_.size() / sizeof(int64_t)); + } + + VecView AsVec32() { + return VecView(reinterpret_cast(data_.data()), + data_.size() / sizeof(int32_t)); + } + + VecView AsVec32() const { + return VecView( + reinterpret_cast(data_.data()), + data_.size() / sizeof(int32_t)); + } + + inline void Add(int p, int q) { + for (unsigned int i = 0; i < sizeof(int64_t); ++i) data_.push_back(-1); + Set(size() - 1, p, q); + } + + void Unique() { + Sort(); + VecView view = AsVec64(); + size_t newSize = unique(view.begin(), view.end()) - view.begin(); + Resize(newSize); + } + + size_t RemoveZeros(Vec& S) { + DEBUG_ASSERT(S.size() == size(), userErr, + "Different number of values than indicies!"); + + Vec new2Old(S.size()); + sequence(new2Old.begin(), new2Old.end()); + + size_t size = copy_if(countAt(0_uz), countAt(S.size()), new2Old.begin(), + [&S](const size_t i) { return S[i] != 0; }) - + new2Old.begin(); + new2Old.resize(size); + + Permute(S, new2Old); + Vec tmp(std::move(data_)); + Resize(size); + gather(new2Old.begin(), new2Old.end(), + reinterpret_cast(tmp.data()), + reinterpret_cast(data_.data())); + + return size; + } + + template + size_t KeepFinite(Vec& v, Vec& x) { + DEBUG_ASSERT(x.size() == size(), userErr, + "Different number of values than indicies!"); + + Vec new2Old(v.size()); + size_t size = copy_if(countAt(0_uz), countAt(v.size()), new2Old.begin(), + [&v](size_t i) { return FirstFinite(v[i]); }) - + new2Old.begin(); + new2Old.resize(size); + + Permute(v, new2Old); + Permute(x, new2Old); + Vec tmp(std::move(data_)); + Resize(size); + gather(new2Old.begin(), new2Old.end(), + reinterpret_cast(tmp.data()), + reinterpret_cast(data_.data())); + + return size; + } + +#ifdef MANIFOLD_DEBUG + void Dump() const { + std::cout << "SparseIndices = " << std::endl; + const int* p = ptr(); + for (size_t i = 0; i < size(); ++i) { + std::cout << i << ", p = " << Get(i, false) << ", q = " << Get(i, true) + << std::endl; + } + std::cout << std::endl; + } +#endif + + private: + Vec data_; + inline int* ptr() { return reinterpret_cast(data_.data()); } + inline const int* ptr() const { + return reinterpret_cast(data_.data()); + } +}; + +} // namespace manifold diff --git a/thirdparty/manifold/src/utilities/include/manifold/svd.h b/thirdparty/manifold/src/utilities/include/manifold/svd.h new file mode 100644 index 000000000000..4bb532e474d3 --- /dev/null +++ b/thirdparty/manifold/src/utilities/include/manifold/svd.h @@ -0,0 +1,312 @@ +// MIT License + +// Copyright (c) 2019 wi-re +// Copyright 2023 The Manifold Authors. + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +// Modified from https://github.com/wi-re/tbtSVD, removing CUDA dependence and +// approximate inverse square roots. + +#include + +#include "manifold/common.h" + +namespace { +using manifold::mat3; +using manifold::vec3; +using manifold::vec4; + +// Constants used for calculation of Givens quaternions +inline constexpr double _gamma = 5.82842712474619; // sqrt(8)+3; +inline constexpr double _cStar = 0.9238795325112867; // cos(pi/8) +inline constexpr double _sStar = 0.3826834323650898; // sin(pi/8) +// Threshold value +inline constexpr double _SVD_EPSILON = 1e-6; +// Iteration counts for Jacobi Eigen Analysis, influences precision +inline constexpr int JACOBI_STEPS = 12; + +// Helper function used to swap X with Y and Y with X if c == true +inline void CondSwap(bool c, double& X, double& Y) { + double Z = X; + X = c ? Y : X; + Y = c ? Z : Y; +} +// Helper function used to swap X with Y and Y with -X if c == true +inline void CondNegSwap(bool c, double& X, double& Y) { + double Z = -X; + X = c ? Y : X; + Y = c ? Z : Y; +} +// A simple symmetric 3x3 Matrix class (contains no storage for (0, 1) (0, 2) +// and (1, 2) +struct Symmetric3x3 { + double m_00 = 1.0; + double m_10 = 0.0, m_11 = 1.0; + double m_20 = 0.0, m_21 = 0.0, m_22 = 1.0; + + Symmetric3x3(double a11 = 1.0, double a21 = 0.0, double a22 = 1.0, + double a31 = 0.0, double a32 = 0.0, double a33 = 1.0) + : m_00(a11), m_10(a21), m_11(a22), m_20(a31), m_21(a32), m_22(a33) {} + Symmetric3x3(mat3 o) + : m_00(o[0][0]), + m_10(o[0][1]), + m_11(o[1][1]), + m_20(o[0][2]), + m_21(o[1][2]), + m_22(o[2][2]) {} +}; +// Helper struct to store 2 doubles to avoid OUT parameters on functions +struct Givens { + double ch = _cStar; + double sh = _sStar; +}; +// Helper struct to store 2 Matrices to avoid OUT parameters on functions +struct QR { + mat3 Q, R; +}; +// Calculates the squared norm of the vector. +inline double Dist2(vec3 v) { return glm::dot(v, v); } +// For an explanation of the math see +// http://pages.cs.wisc.edu/~sifakis/papers/SVD_TR1690.pdf Computing the +// Singular Value Decomposition of 3 x 3 matrices with minimal branching and +// elementary floating point operations See Algorithm 2 in reference. Given a +// matrix A this function returns the Givens quaternion (x and w component, y +// and z are 0) +inline Givens ApproximateGivensQuaternion(Symmetric3x3& A) { + Givens g{2.0 * (A.m_00 - A.m_11), A.m_10}; + bool b = _gamma * g.sh * g.sh < g.ch * g.ch; + double w = 1.0 / hypot(g.ch, g.sh); + if (!std::isfinite(w)) b = 0; + return Givens{b ? w * g.ch : _cStar, b ? w * g.sh : _sStar}; +} +// Function used to apply a Givens rotation S. Calculates the weights and +// updates the quaternion to contain the cumulative rotation +inline void JacobiConjugation(const int32_t x, const int32_t y, const int32_t z, + Symmetric3x3& S, vec4& q) { + auto g = ApproximateGivensQuaternion(S); + double scale = 1.0 / fma(g.ch, g.ch, g.sh * g.sh); + double a = fma(g.ch, g.ch, -g.sh * g.sh) * scale; + double b = 2.0 * g.sh * g.ch * scale; + Symmetric3x3 _S = S; + // perform conjugation S = Q'*S*Q + S.m_00 = + fma(a, fma(a, _S.m_00, b * _S.m_10), b * (fma(a, _S.m_10, b * _S.m_11))); + S.m_10 = fma(a, fma(-b, _S.m_00, a * _S.m_10), + b * (fma(-b, _S.m_10, a * _S.m_11))); + S.m_11 = fma(-b, fma(-b, _S.m_00, a * _S.m_10), + a * (fma(-b, _S.m_10, a * _S.m_11))); + S.m_20 = fma(a, _S.m_20, b * _S.m_21); + S.m_21 = fma(-b, _S.m_20, a * _S.m_21); + S.m_22 = _S.m_22; + // update cumulative rotation qV + vec3 tmp = g.sh * vec3(q); + g.sh *= q[3]; + // (x,y,z) corresponds to ((0,1,2),(1,2,0),(2,0,1)) for (p,q) = + // ((0,1),(1,2),(0,2)) + q[z] = fma(q[z], g.ch, g.sh); + q[3] = fma(q[3], g.ch, -tmp[z]); // w + q[x] = fma(q[x], g.ch, tmp[y]); + q[y] = fma(q[y], g.ch, -tmp[x]); + // re-arrange matrix for next iteration + _S.m_00 = S.m_11; + _S.m_10 = S.m_21; + _S.m_11 = S.m_22; + _S.m_20 = S.m_10; + _S.m_21 = S.m_20; + _S.m_22 = S.m_00; + S.m_00 = _S.m_00; + S.m_10 = _S.m_10; + S.m_11 = _S.m_11; + S.m_20 = _S.m_20; + S.m_21 = _S.m_21; + S.m_22 = _S.m_22; +} +// Function used to contain the Givens permutations and the loop of the jacobi +// steps controlled by JACOBI_STEPS Returns the quaternion q containing the +// cumulative result used to reconstruct S +inline mat3 JacobiEigenAnalysis(Symmetric3x3 S) { + vec4 q(0, 0, 0, 1); + for (int32_t i = 0; i < JACOBI_STEPS; i++) { + JacobiConjugation(0, 1, 2, S, q); + JacobiConjugation(1, 2, 0, S, q); + JacobiConjugation(2, 0, 1, S, q); + } + return mat3(1.0 - 2.0 * (fma(q.y, q.y, q.z * q.z)), // + 2.0 * fma(q.x, q.y, +q.w * q.z), // + 2.0 * fma(q.x, q.z, -q.w * q.y), // + 2 * fma(q.x, q.y, -q.w * q.z), // + 1 - 2 * fma(q.x, q.x, q.z * q.z), // + 2 * fma(q.y, q.z, q.w * q.x), // + 2 * fma(q.x, q.z, q.w * q.y), // + 2 * fma(q.y, q.z, -q.w * q.x), // + 1 - 2 * fma(q.x, q.x, q.y * q.y)); +} +// Implementation of Algorithm 3 +inline void SortSingularValues(mat3& B, mat3& V) { + double rho1 = Dist2(B[0]); + double rho2 = Dist2(B[1]); + double rho3 = Dist2(B[2]); + bool c; + c = rho1 < rho2; + CondNegSwap(c, B[0][0], B[1][0]); + CondNegSwap(c, V[0][0], V[1][0]); + CondNegSwap(c, B[0][1], B[1][1]); + CondNegSwap(c, V[0][1], V[1][1]); + CondNegSwap(c, B[0][2], B[1][2]); + CondNegSwap(c, V[0][2], V[1][2]); + CondSwap(c, rho1, rho2); + c = rho1 < rho3; + CondNegSwap(c, B[0][0], B[2][0]); + CondNegSwap(c, V[0][0], V[2][0]); + CondNegSwap(c, B[0][1], B[2][1]); + CondNegSwap(c, V[0][1], V[2][1]); + CondNegSwap(c, B[0][2], B[2][2]); + CondNegSwap(c, V[0][2], V[2][2]); + CondSwap(c, rho1, rho3); + c = rho2 < rho3; + CondNegSwap(c, B[1][0], B[2][0]); + CondNegSwap(c, V[1][0], V[2][0]); + CondNegSwap(c, B[1][1], B[2][1]); + CondNegSwap(c, V[1][1], V[2][1]); + CondNegSwap(c, B[1][2], B[2][2]); + CondNegSwap(c, V[1][2], V[2][2]); +} +// Implementation of Algorithm 4 +inline Givens QRGivensQuaternion(double a1, double a2) { + // a1 = pivot point on diagonal + // a2 = lower triangular entry we want to annihilate + double epsilon = _SVD_EPSILON; + double rho = hypot(a1, a2); + Givens g{fabs(a1) + fmax(rho, epsilon), rho > epsilon ? a2 : 0}; + bool b = a1 < 0.0; + CondSwap(b, g.sh, g.ch); + double w = 1.0 / hypot(g.ch, g.sh); + g.ch *= w; + g.sh *= w; + return g; +} +// Implements a QR decomposition of a Matrix, see Sec 4.2 +inline QR QRDecomposition(mat3& B) { + mat3 Q, R; + // first Givens rotation (ch,0,0,sh) + auto g1 = QRGivensQuaternion(B[0][0], B[0][1]); + auto a = fma(-2.0, g1.sh * g1.sh, 1.0); + auto b = 2.0 * g1.ch * g1.sh; + // apply B = Q' * B + R[0][0] = fma(a, B[0][0], b * B[0][1]); + R[1][0] = fma(a, B[1][0], b * B[1][1]); + R[2][0] = fma(a, B[2][0], b * B[2][1]); + R[0][1] = fma(-b, B[0][0], a * B[0][1]); + R[1][1] = fma(-b, B[1][0], a * B[1][1]); + R[2][1] = fma(-b, B[2][0], a * B[2][1]); + R[0][2] = B[0][2]; + R[1][2] = B[1][2]; + R[2][2] = B[2][2]; + // second Givens rotation (ch,0,-sh,0) + auto g2 = QRGivensQuaternion(R[0][0], R[0][2]); + a = fma(-2.0, g2.sh * g2.sh, 1.0); + b = 2.0 * g2.ch * g2.sh; + // apply B = Q' * B; + B[0][0] = fma(a, R[0][0], b * R[0][2]); + B[1][0] = fma(a, R[1][0], b * R[1][2]); + B[2][0] = fma(a, R[2][0], b * R[2][2]); + B[0][1] = R[0][1]; + B[1][1] = R[1][1]; + B[2][1] = R[2][1]; + B[0][2] = fma(-b, R[0][0], a * R[0][2]); + B[1][2] = fma(-b, R[1][0], a * R[1][2]); + B[2][2] = fma(-b, R[2][0], a * R[2][2]); + // third Givens rotation (ch,sh,0,0) + auto g3 = QRGivensQuaternion(B[1][1], B[1][2]); + a = fma(-2.0, g3.sh * g3.sh, 1.0); + b = 2.0 * g3.ch * g3.sh; + // R is now set to desired value + R[0][0] = B[0][0]; + R[1][0] = B[1][0]; + R[2][0] = B[2][0]; + R[0][1] = fma(a, B[0][1], b * B[0][2]); + R[1][1] = fma(a, B[1][1], b * B[1][2]); + R[2][1] = fma(a, B[2][1], b * B[2][2]); + R[0][2] = fma(-b, B[0][1], a * B[0][2]); + R[1][2] = fma(-b, B[1][1], a * B[1][2]); + R[2][2] = fma(-b, B[2][1], a * B[2][2]); + // construct the cumulative rotation Q=Q1 * Q2 * Q3 + // the number of floating point operations for three quaternion + // multiplications is more or less comparable to the explicit form of the + // joined matrix. certainly more memory-efficient! + auto sh12 = 2.0 * fma(g1.sh, g1.sh, -0.5); + auto sh22 = 2.0 * fma(g2.sh, g2.sh, -0.5); + auto sh32 = 2.0 * fma(g3.sh, g3.sh, -0.5); + Q[0][0] = sh12 * sh22; + Q[1][0] = fma(4.0 * g2.ch * g3.ch, sh12 * g2.sh * g3.sh, + 2.0 * g1.ch * g1.sh * sh32); + Q[2][0] = fma(4.0 * g1.ch * g3.ch, g1.sh * g3.sh, + -2.0 * g2.ch * sh12 * g2.sh * sh32); + + Q[0][1] = -2.0 * g1.ch * g1.sh * sh22; + Q[1][1] = + fma(-8.0 * g1.ch * g2.ch * g3.ch, g1.sh * g2.sh * g3.sh, sh12 * sh32); + Q[2][1] = fma( + -2.0 * g3.ch, g3.sh, + 4.0 * g1.sh * fma(g3.ch * g1.sh, g3.sh, g1.ch * g2.ch * g2.sh * sh32)); + + Q[0][2] = 2.0 * g2.ch * g2.sh; + Q[1][2] = -2.0 * g3.ch * sh22 * g3.sh; + Q[2][2] = sh22 * sh32; + return QR{Q, R}; +} +} // namespace + +namespace manifold { +/** @addtogroup Connections + * @{ + */ + +/** + * The three matrices of a Singular Value Decomposition. + */ +struct SVDSet { + mat3 U, S, V; +}; + +/** + * Returns the Singular Value Decomposition of A: A = U * S * glm::transpose(V). + * + * @param A The matrix to decompose. + */ +inline SVDSet SVD(mat3 A) { + mat3 V = JacobiEigenAnalysis(glm::transpose(A) * A); + auto B = A * V; + SortSingularValues(B, V); + QR qr = QRDecomposition(B); + return SVDSet{qr.Q, qr.R, V}; +} + +/** + * Returns the largest singular value of A. + * + * @param A The matrix to measure. + */ +inline double SpectralNorm(mat3 A) { + SVDSet usv = SVD(A); + return usv.S[0][0]; +} +/** @} */ +} // namespace manifold diff --git a/thirdparty/manifold/src/utilities/include/manifold/tri_dist.h b/thirdparty/manifold/src/utilities/include/manifold/tri_dist.h new file mode 100644 index 000000000000..b3d7b19f05fa --- /dev/null +++ b/thirdparty/manifold/src/utilities/include/manifold/tri_dist.h @@ -0,0 +1,226 @@ +// Copyright 2024 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include + +#include "manifold/common.h" + +namespace manifold { + +// From NVIDIA-Omniverse PhysX - BSD 3-Clause "New" or "Revised" License +// https://github.com/NVIDIA-Omniverse/PhysX/blob/main/LICENSE.md +// https://github.com/NVIDIA-Omniverse/PhysX/blob/main/physx/source/geomutils/src/sweep/GuSweepCapsuleCapsule.cpp +// With minor modifications + +/** + * Returns the distance between two line segments. + * + * @param[out] x Closest point on line segment pa. + * @param[out] y Closest point on line segment qb. + * @param[in] p One endpoint of the first line segment. + * @param[in] a Other endpoint of the first line segment. + * @param[in] p One endpoint of the second line segment. + * @param[in] b Other endpoint of the second line segment. + */ +inline void EdgeEdgeDist(vec3& x, vec3& y, // closest points + const vec3& p, + const vec3& a, // seg 1 origin, vector + const vec3& q, + const vec3& b) // seg 2 origin, vector +{ + const vec3 T = q - p; + const auto ADotA = glm::dot(a, a); + const auto BDotB = glm::dot(b, b); + const auto ADotB = glm::dot(a, b); + const auto ADotT = glm::dot(a, T); + const auto BDotT = glm::dot(b, T); + + // t parameterizes ray (p, a) + // u parameterizes ray (q, b) + + // Compute t for the closest point on ray (p, a) to ray (q, b) + const auto Denom = ADotA * BDotB - ADotB * ADotB; + + double t; // We will clamp result so t is on the segment (p, a) + t = Denom != 0.0 + ? glm::clamp((ADotT * BDotB - BDotT * ADotB) / Denom, 0.0, 1.0) + : 0.0; + + // find u for point on ray (q, b) closest to point at t + double u; + if (BDotB != 0.0) { + u = (t * ADotB - BDotT) / BDotB; + + // if u is on segment (q, b), t and u correspond to closest points, + // otherwise, clamp u, recompute and clamp t + if (u < 0.0) { + u = 0.0; + t = ADotA != 0.0 ? glm::clamp(ADotT / ADotA, 0.0, 1.0) : 0.0; + } else if (u > 1.0) { + u = 1.0; + t = ADotA != 0.0 ? glm::clamp((ADotB + ADotT) / ADotA, 0.0, 1.0) : 0.0; + } + } else { + u = 0.0; + t = ADotA != 0.0 ? glm::clamp(ADotT / ADotA, 0.0, 1.0) : 0.0; + } + x = p + a * t; + y = q + b * u; +} + +// From NVIDIA-Omniverse PhysX - BSD 3-Clause "New" or "Revised" License +// https://github.com/NVIDIA-Omniverse/PhysX/blob/main/LICENSE.md +// https://github.com/NVIDIA-Omniverse/PhysX/blob/main/physx/source/geomutils/src/distance/GuDistanceTriangleTriangle.cpp +// With minor modifications + +/** + * Returns the minimum squared distance between two triangles. + * + * @param p First triangle. + * @param q Second triangle. + */ +inline auto DistanceTriangleTriangleSquared(const std::array& p, + const std::array& q) { + std::array Sv; + Sv[0] = p[1] - p[0]; + Sv[1] = p[2] - p[1]; + Sv[2] = p[0] - p[2]; + + std::array Tv; + Tv[0] = q[1] - q[0]; + Tv[1] = q[2] - q[1]; + Tv[2] = q[0] - q[2]; + + bool shown_disjoint = false; + + auto mindd = std::numeric_limits::max(); + + for (uint32_t i = 0; i < 3; i++) { + for (uint32_t j = 0; j < 3; j++) { + vec3 cp; + vec3 cq; + EdgeEdgeDist(cp, cq, p[i], Sv[i], q[j], Tv[j]); + const vec3 V = cq - cp; + const auto dd = glm::dot(V, V); + + if (dd <= mindd) { + mindd = dd; + + uint32_t id = i + 2; + if (id >= 3) id -= 3; + vec3 Z = p[id] - cp; + auto a = glm::dot(Z, V); + id = j + 2; + if (id >= 3) id -= 3; + Z = q[id] - cq; + auto b = glm::dot(Z, V); + + if ((a <= 0.0) && (b >= 0.0)) { + return glm::dot(V, V); + }; + + if (a <= 0.0) + a = 0.0; + else if (b > 0.0) + b = 0.0; + + if ((mindd - a + b) > 0.0) shown_disjoint = true; + } + } + } + + vec3 Sn = glm::cross(Sv[0], Sv[1]); + auto Snl = glm::dot(Sn, Sn); + + if (Snl > 1e-15) { + const vec3 Tp(glm::dot(p[0] - q[0], Sn), glm::dot(p[0] - q[1], Sn), + glm::dot(p[0] - q[2], Sn)); + + int index = -1; + if ((Tp[0] > 0.0) && (Tp[1] > 0.0) && (Tp[2] > 0.0)) { + index = Tp[0] < Tp[1] ? 0 : 1; + if (Tp[2] < Tp[index]) index = 2; + } else if ((Tp[0] < 0.0) && (Tp[1] < 0.0) && (Tp[2] < 0.0)) { + index = Tp[0] > Tp[1] ? 0 : 1; + if (Tp[2] > Tp[index]) index = 2; + } + + if (index >= 0) { + shown_disjoint = true; + + const vec3& qIndex = q[index]; + + vec3 V = qIndex - p[0]; + vec3 Z = glm::cross(Sn, Sv[0]); + if (glm::dot(V, Z) > 0.0) { + V = qIndex - p[1]; + Z = glm::cross(Sn, Sv[1]); + if (glm::dot(V, Z) > 0.0) { + V = qIndex - p[2]; + Z = glm::cross(Sn, Sv[2]); + if (glm::dot(V, Z) > 0.0) { + vec3 cp = qIndex + Sn * Tp[index] / Snl; + vec3 cq = qIndex; + return glm::dot(cp - cq, cp - cq); + } + } + } + } + } + + vec3 Tn = glm::cross(Tv[0], Tv[1]); + auto Tnl = glm::dot(Tn, Tn); + + if (Tnl > 1e-15) { + const vec3 Sp(glm::dot(q[0] - p[0], Tn), glm::dot(q[0] - p[1], Tn), + glm::dot(q[0] - p[2], Tn)); + + int index = -1; + if ((Sp[0] > 0.0) && (Sp[1] > 0.0) && (Sp[2] > 0.0)) { + index = Sp[0] < Sp[1] ? 0 : 1; + if (Sp[2] < Sp[index]) index = 2; + } else if ((Sp[0] < 0.0) && (Sp[1] < 0.0) && (Sp[2] < 0.0)) { + index = Sp[0] > Sp[1] ? 0 : 1; + if (Sp[2] > Sp[index]) index = 2; + } + + if (index >= 0) { + shown_disjoint = true; + + const vec3& pIndex = p[index]; + + vec3 V = pIndex - q[0]; + vec3 Z = glm::cross(Tn, Tv[0]); + if (glm::dot(V, Z) > 0.0) { + V = pIndex - q[1]; + Z = glm::cross(Tn, Tv[1]); + if (glm::dot(V, Z) > 0.0) { + V = pIndex - q[2]; + Z = glm::cross(Tn, Tv[2]); + if (glm::dot(V, Z) > 0.0) { + vec3 cp = pIndex; + vec3 cq = pIndex + Tn * Sp[index] / Tnl; + return glm::dot(cp - cq, cp - cq); + } + } + } + } + } + + return shown_disjoint ? mindd : 0.0; +}; +} // namespace manifold diff --git a/thirdparty/manifold/src/utilities/include/manifold/utils.h b/thirdparty/manifold/src/utilities/include/manifold/utils.h new file mode 100644 index 000000000000..f5fcd4d665b4 --- /dev/null +++ b/thirdparty/manifold/src/utilities/include/manifold/utils.h @@ -0,0 +1,205 @@ +// Copyright 2020 The Manifold Authors, Jared Hoberock and Nathan Bell of +// NVIDIA Research +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#include +#include +#include + +#ifdef MANIFOLD_DEBUG +#include +#include +#endif + +#include "manifold/parallel.h" +#include "manifold/vec.h" + +#if __has_include() +#include +#else +#define FrameMarkStart(x) +#define FrameMarkEnd(x) +// putting ZoneScoped in a function will instrument the function execution when +// TRACY_ENABLE is set, which allows the profiler to record more accurate +// timing. +#define ZoneScoped +#define ZoneScopedN(name) +#endif + +namespace manifold { + +/** @defgroup Private + * @brief Internal classes of the library; not currently part of the public API + * @{ + */ +#ifdef MANIFOLD_DEBUG +struct Timer { + std::chrono::high_resolution_clock::time_point start, end; + + void Start() { start = std::chrono::high_resolution_clock::now(); } + + void Stop() { end = std::chrono::high_resolution_clock::now(); } + + float Elapsed() { + return std::chrono::duration_cast(end - start) + .count(); + } + void Print(std::string message) { + std::cout << "----------- " << std::round(Elapsed()) << " ms for " + << message << std::endl; + } +}; +#endif + +inline int Next3(int i) { + constexpr ivec3 next3(1, 2, 0); + return next3[i]; +} + +inline int Prev3(int i) { + constexpr ivec3 prev3(2, 0, 1); + return prev3[i]; +} + +template +void Permute(Vec& inOut, const Vec& new2Old) { + Vec tmp(std::move(inOut)); + inOut.resize(new2Old.size()); + gather(new2Old.begin(), new2Old.end(), tmp.begin(), inOut.begin()); +} + +template +void Permute(std::vector& inOut, const Vec& new2Old) { + std::vector tmp(std::move(inOut)); + inOut.resize(new2Old.size()); + gather(new2Old.begin(), new2Old.end(), tmp.begin(), inOut.begin()); +} + +template +T AtomicAdd(T& target, T add) { + std::atomic& tar = reinterpret_cast&>(target); + T old_val = tar.load(); + while (!tar.compare_exchange_weak(old_val, old_val + add, + std::memory_order_seq_cst)) { + } + return old_val; +} + +template <> +inline int AtomicAdd(int& target, int add) { + std::atomic& tar = reinterpret_cast&>(target); + int old_val = tar.fetch_add(add, std::memory_order_seq_cst); + return old_val; +} + +template +class ConcurrentSharedPtr { + public: + ConcurrentSharedPtr(T value) : impl(std::make_shared(value)) {} + ConcurrentSharedPtr(const ConcurrentSharedPtr& other) + : impl(other.impl), mutex(other.mutex) {} + class SharedPtrGuard { + public: + SharedPtrGuard(std::recursive_mutex* mutex, T* content) + : mutex(mutex), content(content) { + mutex->lock(); + } + ~SharedPtrGuard() { mutex->unlock(); } + + T& operator*() { return *content; } + T* operator->() { return content; } + + private: + std::recursive_mutex* mutex; + T* content; + }; + SharedPtrGuard GetGuard() { return SharedPtrGuard(mutex.get(), impl.get()); }; + unsigned int UseCount() { return impl.use_count(); }; + + private: + std::shared_ptr impl; + std::shared_ptr mutex = + std::make_shared(); +}; + +template +struct UnionFind { + Vec parents; + // we do union by rank + // note that we shift rank by 1, rank 0 means it is not connected to anything + // else + Vec ranks; + + UnionFind(I numNodes) : parents(numNodes), ranks(numNodes, 0) { + sequence(parents.begin(), parents.end()); + } + + I find(I x) { + while (parents[x] != x) { + parents[x] = parents[parents[x]]; + x = parents[x]; + } + return x; + } + + void unionXY(I x, I y) { + if (x == y) return; + if (ranks[x] == 0) ranks[x] = 1; + if (ranks[y] == 0) ranks[y] = 1; + x = find(x); + y = find(y); + if (x == y) return; + if (ranks[x] < ranks[y]) std::swap(x, y); + if (ranks[x] == ranks[y]) ranks[x]++; + parents[y] = x; + } + + I connectedComponents(std::vector& components) { + components.resize(parents.size()); + I lonelyNodes = 0; + std::unordered_map toLabel; + for (size_t i = 0; i < parents.size(); ++i) { + // we optimize for connected component of size 1 + // no need to put them into the hashmap + if (ranks[i] == 0) { + components[i] = static_cast(toLabel.size()) + lonelyNodes++; + continue; + } + parents[i] = find(i); + auto iter = toLabel.find(parents[i]); + if (iter == toLabel.end()) { + I s = static_cast(toLabel.size()) + lonelyNodes; + toLabel.insert(std::make_pair(parents[i], s)); + components[i] = s; + } else { + components[i] = iter->second; + } + } + return toLabel.size() + lonelyNodes; + } +}; + +template +struct Identity { + T operator()(T v) const { return v; } +}; + +template +struct Negate { + T operator()(T v) const { return -v; } +}; + +/** @} */ +} // namespace manifold diff --git a/thirdparty/manifold/src/utilities/include/manifold/vec.h b/thirdparty/manifold/src/utilities/include/manifold/vec.h new file mode 100644 index 000000000000..db85d8ed362a --- /dev/null +++ b/thirdparty/manifold/src/utilities/include/manifold/vec.h @@ -0,0 +1,244 @@ +// Copyright 2021 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#if TRACY_ENABLE && TRACY_MEMORY_USAGE +#include "tracy/Tracy.hpp" +#else +#define TracyAllocS(ptr, size, n) (void)0 +#define TracyFreeS(ptr, n) (void)0 +#endif + +#include "manifold/parallel.h" +#include "manifold/vec_view.h" + +namespace manifold { + +/** @addtogroup Private + * @{ + */ +template +class Vec; + +/* + * Specialized vector implementation with multithreaded fill and uninitialized + * memory optimizations. + * Note that the constructor and resize function will not perform initialization + * if the parameter val is not set. Also, this implementation is a toy + * implementation that did not consider things like non-trivial + * constructor/destructor, please keep T trivial. + */ +template +class Vec : public VecView { + public: + Vec() {} + + // Note that the vector constructed with this constructor will contain + // uninitialized memory. Please specify `val` if you need to make sure that + // the data is initialized. + Vec(size_t size) { + reserve(size); + this->size_ = size; + } + + Vec(size_t size, T val) { resize(size, val); } + + Vec(const Vec &vec) { *this = Vec(vec.view()); } + + Vec(const VecView &vec) { + this->size_ = vec.size(); + this->capacity_ = this->size_; + auto policy = autoPolicy(this->size_); + if (this->size_ != 0) { + this->ptr_ = reinterpret_cast(malloc(this->size_ * sizeof(T))); + ASSERT(this->ptr_ != nullptr, std::bad_alloc()); + TracyAllocS(this->ptr_, this->size_ * sizeof(T), 3); + copy(policy, vec.begin(), vec.end(), this->ptr_); + } + } + + Vec(const std::vector &vec) { + this->size_ = vec.size(); + this->capacity_ = this->size_; + auto policy = autoPolicy(this->size_); + if (this->size_ != 0) { + this->ptr_ = reinterpret_cast(malloc(this->size_ * sizeof(T))); + ASSERT(this->ptr_ != nullptr, std::bad_alloc()); + TracyAllocS(this->ptr_, this->size_ * sizeof(T), 3); + copy(policy, vec.begin(), vec.end(), this->ptr_); + } + } + + Vec(Vec &&vec) { + this->ptr_ = vec.ptr_; + this->size_ = vec.size_; + capacity_ = vec.capacity_; + vec.ptr_ = nullptr; + vec.size_ = 0; + vec.capacity_ = 0; + } + + operator VecView() { return {this->ptr_, this->size_}; } + operator VecView() const { return {this->ptr_, this->size_}; } + + ~Vec() { + if (this->ptr_ != nullptr) { + TracyFreeS(this->ptr_, 3); + free(this->ptr_); + } + this->ptr_ = nullptr; + this->size_ = 0; + capacity_ = 0; + } + + Vec &operator=(const Vec &other) { + if (&other == this) return *this; + if (this->ptr_ != nullptr) { + TracyFreeS(this->ptr_, 3); + free(this->ptr_); + } + this->size_ = other.size_; + capacity_ = other.size_; + auto policy = autoPolicy(this->size_); + if (this->size_ != 0) { + this->ptr_ = reinterpret_cast(malloc(this->size_ * sizeof(T))); + ASSERT(this->ptr_ != nullptr, std::bad_alloc()); + TracyAllocS(this->ptr_, this->size_ * sizeof(T), 3); + copy(policy, other.begin(), other.end(), this->ptr_); + } + return *this; + } + + Vec &operator=(Vec &&other) { + if (&other == this) return *this; + if (this->ptr_ != nullptr) { + TracyFreeS(this->ptr_, 3); + free(this->ptr_); + } + this->size_ = other.size_; + capacity_ = other.capacity_; + this->ptr_ = other.ptr_; + other.ptr_ = nullptr; + other.size_ = 0; + other.capacity_ = 0; + return *this; + } + + operator VecView() const { return {this->ptr_, this->size_}; } + + void swap(Vec &other) { + std::swap(this->ptr_, other.ptr_); + std::swap(this->size_, other.size_); + std::swap(capacity_, other.capacity_); + } + + inline void push_back(const T &val) { + if (this->size_ >= capacity_) { + // avoid dangling pointer in case val is a reference of our array + T val_copy = val; + reserve(capacity_ == 0 ? 128 : capacity_ * 2); + this->ptr_[this->size_++] = val_copy; + return; + } + this->ptr_[this->size_++] = val; + } + + void reserve(size_t n) { + if (n > capacity_) { + T *newBuffer = reinterpret_cast(malloc(n * sizeof(T))); + ASSERT(newBuffer != nullptr, std::bad_alloc()); + TracyAllocS(newBuffer, n * sizeof(T), 3); + if (this->size_ > 0) + copy(autoPolicy(this->size_), this->ptr_, this->ptr_ + this->size_, + newBuffer); + if (this->ptr_ != nullptr) { + TracyFreeS(this->ptr_, 3); + free(this->ptr_); + } + this->ptr_ = newBuffer; + capacity_ = n; + } + } + + void resize(size_t newSize, T val = T()) { + bool shrink = this->size_ > 2 * newSize; + reserve(newSize); + if (this->size_ < newSize) { + fill(autoPolicy(newSize - this->size_), this->ptr_ + this->size_, + this->ptr_ + newSize, val); + } + this->size_ = newSize; + if (shrink) shrink_to_fit(); + } + + void pop_back() { resize(this->size_ - 1); } + + void clear() { resize(0); } + + void shrink_to_fit() { + T *newBuffer = nullptr; + if (this->size_ > 0) { + newBuffer = reinterpret_cast(malloc(this->size_ * sizeof(T))); + ASSERT(newBuffer != nullptr, std::bad_alloc()); + TracyAllocS(newBuffer, this->size_ * sizeof(T), 3); + copy(autoPolicy(this->size_), this->ptr_, this->ptr_ + this->size_, + newBuffer); + } + if (this->ptr_ != nullptr) { + TracyFreeS(this->ptr_, 3); + free(this->ptr_); + } + this->ptr_ = newBuffer; + capacity_ = this->size_; + } + + VecView view(size_t offset = 0, + size_t length = std::numeric_limits::max()) { + if (length == std::numeric_limits::max()) + length = this->size_ - offset; + ASSERT(length >= 0, std::out_of_range("Vec::view out of range")); + ASSERT(offset + length <= this->size_ && offset >= 0, + std::out_of_range("Vec::view out of range")); + return VecView(this->ptr_ + offset, length); + } + + VecView cview( + size_t offset = 0, + size_t length = std::numeric_limits::max()) const { + if (length == std::numeric_limits::max()) + length = this->size_ - offset; + ASSERT(length >= 0, std::out_of_range("Vec::cview out of range")); + ASSERT(offset + length <= this->size_ && offset >= 0, + std::out_of_range("Vec::cview out of range")); + return VecView(this->ptr_ + offset, length); + } + + VecView view( + size_t offset = 0, + size_t length = std::numeric_limits::max()) const { + return cview(offset, length); + } + + T *data() { return this->ptr_; } + const T *data() const { return this->ptr_; } + + size_t capacity() const { return capacity_; } + + private: + size_t capacity_ = 0; + + static_assert(std::is_trivially_destructible::value); +}; +/** @} */ +} // namespace manifold diff --git a/thirdparty/manifold/src/utilities/include/manifold/vec_view.h b/thirdparty/manifold/src/utilities/include/manifold/vec_view.h new file mode 100644 index 000000000000..f0a310ab9ad8 --- /dev/null +++ b/thirdparty/manifold/src/utilities/include/manifold/vec_view.h @@ -0,0 +1,112 @@ +// Copyright 2023 The Manifold Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "manifold/optional_assert.h" + +namespace manifold { + +/** + * View for Vec, can perform offset operation. + * This will be invalidated when the original vector is dropped or changes + * length. Roughly equivalent to std::span from c++20 + */ +template +class VecView { + public: + using Iter = T *; + using IterC = const T *; + + VecView(T *ptr, size_t size) : ptr_(ptr), size_(size) {} + + VecView(const VecView &other) { + ptr_ = other.ptr_; + size_ = other.size_; + } + + VecView &operator=(const VecView &other) { + ptr_ = other.ptr_; + size_ = other.size_; + return *this; + } + + // allows conversion to a const VecView + operator VecView() const { return {ptr_, size_}; } + + inline const T &operator[](size_t i) const { + ASSERT(i < size_, std::out_of_range("Vec out of range")); + return ptr_[i]; + } + + inline T &operator[](size_t i) { + ASSERT(i < size_, std::out_of_range("Vec out of range")); + return ptr_[i]; + } + + IterC cbegin() const { return ptr_; } + IterC cend() const { return ptr_ + size_; } + + IterC begin() const { return cbegin(); } + IterC end() const { return cend(); } + + Iter begin() { return ptr_; } + Iter end() { return ptr_ + size_; } + + const T &front() const { + ASSERT(size_ != 0, + std::out_of_range("Attempt to take the front of an empty vector")); + return ptr_[0]; + } + + const T &back() const { + ASSERT(size_ != 0, + std::out_of_range("Attempt to take the back of an empty vector")); + return ptr_[size_ - 1]; + } + + T &front() { + ASSERT(size_ != 0, + std::out_of_range("Attempt to take the front of an empty vector")); + return ptr_[0]; + } + + T &back() { + ASSERT(size_ != 0, + std::out_of_range("Attempt to take the back of an empty vector")); + return ptr_[size_ - 1]; + } + + size_t size() const { return size_; } + + bool empty() const { return size_ == 0; } + +#ifdef MANIFOLD_DEBUG + void Dump() const { + std::cout << "Vec = " << std::endl; + for (size_t i = 0; i < size(); ++i) { + std::cout << i << ", " << ptr_[i] << ", " << std::endl; + } + std::cout << std::endl; + } +#endif + + protected: + T *ptr_ = nullptr; + size_t size_ = 0; + + VecView() = default; +}; + +} // namespace manifold diff --git a/thirdparty/quickhull/ConvexHull.hpp b/thirdparty/quickhull/ConvexHull.hpp new file mode 100644 index 000000000000..71b2ee1114f3 --- /dev/null +++ b/thirdparty/quickhull/ConvexHull.hpp @@ -0,0 +1,182 @@ +#ifndef CONVEXHULL_HPP_ +#define CONVEXHULL_HPP_ + +#include "Structs/Vector3.hpp" +#include "Structs/Mesh.hpp" +#include "Structs/VertexDataSource.hpp" +#include +#include +#include +#include + +namespace quickhull { + + template + class ConvexHull { + std::unique_ptr>> m_optimizedVertexBuffer; + VertexDataSource m_vertices; + std::vector m_indices; + public: + ConvexHull() {} + + // Copy constructor + ConvexHull(const ConvexHull& o) { + m_indices = o.m_indices; + if (o.m_optimizedVertexBuffer) { + m_optimizedVertexBuffer.reset(new std::vector>(*o.m_optimizedVertexBuffer)); + m_vertices = VertexDataSource(*m_optimizedVertexBuffer); + } + else { + m_vertices = o.m_vertices; + } + } + + ConvexHull& operator=(const ConvexHull& o) { + if (&o == this) { + return *this; + } + m_indices = o.m_indices; + if (o.m_optimizedVertexBuffer) { + m_optimizedVertexBuffer.reset(new std::vector>(*o.m_optimizedVertexBuffer)); + m_vertices = VertexDataSource(*m_optimizedVertexBuffer); + } + else { + m_vertices = o.m_vertices; + } + return *this; + } + + ConvexHull(ConvexHull&& o) { + m_indices = std::move(o.m_indices); + if (o.m_optimizedVertexBuffer) { + m_optimizedVertexBuffer = std::move(o.m_optimizedVertexBuffer); + o.m_vertices = VertexDataSource(); + m_vertices = VertexDataSource(*m_optimizedVertexBuffer); + } + else { + m_vertices = o.m_vertices; + } + } + + ConvexHull& operator=(ConvexHull&& o) { + if (&o == this) { + return *this; + } + m_indices = std::move(o.m_indices); + if (o.m_optimizedVertexBuffer) { + m_optimizedVertexBuffer = std::move(o.m_optimizedVertexBuffer); + o.m_vertices = VertexDataSource(); + m_vertices = VertexDataSource(*m_optimizedVertexBuffer); + } + else { + m_vertices = o.m_vertices; + } + return *this; + } + + // Construct vertex and index buffers from half edge mesh and pointcloud + ConvexHull(const MeshBuilder& mesh, const VertexDataSource& pointCloud, bool CCW, bool useOriginalIndices) { + if (!useOriginalIndices) { + m_optimizedVertexBuffer.reset(new std::vector>()); + } + + std::vector faceProcessed(mesh.m_faces.size(),false); + std::vector faceStack; + std::unordered_map vertexIndexMapping; // Map vertex indices from original point cloud to the new mesh vertex indices + for (size_t i = 0;ipush_back(pointCloud[v]); + vertexIndexMapping[v] = m_optimizedVertexBuffer->size()-1; + v = m_optimizedVertexBuffer->size()-1; + } + else { + v = itV->second; + } + } + } + m_indices.push_back(vertices[0]); + m_indices.push_back(vertices[1 + iCCW]); + m_indices.push_back(vertices[2 - iCCW]); + } + } + + if (!useOriginalIndices) { + m_vertices = VertexDataSource(*m_optimizedVertexBuffer); + } + else { + m_vertices = pointCloud; + } + } + + std::vector& getIndexBuffer() { + return m_indices; + } + + const std::vector& getIndexBuffer() const { + return m_indices; + } + + VertexDataSource& getVertexBuffer() { + return m_vertices; + } + + const VertexDataSource& getVertexBuffer() const { + return m_vertices; + } + + // Export the mesh to a Waveform OBJ file + void writeWaveformOBJ(const std::string& filename, const std::string& objectName = "quickhull") const + { + std::ofstream objFile; + objFile.open (filename); + objFile << "o " << objectName << "\n"; + for (const auto& v : getVertexBuffer()) { + objFile << "v " << v.x << " " << v.y << " " << v.z << "\n"; + } + const auto& indBuf = getIndexBuffer(); + size_t triangleCount = indBuf.size()/3; + for (size_t i=0;i + class HalfEdgeMesh { + public: + + struct HalfEdge { + IndexType m_endVertex; + IndexType m_opp; + IndexType m_face; + IndexType m_next; + }; + + struct Face { + IndexType m_halfEdgeIndex; // Index of one of the half edges of this face + }; + + std::vector> m_vertices; + std::vector m_faces; + std::vector m_halfEdges; + + HalfEdgeMesh(const MeshBuilder& builderObject, const VertexDataSource& vertexData ) + { + std::unordered_map faceMapping; + std::unordered_map halfEdgeMapping; + std::unordered_map vertexMapping; + + size_t i=0; + for (const auto& face : builderObject.m_faces) { + if (!face.isDisabled()) { + m_faces.push_back({static_cast(face.m_he)}); + faceMapping[i] = m_faces.size()-1; + + const auto heIndices = builderObject.getHalfEdgeIndicesOfFace(face); + for (const auto heIndex : heIndices) { + const IndexType vertexIndex = builderObject.m_halfEdges[heIndex].m_endVertex; + if (vertexMapping.count(vertexIndex)==0) { + m_vertices.push_back(vertexData[vertexIndex]); + vertexMapping[vertexIndex] = m_vertices.size()-1; + } + } + } + i++; + } + + i=0; + for (const auto& halfEdge : builderObject.m_halfEdges) { + if (!halfEdge.isDisabled()) { + m_halfEdges.push_back({static_cast(halfEdge.m_endVertex),static_cast(halfEdge.m_opp),static_cast(halfEdge.m_face),static_cast(halfEdge.m_next)}); + halfEdgeMapping[i] = m_halfEdges.size()-1; + } + i++; + } + + for (auto& face : m_faces) { + assert(halfEdgeMapping.count(face.m_halfEdgeIndex) == 1); + face.m_halfEdgeIndex = halfEdgeMapping[face.m_halfEdgeIndex]; + } + + for (auto& he : m_halfEdges) { + he.m_face = faceMapping[he.m_face]; + he.m_opp = halfEdgeMapping[he.m_opp]; + he.m_next = halfEdgeMapping[he.m_next]; + he.m_endVertex = vertexMapping[he.m_endVertex]; + } + } + + }; +} + + +#endif /* HalfEdgeMesh_h */ diff --git a/thirdparty/quickhull/MathUtils.hpp b/thirdparty/quickhull/MathUtils.hpp new file mode 100644 index 000000000000..e7c30fe63e49 --- /dev/null +++ b/thirdparty/quickhull/MathUtils.hpp @@ -0,0 +1,48 @@ + +#ifndef QuickHull_MathUtils_hpp +#define QuickHull_MathUtils_hpp + +#include "Structs/Vector3.hpp" +#include "Structs/Ray.hpp" +#include "Structs/Plane.hpp" + +namespace quickhull { + + namespace mathutils { + + template + inline T getSquaredDistanceBetweenPointAndRay(const Vector3& p, const Ray& r) { + const Vector3 s = p-r.m_S; + T t = s.dotProduct(r.m_V); + return s.getLengthSquared() - t*t*r.m_VInvLengthSquared; + } + + // Note that the unit of distance returned is relative to plane's normal's length + // (divide by N.getNormalized() to get actual Euclidian distance). + template + inline T getSignedDistanceToPlane(const Vector3& v, const Plane& p) { + return p.m_N.dotProduct(v) + p.m_D; + } + + template + inline Vector3 getTriangleNormal(const Vector3& a,const Vector3& b,const Vector3& c) { + // We want to get (a-c).crossProduct(b-c) without constructing temp vectors + T x = a.x - c.x; + T y = a.y - c.y; + T z = a.z - c.z; + T rhsx = b.x - c.x; + T rhsy = b.y - c.y; + T rhsz = b.z - c.z; + T px = y * rhsz - z * rhsy ; + T py = z * rhsx - x * rhsz ; + T pz = x * rhsy - y * rhsx ; + return Vector3(px,py,pz); + } + + + } + +} + + +#endif diff --git a/thirdparty/quickhull/QuickHull.cpp b/thirdparty/quickhull/QuickHull.cpp new file mode 100644 index 000000000000..44a59f72fe12 --- /dev/null +++ b/thirdparty/quickhull/QuickHull.cpp @@ -0,0 +1,514 @@ +#include "QuickHull.hpp" +#include "MathUtils.hpp" +#include +#include +#include +#include +#include +#include "Structs/Mesh.hpp" + +namespace quickhull { + + template<> + float defaultEps() { + return 0.0001f; + } + + template<> + double defaultEps() { + return 0.0000001; + } + + /* + * Implementation of the algorithm + */ + + template + ConvexHull QuickHull::getConvexHull(const std::vector>& pointCloud, bool CCW, bool useOriginalIndices, T epsilon) { + VertexDataSource vertexDataSource(pointCloud); + return getConvexHull(vertexDataSource,CCW,useOriginalIndices,epsilon); + } + + template + ConvexHull QuickHull::getConvexHull(const Vector3* vertexData, size_t vertexCount, bool CCW, bool useOriginalIndices, T epsilon) { + VertexDataSource vertexDataSource(vertexData,vertexCount); + return getConvexHull(vertexDataSource,CCW,useOriginalIndices,epsilon); + } + + template + ConvexHull QuickHull::getConvexHull(const T* vertexData, size_t vertexCount, bool CCW, bool useOriginalIndices, T epsilon) { + VertexDataSource vertexDataSource((const vec3*)vertexData,vertexCount); + return getConvexHull(vertexDataSource,CCW,useOriginalIndices,epsilon); + } + + template + HalfEdgeMesh QuickHull::getConvexHullAsMesh(const FloatType* vertexData, size_t vertexCount, bool CCW, FloatType epsilon) { + VertexDataSource vertexDataSource((const vec3*)vertexData,vertexCount); + buildMesh(vertexDataSource, epsilon); + return HalfEdgeMesh(m_mesh, m_vertexData); + } + + template + void QuickHull::buildMesh(const VertexDataSource& pointCloud, T epsilon) + { + if (pointCloud.size()==0) { + m_mesh = MeshBuilder(); + return; + } + m_vertexData = pointCloud; + + // Very first: find extreme values and use them to compute the scale of the point cloud. + m_extremeValues = getExtremeValues(); + m_scale = getScale(m_extremeValues); + + // Epsilon we use depends on the scale + m_epsilon = epsilon*m_scale; + m_epsilonSquared = m_epsilon*m_epsilon; + + // Reset diagnostics + m_diagnostics = DiagnosticsData(); + + // The planar case happens when all the points appear to lie on a two dimensional + // subspace of R^3. + m_planar = false; + + createConvexHalfEdgeMesh(); + if (m_planar) { + const size_t extraPointIndex = m_planarPointCloudTemp.size() - 1; + for (auto& he : m_mesh.m_halfEdges) { + if (he.m_endVertex == extraPointIndex) { + he.m_endVertex = 0; + } + } + m_vertexData = pointCloud; + m_planarPointCloudTemp.clear(); + } + } + + template + ConvexHull QuickHull::getConvexHull(const VertexDataSource& pointCloud, bool CCW, bool useOriginalIndices, T epsilon) { + buildMesh(pointCloud, epsilon); + return ConvexHull(m_mesh,m_vertexData, CCW, useOriginalIndices); + } + + template + void QuickHull::createConvexHalfEdgeMesh() { + m_visibleFaces.clear(); + m_horizonEdges.clear(); + m_possiblyVisibleFaces.clear(); + + // Compute base tetrahedron + setupInitialTetrahedron(); + assert(m_mesh.m_faces.size() == 4); + + // Init face stack with those faces that have points assigned to them + m_faceList.clear(); + for (size_t i=0;i < 4;i++) { + auto& f = m_mesh.m_faces[i]; + if (f.m_pointsOnPositiveSide && f.m_pointsOnPositiveSide->size()>0) { + m_faceList.push_back(i); + f.m_inFaceStack = 1; + } + } + + // Process faces until the face list is empty. + size_t iter = 0; + while (!m_faceList.empty()) { + iter++; + if (iter == std::numeric_limits::max()) { + // Visible face traversal marks visited faces with iteration counter + // (to mark that the face has been visited on this iteration) and the max + // value represents unvisited faces. At this point we have to reset iteration + // counter. This shouldn't be an issue on 64 bit machines. + iter = 0; + } + + const size_t topFaceIndex = m_faceList.front(); + m_faceList.pop_front(); + + auto& tf = m_mesh.m_faces[topFaceIndex]; + tf.m_inFaceStack = 0; + + assert(!tf.m_pointsOnPositiveSide || tf.m_pointsOnPositiveSide->size()>0); + if (!tf.m_pointsOnPositiveSide || tf.isDisabled()) { + continue; + } + + // Pick the most distant point to this triangle plane as the point to which we extrude + const vec3& activePoint = m_vertexData[tf.m_mostDistantPoint]; + const size_t activePointIndex = tf.m_mostDistantPoint; + + // Find out the faces that have our active point on their positive side + // (these are the "visible faces"). The face on top of the stack of course is + // one of them. At the same time, we create a list of horizon edges. + m_horizonEdges.clear(); + m_possiblyVisibleFaces.clear(); + m_visibleFaces.clear(); + m_possiblyVisibleFaces.emplace_back(topFaceIndex,std::numeric_limits::max()); + while (m_possiblyVisibleFaces.size()) { + const auto faceData = m_possiblyVisibleFaces.back(); + m_possiblyVisibleFaces.pop_back(); + auto& pvf = m_mesh.m_faces[faceData.m_faceIndex]; + assert(!pvf.isDisabled()); + + if (pvf.m_visibilityCheckedOnIteration == iter) { + if (pvf.m_isVisibleFaceOnCurrentIteration) { + continue; + } + } + else { + const Plane& P = pvf.m_P; + pvf.m_visibilityCheckedOnIteration = iter; + const T d = P.m_N.dotProduct(activePoint)+P.m_D; + if (d>0) { + pvf.m_isVisibleFaceOnCurrentIteration = 1; + pvf.m_horizonEdgesOnCurrentIteration = 0; + m_visibleFaces.push_back(faceData.m_faceIndex); + for (auto heIndex : m_mesh.getHalfEdgeIndicesOfFace(pvf)) { + if (m_mesh.m_halfEdges[heIndex].m_opp != faceData.m_enteredFromHalfEdge) { + m_possiblyVisibleFaces.emplace_back( m_mesh.m_halfEdges[m_mesh.m_halfEdges[heIndex].m_opp].m_face,heIndex ); + } + } + continue; + } + assert(faceData.m_faceIndex != topFaceIndex); + } + + // The face is not visible. Therefore, the halfedge we entered from + // is part of the horizon edge. + pvf.m_isVisibleFaceOnCurrentIteration = 0; + m_horizonEdges.push_back(faceData.m_enteredFromHalfEdge); + + // Store which half edge is the horizon edge. The other half edges of the face + // will not be part of the final mesh so their data slots can by recycled. + const auto halfEdges = m_mesh.getHalfEdgeIndicesOfFace(m_mesh.m_faces[m_mesh.m_halfEdges[faceData.m_enteredFromHalfEdge].m_face]); + const std::int8_t ind = (halfEdges[0]==faceData.m_enteredFromHalfEdge) ? 0 : (halfEdges[1]==faceData.m_enteredFromHalfEdge ? 1 : 2); + m_mesh.m_faces[m_mesh.m_halfEdges[faceData.m_enteredFromHalfEdge].m_face].m_horizonEdgesOnCurrentIteration |= (1<begin(), + tf.m_pointsOnPositiveSide->end(), + activePointIndex); + tf.m_pointsOnPositiveSide->erase(it); + if (tf.m_pointsOnPositiveSide->size()==0) { + reclaimToIndexVectorPool(tf.m_pointsOnPositiveSide); + } + continue; + } + + // Except for the horizon edges, all half edges of the visible faces can be marked as disabled. Their data slots will be reused. + // The faces will be disabled as well, but we need to remember the points that were on the positive side of them - therefore + // we save pointers to them. + m_newFaceIndices.clear(); + m_newHalfEdgeIndices.clear(); + m_disabledFacePointVectors.clear(); + size_t disableCounter = 0; + for (auto faceIndex : m_visibleFaces) { + auto& disabledFace = m_mesh.m_faces[faceIndex]; + auto halfEdges = m_mesh.getHalfEdgeIndicesOfFace(disabledFace); + for (size_t j=0;j<3;j++) { + if ((disabledFace.m_horizonEdgesOnCurrentIteration & (1<size()); // Because we should not assign point vectors to faces unless needed... + m_disabledFacePointVectors.push_back(std::move(t)); + } + } + if (disableCounter < horizonEdgeCount*2) { + const size_t newHalfEdgesNeeded = horizonEdgeCount*2-disableCounter; + for (size_t i=0;i planeNormal = mathutils::getTriangleNormal(m_vertexData[A],m_vertexData[B],activePoint); + newFace.m_P = Plane(planeNormal,activePoint); + newFace.m_he = AB; + + m_mesh.m_halfEdges[CA].m_opp = m_newHalfEdgeIndices[i>0 ? i*2-1 : 2*horizonEdgeCount-1]; + m_mesh.m_halfEdges[BC].m_opp = m_newHalfEdgeIndices[((i+1)*2) % (horizonEdgeCount*2)]; + } + + // Assign points that were on the positive side of the disabled faces to the new faces. + for (auto& disabledPoints : m_disabledFacePointVectors) { + assert(disabledPoints); + for (const auto& point : *(disabledPoints)) { + if (point == activePointIndex) { + continue; + } + for (size_t j=0;jsize()>0); + if (!newFace.m_inFaceStack) { + m_faceList.push_back(newFaceIndex); + newFace.m_inFaceStack = 1; + } + } + } + } + + // Cleanup + m_indexVectorPool.clear(); + } + + /* + * Private helper functions + */ + + template + std::array QuickHull::getExtremeValues() { + std::array outIndices{0, 0, 0, 0, 0, 0}; + T extremeVals[6] = { m_vertexData[0].x, m_vertexData[0].x, m_vertexData[0].y, + m_vertexData[0].y, m_vertexData[0].z, m_vertexData[0].z }; + const size_t vCount = m_vertexData.size(); + for (size_t i = 1; i < vCount; i++) { + const Vector3& pos = m_vertexData[i]; + if (pos.x>extremeVals[0]) { + extremeVals[0]=pos.x; + outIndices[0]=i; + } + else if (pos.xextremeVals[2]) { + extremeVals[2]=pos.y; + outIndices[2]=i; + } + else if (pos.yextremeVals[4]) { + extremeVals[4]=pos.z; + outIndices[4]=i; + } + else if (pos.z + bool QuickHull::reorderHorizonEdges(std::vector& horizonEdges) { + const size_t horizonEdgeCount = horizonEdges.size(); + for (size_t i=0;i + T QuickHull::getScale(const std::array& extremeValues) { + T s = 0; + for (size_t i=0;i<6;i++) { + const T* v = (const T*)(&m_vertexData[extremeValues[i]]); + v += i/2; + auto a = std::abs(*v); + if (a>s) { + s = a; + } + } + return s; + } + + template + void QuickHull::setupInitialTetrahedron() { + const size_t vertexCount = m_vertexData.size(); + + // If we have at most 4 points, just return a degenerate tetrahedron: + if (vertexCount <= 4) { + size_t v[4] = {0,std::min((size_t)1,vertexCount-1),std::min((size_t)2,vertexCount-1),std::min((size_t)3,vertexCount-1)}; + const Vector3 N = mathutils::getTriangleNormal(m_vertexData[v[0]],m_vertexData[v[1]],m_vertexData[v[2]]); + const Plane trianglePlane(N,m_vertexData[v[0]]); + if (trianglePlane.isPointOnPositiveSide(m_vertexData[v[3]])) { + std::swap(v[0],v[1]); + } + return m_mesh.setup(v[0],v[1],v[2],v[3]); + } + + // Find two most distant extreme points. + T maxD = m_epsilonSquared; + std::pair selectedPoints; + for (size_t i=0;i<6;i++) { + for (size_t j=i+1;j<6;j++) { + const T d = m_vertexData[ m_extremeValues[i] ].getSquaredDistanceTo( m_vertexData[ m_extremeValues[j] ] ); + if (d > maxD) { + maxD=d; + selectedPoints={m_extremeValues[i],m_extremeValues[j]}; + } + } + } + if (maxD == m_epsilonSquared) { + // A degenerate case: the point cloud seems to consists of a single point + return m_mesh.setup(0,std::min((size_t)1,vertexCount-1),std::min((size_t)2,vertexCount-1),std::min((size_t)3,vertexCount-1)); + } + assert(selectedPoints.first != selectedPoints.second); + + // Find the most distant point to the line between the two chosen extreme points. + const Ray r(m_vertexData[selectedPoints.first], (m_vertexData[selectedPoints.second] - m_vertexData[selectedPoints.first])); + maxD = m_epsilonSquared; + size_t maxI=std::numeric_limits::max(); + const size_t vCount = m_vertexData.size(); + for (size_t i=0;i maxD) { + maxD=distToRay; + maxI=i; + } + } + if (maxD == m_epsilonSquared) { + // It appears that the point cloud belongs to a 1 dimensional subspace of R^3: convex hull has no volume => return a thin triangle + // Pick any point other than selectedPoints.first and selectedPoints.second as the third point of the triangle + auto it = std::find_if(m_vertexData.begin(),m_vertexData.end(),[&](const vec3& ve) { + return ve != m_vertexData[selectedPoints.first] && ve != m_vertexData[selectedPoints.second]; + }); + const size_t thirdPoint = (it == m_vertexData.end()) ? selectedPoints.first : std::distance(m_vertexData.begin(),it); + it = std::find_if(m_vertexData.begin(),m_vertexData.end(),[&](const vec3& ve) { + return ve != m_vertexData[selectedPoints.first] && ve != m_vertexData[selectedPoints.second] && ve != m_vertexData[thirdPoint]; + }); + const size_t fourthPoint = (it == m_vertexData.end()) ? selectedPoints.first : std::distance(m_vertexData.begin(),it); + return m_mesh.setup(selectedPoints.first,selectedPoints.second,thirdPoint,fourthPoint); + } + + // These three points form the base triangle for our tetrahedron. + assert(selectedPoints.first != maxI && selectedPoints.second != maxI); + std::array baseTriangle{selectedPoints.first, selectedPoints.second, maxI}; + const Vector3 baseTriangleVertices[]={ m_vertexData[baseTriangle[0]], m_vertexData[baseTriangle[1]], m_vertexData[baseTriangle[2]] }; + + // Next step is to find the 4th vertex of the tetrahedron. We naturally choose the point farthest away from the triangle plane. + maxD=m_epsilon; + maxI=0; + const Vector3 N = mathutils::getTriangleNormal(baseTriangleVertices[0],baseTriangleVertices[1],baseTriangleVertices[2]); + Plane trianglePlane(N,baseTriangleVertices[0]); + for (size_t i=0;imaxD) { + maxD=d; + maxI=i; + } + } + if (maxD == m_epsilon) { + // All the points seem to lie on a 2D subspace of R^3. How to handle this? Well, let's add one extra point to the point cloud so that the convex hull will have volume. + m_planar = true; + const vec3 N1 = mathutils::getTriangleNormal(baseTriangleVertices[1],baseTriangleVertices[2],baseTriangleVertices[0]); + m_planarPointCloudTemp.clear(); + m_planarPointCloudTemp.insert(m_planarPointCloudTemp.begin(),m_vertexData.begin(),m_vertexData.end()); + const vec3 extraPoint = N1 + m_vertexData[0]; + m_planarPointCloudTemp.push_back(extraPoint); + maxI = m_planarPointCloudTemp.size()-1; + m_vertexData = VertexDataSource(m_planarPointCloudTemp); + } + + // Enforce CCW orientation (if user prefers clockwise orientation, swap two vertices in each triangle when final mesh is created) + const Plane triPlane(N,baseTriangleVertices[0]); + if (triPlane.isPointOnPositiveSide(m_vertexData[maxI])) { + std::swap(baseTriangle[0],baseTriangle[1]); + } + + // Create a tetrahedron half edge mesh and compute planes defined by each triangle + m_mesh.setup(baseTriangle[0],baseTriangle[1],baseTriangle[2],maxI); + for (auto& f : m_mesh.m_faces) { + auto v = m_mesh.getVertexIndicesOfFace(f); + const Vector3& va = m_vertexData[v[0]]; + const Vector3& vb = m_vertexData[v[1]]; + const Vector3& vc = m_vertexData[v[2]]; + const Vector3 N1 = mathutils::getTriangleNormal(va, vb, vc); + const Plane plane(N1,va); + f.m_P = plane; + } + + // Finally we assign a face for each vertex outside the tetrahedron (vertices inside the tetrahedron have no role anymore) + for (size_t i=0;i; + template class QuickHull; +} + diff --git a/thirdparty/quickhull/QuickHull.hpp b/thirdparty/quickhull/QuickHull.hpp new file mode 100644 index 000000000000..09bbe93fe0aa --- /dev/null +++ b/thirdparty/quickhull/QuickHull.hpp @@ -0,0 +1,214 @@ +#ifndef QUICKHULL_HPP_ +#define QUICKHULL_HPP_ +#include +#include +#include +#include +#include "Structs/Vector3.hpp" +#include "Structs/Plane.hpp" +#include "Structs/Pool.hpp" +#include "Structs/Mesh.hpp" +#include "ConvexHull.hpp" +#include "HalfEdgeMesh.hpp" +#include "MathUtils.hpp" + +/* + * Implementation of the 3D QuickHull algorithm by Antti Kuukka + * + * No copyrights. What follows is 100% Public Domain. + * + * + * + * INPUT: a list of points in 3D space (for example, vertices of a 3D mesh) + * + * OUTPUT: a ConvexHull object which provides vertex and index buffers of the generated convex hull as a triangle mesh. + * + * + * + * The implementation is thread-safe if each thread is using its own QuickHull object. + * + * + * SUMMARY OF THE ALGORITHM: + * - Create initial simplex (tetrahedron) using extreme points. We have four faces now and they form a convex mesh M. + * - For each point, assign them to the first face for which they are on the positive side of (so each point is assigned to at most + * one face). Points inside the initial tetrahedron are left behind now and no longer affect the calculations. + * - Add all faces that have points assigned to them to Face Stack. + * - Iterate until Face Stack is empty: + * - Pop topmost face F from the stack + * - From the points assigned to F, pick the point P that is farthest away from the plane defined by F. + * - Find all faces of M that have P on their positive side. Let us call these the "visible faces". + * - Because of the way M is constructed, these faces are connected. Solve their horizon edge loop. + * - "Extrude to P": Create new faces by connecting P with the points belonging to the horizon edge. Add the new faces to M and remove the visible + * faces from M. + * - Each point that was assigned to visible faces is now assigned to at most one of the newly created faces. + * - Those new faces that have points assigned to them are added to the top of Face Stack. + * - M is now the convex hull. + * */ + +namespace quickhull { + + struct DiagnosticsData { + size_t m_failedHorizonEdges; // How many times QuickHull failed to solve the horizon edge. + // Failures lead to degenerate convex hulls. + + DiagnosticsData() : m_failedHorizonEdges(0) { } + }; + + template + FloatType defaultEps(); + + template + class QuickHull { + using vec3 = Vector3; + + FloatType m_epsilon, m_epsilonSquared, m_scale; + bool m_planar; + std::vector m_planarPointCloudTemp; + VertexDataSource m_vertexData; + MeshBuilder m_mesh; + std::array m_extremeValues; + DiagnosticsData m_diagnostics; + + // Temporary variables used during iteration process + std::vector m_newFaceIndices; + std::vector m_newHalfEdgeIndices; + std::vector< std::unique_ptr> > m_disabledFacePointVectors; + std::vector m_visibleFaces; + std::vector m_horizonEdges; + struct FaceData { + size_t m_faceIndex; + size_t m_enteredFromHalfEdge; // If the face turns out not to be visible, + // this half edge will be marked as horizon edge + FaceData(size_t fi, size_t he) : m_faceIndex(fi),m_enteredFromHalfEdge(he) {} + }; + std::vector m_possiblyVisibleFaces; + std::deque m_faceList; + + // Create a half edge mesh representing the base tetrahedron from which the QuickHull + // iteration proceeds. m_extremeValues must be properly set up when this is called. + void setupInitialTetrahedron(); + + // Given a list of half edges, try to rearrange them so that they form a loop. + // Return true on success. + bool reorderHorizonEdges(std::vector& horizonEdges); + + // Find indices of extreme values (max x, min x, max y, min y, max z, min z) for the + // given point cloud + std::array getExtremeValues(); + + // Compute scale of the vertex data. + FloatType getScale(const std::array& extremeValues); + + // Each face contains a unique pointer to a vector of indices. + // However, many - often most - faces do not have any points on the positive + // side of them especially at the the end of the iteration. When a face is removed + // from the mesh, its associated point vector, if such exists, is moved to the index + // vector pool, and when we need to add new faces with points on the positive side to the + // mesh, we reuse these vectors. This reduces the amount of std::vectors we have to deal + // with, and impact on performance is remarkable. + Pool> m_indexVectorPool; + inline std::unique_ptr> getIndexVectorFromPool(); + inline void reclaimToIndexVectorPool(std::unique_ptr>& ptr); + + // Associates a point with a face if the point resides on the positive side of the plane. + // Returns true if the points was on the positive side. + inline bool addPointToFace(typename MeshBuilder::Face& f, size_t pointIndex); + + // This will update m_mesh from which we create the ConvexHull object that getConvexHull + // function returns + void createConvexHalfEdgeMesh(); + + // Constructs the convex hull into a MeshBuilder object which can be converted to a + // ConvexHull or Mesh object + void buildMesh(const VertexDataSource& pointCloud, FloatType eps); + + // The public getConvexHull functions will setup a VertexDataSource object and call this + ConvexHull getConvexHull(const VertexDataSource& pointCloud, + bool CCW, bool useOriginalIndices, FloatType eps); + public: + // Computes convex hull for a given point cloud. + // Params: + // pointCloud: a vector of of 3D points + // CCW: whether the output mesh triangles should have CCW orientation + // useOriginalIndices: should the output mesh use same vertex indices as the original point + // cloud. If this is false, then we generate a new vertex buffer which contains only + // the vertices that are part of the convex hull. + // eps: minimum distance to a plane to consider a point being on positive of it + // (for a point cloud with scale 1) + ConvexHull getConvexHull(const std::vector>& pointCloud, + bool CCW, + bool useOriginalIndices, + FloatType eps = defaultEps()); + + // Computes convex hull for a given point cloud. + // Params: + // vertexData: pointer to the first 3D point of the point cloud + // vertexCount: number of vertices in the point cloud + ConvexHull getConvexHull(const Vector3* vertexData, + size_t vertexCount, + bool CCW, + bool useOriginalIndices, + FloatType eps = defaultEps()); + + // Computes convex hull for a given point cloud. + // This function assumes that the vertex data resides in memory in the following format: + // x_0,y_0,z_0,x_1,y_1,z_1,... + ConvexHull getConvexHull(const FloatType* vertexData, + size_t vertexCount, + bool CCW, + bool useOriginalIndices, + FloatType eps = defaultEps()); + + // Convex hull of the point cloud as a mesh object with half edge structure. + HalfEdgeMesh getConvexHullAsMesh(const FloatType* vertexData, + size_t vertexCount, + bool CCW, + FloatType eps = defaultEps()); + + // Get diagnostics about last generated convex hull + const DiagnosticsData& getDiagnostics() { + return m_diagnostics; + } + }; + + template + std::unique_ptr> QuickHull::getIndexVectorFromPool() { + auto r = m_indexVectorPool.get(); + r->clear(); + return r; + } + + template + void QuickHull::reclaimToIndexVectorPool(std::unique_ptr>& ptr) { + const size_t oldSize = ptr->size(); + if ((oldSize+1)*128 < ptr->capacity()) { + // Reduce memory usage! Huge vectors are needed at the beginning of iteration when + // faces have many points on their positive side. Later on, smaller vectors will + // suffice. + ptr.reset(nullptr); + return; + } + m_indexVectorPool.reclaim(ptr); + } + + template + bool QuickHull::addPointToFace(typename MeshBuilder::Face& f, size_t pointIndex) { + const T D = mathutils::getSignedDistanceToPlane(m_vertexData[ pointIndex ],f.m_P); + if (D>0 && D*D > m_epsilonSquared*f.m_P.m_sqrNLength) { + if (!f.m_pointsOnPositiveSide) { + f.m_pointsOnPositiveSide = std::move(getIndexVectorFromPool()); + } + f.m_pointsOnPositiveSide->push_back( pointIndex ); + if (D > f.m_mostDistantPointDist) { + f.m_mostDistantPointDist = D; + f.m_mostDistantPoint = pointIndex; + } + return true; + } + return false; + } + +} + + +#endif /* QUICKHULL_HPP_ */ diff --git a/thirdparty/quickhull/Structs/Mesh.hpp b/thirdparty/quickhull/Structs/Mesh.hpp new file mode 100644 index 000000000000..f58c5afcdfb7 --- /dev/null +++ b/thirdparty/quickhull/Structs/Mesh.hpp @@ -0,0 +1,255 @@ +#ifndef MESH_HPP_ +#define MESH_HPP_ + +#include +#include "Vector3.hpp" +#include "Plane.hpp" +#include "Pool.hpp" +#include +#include +#include +#include +#include "VertexDataSource.hpp" +#include +#include + +namespace quickhull { + + template + class MeshBuilder { + public: + struct HalfEdge { + size_t m_endVertex; + size_t m_opp; + size_t m_face; + size_t m_next; + + void disable() { + m_endVertex = std::numeric_limits::max(); + } + + bool isDisabled() const { + return m_endVertex == std::numeric_limits::max(); + } + }; + + struct Face { + size_t m_he; + Plane m_P{}; + T m_mostDistantPointDist; + size_t m_mostDistantPoint; + size_t m_visibilityCheckedOnIteration; + std::uint8_t m_isVisibleFaceOnCurrentIteration : 1; + std::uint8_t m_inFaceStack : 1; + std::uint8_t m_horizonEdgesOnCurrentIteration : 3; // Bit for each half edge assigned to this face, each being 0 or 1 depending on whether the edge belongs to horizon edge + std::unique_ptr> m_pointsOnPositiveSide; + + Face() : m_he(std::numeric_limits::max()), + m_mostDistantPointDist(0), + m_mostDistantPoint(0), + m_visibilityCheckedOnIteration(0), + m_isVisibleFaceOnCurrentIteration(0), + m_inFaceStack(0), + m_horizonEdgesOnCurrentIteration(0) + { + + } + + void disable() { + m_he = std::numeric_limits::max(); + } + + bool isDisabled() const { + return m_he == std::numeric_limits::max(); + } + }; + + // Mesh data + std::vector m_faces; + std::vector m_halfEdges; + + // When the mesh is modified and faces and half edges are removed from it, we do not actually remove them from the container vectors. + // Insted, they are marked as disabled which means that the indices can be reused when we need to add new faces and half edges to the mesh. + // We store the free indices in the following vectors. + std::vector m_disabledFaces,m_disabledHalfEdges; + + size_t addFace() { + if (m_disabledFaces.size()) { + size_t index = m_disabledFaces.back(); + auto& f = m_faces[index]; + assert(f.isDisabled()); + assert(!f.m_pointsOnPositiveSide); + f.m_mostDistantPointDist = 0; + m_disabledFaces.pop_back(); + return index; + } + m_faces.emplace_back(); + return m_faces.size()-1; + } + + size_t addHalfEdge() { + if (m_disabledHalfEdges.size()) { + const size_t index = m_disabledHalfEdges.back(); + m_disabledHalfEdges.pop_back(); + return index; + } + m_halfEdges.emplace_back(); + return m_halfEdges.size()-1; + } + + // Mark a face as disabled and return a pointer to the points that were on the positive of it. + std::unique_ptr> disableFace(size_t faceIndex) { + auto& f = m_faces[faceIndex]; + f.disable(); + m_disabledFaces.push_back(faceIndex); + return std::move(f.m_pointsOnPositiveSide); + } + + void disableHalfEdge(size_t heIndex) { + auto& he = m_halfEdges[heIndex]; + he.disable(); + m_disabledHalfEdges.push_back(heIndex); + } + + MeshBuilder() = default; + + // Create a mesh with initial tetrahedron ABCD. Dot product of AB with the normal of triangle ABC should be negative. + void setup(size_t a, size_t b, size_t c, size_t d) { + m_faces.clear(); + m_halfEdges.clear(); + m_disabledFaces.clear(); + m_disabledHalfEdges.clear(); + + m_faces.reserve(4); + m_halfEdges.reserve(12); + + // Create halfedges + HalfEdge AB; + AB.m_endVertex = b; + AB.m_opp = 6; + AB.m_face = 0; + AB.m_next = 1; + m_halfEdges.push_back(AB); + + HalfEdge BC; + BC.m_endVertex = c; + BC.m_opp = 9; + BC.m_face = 0; + BC.m_next = 2; + m_halfEdges.push_back(BC); + + HalfEdge CA; + CA.m_endVertex = a; + CA.m_opp = 3; + CA.m_face = 0; + CA.m_next = 0; + m_halfEdges.push_back(CA); + + HalfEdge AC; + AC.m_endVertex = c; + AC.m_opp = 2; + AC.m_face = 1; + AC.m_next = 4; + m_halfEdges.push_back(AC); + + HalfEdge CD; + CD.m_endVertex = d; + CD.m_opp = 11; + CD.m_face = 1; + CD.m_next = 5; + m_halfEdges.push_back(CD); + + HalfEdge DA; + DA.m_endVertex = a; + DA.m_opp = 7; + DA.m_face = 1; + DA.m_next = 3; + m_halfEdges.push_back(DA); + + HalfEdge BA; + BA.m_endVertex = a; + BA.m_opp = 0; + BA.m_face = 2; + BA.m_next = 7; + m_halfEdges.push_back(BA); + + HalfEdge AD; + AD.m_endVertex = d; + AD.m_opp = 5; + AD.m_face = 2; + AD.m_next = 8; + m_halfEdges.push_back(AD); + + HalfEdge DB; + DB.m_endVertex = b; + DB.m_opp = 10; + DB.m_face = 2; + DB.m_next = 6; + m_halfEdges.push_back(DB); + + HalfEdge CB; + CB.m_endVertex = b; + CB.m_opp = 1; + CB.m_face = 3; + CB.m_next = 10; + m_halfEdges.push_back(CB); + + HalfEdge BD; + BD.m_endVertex = d; + BD.m_opp = 8; + BD.m_face = 3; + BD.m_next = 11; + m_halfEdges.push_back(BD); + + HalfEdge DC; + DC.m_endVertex = c; + DC.m_opp = 4; + DC.m_face = 3; + DC.m_next = 9; + m_halfEdges.push_back(DC); + + // Create faces + Face ABC; + ABC.m_he = 0; + m_faces.push_back(std::move(ABC)); + + Face ACD; + ACD.m_he = 3; + m_faces.push_back(std::move(ACD)); + + Face BAD; + BAD.m_he = 6; + m_faces.push_back(std::move(BAD)); + + Face CBD; + CBD.m_he = 9; + m_faces.push_back(std::move(CBD)); + } + + std::array getVertexIndicesOfFace(const Face& f) const { + std::array v; + const HalfEdge* he = &m_halfEdges[f.m_he]; + v[0] = he->m_endVertex; + he = &m_halfEdges[he->m_next]; + v[1] = he->m_endVertex; + he = &m_halfEdges[he->m_next]; + v[2] = he->m_endVertex; + return v; + } + + std::array getVertexIndicesOfHalfEdge(const HalfEdge& he) const { + return {m_halfEdges[he.m_opp].m_endVertex,he.m_endVertex}; + } + + std::array getHalfEdgeIndicesOfFace(const Face& f) const { + return {f.m_he,m_halfEdges[f.m_he].m_next,m_halfEdges[m_halfEdges[f.m_he].m_next].m_next}; + } + }; + + + +} + + + +#endif diff --git a/thirdparty/quickhull/Structs/Plane.hpp b/thirdparty/quickhull/Structs/Plane.hpp new file mode 100644 index 000000000000..35ef35206be7 --- /dev/null +++ b/thirdparty/quickhull/Structs/Plane.hpp @@ -0,0 +1,38 @@ +#ifndef QHPLANE_HPP_ +#define QHPLANE_HPP_ + +#include "Vector3.hpp" + +namespace quickhull { + + template + class Plane { + public: + Vector3 m_N; + + // Signed distance (if normal is of length 1) to the plane from origin + T m_D; + + // Normal length squared + T m_sqrNLength; + + bool isPointOnPositiveSide(const Vector3& Q) const { + T d = m_N.dotProduct(Q)+m_D; + if (d>=0) return true; + return false; + } + + Plane() = default; + + // Construct a plane using normal N and any point P on the plane + Plane(const Vector3& N, const Vector3& P) : + m_N(N), m_D(-N.dotProduct(P)), m_sqrNLength(m_N.x*m_N.x+m_N.y*m_N.y+m_N.z*m_N.z) + { + + } + }; + +} + + +#endif /* PLANE_HPP_ */ diff --git a/thirdparty/quickhull/Structs/Pool.hpp b/thirdparty/quickhull/Structs/Pool.hpp new file mode 100644 index 000000000000..4216b4a15339 --- /dev/null +++ b/thirdparty/quickhull/Structs/Pool.hpp @@ -0,0 +1,35 @@ +#ifndef Pool_h +#define Pool_h + +#include +#include + +namespace quickhull { + + template + class Pool { + std::vector> m_data; + public: + void clear() { + m_data.clear(); + } + + void reclaim(std::unique_ptr& ptr) { + m_data.push_back(std::move(ptr)); + } + + std::unique_ptr get() { + if (m_data.size()==0) { + return std::unique_ptr(new T()); + } + auto it = m_data.end()-1; + std::unique_ptr r = std::move(*it); + m_data.erase(it); + return r; + } + + }; + +} + +#endif /* Pool_h */ diff --git a/thirdparty/quickhull/Structs/Ray.hpp b/thirdparty/quickhull/Structs/Ray.hpp new file mode 100644 index 000000000000..19b60728e5b1 --- /dev/null +++ b/thirdparty/quickhull/Structs/Ray.hpp @@ -0,0 +1,21 @@ +#ifndef QuickHull_Ray_hpp +#define QuickHull_Ray_hpp + +#include "Vector3.hpp" + +namespace quickhull { + + template + struct Ray { + const Vector3 m_S; + const Vector3 m_V; + const T m_VInvLengthSquared; + + Ray(const Vector3& S,const Vector3& V) : m_S(S), m_V(V), m_VInvLengthSquared(1/m_V.getLengthSquared()) { + } + }; + +} + + +#endif diff --git a/thirdparty/quickhull/Structs/Vector3.hpp b/thirdparty/quickhull/Structs/Vector3.hpp new file mode 100644 index 000000000000..995f2a6fe0b6 --- /dev/null +++ b/thirdparty/quickhull/Structs/Vector3.hpp @@ -0,0 +1,143 @@ +#ifndef QuickHull_Vector3_hpp +#define QuickHull_Vector3_hpp + +#include +#include + +namespace quickhull { + + template + class Vector3 + { + public: + Vector3() = default; + + Vector3(T x, T y, T z) : x(x), y(y), z(z) { + + } + + T x,y,z; + + T dotProduct(const Vector3& other) const { + return x*other.x+y*other.y+z*other.z; + } + + void normalize() { + const T len = getLength(); + x/=len; + y/=len; + z/=len; + } + + Vector3 getNormalized() const { + const T len = getLength(); + return Vector3(x/len,y/len,z/len); + } + + T getLength() const { + return std::sqrt(x*x+y*y+z*z); + } + + Vector3 operator-(const Vector3& other) const { + return Vector3(x-other.x,y-other.y,z-other.z); + } + + Vector3 operator+(const Vector3& other) const { + return Vector3(x+other.x,y+other.y,z+other.z); + } + + Vector3& operator+=(const Vector3& other) { + x+=other.x; + y+=other.y; + z+=other.z; + return *this; + } + Vector3& operator-=(const Vector3& other) { + x-=other.x; + y-=other.y; + z-=other.z; + return *this; + } + Vector3& operator*=(T c) { + x*=c; + y*=c; + z*=c; + return *this; + } + + Vector3& operator/=(T c) { + x/=c; + y/=c; + z/=c; + return *this; + } + + Vector3 operator-() const { + return Vector3(-x,-y,-z); + } + + template + Vector3 operator*(S c) const { + return Vector3(x*c,y*c,z*c); + } + + template + Vector3 operator/(S c) const { + return Vector3(x/c,y/c,z/c); + } + + T getLengthSquared() const { + return x*x + y*y + z*z; + } + + bool operator!=(const Vector3& o) const { + return x != o.x || y != o.y || z != o.z; + } + + // Projection onto another vector + Vector3 projection(const Vector3& o) const { + T C = dotProduct(o)/o.getLengthSquared(); + return o*C; + } + + Vector3 crossProduct (const Vector3& rhs ) { + T a = y * rhs.z - z * rhs.y ; + T b = z * rhs.x - x * rhs.z ; + T c = x * rhs.y - y * rhs.x ; + Vector3 product( a , b , c ) ; + return product ; + } + + T getDistanceTo(const Vector3& other) const { + Vector3 diff = *this - other; + return diff.getLength(); + } + + T getSquaredDistanceTo(const Vector3& other) const { + const T dx = x-other.x; + const T dy = y-other.y; + const T dz = z-other.z; + return dx*dx+dy*dy+dz*dz; + } + + bool operator==(const Vector3& other) const { + return x == other.x && y == other.y && z == other.z; + } + }; + + // Overload also << operator for easy printing of debug data + template + inline std::ostream& operator<<(std::ostream& os, const Vector3& vec) { + os << "(" << vec.x << "," << vec.y << "," << vec.z << ")"; + return os; + } + + template + inline Vector3 operator*(T c, const Vector3& v) { + return Vector3(v.x*c,v.y*c,v.z*c); + } + +} + + +#endif diff --git a/thirdparty/quickhull/Structs/VertexDataSource.hpp b/thirdparty/quickhull/Structs/VertexDataSource.hpp new file mode 100644 index 000000000000..b59b15c56d7b --- /dev/null +++ b/thirdparty/quickhull/Structs/VertexDataSource.hpp @@ -0,0 +1,48 @@ +#ifndef VertexDataSource_h +#define VertexDataSource_h + +#include "Vector3.hpp" + +namespace quickhull { + + template + class VertexDataSource { + const Vector3* m_ptr; + size_t m_count; + + public: + VertexDataSource(const Vector3* ptr, size_t count) : m_ptr(ptr), m_count(count) { + + } + + VertexDataSource(const std::vector>& vec) : m_ptr(vec.data()), m_count(vec.size()) { + + } + + VertexDataSource() : m_ptr(nullptr), m_count(0) { + + } + + VertexDataSource& operator=(const VertexDataSource& other) = default; + + size_t size() const { + return m_count; + } + + const Vector3& operator[](size_t index) const { + return m_ptr[index]; + } + + const Vector3* begin() const { + return m_ptr; + } + + const Vector3* end() const { + return m_ptr + m_count; + } + }; + +} + + +#endif /* VertexDataSource_h */