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Verification of the Bayesian Estimation and Fitting Software (RMC-BestFit)

Purpose and Scope

The U.S. Army Corps of Engineers (USACE) Risk Management Center (RMC), in collaboration with the Engineer
Research and Development Center (ERDC) Coastal and Hydraulics Laboratory (CHL), developed the Bayesian
estimation and fitting software (RMC-BestFit) to enhance and expedite flood hazard assessments within the Flood
Risk Management, Planning, and Dam and Levee Safety communities of practice.

RMC-BestFit is designed for interactive use in a multi-tasking environment. The software features a fully integrated
modeling platform, including a modern graphical user interface, data entry capabilities, distribution fitting analysis,
Bayesian estimation analysis, and report quality charts. RMC-BestFit is a menu-driven software package, which
performs distribution fitting and Bayesian estimation from a choice of thirteen probability distributions. Input data is
entered as a block annual maxima series, and the software supports the use of interval and threshold censored data.

The purpose of this document is to provide verification of critical RMC-BestFit computations. Software verification
involves comparison of the numerical solution generated by the code with one or more analytical solutions, or other
numerical solutions. Verification ensures that the software accurately solves the equations that constitute the
mathematical model.

The RMC-BestFit software uses two dynamic link libraries (dll) for performing numerical analyses: Numerics.dll and
RMC.BestFit.dll. Numerics is a numerical library for .NET, which provides methods and algorithms for numerical
computations in science and engineering. Numerics includes routines for special functions, interpolation, statistics,
random numbers, probability distributions, uncertainty analysis, optimization, root finding, and more. RMC.BestFit is a
model library for the RMC-BestFit software, written in the .NET framework, which contains all remaining necessary
functionality for input data, distribution fitting, and Bayesian estimation. Both of these libraries were developed
internally by the RMC and, as such, the numerical methods contained within need to be verified.

RMC-BestFit has three functional components: 1) Input data; 2) Distribution fitting analysis; and 3) Bayesian
estimation analysis. Numerical verification for each component is detailed in this report and organized as follows:

¢ Input Data: The multiple Grubbs-Beck test and Hirsch-Stedinger plotting positions were verified using the 82
test sites developed for Bulletin 17C (U.S. Geological Survey, 2018) and compared against results from HEC-
SSP'. Two additional examples from Bulletin 17C, which incorporate multiple thresholds, were used for
further verification of the Hirsch-Stedinger plotting positions. Nonparametric summary statistics were verified
using the Palisade’s @Risk software?.

¢ Distribution Fitting Analysis: The Nelder-Mead optimization method was verified using Microsoft (MS)
Excel’s Solver add-in, and implicitly confirmed through verification of the Maximum Likelihood Estimation
(MLE) results for each distribution. The thirteen probability distributions used within RMC-BestFit were verified
using textbook solutions found in (Bobee & Ashkar, 1991) and (Rao & Hamed, 2000), and results from R-
Stan? for select distributions. The Akaike and Bayesian Information Criteria (AIC and BIC) were verified using
Palisade’s @Risk software, and root-mean-squared-error (RMSE) calculations were verified using MS Excel.

o Bayesian Estimation: The Bayesian estimation methods used in RMC-BestFit were verified using known
theoretical solutions for the Normal (Gaussian) distribution, and with other widely used Bayesian software
packages, such as R-Stan, evdbayes*, and Flike®. Finally, a comparison was made with flood frequency
results from the Expected Moments Algorithm (EMA) (Cohn, Lane, & Baier, 1997) provided in the HEC-SSP
software.

' https://www.hec.usace.army.mil/software/hec-ssp/

2 https://www.palisade.com/risk/default.asp

3 https://mc-stan.org/users/interfaces/rstan

4 https://cran.r-project.org/web/packages/evdbayes/index.html

5 https://flike.tuflow.com/
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Input Data

RMC-BestFit allows the user to enter block annual maxima data, which is assumed to be independent and identically
distributed. RMC-BestFit supports three different data types:

1. Systematic Data: Data that are collected at regular, prescribed intervals under a defined protocol. In a
maximum likelihood context, these values are treated as exact measurements.

2. Interval Data: Data whose magnitudes are not known exactly, but are known to fall within a range or interval.
In a maximum likelihood context, these values are treated as interval-censored.

3. Perception Thresholds: Data points that occurred during a period of years and have magnitudes that are
below a threshold value, but unknown by how much. In a maximum likelihood context, these values are
treated as left-censored.

The Distribution Fitting Analysis chapter provides greater detail on how these data types are treated in a likelihood
context.

Multiple Grubbs-Beck Test

For the distribution fitting or Bayesian estimation to be theoretically valid, the input data must be independent and
identically distributed. As a means to ensure homogeneity, RMC-BestFit provides the Multiple Grubbs-Beck test
(MGBT) (Cohn, et al., 2013) for low outliers, which is consistent with the Bulletin 17C guidelines (U.S. Geological
Survey, 2018). Other hypothesis tests are planned for future versions of the software.

The code for MGBT was modified from the Fortran source code for PeakfqSA®. The original Fortran source code used
a globally adaptive Guass-Kronrod integration method; whereas, in Numerics the definite integral is solved using the
trapezoidal rule with 1,000 steps. Results for the MGBT implementation in RMC-BestFit were compared against
results from HEC-SSP for 82 USGS gage sites (see Table 1). In all cases, RMC-BestFit produces the same results as
HEC-SSP.

In RMC-BestFit, the MGBT is only applied to systematic data, which are considered exact measurements. Interval-
and threshold-censored data are not included in the test. Likewise, in HEC-SSP, only systematic data are included in
the MGBT. However, in HEC-SSP, data labeled as “Historical" are not included in MGBT, even if those historical data
points are exact values. This design choice between the two software can lead to significant differences in MGBT
results.

Hirsch-Stedinger Plotting Positions

In RMC-BestFit, the input data can be plotted as a chronology plot, as shown in Figure 1, or a nonparametric
frequency plot, as shown in Figure 2. The nonparametric analysis is based on the Hirsch-Stedinger (H-S) plotting
position formula (Hirsch & Stedinger, 1987) (U.S. Geological Survey, 2018). The H-S plotting positions are used to
visually and quantitatively assess the goodness-of-fit of the fitted distributions (see the Goodness-of-Fit Measures
section for more detail). The programmatic subroutine for the H-S plotting positions was written based on the
description of the method found in (U.S. Geological Survey, 2018). The H-S plotting positions computed in RMC-
BestFit were compared with results from HEC-SSP for 82 USGS gage sites (see Table 1). The only scenarios where
the results do not match are in cases where there are low outliers.

The low outlier threshold value identified by the MGBT is automatically treated as a left-censored threshold in the
fitting analysis for both RMC-BestFit and HEC-SSP. For example, if the MGBT threshold value is 8,000 and there are
eight data points below the threshold identified as low outliers, then this is treated equivalent to a left-censored
threshold with eight values below and zero above. However, RMC-BestFit does not include the MGBT threshold in the
H-S plotting position routine; whereas, HEC-SSP does include the threshold. This is a software design choice rather
than a numerical difference. Conceptually, the MGBT removes exact data points and replaces them with a threshold-
censored value. This represents a loss in information. However, if this MGBT threshold is included in the H-S routine,

6 https://sites.google.com/a/alumni.colostate.edu/jengland/resources
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then it will make the plotting positions rarer, signaling an increase in information. This is counterintuitive, and for this
reason RMC-BestFit does not include the MGBT threshold in the H-S plotting position routine.
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Figure 1 — Example of Input Data Chronology Plot
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Another key difference between RMC-BestFit and HEC-SSP is that HEC-SSP uses different plotting position
coefficients for low outliers and non-outliers. In HEC-SSP, non-outliers use the Weibull coefficient (@ = 0), and low

outliers use the Median coefficient (¢ = 0.3175). RMC-BestFit uses the same coefficient throughout, and the user can
choose from the following coefficients:

Weibull (« = 0.0)
Median (¢ = 0.3175)
Blom (a = 0.375)
Cunnane (a = 0.40)
Gringorten (a = 0.44)
Hazen (a = 0.50)

Again, the differences in H-S plotting positions are based on alternative software design choices rather than numerical
differences.

Table 1 — Comparison between HEC-SSP and RMC-BestFit for MGBT Results and Hirsch-Stedinger Plotting Positions.

H-S Plotting
Positions

HEC-SSP RMC-BestFit HEC-SSP RMC-BestFit | Max % Difference

No. of Low Outliers MGBT Threshold
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H-S Plotting
Positions

HEC-SSP RMC-BestFit HEC-SSP RMC-BestFit | Max % Difference

No. of Low Outliers MGBT Threshold

Two additional examples from Bulletin 17C, which incorporate multiple thresholds with varying magnitudes, were used
for further verification of the H-S plotting positions. Example #4 from Appendix 10 of Bulletin 17C (U.S. Geological
Survey, 2018) incorporates a historical record with several large floods and paleoflood information for the Arkansas
River at Pueblo Dam near Pueblo, Colorado. Example #7 from Bulletin 17C incorporates several large, historical
floods and detailed paleoflood data for Reclamation’s Folsom Dam. The chronology plots for these two examples are
shown in Figure 3 and Figure 4. These complex datasets provided a means of stress testing the H-S plotting position
routine in RMC-BestFit. Results are provided in Figure 5 and Figure 6. RMC-BestFit produces the exact same results
as HEC-SSP for these two examples.
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Example #4 - Plotting Positions
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Figure 5 — Comparison of RMC-BestFit with HEC-SSP for the Hirsch-Stedinger Plotting Positions for Example #4 in Bulletin 17C
(U.S. Geological Survey, 2018).

Example #7 - Plotting Positions
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Figure 6 — Comparison of RMC-BestFit with HEC-SSP for the Hirsch-Stedinger Plotting Positions for Example #7 in Bulletin 17C
(U.S. Geological Survey, 2018).
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Nonparametric Summary Statistics

RMC-BestFit provides summary statistics for the systematic data and for all of the data, including low outliers,
intervals, and perception thresholds (see Figure 7). Summary statistics for the systematic data use standard moment
and percentile estimates, while summary statistics for all data are based on the nonparametric H-S plotting positions.
The central moments of the nonparametric distribution are estimated using numerical integration; specifically, the
trapezoidal rule is used with 1,000 integration steps. The nonparametric distribution functions are provided in Equation
1 to Equation 3. Percentiles are estimated using the inverse cumulative distribution function as shown in Equation 3.

_ DPi+1 —Di
- —l
Xiv1 — X

f(x) Equation 1

where f(x) is the probability density function (PDF) of the variable X; there is an array of continuous values {x} =
{x1, x5, ..., x5} fOr x; < x < x;,,With non-exceedance probabilities {p} = {p1, P2, ..., Pn} With 0 < p; < 1.

X — X;
F(x) =p; + is1 — D)) <—l) Equation 2
Xi+1 — Xi
F7H(p) = x; + (i1 — X) (u) Equation 3
Pi+1 — Pi

where F(x) is the cumulative distribution function (CDF) of the variable X; F~1(p) is the inverse CDF; and there is an
array of continuous values {x} = {x, x;, ..., x,} for x; < x < x;,;with non-exceedance probabilities {p} = {p;, 02, ... Pn}
with0<p;<landp; <p < pis1-

The nonparametric summary statistics were verified using Palisade’s @Risk. Results are shown in Table 2 and Figure
8 and Figure 9. The minor differences in results are likely caused by different choices in integration methods and the
number of integrations steps.
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Figure 7 — Summary Statistics for Input Data (USGS 01562000) in RMC-BestFit.
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Table 2 — Nonparametric Summary Statistics Results
Parameter RMC-BestFit % Difference

| 5,014 39,852
| 5.0% |
| 1.0 -
/— Mean 16,763.82
Maode M/A
Median 13,963.33
td Dev 11,405.12
Skewness 3.0303
0.8 Kurtosis 15.416%
Left X 5014
Left P 5.05
Right X 39,852
Right P 95.0%
Dif. X 3483717
0.6 Dif. P 90.0%
1% 317575
5% 5,014.50
108 8,117.90
15% 8,687.25
205 9,609.20
04 25% 10,781.67
3% 11,567.00
35% 11,574.33
408 12,585.33
45% 13,200.00
50% 13,963.33
0z 4 55% 14,999.17
6055 16,980,00
65% 17,952.33
TR 13,474.33
75% 15,172.50
305 20,970.67
85% 22 237.67
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Figure 8 — Real-space Summary Statistics for Input Data (USGS 01562000) in Palisade’s @Risk.
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Figure 9 — Log10-space Summary Statistics for Input Data (USGS 01562000) in Palisade’s @Risk.
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Distribution Fitting Analysis

A distribution fitting analysis can be performed in RMC-BestFit, where univariate probability distributions are fit to the
specified input data using the method of Maximum Likelihood Estimation (MLE). The distribution fitting analysis can
be used to inform model selection for use in the Bayesian estimation analysis. For each fitted distribution, RMC-
BestFit provides three goodness-of-fit measures: the Akaike Information Criteria (AIC), the Bayesian Information
Criteria (BIC), and Root-Mean Squared Error (RMSE). These measures indicate how well the distribution fits the input
data, with a smaller value representing a better fit.

RMC-BestFit uses the Numerics library, which was developed by the RMC, for performing a significant portion of the
computations for the distribution fitting analysis. Numerics is a numerical library for .NET, which provides methods and
algorithms for numerical computations in science and engineering. Numerics.dll includes routines for special
functions, interpolation, statistics, random numbers, probability distributions, uncertainty analysis, optimization, root
finding, and more.

The Nelder-Mead optimization method used to perform MLE was verified using Microsoft (MS) Excel's Solver add-in,
and implicitly verified through verification of the MLE results for each distribution. The thirteen probability distributions
used within RMC-BestFit were verified using textbook solutions found in (Bobee & Ashkar, 1991) and (Rao & Hamed,
2000), and results from R-Stan for select distributions. The AIC and BIC were verified using Palisade’s @Risk
software, and RMSE calculations were verified using MS Excel.

The following sections describe the numerical methods used for the distribution fitting analysis in RMC-BestFit, and
numerical verification is provided therein.

Maximum Likelihood Estimation (MLE)

In the distribution fitting analysis, parameters are estimated using the MLE method. The MLE method formulates a
likelihood function using sample data D = (X;, ..., X;,) and the parameters 6 of the probability distribution, and solves
for the value of the parameters that maximize the likelihood function (Rao & Hamed, 2000) (Jongejan, 2018). The
likelihood function gives the probability of the data conditional on the distribution parameters (Equation 4).

s
Lsol0) = | [rexe) Equation 4
i=1

where D is the sample of systematically recorded annual discharge maxima (X;, ..., X,,,); and f () is the probability

density function (PDF) of the variable X. Censored data can be incorporated into the MLE method by augmenting the
likelihood function. Left-censored threshold data has the following likelihood function:

nL

h
L,(D|8) = 1_[ (k) F(X,|8)—0 Equation 5

i=1

where X, is the threshold; h is the threshold period; k is the number of observations that exceeded the threshold during
the period; (Z) is the binomial coefficient; and F(-) is the cumulative distribution function (CDF) of the variable X,,. The

binomial coefficient can be dropped from Equation 5 because it will be held constant as 6 is varied. Interval-censored
data has the following likelihood function:

ny
L,(D]0) = H[F(XUJG) - F(x,,|0)] Equation 6
i=1

where there are n; observations known to lie between upper and lower bounds, X;; and X;. The overall likelihood
function is then constructed by multiplying the components:




Verification of the Bayesian Estimation and Fitting Software (RMC-BestFit)

L(D|®) = Lg(D|®) - L, (D|6)- L,(D|6) Equation 7

These likelihood formulations for censored data are consistent with those presented in (Stedinger & Cohn, 1986),
(Kuczera G. , 1999), and (O'Connell, Ostenaa, Levish, & Klinger, 2002). RMC-BestFit uses the Nelder-Mead method
(also commonly called the downhill simplex method or amoeba method) to perform MLE for every distribution.

Nelder-Mead (Downhill Simplex)

The Nelder-Mead method is an optimization method that requires only function evaluations, not derivatives (Press,
Teukolsky, Vetterling, & Flannery, 2017). The Nelder-Mead algorithm contained in Numerics was translated from
Press et al. (2017) and augmented to include constraints on parameters.

The Microsoft (MS) Excel solver was used to verify the Nelder-Mead algorithm contained in Numerics. Equation 8 was
used to perform numerical verification on the Nelder-Mead algorithm. The initial guess for the parameters x, y, and z
were 0.5, 0.5, and 0.5, respectively. The lower bounds for each parameter were set to 0 and the upper bound was set
to 1.

f(x,y,z) = (4x — 0.5)2 + 3y — 0.6)2 + (2z — 0.7)? Equation 8

The objective function seeks to find the parameters that minimizes f(x, y, z). The problem was solved in MS Excel as
shown in Figure 10.

B6 o Jr | =(a%E2-0.5)42+(3%E3-0.6)22+(2*E4-0.7)22
A B i@ D E F G H
1 Parameters Initial Values Lower Bounds Upper Bounds Optimal Values
2 0.5 0 1 0.125
3 ¥ 0.5 0 1 0.2
4 z 0.5 1] 1 0.35
3
6 | Objective function: Solver Parameters X
7
s Set Objective: 565l e
9
10 Ta O Max @® Min (O Value Of:
11
12 By Changing Variable Cells:
13 SES2:SES4 2.5
14
15 Subject to the Constraints:
SES2 <= 5D52
18 SES2 > = 5C52 Add
17 $ES3 <= 5D53
SES3 == 5C53 Change
18 SES4 <= 5034
19 SES4 = 5054
Delete
20
21
Reset All
22
23 Load/5ave
& Make Unconstrained Variables Mon-Megative
25
26 Select a Solving Method: GRG Nonlinear R Options
27
2% Solving Method
Select the GRG Monlinear engine for Solver Problems that are smooth nonlinear. Select the LP
20 Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver
20 problems that are non-smooth,
21
32
34

Figure 10 — Nelder-Mead Verification in MS Excel.
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A unit test for the Nelder-Mead method was set up as shown in Figure 11, and unit test output is shown in Figure 12.
As can be seen, both MS Excel and Numerics produce the same results with x, y, and z equaling 0.125, 0.2, and 0.35
respectively. Unit tests, like the one shown below, were developed for all verification tests in the Numerics library. The
Nelder-Mead method is implicitly verified through verification of the MLE results for each distribution; i.e., if the MLE
result for a distribution is correct, then the numerical method used to solve the MLE must also be correct.

FXYZ{parms()
= parms(@)
parms (1}
parms(2)
(4*x-8.5)~2+(3*y-8.6) "2+ (2%z-0.7) "2

Test_NelderMead()

initial() = {@.5, 8.5, 8.5}
lower() = {8, 8, 8}
upper(} {1, 1, 1}
solution() = NelderMead.Minimize( FXY¥Z, initial, lower, upper, ©.06088881)

solution(@)

solution(1)

solution(2)

validX @.125
validy @.2
validZ @.35

t.AreEqual(Math.Abs(validX - / wvalidX < @.81,
rt.AreEqual(Math.Abs (validY - y) / validY < @.81,
rt.AreEqual (Math.Abs(validZ - z) / validZ < @.81,
g.WriteLine("x = " .ToString)
g.WriteLine(™y ' r.ToString)
g.WriteLine("z ' .ToString)

Show output from:  Debug

X = 8.125
vy = 8.2
Fi @.35

Figure 12 — Unit Test output for the Nelder-Mead algorithm.
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Probability Distributions

The distribution fitting analysis in RMC-BestFit fits thirteen different probability distributions to the input data. All
probability distribution functionality is contained within Numerics. In most cases, the initial parameter values and
parameter constraints are estimated using the Method of Moments (MOM), which equates the moments of the sample
data with the moments of the probability distribution function. The MLE method for distribution fitting is then performed
using the Nelder-Mead method described above.

Verification data sets come from two primary sources: 1) The Gamma Family and Derived Distributions Applied in
Hydrology (Bobee & Ashkar, 1991), and 2) Flood Frequency Analysis (Rao & Hamed, 2000). Each test evaluates the
MOM fit, the MLE fit, quantile estimates, and standard error estimates, when possible. RMC-BestFit results were
verified using the textbook solutions found in (Bobee & Ashkar, 1991) and (Rao & Hamed, 2000), and results from R-
Stan for the following distributions: Normal, Log-Normal, Gamma, Gumbel, Weibull, and Logistic.

The probability distribution parameterizations and estimation methods used in Numerics are consistent with those
found in (Hosking & Wallis, 1997), (Asquith, 2011), and (Krishnamoorthy, 2016).

Normal and Related Distributions

All of the Normal (Gaussian) and related distributions were verified using examples found in Flood Frequency
Analysis (Rao & Hamed, 2000). Numerics contains two log-Normal distributions. The first, named “Ln-Normal” is
based on the natural logarithm, or log base e. This distribution is parameterized using real-space moments to be more
intuitive for multi-disciplinary end-users of the software. The other distribution, named “Log-Normal,” is generalized so
that the log base can be specified. Hydrologists typically use log base 10, so this is the default setting used in RMC-
BestFit.

Normal

The Normal distribution was verified using the Tippecanoe River near Delphi, Indiana dataset provided in Flood
Frequency Analysis (Rao & Hamed, 2000) and shown in Table 3. The MOM results are shown in Table 4, the MLE
results are shown in Table 5 and Table 6, the results for the inverse CDF are provided in Table 7, and the results for
the quantile standard error are shown in Table 8. All results are reported with the same significant digits as was
reported in (Rao & Hamed, 2000).

Table 3 — Tippecanoe River near Delphi, Indiana dataset (Rao & Hamed, 2000).

Year Flow Year Flow Year Flow
(CFS) (CFS) (CFS)
1940 6,290 1957 18,800 1974 14,100
1941 2,700 1958 21,400 1975 14,100
1942 13,100 1959 22,600 1976 12,500
1943 16,900 1960 14,200 1977 7,530
1944 14,600 1961 11,000 1978 13,400
1945 9,600 1962 12,800 1979 17,600
1946 7,740 1963 15,700 1980 13,400
1947 8,490 1964 4,740 1981 19,200
1948 8,130 1965 6,950 1982 16,900
1949 12,000 1966 11,800 1983 15,500
1950 17,200 1967 12,100 1984 14,500
1951 15,000 1968 20,600 1985 21,900
1952 12,400 1969 14,600 1986 10,400
1953 6,960 1970 14,600 1987 7,460
1954 6,500 1971 8,900
1955 5,840 1972 10,600

1956 10,400 1973 14,200
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Table 4 — Normal Distribution Method of Moments (MOM) Results.
Rao & Hamed

Parameter (2000) RMC-BestFit % Difference
Mean (u) 12,665 12,665 0.00%
Std. Deviation (o) 4,710 4,710 0.00%

The results for MLE provided for this dataset by (Rao & Hamed, 2000) are incorrect. The MLE estimate for standard
deviation is equal to the population standard deviation of the sample, not the sample standard deviation as reported
by (Rao & Hamed, 2000). With this in mind, the MLE of the standard deviation is a biased estimator. The MLE results
comparing (Rao & Hamed, 2000) with RMC-BestFit are shown in Table 5. The MLE results comparing R-Stan and
RMC-BestFit are shown in Table 6. RMC-BestFit produces nearly identical results to R-Stan. Example code for R-
Stan is provided in Figure 13 so that others will be able to reproduce these results.

Table 5 — Normal Distribution Maximum Likelihood Estimation (MLE) Results.

Rao & Hamed - . [F
Parameter (2000) RMC-BestFit % Difference
Mean (u) 12,665 12,665 0.00%
Std. Deviation (o) 4,710 4,660.43 1.06%

*This should be the population standard deviation of the sample, which is 4,660.42.

Table 6 — Normal Distribution MLE Results Compared to R-Stan.

Parameter R-Stan RMC-BestFit % Difference
Mean (u) 12,665.21 12,665.22 0.00%
Std. Deviation (o) 4,660.40 4,660.43 0.00%

library(rstan)

# This is example code for R-Stan with the Normal distribution.
# Stan will automatically compile this block of code to significantly reduce runtimes.
stan_code <-

model <- stan_model(model_code=stan_code)

# Reference: "Flood Frequency Analysis", A.R. Rao & K.H. Hamed, CRC Press, 2000.

# Table 5.1.1 Tippecanoe River Near Delphi, Indiana (Station 43) Data.

gageData = ¢(6290, 2700, 13100, 16900, 14600, 9600, 7740, 8490, 8130, 12000, 17200, 15000,
12400, 6960, 6500, 5840, 10400, 18800, 21400, 22600, 14200, 11000, 12800, 15700,
4740, 6950, 11800, 12100, 20600, 14600, 14600, 8900, 10600, 14200, 14100, 14100,
12500, 7530, 13400, 17600, 13400, 19200, 16900, 15500, 14500, 21900, 10400, 7460)

# Get the mean and standard deviation of the gage data.
m <- mean(gageData)

s <- sd(gageData)

# 12665.21

#4709.742

# Estimate the posterior mode parameter set using Maximum Likelihood Estimation (MLE).
mle = optimizing(model, data=list(x=gageData, N=length(gageData)),
algorithm="LBFGS", init=list(mu=m, sigma=s))

# Output the MLE results.
print(mle)
# mu sigma
# 12665.208 4660.398
Figure 13 — Example code for R-Stan with the Normal Distribution.
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The quantile estimate results for the 100-yr return period (or 0.99 non-exceedance probability) are provided in Table
7. These results were derived using the MOM parameters to have a 1:1 comparison with (Rao & Hamed, 2000). The
minor differences are because Numerics uses a double-precision rational approximation to the inverse CDF, whereas
(Rao & Hamed, 2000) uses a single-precision approximation. The CDF was verified for all distributions by plugging in
the quantile value to ensure it computes the correct probability. The PDF of each distribution was validated implicitly
through the MLE method; i.e., the MLE results can only be valid if the PDF is valid.

Table 7 — Normal Distribution Quantile Results.

. Rao & Hamed . o/ M:
Quantile (2000) RMC-BestFit % Difference
F~1(0.99) 23,624 23,622 0.01%

Quantile Standard Error

The quantile standard error for every distribution is estimated using a Taylor series approximation, often referred to as
the delta method. The quantile standard error for the Normal distribution is estimated using Equation 9. This equation
can be generalized for functions with any number of variables. The standard error is provided here because the
calculations for the priors for quantiles in RMC-BestFit requires the partial derivatives of the inverse CDF with respect
to each parameter. These partial derivatives are also required in Equation 9. Consequently, verification of the quantile
standard error also provides verification of the methods used to estimate parameter variance and the partial
derivatives. Results for the standard error for the 100-yr quantile using the MOM parameters are provided in Table 8.

2 2

Var 7 = (ax) Var i+ (ax ) varo+2 (‘”‘) (ax) c Equation 9
ar Z = o ar u EP ar o 1) \Go ov(u, o)
Table 8 — Normal Distribution Quantile Standard Error.
. Rao & Hamed - oL =¥
Quantile (2000) RMC-BestFit % Difference
F~1(0.99) 1,309 1,309 0.00%

Log-Normal

The Log-Normal distribution was verified using the Wabash River at Lafayette, Indiana dataset provided in Flood
Frequency Analysis (Rao & Hamed, 2000) and shown in Table 11. The Log-Normal distribution used in Numerics is
generalized to work with any logarithmic base. This example uses the natural logarithm, base e.

Unfortunately, the book uses summary statistics that are significantly different than what would be generated using
the data provided in the Table 11. Because the differences in summary statistics are sizeable, as shown in Table 9, a
1:1 comparison cannot truly be made. Rather than using the results reported in the book, the results are based on
sample statistics derived from MS Excel (Table 10). Using these statistics, the MOM results are shown in Table 12.
The MLE estimate for standard deviation is equal to the population standard deviation of the sample, not the sample
standard deviation as reported by (Rao & Hamed, 2000). The MLE results comparing (Rao & Hamed, 2000) with
RMC-BestFit are shown in Table 13. The MLE results comparing R-Stan and RMC-BestFit are shown in Table 14.
RMC-BestFit produces identical results to R-Stan. Results for the inverse CDF are provided in Table 15, and the
results for the quantile standard error are shown in Table 16.

Table 9 — Comparison of Summary Statistics for the Wabash River at Lafayette, Indiana dataset (Rao & Hamed, 2000).
Rao & Hamed

. L. o/ I
Statistic (2000) MS Excel % Difference

Mean 52,621 49,222 6.67%

Std. Dev. 25,200 18,908 28.53%
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Table 10 — Summary Statistics for the Wabash River at Lafayette, Indiana dataset (Rao & Hamed, 2000).
Statistic

Table 11 — Wabash River at Lafayette, Indiana dataset (Rao & Hamed, 2000).

Table 12 — Log-Normal Distribution MOM Results.

Rao & Hamed - 0L ¥
Parameter (2000) RMC-BestFit % Difference
|

Rao & Hamed

- H o -
(2000) RMC-BestFit % Difference

* (Rao & Hamed, 2000) incorrectly estimates using the sample standard deviation. This should be the population standard
deviation, which is 0.4474.

Table 14 — Log-Normal Distribution MLE Results Compared to R-Stan.
Parameter R-Stan RMC-BestFit % Difference
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Table 15 — Log-Normal Distribution Quantile Results.

Quantile RE 6 [RETE RMC-BestFit % Difference

(2000)
F~1(0.99) 128,538 128,538 0.00%

Table 16 — Log-Normal Distribution Quantile Standard Error.

Rao & Hamed
(2000)

F~1(0.99) 11,935 11,935 0.00%

Quantile RMC-BestFit % Difference

The Gamma Family of Distributions
The Gamma family of distributions were verified using examples found in The Gamma Family and Derived
Distributions Applied in Hydrology (Bobee & Ashkar, 1991) and Flood Frequency Analysis (Rao & Hamed, 2000).

Exponential

The Exponential distribution was verified using the Wabash River at Lafayette, Indiana dataset provided in Flood
Frequency Analysis (Rao & Hamed, 2000) and shown in Table 11. Summary statistics for this dataset are provided in
Table 10. The MOM results are shown in Table 17, the MLE results are shown in Table 18, the results for the inverse
CDF are provided in Table 20, and the results for the quantile standard error are shown in Table 21.

Table 17 — Exponential Distribution MOM Results.

Rao & Hamed : . [F
Parameter (2000) RMC-BestFit % Difference
Location (&) 30,314.48 30,314.48 0.00%
Scale (a) 18,907.87 18,907.87 0.00%

The MLE results are shown in Table 18. The error in the scale parameter is likely because the Nelder-Mead solver is
stuck in a local maximum, rather than a global. This dataset is not well-suited for the Exponential distribution, as can
be seen below in Figure 14. The Exponential distribution has the worst AIC, BIC, and RMSE of all fitted distributions
for this dataset. For an alternative verification test, a synthetic data set was generated from a parent Exponential
distribution with a location of 13,100 and scale of 36,122. Results are shown below in Table 19 and Figure 15. As can
be seen, the percent difference between the theoretical MLE and the MLE produced by the Nelder-Mead method is
sufficiently close to zero. The results for the inverse CDF are provided in Table 20, and the results for the quantile
standard error are shown in Table 21. These results were based on the MOM parameters.

Table 18 — Exponential Distribution MLE Results.
Rao & Hamed

Parameter (2000) RMC-BestFit % Difference
Location (&) 13,100.00 13,100.00 0.00%
Scale (a) 36,122.35 35,816.48 0.85%

Table 19 — Exponential Distribution MLE Results for Synthetic Dataset.

Parameter Theoretical RMC-BestFit % Difference
Location (&) 13,453.06 13,453.06 0.00%
Scale (a) 28,808.37 28,806.02 0.01%

Table 20 — Exponential Distribution Quantile Results.

Quantile REE 3 (R RMC-BestFit % Difference

(2000)
F~1(0.99) 143,471 143,471 0.00%
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Table 21 — Exponential Distribution Quantile Standard Error.

Quantile Ra°(§‘0;'§)med RMC-BestFit % Difference
F~1(0.99) 15,986 15,986 0.00%
Graphical Results ~ Tabular Results
Distribution AlC BIC RMSE ~ 1,000,000
[]|Generalized Pareto Nal MNal MNalM ] — Exponential
[]|Generalized Logistic 1920.79 1927.82 2190.69 ® Systematic Data
[[]|Pearson Type lll 19149.36 1926.39 2219.94 1
[]|Generalized Extreme Value 1918.15 192618 2276.50 1
[ |weibull 1516.68 1521.42 2368.29 4
[I|Leg-Pearson Type lll 1519.26 1926.29 2435.10
[I|Nermal 191841 182315 2601.41 il
[]|Logistic 1918.51 1924.25 2649.73
[]|Gamma 182119 192593 2747.25 1
[]|Gumbel (EVI) 152342 1928.16 3924.05
[J|Leg-Normal 1830.52 1935.26 5181.97
[I|Ln-Normal 1930.52 1935.26 5183.09 g
Exponential 195825 196298 1630143 100,000
10,000
0.99% 0.99

Annual Exceedance Probability

Figure 14 — Distribution Fitting Analysis for the Wabash River at Lafayette, Indiana dataset.

Graphical Results

Tabular Results
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Exponential 113110)  113467|  5647.88 1 — Exponential
[1|Pearson Type 1133.36) 113858  5646.76 1 @ Systematic Data
[C]|Generalized Pareto 1133.50 11387 5984.59 1
[[1|Log-Pearson Type IIl 1141.80 1147.01 5243.76 1
[]|Ln-Normal 141,85 1143.51 6998.41 1
[|Log-Normal 1141.95 114551 £998.28
[1|Generalized Logistic 1142.03 1147.24 15674.76
[1|Generalized Extreme Value 143.19 1148.40 5789.02
[[1|Gamma 1147.53 115110 8657.95 1
[1|Gumbel (EVI) 1150.48 1154.04 1054617 %
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Figure 15 — Distribution Fitting Analysis for the Synthetic dataset.
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Gamma

There are three different parameterizations for the Gamma distribution in common use: 1) With a scale parameter 6
and a shape parameter k; 2) With an inverse scale parameter § = 1/6, called a rate parameter, and a shape
parameter « = k; and 3) With a mean parameter u = k6 = a/f and a shape parameter k. Numerics uses the first
parameterization, with a scale parameter 6 and a shape parameter k.

The Gamma distribution was verified using the Harricana River at Amos (Quebec, Canada) dataset provided in The
Gamma Family and Derived Distributions Applied in Hydrology (Bobee & Ashkar, 1991) and shown in Table 22. The
MOM results are shown in Table 23, the MLE results are shown in Table 24 and Table 25, the results for the inverse
CDF are provided in Table 26, and the results for the quantile standard error are shown in Table 27. Results are
reported with the same significant digits as was reported in (Bobee & Ashkar, 1991).

Table 22 — Harricana River at Amos (Quebec, Canada) (Bobee & Ashkar, 1991).

Table 23 — Gamma Distribution MOM Results.

Parameter Bobe(e1 gtg?)shkar RMC-BestFit % Difference

Parameter Bobe(e:] g;g?;hkar RMC-BestFit % Difference
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Table 25 — Gamma Distribution MLE Results Compared to R-Stan.
Parameter | R-Stan | RMC-BestFit | % Difference

‘Scale®) 1132136  11.32103
‘Shape(x) 1689896 1689928 0.00%

The quantile estimate results for the 100-yr return period (or 0.99 non-exceedance probability) and the standard error
are provided in Table 26 and Table 27, respectively. These results were derived using the MLE parameters.

Table 26 — Gamma Distribution Quantile Results.

Quantile Bobea;;g?;hkar RMC-BestFit % Difference

Table 27 — Gamma Distribution Quantile Standard Error.

Quantile B°beag‘g‘:‘)5hkar RMC-BestFit % Difference

Pearson Type Il

The Pearson Type llI (PIIl) distribution was verified using the Harricana River at Amos (Quebec, Canada) dataset
provided in The Gamma Family and Derived Distributions Applied in Hydrology (Bobee & Ashkar, 1991) and shown in
Table 22. Verification results for this dataset are provided in Table 28 through Table 31.

In Numerics, the Pl distribution is parameterized by the end-user using the moments of the distribution, mean (p),
standard deviation (o), and skew (y). The true parameters (location, scale, and shape) are computed from the user-
defined moments. This was done because the moments of the distribution are more intuitively defined by end-users.
Numerics uses the same parameterization as (Hosking & Wallis, 1997), with the location parameter &, the scale
parameter B, and the shape parameter a.

Table 28 — Pearson Type Il Distribution MOM Results.

Parameter Bobe(e1 g;g?;hkar RMC-BestFit % Difference

The quantile estimate results for the 100-yr return period (or 0.99 non-exceedance probability) and the standard error
are provided in Table 30 and Table 31, respectively. These results were derived using the MLE parameters. The
minor differences in standard error are a result of differences in the derivation of the frequency factor K. Numerics
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estimates the frequency factor given the skewness coefficient through Cornish-Fisher transformation (Fisher &
Cornish, 1960). Whereas, (Bobee & Ashkar, 1991) uses a polynomial approximation derived by the authors.

Table 30 — Pearson Type Il Distribution Quantile Results.

Quantile BEEEE & EilEr RMC-BestFit % Difference

(1991)
F~1(0.99) 321.48 321.48 0.00%

Table 31 — Pearson Type Il Distribution Quantile Standard Error.

Quantile D & il RMC-BestFit % Difference

(1991)
F~1(0.99) 20.045 20.048 0.01%

Log-Pearson Type Il

The Log-Pearson Type Il (LPIII) distribution was verified using the Harricana River at Amos (Quebec, Canada)
dataset provided in The Gamma Family and Derived Distributions Applied in Hydrology (Bobee & Ashkar, 1991) and
shown in Table 22. Verification results for this dataset are provided in Table 32 through Table 35. The LPIII
distribution uses the same parameterization as the PIIl. The LPIII distribution used in Numerics is generalized to work
with any logarithmic base following the procedures shown in (Bobee & Ashkar, 1991). Because the LPIIl is
parameterized with log-spaced moments, small errors in the MLE for log-moments can lead to larger errors in the real
parameters, as shown in Table 33. These errors can be minimized by decreasing the tolerance in the Nelder-Mead
solver; however, these differences are well within the acceptable range for verification.

Table 32 — Log-Pearson Type Il Distribution MOM Results.
Bobée & Ashkar

Parameter (1991) RMC-BestFit % Difference
Mean (of log) (M) 2.26878 2.26878 0.00%
Std. Dev (of log) (o) 0.10699 0.10699 0.00%
Skew (of log) (y) -0.04061 -0.04061 0.00%
Location (&) 7.53821 7.53821 0.00%
Scale (B) -0.00217 -0.00217 0.00%
Shape (a) 2,425.57481 2,425.57481 0.00%

Table 33 — Log-Pearson Type Il Distribution MLE Results.

Parameter BObe(i 3'9':‘)8 i RMC-BestFit % Difference

2.26878 2.26878 0.00%

Mean (of log) ()

Std. Dev (of log) (o) 0.10621 0.10621 0.00%
Skew (of log) (y) -0.02925 -0.02925 0.00%
Location (€) 9.53033 9.53160 0.01%
Scale (B) -0.00155 -0.00155 0.00%
Shape (a) 4,674.21790 4,675.85084 0.03%

The quantile estimate results for the 100-yr return period (or 0.99 non-exceedance probability) and the standard error
are provided in Table 34 and Table 35, respectively. These results were derived using the MLE parameters. The
minor differences in standard error are a result of differences in the derivation of the frequency factor K. Numerics
estimates the frequency factor given the skewness coefficient through Cornish-Fisher transformation (Fisher &
Cornish, 1960). Whereas, (Bobee & Ashkar, 1991) uses a polynomial approximation derived by the authors.

Table 34 — Log-Pearson Type Il Distribution Quantile Results.

Quantile B°be(‘: g'g‘:‘)s‘hkar RMC-BestFit % Difference

F~1(0.99) 326.25 326.27 0.01%
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Table 35 — Log-Pearson Type lll Distribution Quantile Standard Error.

Quantile B°be(e1 g‘g’:‘fhkar RMC-BestFit % Difference

Extreme Value Distributions

The extreme value distributions were verified using examples found in Flood Frequency Analysis (Rao & Hamed,
2000), synthetic data sets with Palisade’s @Risk, and R-Stan.

Gumbel

The Gumbel distribution was verified using the Sugar Creek at Crawfordsville, Indiana dataset provided in Flood

Frequency Analysis (Rao & Hamed, 2000) and shown in Table 36. Verification results are provided in Table 37
through Table 41.

Table 36 — Sugar Creek at Crawfordsville, Indiana dataset (Rao & Hamed, 2000).

Table 37 — Gumbel Distribution MOM Results.

Rao & Hamed - 0L Y
Parameter (2000) RMC-BestFit % Difference

Table 38 — Gumbel Distribution MLE Results.

Rao & Hamed . o/ M
Parameter (2000) RMC-BestFit % Difference
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Table 39 — Gumbel Distribution MLE Results Compared to R-Stan.

Parameter RMC-BestFit | % Difference

Table 40 — Gumbel Distribution Quantile Results.

: Rao & Hamed . o/ M
Quantile (2000) RMC-BestFit ’ % Difference

Table 41 — Gumbel Distribution Quantile Standard Error.

: Rao & Hamed - o/ M
Quantile (2000) RMC-BestFit ’ % Difference

Weibull

RMC-BestFit supports the 2-parameter Weibull distribution with the parameterization commonly used in reliability
analysis. The Weibull distribution was verified using the Tippecanoe River near Delphi, Indiana dataset provided in
Flood Frequency Analysis (Rao & Hamed, 2000) and shown in Table 3 under the Normal distribution section.
However, Rao and Hamed (2000) only provide solutions for the 3-parameter Weibull. Therefore, verification is
performed using R-Stan and Palisade’s @Risk. Unfortunately, neither of these products provide solutions based on
method of moments, nor do they provide quantile standard error estimates. Therefore, verification results are only
provided for MLE and quantile function estimations. The verification results are shown in Table 42 through Table 44.

Table 42 — Weibull Distribution MLE Results Compared to R-Stan.
Parameter R-Stan RMC-BestFit % Difference

Table 43 — Weibull Distribution MLE Results Compared to Palisade’s @Risk.

Parameter @Risk RMC-BestFit % Difference

Table 44 — Weibull Distribution Quantile Results.
Quantile @Risk RMC-BestFit | % Difference

Generalized Extreme Value

The Generalized Extreme Value distribution was verified using the White River near Nora, Indiana dataset provided in
Flood Frequency Analysis (Rao & Hamed, 2000) and shown in Table 46. Verification results are provided in Table 45
through Table 49.

Table 45 — Generalized Extreme Value Distribution MOM Results.

Rao & Hamed . o/ M
Parameter (2000) RMC-BestFit % Difference
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Table 46 — White River near Nora, Indiana dataset (Rao & Hamed, 2000).

Table 47 — Generalized Extreme Value MLE Resullts.

Rao & Hamed

Parameter (2000)

RMC-BestFit % Difference

The quantile estimate results for the 100-yr return period (or 0.99 non-exceedance probability) and the standard error
are provided in Table 48 and Table 49, respectively. These results were derived using the MLE parameters. The
difference in standard error estimates is likely due to rounding difference. The example in (Rao & Hamed, 2000) does
not carry forward double precision through the full calculation of quantile variance.

Table 48 — Generalized Extreme Value Distribution Quantile Results.

Rao & Hamed

Quantile (2000)

- FT(099)

RMC-BestFit % Difference

Table 49 — Generalized Extreme Value Distribution Quantile Standard Error.

Rao & Hamed
(2000)

Quantile RMC-BestFit % Difference
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Generalized Pareto
The Generalized Pareto distribution was verified using the White River Flows at Mt. Carmel, Indiana dataset provided

in Flood Frequency Analysis (Rao & Hamed, 2000) and shown in Table 50. Verification results are provided in Table
51 through Table 54.

Table 50 — White River Flows at Mt. Carmel, Indiana dataset (Threshold = 50,000 cfs) (Rao & Hamed, 2000).

Flow Flow Flow Flow Flow Flow
(CFS) (CFS) (CFS) (CFS) (CFS) (CFS)
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Table 51 — Generalized Pareto Distribution MOM Results.

Rao & Hamed .
Parameter (2000) RMC-BestFit

% Difference

Table 52 — Generalized Pareto Distribution MLE Results.

Rao & Hamed

Parameter (2000)

Table 53 — Generalized Pareto Distribution Quantile Results.

. Rao & Hamed - 0 ¥
Quantile (2000) RMC-BestFit % Difference

Table 54 — Generalized Pareto Distribution Quantile Standard Error.

. Rao & Hamed . 0 ¥
Quantile (2000) RMC-BestFit % Difference

The Logistic Distributions
The Logistic and Generalized Logistic distribution methods were verified using the examples provided in (Rao &
Hamed, 2000).

Logistic

The Logistic distribution was verified using the Tippecanoe River near Delphi, Indiana dataset provided in Flood
Frequency Analysis (Rao & Hamed, 2000) and shown in Table 3 under the Normal distribution section. The
verification results are shown in Table 55 through Table 59.

Table 55 — Logistic Distribution MOM Results.

Rao & Hamed . 0 ¥
Parameter (2000) RMC-BestFit % Difference

Table 56 — Logistic Distribution MLE Results.

Parameter Rao(z&ozlg)med RMC-BestFit % Difference

Table 57 — Logistic Distribution MLE Results Compared to R-Stan.
Parameter R-Stan RMC-BestFit % Difference
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Table 58 — Logistic Distribution Quantile Results.

Rao & Hamed
(2000)

Quantile RMC-BestFit % Difference

Table 59 — Logistic Distribution Quantile Standard Error.

Rao & Hamed

Quantile (2000)

RMC-BestFit % Difference

Generalized Logistic

The Generalized Logistic distribution was verified using the East Fork White River at Seymour near Delphi, Indiana
dataset provided in Flood Frequency Analysis (Rao & Hamed, 2000) and shown in Table 60. Unfortunately, the book
uses summary statistics that are different than what would be generated using the data provided in the table.
Therefore, a 1:1 comparison cannot be made. The differences in summary statistics are sizeable, as shown in Table
61. When using the summary statistics listed in the book, the MOM results are effectively identical, as shown in Table
62. However, when using the actual data set, the results are much different as shown in Table 63. The differences in
results derived with RMC-BestFit are consistent with the differences in summary statistics. It can be seen that it is not
possible to perform a true verification using this dataset.

Table 60 — East Fork White River at Seymour, Indiana dataset (Rao & Hamed, 2000).

Table 61 — Summary statistics for the East Fork White River at Seymour, Indiana dataset (Rao & Hamed, 2000).

Statistic FED & EEE MS Excel % Difference
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Table 62 — Generalized Logistic Distribution MOM Results Using Book Summary Statistics.

Rao & Hamed . o/ M
Parameter (2000) RMC-BestFit % Difference

Rao & Hamed
(2000)

Parameter

Rao & Hamed
(2000)

The quantile estimate results for the 100-yr return period (or 0.99 non-exceedance probability) were derived using the
MOM parameters provided by (Rao & Hamed, 2000) in order to have a 1:1 comparison.

Table 65 — Generalized Logistic Distribution Quantile Results.

. Rao & Hamed 5 o/ M
Quantile (2000) RMC-BestFit % Difference

A simple expression cannot be obtained for the standard error of MLE estimates for the Generalized Logistic
distribution. There are approximate numerical solutions available, but those were not implemented in Numerics. Table
66 shows the partial derivatives of the inverse CDF with respect for each parameter. These partial derivatives are
required for handling quantile priors in the Bayesian estimation within RMC-BestFit.

Table 66 — Generalized Logistic Distribution Partial Derivatives.

Rao & Hamed - 0 ¥
Parameter (2000) RMC-BestFit % Difference
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Goodness-of-Fit Measures

RMC-BestFit provides three goodness-of-fit (GOF) measures: the Akaike Information Criteria (AIC), the Bayesian
Information Criteria (BIC), and Root Mean Square Error (RMSE). These measures indicate how well the distribution
fits the input data, with a smaller value representing a better fit.

AIC and BIC are used for model selection among a finite set of models. The model with the lowest AIC or BIC is
preferred. When comparing multiple distributions, additional parameters often yield larger, optimized log-likelihood
values. AIC and BIC penalizes for more complex models, i.e., models with additional parameters. However, for BIC,
the penalty is a function of the sample size, and so it is typically more severe than that of AIC. The formulas for AIC
and BIC are shown in Equation 10 and Equation 11, respectively. To address potential over-fitting, RMC-BestFit
implements a correction for small sample sizes for AIC.

2k% + 2k )
AIC =2k = 2In(L) + ———— Equation 10
n( ) + n—k—1
BIC =In(n) k — 21In(L) Equation 11

where k is the number of parameters; n is the sample size; and I is the maximum value of the likelihood function for
the model.

The formula for RMSE is provided in Equation 12. RMSE is computed based on the plotting positions of the input
data. The user can change the plotting position coefficient, so this measure has a potential to be biased. To minimize
this issue, the default plotting position coefficient in the input data interface is set to Weibull (« = 0), which is
unbiased.

n 5. — N2
jusE = [Rim 0=y Equation 12
n

where n is the sample size; f/i is the predicted value for item i; and y; is the observed value for step i.

AIC and BIC were verified using Palisade’s @Risk for the Weibull distribution fit to the Tippecanoe River near Delphi,
Indiana dataset provided in Flood Frequency Analysis (Rao & Hamed, 2000) and shown in Table 3 under the Normal
distribution section. RMSE is verified by computing the measure manually in MS Excel. Results are provided in Table
67.

Table 67 — Verification of Goodness-of-Fit Measures with Palisade’s @Risk.

Measure @Risk/Excel RMC-BestFit % Difference
AIC 950.36 950.36 0.00%
BIC 953.83 953.83 0.00%

RSME 553.48 553.48 0.00%
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Bayesian Estimation

RMC-BestFit performs Bayesian estimation using a Markov Chain Monte Carlo (MCMC) algorithm to estimate
distribution parameters given the specified input data and parent distribution. The Bayesian estimation method
produces the most likely estimate for parameters (posterior mode) and a characterization of the parameter
uncertainty. Several verification and validation tests were undertaken to ensure the Bayesian MCMC method
employed by RMC-BestFit performs as expected. First, RMC-BestFit was verified using known theoretical solutions
for the Normal distribution. Then, results from RMC-BestFit were compared with other widely used Bayesian software
packages, such as R-Stan, evdbayes, and Flike. Finally, a comparison was made with flood frequency results from
the Expected Moments Algorithm (EMA) (Cohn, Lane, & Baier, 1997) provided in the HEC-SSP software.

Bayesian Analysis Framework

In Bayesian analysis, the values of the flood frequency distribution parameters 6 = (61, 6, ...,Bp) converge to a
distribution rather than to a single best value. The uncertainty in the parameters is represented by a prior probability
distribution P(6), which is established based on information available a priori. This prior distribution is not derived from
the observed flow data D = (X, ..., X;,), but instead comes from other sources that can be either subjective (e.g.,
expert opinion) or objective (e.g., previous statistical analyses or theory). After the prior distributions and the observed
data are specified, Bayes’ theorem (Equation 13) is used to combine the a priori information about the parameters
with the observed data, using the likelihood P(D|6) (Equation 14).

_ P(DI6)-P(O) .
P(6ID) = TPDI8)-P6) - 4o Equation 13

n
P(DI|8) = l_[f(Xi|9) Equation 14
i=1

where P(6|D) is the posterior probability density function (PDF) of 8; P(8) is the prior pdf of 8; and P(D|0) is the
likelihood function. The posterior cumulative distribution function (CDF) of X now follows from the total probability
theorem:

F(X) = fF(X|9,D) -P(0|D)-d6 Equation 15

which is a probability-weighted sum of the CDFs under different posterior parameter sets 6,,0,, ..., 8,,. Equation 15 is
known as the Bayesian posterior predictive distribution, and is equivalent to the expected probability of exceedance
concept first presented by (Beard, 1960). Stedinger (1983) and Kuczera (1999) refer to this integral as the design
flood distribution, and it is considered the optimal estimator of an exceedance probability.

In most cases, there is not a closed form solution to the denominator of Equation 13. Therefore, Monte Carlo
simulation techniques such as MCMC are required. The RMC-BestFit software employs an adaptive Differential
Evolution Markov Chain (DE-MC;) population-based sampler (ter Braak & Vrugt, 2008), which has proven to be very
efficient. Several other MCMC algorithms have also been successfully used in flood frequency analysis [(Kuczera G. ,
1999); (Reis & Stedinger, 2005); (Viglione, Merz, Salinas, & Bloschl, 2013)].

Figure 16 illustrates the basic steps in Bayesian analysis. The Bayesian approach offers a framework that is well-
suited to incorporate different sources of information, such as systematic flood records, historical floods, regional
information, and other hydrologic information along with related uncertainties (Viglione, Merz, Salinas, & Bloschl,
2013). The Bayesian approach allows hydrologists to formally include their own expertise into the analysis by
choosing a priori distributions. The possibility to combine this information with the observed data is even more
important because, in hydrology, the samples are usually of limited size. Consequently, the Bayesian approach is
more flexible and versatile than classical approaches.
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Figure 16 — Diagram lllustrating the Basic Steps in Bayesian Analysis (adapted from (Meylan, 2012), which was originally taken
(Perreault, 2000)).

Theoretical Verification

The Normal distribution is fundamental to most statistical modeling with well-known theoretical properties (Gelman, et
al., 2014). The Normal distribution has two parameters: mean (location) and standard deviation (scale). From an
objective Bayesian perspective, when the distribution for both mean and standard deviation are unknown, the
resulting posterior distribution of the population mean and standard deviation is given by the following equations:

F(u) = @ (z, j?)

n—1)-s2
F(o) = % Equation 17
Xn-1)

where u and ¢ are the population mean and standard deviation, respectively; x and s are the sample mean and
standard deviation, respectively; n is the sample size; ® is the Normal distribution; and y? is the Chi-squared
distribution with n — 1 degrees of freedom. The posterior predictive distribution is then given by:

Equation 16

X—-x

’ 1
S 1+ﬁ

where X and s are the sample mean and standard deviation, respectively; n is the sample size; and t,,_, is the
Student’s t distribution with n — 1 degrees of freedom. This equation is equivalent to the expected probability of
exceedance concept presented in (Beard, 1960) and (U.S. Geological Survey, 1982). The confidence intervals for a
quantile are derived using a Noncentral-t distribution as shown in (Stedinger J. R., 1982). The 100(1 — 2a)%
confidence interval for the quantile X,, is:

F(X)= t,_4 Equation 18

[x+ s-{,(),x+ s-G_a(P)] Equation 19

where x and s are the sample mean and standard deviation, respectively; ¢ is the Noncentral-t distribution with n — 1
degrees of freedom and noncentrality ®~1(p) - vVn, where ®~! is the standard Normal variate of the desired
probability, p, of exceedance.
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Verification tests were performed using synthetic datasets for different sample sizes: n = 30, 100, and 500. The Log-
Normal (base 10) distribution was used for the verification testing because it is has traditionally been used for
demonstration purposes in flood frequency analysis [ (U.S. Geological Survey, 1982), (Stedinger J. R., 1982),
(Stedinger J. R., 1983), (Stedinger & Cohn, 1986), and (Reis & Stedinger, 2005)].

Default Flat Priors

RMC-BestFit automatically develops default flat (uniform) priors for the selected distribution, given the input data. The
goal of this routine is to develop prior distributions that have minimal impact on the posterior distributions. This
approach is sometimes referred to as vague priors, or weakly informative priors. Weakly informative priors contain
information to keep the posterior within reasonable bounds without fully capturing one’s scientific knowledge about the
underlying parameter (Gelman, et al., 2014). There are two approaches to developing a weakly informative prior as
described by Gelman et al (2014):

1. Start with some version of an uninformative prior distribution and then add enough information so that
inferences are constrained to be reasonable.

2. Start with a strong, highly informative prior and broaden it to account for uncertainty in one’s prior beliefs and
in the applicability of any historically based prior distributions to new data.

RMC-BestFit develops default flat priors by first considering the parent distribution and parameter support, and then
peeking at the data to determine broad upper and lower constraints for the parameters. This ensures the prior
distributions for parameters are somewhat centered near the likelihood, but with a much larger spread. The typical
end-user of RMC-BestFit will likely not have much advanced training in Bayesian statistics. Therefore, the routine for
default flat priors ensures the user will get reasonable results “out of the box.” The default flat priors used in RMC-
BestFit are verified through comparison with other Bayesian software (see the Comparison with R-Stan and
Comparison with Evdbayes sections).

Ever since Laplace advocated the principles of insufficient reason in the late eighteenth century, a flat, or uniform,
distribution has been the obvious choice for an uninformative prior distribution (Efron & Hastie, 2016). However,
uniform priors are not transformation invariant. This means that the uniform priors can lead to bias, especially with
scale parameters. Figure 17 through Figure 19 show the RMC-BestFit results with default flat priors compared to the
theoretical distributions. The posterior marginal distributions for mean agree well. However, the RMC-BestFit results
for the posterior marginal for standard deviation are biased and slightly shifted to the right of the theoretical
distribution. This leads to a slight shift in the credible intervals and posterior predictive distribution as seen in Figure
19.
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Figure 17 — Comparison of RMC-BestFit with Default Flat Priors with the Theoretical Distribution for Mean (N = 30).
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Figure 18 — Comparison of RMC-BestFit with Default Flat Priors with the Theoretical Distribution for Standard Deviation (N = 30).
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Figure 19 — Comparison of RMC-BestFit Frequency Curve with Default Flat Priors with the Theoretical Distribution (N = 30).
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As the sample size increases, the influence of the prior distribution on posterior inferences decreases. In addition, the
posterior marginal and joint distributions approach asymptotic Normality as the sample size approaches infinity.
Figure 20 through Figure 25 illustrate this point. Using the default flat priors with RMC-BestFit with a sample size of
100 results in very close agreement with the theoretical distributions. When the sample size is 500, there is near
perfect agreement with the theoretical distributions. However, it is important to note that in practice a sample size of
500 is rarely possible for flood frequency analysis.
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Figure 20 — Comparison of RMC-BestFit with Default Flat Priors with the Theoretical Distribution for Mean (N = 100).
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Figure 21 — Comparison of RMC-BestFit with Default Flat Priors with the Theoretical Distribution for Standard Deviation (N = 100).
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Log-Normal Distribition, with Default Flat Priors, N = 100
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Figure 22 — Comparison of RMC-BestFit Frequency Curve with Default Flat Priors with the Theoretical Distribution (N = 100).

Density of Mean (u), N=500
20.0

RMC-BestFit - Default
18.0 Flat Prior
16.0 ¢ e oo Theoretical

14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0

Density

240 243 245 248 250 253 255 2.58
Mean (p)

Figure 23 — Comparison of RMC-BestFit with Default Flat Priors with the Theoretical Distribution for Mean (N = 500).
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Figure 24 — Comparison of RMC-BestFit with Default Flat Priors with the Theoretical Distribution for Standard Deviation (N = 500).
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Figure 25 — Comparison of RMC-BestFit Frequency Curve with Default Flat Priors with the Theoretical Distribution (N = 500).
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Jeffreys’ Prior

As previously stated, uniform priors are not transformation invariant. As a consequence, a more sophisticated version
of Laplace’s principle was put forward by Jeffreys beginning in the 1930s. Jeffreys’ prior does in fact transform
correctly under parameter changes. Jeffreys’ prior is considered an objective, or uninformative prior. The term
“uninformative prior” is often interpreted to mean “gives Bayesian posterior intervals that closely match frequentist
confidence intervals.” With this in mind, “uninformative” has a positive connotation, implying that the use of such a
prior does not bias the resulting inference (Efron & Hastie, 2016). For location-scale models, Jeffreys’ prior for the
location parameter is still a uniform distribution. However, for the scale parameter, o, the prior is simply:

1
flo) == Equation 20
o

For demonstration purposes, Jeffreys’ prior was implemented programmatically in RMC.BestFit.dll. Figure 26 through
Figure 28 show that using Jeffreys’ prior results in near perfect agreement with the theoretical distributions. The
results from RMC-BestFit when using the default flat priors versus Jeffreys’ prior are consistent with other examples in
literature (Efron & Hastie, 2016).

RMC-BestFit does not formally support the use of Jeffreys’ prior. In most applied contexts, there is no clear advantage
to a truly uninformative prior like Jeffreys’ when sufficiently vague or weak priors will suffice. The bias shown in Figure
19 would certainly not affect the statistical inference or change decisions in practice. The next section demonstrates
that the same unbiased results from Jeffreys’ prior can be achieved using other weakly informative priors.
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Figure 26 — Comparison of RMC-BestFit with Jeffreys’ Prior with the Theoretical Distribution for Mean (N = 30).
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Figure 27 — Comparison of RMC-BestFit with Jeffreys’ Prior with the Theoretical Distribution for Standard Deviation (N = 30).
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Figure 28 — Comparison of RMC-BestFit Frequency Curve with Jeffreys’ Prior with the Theoretical Distribution (N = 30).
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Other Weakly Informative Priors
RMC-BestFit allows the user to select prior distributions from several options:

Exponential
Gamma
Generalized Beta
Ln-Normal
Noncentral-t
Normal

PERT

Student-t
Triangular
Truncated Normal
Uniform

There are other priors for the scale parameter that will produce the same unbiased posterior distributions as Jeffreys’
prior. For example, an Exponential distribution can be used for the prior for standard deviation, with the rate
parameter for the Exponential distribution equal to the sample standard deviation of the data, as shown in Figure 29
through Figure 31. In addition, the Ln-Normal distribution can be used as shown in Figure 32 and Figure 33, so long
as the variance is large enough to not overly influence the posterior.
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Figure 29 — Default Flat Prior and Posterior for the Mean Parameter in RMC-BestFit.
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Figure 30 — Exponential Prior and Posterior Distributions for the Standard Deviation Parameter in RMC-BestFit.
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Figure 31 — Comparison of RMC-BestFit with an Exponential Prior with the Theoretical Distribution for Standard Deviation (N = 30).
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Figure 32 — Ln-Normal Prior and Posterior Distributions for the Standard Deviation Parameter in RMC-BestFit.
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Figure 33 — Comparison of RMC-BestFit with a Ln-Normal Prior with the Theoretical Distribution for Standard Deviation (N = 30).
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Conjugate Priors

If the posterior distributions of the parent distribution parameters are in the same probability distribution family as the
prior distributions, then the priors are called conjugate priors. In practice, conjugate priors have been popular because
of the simpler computation of the posterior distributions. The MCMC sampler employed in RMC-BestFit does not
require conjugate or conditionally conjugate priors, like that of a Gibbs sampler. Therefore, in a strict sense, conjugate
priors are not implemented in RMC-BestFit. However, priors can be selected from the same family as the posterior.
For example, the prior for the mean can be set as a Normal distribution centered at the sample mean, with very wide
variance so as to not bias the posterior as shown in Figure 34. The prior for the standard deviation can be set as a
Gamma distribution as shown in Figure 35 and Figure 36. When setting “uninformative” priors in this manner, it is
important to set the variance very wide to not overly constrain the posterior. However, in general, rather than using the
Gamma distribution, it is recommended to use the Exponential distribution as an alternative uninformative prior for
scale parameters in RMC-BestFit, as previously demonstrated.

Virtually all methods for deriving an uninformative prior are dependent on the model f(X|0). Therefore, there is no
pure or correct approach that is strictly uninformative. Furthermore, if the data likelihood is truly dominant, then the
choice among relatively flat or weakly informative priors will not matter. Nevertheless, it is important to verify that the
posterior density is proper and to determine the sensitivity of posterior inferences to the choice of priors.
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Figure 34 — Normal Prior and Posterior for the Mean Parameter in RMC-BestFit.
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Figure 35 — Gamma Prior and Posterior Distributions for the Standard Deviation Parameter in RMC-BestFit.
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Figure 36 — Comparison of RMC-BestFit with a Gamma Prior with the Theoretical Distribution for Standard Deviation (N = 30).
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Informative Priors

An informative prior provides specific, scientific information about the parameter. Prior information can be obtained
from regional analysis, causal modeling, or expert elicitation. In flood frequency, an example of an informative prior
would be the use of a regional skew (Kuczera G. , 1983) for the LPIII distribution as described in Bulletin 17B (U.S.
Geological Survey, 1982) and 17C (U.S. Geological Survey, 2018). The “weighted skew” equation provided in Bulletin
17B and 17C is the standard formula for the average of two independent Normal distributions:

lix - 0 + ly - 0%

E(X ¢ siter Yregi = Equation 21
( at site regmnal) J)% + 03
2 2
O-X " O-Y i
Var(Xat sites Yregional) = 2T 2 Equation 22
oy + oy

where py and o are the at-site mean and variance for the skew parameter, respectively; and u, and ¢ are the
regional mean and variance of the skew parameter.

The weighted skew equations provide a means for verifying the use of informative priors in RMC-BestFit. Large
sample theory postulates that as sample sizes approach infinity, marginal and joint distributions become
asymptotically Normally distributed. For a finite sample size n, this Normal approximation is typically more accurate for
conditional and marginal distributions of components of the parent distribution than for the full joint distribution. As the
sample size increases, the influence of the prior distribution on posterior inferences will decrease because the data
likelihood will dominate. Taking this into account, regional prior information is most valuable when the at-site sample
sizes are small relative to the effective sample size of the regional information.

A verification was performed using inflows at Blakely Mountain Dam in Arkansas. In 2019, a hydrologic hazard
assessment was performed which included a paleoflood analysis. The systematic gage record included 91 years of
data. Historical flood data dating back to 1870 was incorporated into the analysis, for a total record length of 149
years. The paleoflood analysis provided data dating back to at least 5,000 years of age. Historical and paleoflood data
were incorporated using intervals and perception thresholds, so the effective record lengths were much shorter than
the full 5,000 years. The posterior mode for the skew parameter, and the marginal mean and standard deviation of
skew, for each dataset are shown in Table 68.

Regional skew information was obtained from a USGS regional study of Arkansas, Oklahoma, and Louisiana
(Wagner, Krieger, & Veilleux, 2016). From the USGS study, the regional skew was determined to be -0.17 with a
mean-square error (MSE) of 0.12. This information was incorporated into the Bayesian analysis by setting the prior for

the skew parameter of LPIII to be Normally distributed with a mean of -0.17 and standard deviation of 0.35, or v/0.12.

Verification results for each dataset are provided in Table 69 through Table 71 and illustrated in Figure 37 through
Figure 39. The results from RMC-BestFit strongly agree with the theoretical approximation. The at-site posterior
marginal distributions are not quite Normally distributed and exhibit some skewness. Therefore, the results will not
match precisely with the theoretical solution. Nevertheless, the theoretical Normal approximation serves as a useful
comparison.

Generally, the stronger the prior (i.e., the more informative), the greater the influence it will have on the posterior. Yet,
the asymptotic results formalize the notion that the importance of the prior distribution diminishes as the sample size
increases (Gelman, et al., 2014). When the at-site sample sizes are small, the prior distribution is a critical part of the
model specification. However, when the at-site sample sizes are very large, the prior distribution has little influence,
and the data likelihood dominates the posterior. The results below confirm that the influence of the regional skew
diminishes as the at-site data increases.

Further verification of informative priors for parameters are provided in the Comparison with Flike and Comparison
with EMA sections. Verification of informative priors on quantiles is provided in the Comparison with Viglione et al.
(2013) and Comparison with Evdbayes sections.
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Table 68 — Summary Statistics for the At-Site Skew Parameter for Each Dataset at Blakely Mountain Dam.
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Figure 37 — Marginal Distribution of Skew in RMC-BestFit for Systematic Data Only.

Table 69 — Posterior Skew Statistics in RMC-BestFit Compared to the Theoretical Solution for Systematic Data Only.

Skew (of log) Theoretical | RMC-BestFit
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Figure 38 — Marginal Distribution of Skew in RMC-BestFit for Systematic and Historical Data.

Table 70 — Posterior Skew Statistics in RMC-BestFit Compared to the Theoretical Solution for Systematic and Historical Data.

Skew (of log) Theoretical | RMC-BestFit
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Figure 39 — Marginal Distribution of Skew in RMC-BestFit for Systematic, Historical and Paleoflood Data.

Table 71 — Posterior Skew Statistics in RMC-BestFit Compared to the Theoretical Solution for Systematic, Historical and
Paleoflood Data.

Skew (of log) Theoretical | RMC-BestFit
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Comparison with R-Stan

This section provides additional verification of the MCMC algorithm used in RMC-BestFit and the appropriateness of
the default flat priors. Results from RMC-BestFit were compared to results from R-Stan, which is a widely used high-
level programming language for performing Bayesian statistical inference with MCMC sampling. R-Stan employs a
state-of-the-art Hamiltonian Monte Carlo sampler capable of working with very complex models (Gelman, et al.,
2014). RMC-BestFit utilizes an adaptive Differential Evolution Markov Chain (DE-MC;) population-based sampler (ter
Braak & Vrugt, 2008) for performing MCMC sampling, which is also a very efficient sampler.

Similar to RMC-BestFit, R-Stan uses default uniform priors. The key difference is that R-Stan defaults to a uniform
distribution bounded between negative infinity and positive infinity; whereas, RMC-BestFit develops weakly
informative default flat priors that take into consideration the model and parameter support, and are broadly
constrained by the data. A verification was performed to ensure the default flat priors in RMC-BestFit produced
comparable results with R-Stan for the following distributions: Gumbel, Logistic, Normal, and Weibull. Both samplers
were configured to be compatible with the following settings:

4 chains.

Thinning rate of 20.

Warm-up of 3,000 draws.
100,000 total posterior draws.

Verification results are provided in the following subsections. Example code for R-Stan is provided in Figure 48 so that
others will be able to reproduce these results. In each case, RMC-BestFit produces nearly identical results to R-Stan,
which provides high confidence in the MCMC algorithm and the default priors.

Gumbel

The Gumbel distribution was verified using the Sugar Creek at Crawfordsville, Indiana dataset provided in Flood
Frequency Analysis (Rao & Hamed, 2000) and shown in Table 36. Summary statistics results for the Gumbel
distribution parameters are provided in Table 72 and Table 73. Kernel density plots are provided in Figure 40 and
Figure 41.

Table 72 — Parameter Summary Statistics for the Gumbel Distribution from R-Stan.

Parameter Mean Std. Dev. 2.5% 50% 97.5%
Location (§) 8,060.56 677.60 6,742.87 8,056.17 9,409.39
Scale (a) 4,654.65 522.15 3,757.72 4.611.37 5,797 .42

Table 73 — Parameter Summary Statistics for the Gumbel Distribution from RMC-BestFit.

Parameter Mean Std. Dev. 2.5% 50% 97.5%

Location (€) 8,059.04 678.34 6,742.18 8,051.37 9,418.29
Scale (a) 4,656.04 518.77 3,761.00 4,614.79 5,791.56
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Logistic

The Logistic distribution was verified using the Tippecanoe River near Delphi, Indiana dataset provided in Flood
Frequency Analysis (Rao & Hamed, 2000) and shown in Table 3 under the Normal distribution section. Summary
statistics results for the Logistic distribution parameters are provided in Table 74 and Table 75. Kernel density plots
are provided in Figure 42 and Figure 43.

Table 74 — Parameter Summary Statistics for the Logistic Distribution from R-Stan.

Parameter Mean Std. Dev. 2.5% 50% 97.5%
Location (&) 12,626.30 713.55 11,225.80 12,629.17 14,028.70
Scale (a) 2,823.36 347.23 2,226.02 2,794.33 3,584.00

Table 75 — Parameter Summary Statistics for the Logistic Distribution from RMC-BestFit.

Parameter Mean Std. Dev. 2.5% 50% 97.5%
Location () 12,630.79 714.36 11,224.60 12,630.88 14,038.12
Scale (a) 2,821.31 349.51 2,222.60 2,792.57 3,591.59
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Figure 42 — Comparison of RMC-BestFit with R-Stan for the Logistic Distribution Location Parameter.
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Figure 43 — Comparison of RMC-BestFit with R-Stan for the Logistic Distribution Scale Parameter.

Normal

The Normal distribution was verified using the Tippecanoe River near Delphi, Indiana dataset provided in Flood
Frequency Analysis (Rao & Hamed, 2000) and shown in Table 3 under the Normal distribution section. Summary
statistics results for the Normal distribution parameters are provided in Table 76 and Table 77. Kernel density plots
are provided in Figure 44 and Figure 45.

Table 76 — Parameter Summary Statistics for the Normal Distribution from R-Stan.

Parameter Mean Std. Dev.

Table 77 — Parameter Summary Statistics for the Normal Distribution from RMC-BestFit.

Parameter Mean Std. Dev.
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Weibull

The Weibull distribution was verified using the Tippecanoe River near Delphi, Indiana dataset provided in Flood
Frequency Analysis (Rao & Hamed, 2000) and shown in Table 3 under the Normal distribution section. Summary
statistics results for the Weibull distribution parameters are provided in Table 78 and Table 79. Kernel density plots

are provided in Figure 46 and Figure 47.

Table 78 — Parameter Summary Statistics for the Weibull Distribution from R-Stan.

Parameter Mean Std. Dev.

Table 79 — Parameter Summary Statistics for the Weibull Distribution from RMC-BestFit.

Parameter Mean Std. Dev.
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Figure 46 — Comparison of RMC-BestFit with R-Stan for the Weibull Distribution Scale Parameter.
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library(rstan)
# This is example code for R-Stan with the Normal distribution.

# Stan will automatically compile this block of code to significantly reduce runtimes.
stan_code <-

model <- stan_model(model_code=stan_code)

# Reference: "Flood Frequency Analysis", A.R. Rao & K.H. Hamed, CRC Press, 2000.

# Table 5.1.1 Tippecanoe River Near Delphi, Indiana (Station 43) Data.

gageData = ¢(6290, 2700, 13100, 16900, 14600, 9600, 7740, 8490, 8130, 12000, 17200, 15000,
12400, 6960, 6500, 5840, 10400, 18800, 21400, 22600, 14200, 11000, 12800, 15700,
4740, 6950, 11800, 12100, 20600, 14600, 14600, 8900, 10600, 14200, 14100, 14100,
12500, 7530, 13400, 17600, 13400, 19200, 16900, 15500, 14500, 21900, 10400, 7460)

# Get the mean and standard deviation of the gage data.
m <- mean(gageData)

s <- sd(gageData)

# 12665.21

#4709.742

# Estimate the posterior mode parameter set using Maximum Likelihood Estimation (MLE).
mle = optimizing(model, data=list(x=gageData, N=length(gageData)),
algorithm="LBFGS", init=list(mu=m, sigma=s))

# Output the MLE results.
print(mle)

# mu sigma

# 12665.208 4660.398

# Perform Bayesian estimation using R-Stan.

# Simulation settings are compatible with RMC-BestFit.

options(mc.cores = parallel::detectCores())

fit <- sampling(model, data=list(x=gageData, N=length(gageData)),
warmup=15000, iter=515000, chains=4, thin=20)

# Output the summary statistics for the Bayesian estimated parameters.
print(fit, probs=c(0.025, 0.5, 0.975))

# mean se_mean sd 25% 50% 97.5% n_eff Rhat
#mu 12667.57 2.23702.61 11290.92 12666.72 14058.52 99450 1
#sigma 4839.08 1.65518.56 3953.29 4795.90 5980.64 98257 1
#Ip_  -466.13 0.00 1.02 -468.86 -465.82 -465.13 100699 1

# Plot Markov Chain trace plots.
stan_trace(fit, inc_warmup = FALSE)

# Plot kernel density estimates for each parameter.
stan_dens(fit, pars = "mu"
stan_dens(fit, pars = "sigma")

# Write parameter sets to text file.
list of draws <- extract(fit, pars = "mu")
lapply(list_of draws, write, "Normal_mu.txt", append=FALSE)
list of draws <- extract(fit, pars = "sigma")
lapply(list_of draws, write, "Normal_sigma.txt", append=FALSE)
Figure 48 — Example code for R-Stan for MCMC Sampling with the Normal Distribution.
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Comparison with Viglione et al. (2013)

Viglione et al. (2013) and (Skahill, Viglione, & Byrd, 2016) present a Bayesian analysis framework for combining and
evaluating the worth of different types of additional data (i.e., temporal, spatial, and causal) in a flood frequency
analysis. Temporal information expansion is directed toward collecting information on the flood behavior before (or
after) the systematic data period (Viglione, Merz, Salinas, & Bloschl, 2013). Spatial information expansion is based on
using flood information from neighboring catchments to improve flood frequency estimates at the site of interest.
Causal information expansion analyzes the generating mechanisms of floods in the catchment of interest (Merz &
Bloschl, 2008).

Temporal information is added to the Bayesian analysis through the inclusion of interval- and threshold-censored data
in the likelihood function as discussed in the Maximum Likelihood Estimation (MLE) section. Regional information on
distribution parameters can be incorporated through the use of informative priors, as shown in the Informative Priors
section. Causal information is incorporated into the analysis by first defining the prior distribution for a flood quantile:

h(Qp) = N(up,0p) Equation 23

where Q; is the flood discharge for a specific annual exceedance probability P; and h(-) is the PDF of the Normally
distributed variable Q. Q, is determined from the inverse cdf F~1(-) of the parent distribution conditional on the
parameters:

Qr = F71(P|O) Equation 24

The inverse CDF is then plugged into the PDF of the quantile prior to get:

n(8) = h(F~1(P|6)) Equation 25

During the Bayesian MCMC routine, the likelihood of the various components are multiplied by the quantile prior
(6) to calculate a posterior distribution of the parameters, which is consistent with a reasonable range of Q.. The
overall likelihood function is then constructed by multiplying all of the components:

L(D|0) = Ls(D|0) - L, (D|6) - L;(D|B) - m(0) Equation 26

It can be seen in Equation 26 that the causal indicator 7(0) behaves similarly to a penalty function, in that it rewards
parameter sets that produce a reasonable likelihood of Q, and discounts those that do not. All other things being
equal, parameter sets that do not agree well with h(Q,) will have lower likelihoods than those that do.

Skahill et al. (2016) independently revisited components of the example originally profiled by (Viglione, Merz, Salinas,
& Bloschl, 2013), performing eight distinct MCMC simulations using the Kamp at Zwettl dataset. A summary of the
simulations performed are provided in Table 80.

Table 80 — Summary of the Eight Distinct MCMC Simulation (Skabhill, Viglione, & Byrd, 2016).

MCMC Simulation | Data of the Kamp at Zwettl

Systematic data (1951-2001)

Systematic data (1951-2005)

Systematic data (1951-2001) + temporal information expansion
Systematic data (1951-2005) + temporal information expansion
Systematic data (1951-2001) + causal information expansion
Systematic data (1951-2005) + causal information expansion
Systematic data (1951-2001) + temporal + causal information expansion
Systematic data (1951-2005) + temporal + causal information expansion

W NO O WN -
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For each MCMC simulation, the posterior mode (PM) estimate for the GEV parameters and the 100-yr and 1,000-yr
discharges, including the 90% credible interval, were provided in (Skabhill, Viglione, & Byrd, 2016). The same eight
simulations were performed using RMC-BestFit and compared with the results from Skabhill et al. (2016). The default
flat priors for the GEV were used with 100,000 posterior parameter sets. Results are provided in Table 81 through
Table 83. RMC-BestFit produces nearly identical results for each scenario.

Table 81 — Comparison RMC-BestFit with (Skahill, Viglione, & Byrd, 2016) for Posterior Mode Parameters for the GEV Distribution.
Skabhill et al. (2016) - GEV Parameters RMC-BestFit - GEV Parameters

MCMC Simulation Location () ] Scale (a) Shape (k) Location (§) ] Scale (a) Shape (k)

Table 82 — Comparison RMC-BestFit with (Skahill, Viglione, & Byrd, 2016) for the 100-yr Quantile.

. . Skahill et al. (2016) - Q100 (M3/s) RMC-BestFit - Q100 (m?/s)
MCMC S lat
imutation PM | 5% 95% PM 5% 95%

Table 83 — Comparison RMC-BestFit with (Skabhill, Viglione, & Byrd, 2016) for the 1,000-yr Quantile.

. . Skabhill et al. (2016) - Q1000 (M?3/s) RMC-BestFit - Q1000 (m?/s)
MCMC S lat
imutation PM | 5% 95% PM 5% 95%
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The method for incorporating a quantile prior proposed by Viglione et al. (2013), and described above, is similar to the
weighting of two independent and Normally distributed estimates using Equation 21 and Equation 22 from the
Informative Priors section. Accordingly, a comparison was performed between RMC-BestFit and the theoretical
weighting method.

Simulation #1 used the systematic Kamp at Zwettl dataset for years 1951-2001. Simulation #3 combined the
systematic dataset with historical (temporal) information dating back to year 1600. The mean and standard deviation
of the at-site 500-year quantile for the two datasets are shown in Table 84.

In Viglione et al. (2013), expert elicitation was used to determine a prior for the 500-year quantile (0.002 exceedance
probability), which was set as a Normal distribution with mean of 480 m%/s and standard deviation of 80 m?/s.
Simulation #5 was performed using the systematic data plus the quantile prior. Simulation #7 used the systematic
data plus the historical data and the quantile prior. Results for each dataset are provided in Table 85 and Table 86
and illustrated in Figure 49 and Figure 50, respectfully.

The results from RMC-BestFit agree reasonably well with the theoretical approximation. However, recall that the
theoretical approximation assumes the two estimates are Normally distributed. It can be seen in Figure 49 that the
quantile distribution for simulation #1 (systematic data only) exhibits considerable skewness. Therefore, it would be
unreasonable to expect the theoretical weighting solution to match RMC-BestFit since the Normality assumption is not
satisfied. As the at-site data increases, the Normality assumption becomes more reasonable and the theoretical
approximation can be expected to perform better. Figure 50 shows the quantile distribution for simulation #3 (historical
data), which has less skewness than simulation #1. As expected, the theoretical solution more closely matches RMC-
BestFit for this dataset as shown in Table 86.

Table 84 — Summary Statistics for the At-Site 500-Year Quantile for Kamp at Zwettl.

Qso0 (M3/s) Simulation #1 Simulation #3
Mean (1) 264.67 350.73
Std. Deviation (o) 148.02 87.93

Distribution of Qg

0.0E+00
120 220 320 420 520 620 720 820

Peak Discharge (cms)
Systematicdata @~ 000 ===---- Quantile Prior (1= 480, 0=80)

----- Systematic w/ Quantile Prior

Figure 49 — Distributions of Quantile Qsoo in RMC-BestFit for MCMC Simulation #5.
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Table 85 — Posterior Quantile Statistics in RMC-BestFit Compared to the Theoretical Solution for MCMC Simulation #5.

Qso0 (M3/s) Theoretical RMC-BestFit

Distribution of Qg

0.0E+00

120 220 320 420 520 620 720 820

Peak Discharge (cms)
Historicaldata @ ====--- Quantile Prior (1= 480, 0=80)

----- Historical w/ Quantile Prior

Figure 50 — Distributions of Quantile Qsoo in RMC-BestFit for MCMC Simulation #7.

Table 86 — Posterior Quantile Statistics in RMC-BestFit Compared to the Theoretical Solution for MCMC Simulation #7.

Qso0 (M3/s) Theoretical RMC-BestFit
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Comparison with Evdbayes

The evdbayes package is an add-on package for the R programming environment that provides functions for the
Bayesian analysis of extreme value models using MCMC (Stephenson & Ribatet, 2006). The evdbayes package
provides several options for priors, including an option for setting priors on distribution quantiles following the
approach used in (Coles & Tawn, 1996). This same approach is also implemented in RMC-BestFit.

A prior distribution can be constructed in terms of the quantiles (qpl, dp2s qp3) for specified exceedance probabilities
p1 < p2 < ps. Since q,1 > q,2 > qp; it is easier to work with differences (qpl, dp2s qp3), where q,; = qp;i — qpi-1- The
number of exceedance probabilities must be equal to the number of distribution parameters. For example, for the
GEV distribution there must be three quantile priors with three quantile differences. The priors on the quantile
differences are assumed to be independent and Gamma distributed with g,;~ Gamma(a;, ;). This leads to the prior
density for the GEV quantiles as:

3
@)= 1] nqpi Equation 27
i=1

where ] is the Jacobian of the transformation from (qpl,qu, qp3) to 6 = (¢, a, k). More details on this method can be
found in (Coles & Tawn, 1996) and (Smith, 2005). This approach for quantile priors has been generalized to work for
any of the thirteen probability distributions offered in RMC-BestFit.

First, before verifying the method for quantile priors, a comparison was performed with uninformative priors using the
Kamp at Zwettl dataset from 1951-2001 (Viglione, Merz, Salinas, & Bloschl, 2013). Example code for evdbayes is
provided in Figure 51 so that others will be able to reproduce these results. The evdbayes package provides summary
statistics for the GEV parameters, return period plots, and the posterior predictive distribution. For this comparison,
the default flat priors were used in RMC-BestFit with 100,000 posterior parameter sets. In evdbayes, the priors for
parameters are set to be a multivariate Normal distribution with very large variances in order to make them
uninformative. Summary statistics of the verification results are provided in Table 87 and Table 88, and a frequency
curve plot comparing curves is provided in Figure 52. It can be seen that RMC-BestFit and evdbayes produce
effectively identical results. In addition, Figure 52 provides further confirmation that RMC-BestFit is correctly
computing the posterior predictive distribution.

Table 87 — Parameter Summary Statistics from Evdbayes with Uninformative Priors.

Parameter Mean Std. Dev. 2.5% 50% 97.5%
Location (§) 42.3582 3.335 35.98100 42.2910 49.1315
Scale (a) 20.9698 2.703 16.31164 20.7482 26.8899
Shape (k) -0.1252 0.129 -0.4056 -0.1154 0.9938

Table 88 — Parameter Summary Statistics from RMC-BestFit with Uninformative Priors.

Parameter Mean Std. Dev. 2.5% 50% 97.5%
Location (&) 43.0466 3.4184 36.6124 42.9615 49.9683
Scale (a) 21.5134 2.8006 16.6868 21.2830 27.6154

Shape (k) -0.1162 0.1312 -0.4020 -0.1065 0.1107
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library(evd)
library(evdbayes)
library(coda)

# This is example code with evdbayes with the GEV distribution and uninformative priors.

# Kamp at Zwettl, 1951-2001. Dataset from Viglione (2013).

gageData = ¢(135, 52, 45, 95, 54, 94, 95, 56, 140, 72, 50.9, 54, 105, 53, 62, 51, 58, 39, 62, 68,
44, 52, 36, 60, 100, 41.2, 60.2, 19.7, 50.6, 35.6, 46.1, 42, 26, 32.1, 89.1, 29,
58.3, 46.4,20.9, 17,74.4,22.6, 73.2,41.8, 34.6, 120, 43, 23.7, 56.9, 30.4, 21.8)

# Estimate the posterior mode parameter set using Maximum Likelihood Estimation (MLE).
mle <- fgev(x=gageData, method="Nelder-Mead", std.err = FALSE)

print(mle)

# Estimates

# loc scale shape

#42.91251 20.20805 0.09625

# Set up MCMC inputs

gevCovMatrix <- diag(c(1000, 1000, 10))

gevPriors <- prior.norm(mean=c(0,0,0), cov=gevCovMatrix)

initialVals <-c(as.numeric(mle$param[1]), as.numeric(mle$param[2]),as.numeric(mle$param[3]))

gevPosteriors <- posterior(n=2000000, init=initialVals, prior=gevPriors, Ih="gev",
data=gageData, psd=c(5,.1,.1), burn=60000, thin=as.integer(20))

# Run MCMC

gevMCMC <- mcmc(gevPosteriors)

# Output the summary statistics for the Bayesian estimated parameters.
summary(gevMCMC)

# Note: The sign of the shape parameter (xi) is reverse of the
# Hosking parameterization (kappa) used in RMC-BestFit.
#

# Mean SD Naive SE Time-series SE

#mu 42.3582 3.3350.0107066  0.0113403

# sigma 20.9698 2.703 0.0086788 0.0095153

# xi 0.1252 0.129 0.0004143  0.0004477

#

# 2.5% 25% 50% 75% 97.5%
#mu  35.98100 40.09090 42.2910 44.5371 49.1315

# sigma 16.31164 19.06830 20.7482 22.6337 26.8899

# xi -0.09938 0.03437 0.1154 0.2049 0.4056

# Plot Markov chain trace plots and kernel density estimates for each parameter.
plot(gevMCMC)

# Plot frequency curve with confidence intervals.
rl.pst(gevMCMC, Ih="geVv", ylim=c(10,2000), ci=0.95)
print(rl.pst(gevMCMC, Ih="geV", ylim=c(10,2000), ci=0.95))

# Plot posterior predictive curve.

rl.pred(gevMCMC, Ih="gev", qlim=c(10,3000))

print(rl.pred(gevMCMC, Ih="gev", qlim=c(10,3000)))
Figure 51 — Example code for evdbayes with uninformative priors.
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Kamp at Zwettl, 1951-2001
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Figure 52 — Comparison of RMC-BestFit with Evdbayes with Uninformative Priors.

The next verification compared RMC-BestFit with evdbayes with informative priors on quantiles. In RMC-BestFit, the
user specifies priors on quantiles using a Normal distribution because it is more intuitive than specifying the Gamma
distributed quantile differences. The Gamma distributions for quantile differences are estimated automatically in the
code behind. Using the mean and variance of the difference between two independent Normal distributions, the scale
and shape parameters of the Gamma distribution are then estimated using the direct method of moments. Table 89
provides a summary of the prior distributions used for this example.

Table 89 — Summary of Prior Distributions on Quantiles.

Normal Distribution for Gamma Distribution for
Exceedafl?ce Quantiles Differences
Probability Std. Dev.
0.1 100 20 4.00 25.00
0.01 250 40 13.33 11.25
0.001 500 60 20.80 12.02

Example code for evdbayes with informative priors is provided in Figure 54. Summary statistics of the verification
results are provided in Table 90 and Table 91, and a frequency curve plot comparing curves is provided in Figure 53.
RMC-BestFit and evdbayes produce nearly identical results.

Table 90 — Parameter Summary Statistics from Evdbayes with Informative Priors on Quantiles.

Parameter Mean Std. Dev. 2.5% 50% 97.5%
Location (&) 41.4307 3.0918 35.5680 41.3467 47.7391
Scale (a) 20.7700 2.4520 16.3861 20.6195 26.0375

Shape (k) -0.2694 0.0488 -0.3608 -0.2709 -0.1699
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Table 91 — Parameter Summary Statistics from RMC-BestFit with Informative Priors on Quantiles.

Parameter Mean Std. Dev.

Kamp at Zwettl, 1951-2001 - With Quantile Priors
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Figure 563 — Comparison of RMC-BestFit with Evdbayes with Informative Priors on Quantiles.
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library(evd)
library(evdbayes)
library(coda)

# This is example code with evdbayes with the GEV distribution and Informative priors.

# Kamp at Zwettl, 1951-2001. Dataset from Viglione (2013).

gageData = ¢(135, 52, 45, 95, 54, 94, 95, 56, 140, 72, 50.9, 54, 105, 53, 62, 51, 58, 39, 62, 68,
44, 52, 36, 60, 100, 41.2, 60.2, 19.7, 50.6, 35.6, 46.1, 42, 26, 32.1, 89.1, 29,
58.3, 46.4,20.9, 17,74.4,22.6, 73.2,41.8, 34.6, 120, 43, 23.7, 56.9, 30.4, 21.8)

# Estimate the posterior mode parameter set using Maximum Likelihood Estimation (MLE).
mle <- fgev(x=gageData, method="Nelder-Mead", std.err = FALSE)

print(mle)

# loc scale shape

#42.91251 20.20805 0.09625

# Set up MCMC inputs

gevPriors <- prior.quant(shape=c(25,6.25,6.25), scale=c(4,24,40))

initialVals <-c(as.numeric(mle$param[1]), as.numeric(mle$param[2]),as.numeric(mle$param[3]))

gevPosteriors <- posterior(n=2000000, init=initialVals, prior=gevPriors, lh="geVv",
data=gageData, psd=c(5,.1,.1), burn=60000, thin=as.integer(20))

# Estimate maximum a posteriori (MAP)

map <- mposterior(data=gageData, init=initialVals, prior=gevPriors, Ih="gev", method="Nelder-Mead",
control=list(maxit=20000))

print(map)

#41.2176265 19.9717628 0.2817834

# Run MCMC
gevMCMC <- mcmc(gevPosteriors)

# Output the summary statistics for the Bayesian estimated parameters.
summary(gevMCMC)

# Note: The sign of the shape parameter kappa is reverse of the
# Hosking parameterization used in RMC-BestFit.

#

# Mean SD Naive SE Time-series SE

#mu 41.4307 3.0918 0.0099271 0.0105737

# sigma 20.7700 2.4520 0.0078727  0.0086493

# xi 0.2694 0.0488 0.0001567  0.0001637

#

# 2.5% PAYS 50% 75% 97.5%

#mu 35.5680 39.3004 41.3467 43.4675 47.7391

# sigma 16.3861 19.0696 20.6195 22.3158 26.0375

# Xi 0.1699 0.2376 0.2709 0.3028 0.3608

# Plot Markov chain trace plots and kernel density estimates for each parameter.
plot(gevMCMC)

# Plot frequency curve with confidence intervals.
rl.pst(gevMCMC, Ih="geVv", ylim=c(10,2000), ci=0.95)
print(rl.pst(gevMCMC, Ih="gev", ylim=c(10,2000), ci=0.95))

# Plot posterior predictive curve.
rl.pred(gevMCMC, Ih="geVv", qlim=c(10,3000))
print(rl.pred(gevMCMC, Ih="geVv", gqlim=c(10,3000)))

Figure 54 — Example code for evdbayes with Informative Priors on Quantiles.
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Comparison with Flike

A comparison was made with Flike (Kuczera G. , 1999), which is a Bayesian flood frequency analysis software
developed by Professor George Kuczera from the School of Civil Engineering at the University of Newcastle,
Australia. Flike is compliant with the recent major revision of Australian industry guidelines for flood estimation,
documented in the update of Australian Rainfall and Runoff (ARR). Flike uses a novel importance sampling approach
for estimating the posterior rather than Bayesian MCMC. In addition, Flike samples prior distributions using a
multivariate Normal distribution, with the default priors set to have very large variances in order to make them
uninformative.

There are a number of self-training examples on the Flike website”. The examples most comparable with RMC-
BestFit are examples 3 through 6. Example #3 demonstrates a flood frequency analysis using the procedures
described in Australian Rainfall and Runoff Book 3: Peak Discharge Estimation®. Specifically, this example covers the
fitting of a LPIII distribution to an annual maximum series for the Hunter River at Singleton. Results are shown in
Figure 55. Flike does not output the posterior mode; however, it does provide the posterior predictive distribution and
the posterior mean quantile curve. For this example, a comparison was made with the credible intervals and the
posterior predictive distribution. As can be seen, RMC-BestFit and Flike produce the same results.

ARR-FLIKE Example #3
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Figure 55 — Comparison of RMC-BestFit and Flike for Example #3.

Example #4 is a continuation of Example #3 and it examines the benefit of using binomial censored historical flood
information. RMC-BestFit doesn't permit right censored thresholds. Nevertheless, RMC-BestFit can still replicate the
binomial-censored example using an interval and setting the upper bound to be extremely large, approaching infinity.
Results for Example #4 are shown in Figure 56. RMC-BestFit and Flike produce the same results for this example.

7 https://flike.tuflow.com

8 http://arr.ga.gov.au/arr-quideline
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ARR-FLIKE Example #4
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Figure 56 — Comparison of RMC-BestFit and Flike for Example #4.

Example #5 examines the use of regional information, building on Example #3. In this example, a regional skew
analysis was performed and the regional skew was estimated to be 0.00 with a MSE of 0.09. This information was
incorporated into the Bayesian analysis by setting the prior for the skew parameter of LPIIl to be Normally distributed
with a mean of 0.00 and standard deviation of 0.30. The Flike website only provides results for the credible intervals
and posterior mean quantile for this example. Therefore, only the credible intervals were compared. As shown in
Figure 57, RMC-BestFit and Flike produce the same credible intervals for this example.

Example #6 is a two-part example demonstrating censoring using the MGBT. The example uses 56 years of annual
maximum discharges for the Wimmera River at Glynwylin. In the first part of this example, the GEV distribution was fit
to the at-site data without removal of low outliers. The Flike website only provides results for the credible intervals for
this example. Results are shown in Figure 58 below. RMC-BestFit and Flike results are equivalent. Next, the MGBT
test was used to remove low outliers and replace them with a left-censored threshold. This approach is consistent with
Bulletin 17C (U.S. Geological Survey, 2018), and is implemented in HEC-SSP and RMC-BestFit. The results for part
two of Example #6 are shown in Figure 59. Again, RMC-BestFit and Flike produce the same results.
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ARR-FLIKE Example #5
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Figure 57 — Comparison of RMC-BestFit and Flike for Example #5.

ARR-FLIKE Example #6a
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Figure 58 — Comparison of RMC-BestFit and Flike for Example #6a.
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ARR-FLIKE Example #6b
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Figure 59 — Comparison of RMC-BestFit and Flike for Example #6b.
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Comparison with EMA

The currently accepted flood-frequency methodology in the United States, described in Bulletin 17C (U.S. Geological
Survey, 2018), recommends fitting the LPIII distribution using the Expected Moments Algorithm (EMA). EMA is a
major improvement over the Bulletin 17B guidelines (U.S. Geological Survey, 1982), and is capable of incorporating
historical and paleoflood information into flood frequency studies.

EMA was developed as an alternative to MLE and the Bulletin 17B (U.S. Geological Survey, 1982) method for
incorporating historical information in flood frequency studies (Cohn, Lane, & Baier, 1997). EMA was shown to
achieve greater efficiency than the B17B adjustment for censored data, and nearly achieving the efficiency of MLE
while avoiding some of the numerical complications. However, in the cases where there is no censored data, EMA
and B17B are identical and exhibit substantial bias as compared to MLE (Cohn, Lane, & Baier, 1997).

It would be unreasonable to expect a Bayesian estimation approach to perfectly match a moments-based fitting
approach, such as EMA, or vice versa. The two estimation methods are very different from a theoretical perspective.
Nevertheless, comparisons of RMC-BestFit and EMA were performed to provide some insight into how the methods
may differ in practice. These comparisons do not validate or invalidate either method.

RMC-BestFit was compared with EMA for the 82 USGS gage sites (see Table 1 for a listing) used for testing in
Bulletin 17C. Several additional sites have been compared during risk assessments performed as part of the USACE
Dam Safety program, including studies with historical and paleoflood data. In general, for most sites, RMC-BestFit
produces similar results to EMA. In cases where there is only systematic data, EMA is identical with the method of
moments (MOM), which means the estimators can be biased and less efficient than MLE and Bayesian estimation.
Consequently, in those cases, the quantile standard error and confidence intervals for EMA are sometimes wider than
RMC-BestFit. In addition, MOM can be more sensitive than Bayesian estimation for sites with only one or two events
that are much larger than the rest of the data. In these scenarios, the data likelihood used for MLE and Bayesian
estimation is less influenced by single large values.

An example of this behavior is seen at site 01439500 Bush Kill at Shoemaker, PA, where out of 102 years of record,
the largest event is more than double the next highest peak. There is only systematic data in this example. As can be
seen in Figure 60, the EMA fit pulls upwards towards the highest peak as compared to the RMC-BestFit results.
Furthermore, the EMA confidence intervals are considerably wider than the credible intervals from RMC-BestFit. A
comparison of the computed parameters and resulting log-likelihood is provided in Table 92. As expected, the
posterior mode from RMC-BestFit produces a slightly higher log-likelihood than the EMA fit.

Table 92 — Comparison of RMC-BestFit and EMA parameters for USGS 01439500 Bush Kill at Shoemaker, PA.

Parameter EMA RMC-BestFit
Mean (of log) () 3.3327 3.3327
Std. Dev (of log) (o) 0.2322 0.2306
Skew (of log) (y) 0.9725 0.7839

Log-Likelihood -858.3656 -857.4655
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01439500 Bush Kill at Shoemakers, PA
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Figure 60 — Comparison of RMC-BestFit and EMA for USGS 01439500 Bush Kill at Shoemaker, PA.

Poor agreement between RMC-BestFit and EMA can also be expected in cases where there are many low outliers
and the data is very negatively skewed. If the absolute value of the skewness coefficient is greater than 2, then the
MLE method cannot produce a solution for the shape parameter of the PlIl or LPIIl (Bobee & Ashkar, 1991). This
implies that the MLE estimate for the shape parameter is biased. If the absolute value of skew is greater than
approximately 1.25, it is not recommended to use PII/LPIII with MLE (Bobee & Ashkar, 1991). If the absolute value of
skew is greater than 2, the method of “conditional maximum likelihood” must be applied. Conditional MLE is
performed by first fixing the location parameter to the smallest value of the sample if the skew is positive, or the
largest value of the sample if the skew is negative. Then, the scale and shape parameters are solved for, conditionally
on the fixed location parameter. In cases where the absolute value of skew is greater than 1.25 and approaching 2,
Bayesian estimation will automatically produce results that are similar to conditional MLE.

Example #2 from Appendix 10 of Bulletin 17C (U.S. Geological Survey, 2018) provides a good example of this
behavior. This example is from USGS site 11274500 Orestimba Creek near Newman, CA, which has 30 low outliers.
The results from RMC-BestFit for this site are shown in Figure 61. The skewness of the data is approximately -1.75.
The posterior mode for the location parameter of LPIIl is ~15,000, which is very close the largest value of the sample
of 12,000 cfs. This demonstrates that the Bayesian approach will automatically produce results simular to conditional
MLE. A comparison of RMC-BestFit with EMA is provided in Figure 62. Both methods produce similar confidence
intervals, but the computed curve from EMA provides a less biased fit for the right-hand tail. When integrating over the
confidence intervals from EMA, an expected probability curve can be computed. Figure 63 shows that the posterior
predictive distribution from RMC-BestFit closely matches the expected probability curve from EMA for this site.




Verification of the Bayesian Estimation and Fitting Software (RMC-BestFit)

11274500 Orestimba Creek near Newman, CA
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Figure 61 — RMC-BestFit Results for USGS 11274500 Orestimba Creek near Newman, CA.

11274500 Orestimba Creek near Newman, CA
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Figure 62 — Comparison of RMC-BestFit and EMA for USGS 11274500 Orestimba Creek near Newman, CA.
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11274500 Orestimba Creek near Newman, CA
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Figure 63 — Comparison of RMC-BestFit Posterior Predictive with the EMA Expected Probability Curve for USGS 11274500
Orestimba Creek near Newman, CA.

In cases where there is historical data incorporated with intervals and perception thresholds, RMC-BestFit and EMA
will generally produce similar results. For example, RMC-BestFit was compared to EMA for site 11446500 American
River at Fair Oaks, CA, which is example #7 from Appendix 10 in Bulletin 17C (U.S. Geological Survey, 2018). In this
example, there is a major historical flood in 1862 and four paleoflood events dating back over 1,000 years. Results of
the comparison are shown in Figure 64. For this example, the differences between EMA and RMC-BestFit are
inconsequential, and the computed curve from EMA and the posterior mode from RMC-BestFit, along with the
confidence intervals, are very consistent.

A final comparison was performed using Example #10 provided in the HEC-SSP example download. This example is
for USGS station 01470500 Schuylkill River, PA, and it includes historical data, a perception threshold and regional
skew. The regional skew is 0.001 with an MSE of 0.064. In RMC-BestFit, the regional skew is entered as an
informative prior on skew that is Normally distributed with a mean of 0.001 and standard deviation 0.253. As shown in
Figure 65, RMC-BestFit and EMA produce virtually identical results for this example.

A more comprehensive investigation into the similarities and differences between RMC-BestFit and EMA, and the
respective limitations of each, is planned for a future report.
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Figure 64 — Comparison of RMC-BestFit and EMA for USGS 11446500 American River at Fair Oaks, CA.

01470500 Schuylkill River, PA
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Figure 65 — Comparison of RMC-BestFit and EMA for USGS 01470500 Schuylkill River, PA.
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Conclusion

As demonstrated in this report, the computational methods used in RMC-BestFit have been verified. The Multiple
Grubbs-Beck Test and Hirsch-Stedinger plotting positions were verified with HEC-SSP using 82 test sites.
Nonparametric summary statistics were verified with Palisade’s @Risk. Probability distribution functionality, Maximum
Likelihood Estimation, and goodness-of-fit measures were verified using textbook examples, R-Stan, and Palisade’s
@Risk. Bayesian estimation was verified using theoretical posterior distributions, and other state-of-the-art software,
such as R-Stan, evdbayes, Flike, and HEC-SSP. In all cases, RMC-BestFit produced valid results. Any minor
differences in precision between methods were inconsequential and would not lead to a different statistical inference.




Verification of the Bayesian Estimation and Fitting Software (RMC-BestFit)

References

Asquith, W. H. (2011). Distributional Analysis with L-moment Statistics using the R Environment for Statistical
Computing. Lubbock, TX: Create Space Independent Publishing Platform.

Beard, L. R. (1960, July). Probability Estimates Based on Small Normal-Distribution Samples. Journal of Geophysical
Research.

Bobee, B., & Ashkar, F. (1991). The Gamma Family and Derived Distributions Applied in Hydrology. Littleton, CO:
Water Resources Publications.

Cohn, T. A., England, J. F., Berenbrock, C. E., Mason, R. R., Stedinger, J. R., & Lamontagne, J. R. (2013). A
generalized Grubbs-Beck test statistic for detecting multiple potentially influential low outliers in flood series.
Water Resources Research, 49(8), 5047-5058.

Cohn, T. A., Lane, W. M., & Baier, W. G. (1997). An Algorithm for Computing Moments-Based Flood Quantile
Estimates When Historical Flood Information is Available. Water Resources Research, 2089-2096.

Coles, S. G., & Tawn, J. A. (1996). A Bayesian Analysis of Extreme Rainfall Data. Journal of the Royal Statistical
Society, 463-478.

Efron, B., & Hastie, T. (2016). Computer Age Statistical Inference: Algorithms, Evidence and Data Science. New York,
NY: Cmbridge University Press.

Fisher, R. A., & Cornish, E. A. (1960). The percentile points of distributions having known cumulants. Technometrics,
2(2), 209-225.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian Data Analysis
(Third ed.). Boca Raton, FL: CRC Press.

Hirsch, R. M., & Stedinger, J. R. (1987). Plotting Positions for Historical Floods and Their Precision. Water Resources
Research, 715-727.

Hosking, J. R., & Walllis, J. R. (1997). Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge,
UK: Cambridge University Press.

Jongejan, R. (2018). Uncertainty in Hydrology: An evaluation of USACE methodology for estimating and portraying
hydrologic uncertainty.

Krishnamoorthy, K. (2016). Handbook of Statistical Distributions with Applications. Boca Raton, FL: CRC Press.

Kuczera, G. (1983). A Bayesian Surrogate for Regional Skew in Flood Frequency Analysis. Water Resources
Research, 19, 821-832.

Kuczera, G. (1999). Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference. Water
Resources Research, 1551-1557.

Merz, R., & Bloschl, G. (2008). Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information.
Water Resources Research.

Meylan, P. (2012). Predictive Hydrology: A Frequency Analysis Approach. Enfield, New Hampshire: Science
Publishers.

O'Connell, D. R., Ostenaa, D. A,, Levish, D. R., & Klinger, R. E. (2002). Bayesian flood frequency analysis with
paleohydrologic bound data. Water Resources Research, 38(5). Retrieved from doi:10.1029/2000WWR000028

Perreault, L. (2000). Bayesian retrospective analysis of a break in sequences of hydrologic random variables. Paris:
ENGREF.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2017). Numerical Recipes: The Art of Scientific
Computing. (3rd ed.). Cambridge, UK: Cambridge University Press.

Rao, A., & Hamed, K. H. (2000). Flood Frequency Analysis. Boca Raton, FL: CRC Press LLC.




Verification of the Bayesian Estimation and Fitting Software (RMC-BestFit)

Reis, D. S., & Stedinger, J. R. (2005). Bayesian MCMC flood frequency analysis with historical information. Journal of
Hydrology, 97-116.

Skahill, B. E., Viglione, A., & Byrd, A. (2016). ERDC/CHL CHETN-X-1 A Bayesian Analysis of the Flood Frequency
Concept. Vicksburg, MS: U.S. Army Engineer Research and Development Center, [Coastal and Hydraulics
Laboratory].

Smith, E. (2005). Bayesian Modelling of Extreme Rainfall Data. Newcastle, NSW: University of Newcastle.
Stedinger, J. R. (1982). Confidence Intervals For Design Events. Journal of Hydraulic Engineering, 13-27.
Stedinger, J. R. (1983). Design Events With Specified Flood Risk. Water Resources Research, 511-522.

Stedinger, J. R., & Cohn, T. A. (1986). Flood frequency analysis with historical and paleoflood information. Water
Resources Research, 22(5).

Stephenson, A., & Ribatet, M. (2006). A User's Guide to the evdbayes Package (Version 1.1). Newcastle, NSW:
Macquarie University.

ter Braak, C. J., & Vrugt, J. A. (2008). Differential Evolution Markov Chain with snooker updater and fewer chains.
Statistics and Computing, 435-446.

U.S. Geological Survey. (1982). Guidelines for Determining Flood Flow Frequency Bulletin 17B.

U.S. Geological Survey. (2018). Guidelines for Determining Flood Flow Frequency Bulletin 17C.
https://doi.org/10.3133/tm4B5.

Viglione, A., Merz, R., Salinas, J. L., & Bloschl, G. (2013). Flood frequency hydrology: 3. A Bayesian analysis. Water
Resources Research, 49(2). Retrieved from doi:10.1029/2011WR010782

Wagner, D. M., Krieger, J. D., & Veilleux, A. G. (2016). Methods for estimating annual exceedance probability
discharges for streams in Arkansas, based on data through water year 2013. U.S. Geological Survey. Reston:
U.S. Geological Survey. doi:http://dx.doi.org/10.3133/sir20165081




	Purpose and Scope
	Input Data
	Multiple Grubbs-Beck Test
	Hirsch-Stedinger Plotting Positions
	Nonparametric Summary Statistics

	Distribution Fitting Analysis
	Maximum Likelihood Estimation (MLE)
	Nelder-Mead (Downhill Simplex)

	Probability Distributions
	Normal and Related Distributions
	Normal
	Quantile Standard Error

	Log-Normal

	The Gamma Family of Distributions
	Exponential
	Gamma
	Pearson Type III
	Log-Pearson Type III

	Extreme Value Distributions
	Gumbel
	Weibull
	Generalized Extreme Value
	Generalized Pareto

	The Logistic Distributions
	Logistic
	Generalized Logistic


	Goodness-of-Fit Measures

	Bayesian Estimation
	Bayesian Analysis Framework
	Theoretical Verification
	Default Flat Priors
	Jeffreys’ Prior
	Other Weakly Informative Priors
	Conjugate Priors
	Informative Priors

	Comparison with R-Stan
	Gumbel
	Logistic
	Normal
	Weibull

	Comparison with Viglione et al. (2013)
	Comparison with Evdbayes
	Comparison with Flike
	Comparison with EMA

	Conclusion
	References

