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Purpose and Scope 
The U.S. Army Corps of Engineers (USACE) Risk Management Center (RMC), in collaboration with the Engineer 
Research and Development Center (ERDC) Coastal and Hydraulics Laboratory (CHL), developed the Bayesian 
estimation and fitting software (RMC-BestFit) to enhance and expedite flood hazard assessments within the Flood 
Risk Management, Planning, and Dam and Levee Safety communities of practice. 

RMC-BestFit is designed for interactive use in a multi-tasking environment. The software features a fully integrated 
modeling platform, including a modern graphical user interface, data entry capabilities, distribution fitting analysis, 
Bayesian estimation analysis, and report quality charts. RMC-BestFit is a menu-driven software package, which 
performs distribution fitting and Bayesian estimation from a choice of thirteen probability distributions. Input data is 
entered as a block annual maxima series, and the software supports the use of interval and threshold censored data.  

The purpose of this document is to provide verification of critical RMC-BestFit computations. Software verification 
involves comparison of the numerical solution generated by the code with one or more analytical solutions, or other 
numerical solutions. Verification ensures that the software accurately solves the equations that constitute the 
mathematical model. 

The RMC-BestFit software uses two dynamic link libraries (dll) for performing numerical analyses: Numerics.dll and 
RMC.BestFit.dll. Numerics is a numerical library for .NET, which provides methods and algorithms for numerical 
computations in science and engineering. Numerics includes routines for special functions, interpolation, statistics, 
random numbers, probability distributions, uncertainty analysis, optimization, root finding, and more. RMC.BestFit is a 
model library for the RMC-BestFit software, written in the .NET framework, which contains all remaining necessary 
functionality for input data, distribution fitting, and Bayesian estimation. Both of these libraries were developed 
internally by the RMC and, as such, the numerical methods contained within need to be verified. 

RMC-BestFit has three functional components: 1) Input data; 2) Distribution fitting analysis; and 3) Bayesian 
estimation analysis. Numerical verification for each component is detailed in this report and organized as follows: 

• Input Data: The multiple Grubbs-Beck test and Hirsch-Stedinger plotting positions were verified using the 82 
test sites developed for Bulletin 17C (U.S. Geological Survey, 2018) and compared against results from HEC-
SSP1. Two additional examples from Bulletin 17C, which incorporate multiple thresholds, were used for 
further verification of the Hirsch-Stedinger plotting positions. Nonparametric summary statistics were verified 
using the Palisade’s @Risk software2.  
 

• Distribution Fitting Analysis: The Nelder-Mead optimization method was verified using Microsoft (MS) 
Excel’s Solver add-in, and implicitly confirmed through verification of the Maximum Likelihood Estimation 
(MLE) results for each distribution. The thirteen probability distributions used within RMC-BestFit were verified 
using textbook solutions found in (Bobee & Ashkar, 1991) and (Rao & Hamed, 2000), and results from R-
Stan3 for select distributions. The Akaike and Bayesian Information Criteria (AIC and BIC) were verified using 
Palisade’s @Risk software, and root-mean-squared-error (RMSE) calculations were verified using MS Excel.  
 

• Bayesian Estimation: The Bayesian estimation methods used in RMC-BestFit were verified using known 
theoretical solutions for the Normal (Gaussian) distribution, and with other widely used Bayesian software 
packages, such as R-Stan, evdbayes4, and Flike5. Finally, a comparison was made with flood frequency 
results from the Expected Moments Algorithm (EMA) (Cohn, Lane, & Baier, 1997) provided in the HEC-SSP 
software.  

 

  

                                                      
1 https://www.hec.usace.army.mil/software/hec-ssp/ 
2 https://www.palisade.com/risk/default.asp  
3 https://mc-stan.org/users/interfaces/rstan  
4 https://cran.r-project.org/web/packages/evdbayes/index.html  
5 https://flike.tuflow.com/  

https://www.palisade.com/risk/default.asp
https://mc-stan.org/users/interfaces/rstan
https://cran.r-project.org/web/packages/evdbayes/index.html
https://flike.tuflow.com/
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Input Data 
RMC-BestFit allows the user to enter block annual maxima data, which is assumed to be independent and identically 
distributed. RMC-BestFit supports three different data types: 

1. Systematic Data: Data that are collected at regular, prescribed intervals under a defined protocol. In a 
maximum likelihood context, these values are treated as exact measurements. 
 

2. Interval Data: Data whose magnitudes are not known exactly, but are known to fall within a range or interval. 
In a maximum likelihood context, these values are treated as interval-censored. 
 

3. Perception Thresholds: Data points that occurred during a period of years and have magnitudes that are 
below a threshold value, but unknown by how much. In a maximum likelihood context, these values are 
treated as left-censored. 

The Distribution Fitting Analysis chapter provides greater detail on how these data types are treated in a likelihood 
context.  

Multiple Grubbs-Beck Test 
For the distribution fitting or Bayesian estimation to be theoretically valid, the input data must be independent and 
identically distributed. As a means to ensure homogeneity, RMC-BestFit provides the Multiple Grubbs-Beck test 
(MGBT) (Cohn, et al., 2013) for low outliers, which is consistent with the Bulletin 17C guidelines (U.S. Geological 
Survey, 2018). Other hypothesis tests are planned for future versions of the software.  

The code for MGBT was modified from the Fortran source code for PeakfqSA6. The original Fortran source code used 
a globally adaptive Guass-Kronrod integration method; whereas, in Numerics the definite integral is solved using the 
trapezoidal rule with 1,000 steps. Results for the MGBT implementation in RMC-BestFit were compared against 
results from HEC-SSP for 82 USGS gage sites (see Table 1). In all cases, RMC-BestFit produces the same results as 
HEC-SSP.  

In RMC-BestFit, the MGBT is only applied to systematic data, which are considered exact measurements. Interval- 
and threshold-censored data are not included in the test. Likewise, in HEC-SSP, only systematic data are included in 
the MGBT. However, in HEC-SSP, data labeled as “Historical" are not included in MGBT, even if those historical data 
points are exact values. This design choice between the two software can lead to significant differences in MGBT 
results.  

Hirsch-Stedinger Plotting Positions 
In RMC-BestFit, the input data can be plotted as a chronology plot, as shown in Figure 1, or a nonparametric 
frequency plot, as shown in Figure 2. The nonparametric analysis is based on the Hirsch-Stedinger (H-S) plotting 
position formula (Hirsch & Stedinger, 1987) (U.S. Geological Survey, 2018). The H-S plotting positions are used to 
visually and quantitatively assess the goodness-of-fit of the fitted distributions (see the Goodness-of-Fit Measures 
section for more detail). The programmatic subroutine for the H-S plotting positions was written based on the 
description of the method found in (U.S. Geological Survey, 2018). The H-S plotting positions computed in RMC-
BestFit were compared with results from HEC-SSP for 82 USGS gage sites (see Table 1). The only scenarios where 
the results do not match are in cases where there are low outliers.  

The low outlier threshold value identified by the MGBT is automatically treated as a left-censored threshold in the 
fitting analysis for both RMC-BestFit and HEC-SSP. For example, if the MGBT threshold value is 8,000 and there are 
eight data points below the threshold identified as low outliers, then this is treated equivalent to a left-censored 
threshold with eight values below and zero above. However, RMC-BestFit does not include the MGBT threshold in the 
H-S plotting position routine; whereas, HEC-SSP does include the threshold. This is a software design choice rather 
than a numerical difference. Conceptually, the MGBT removes exact data points and replaces them with a threshold-
censored value. This represents a loss in information. However, if this MGBT threshold is included in the H-S routine, 

                                                      
6 https://sites.google.com/a/alumni.colostate.edu/jengland/resources  

https://sites.google.com/a/alumni.colostate.edu/jengland/resources
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then it will make the plotting positions rarer, signaling an increase in information. This is counterintuitive, and for this 
reason RMC-BestFit does not include the MGBT threshold in the H-S plotting position routine. 

 
Figure 1 – Example of Input Data Chronology Plot 

 

 
Figure 2 – Example of Input Data Frequency Plot. 

 



 
Verification of the Bayesian Estimation and Fitting Software (RMC-BestFit) 

 

 

  
4 

 

Another key difference between RMC-BestFit and HEC-SSP is that HEC-SSP uses different plotting position 
coefficients for low outliers and non-outliers. In HEC-SSP, non-outliers use the Weibull coefficient (𝛼𝛼 = 0), and low 
outliers use the Median coefficient (𝛼𝛼 = 0.3175). RMC-BestFit uses the same coefficient throughout, and the user can 
choose from the following coefficients: 

• Weibull (𝛼𝛼 = 0.0) 
• Median (𝛼𝛼 = 0.3175) 
• Blom (𝛼𝛼 = 0.375) 
• Cunnane (𝛼𝛼 = 0.40) 
• Gringorten (𝛼𝛼 = 0.44) 
• Hazen (𝛼𝛼 = 0.50) 

 
Again, the differences in H-S plotting positions are based on alternative software design choices rather than numerical 
differences.  

Table 1 – Comparison between HEC-SSP and RMC-BestFit for MGBT Results and Hirsch-Stedinger Plotting Positions. 

Site No. No. of 
Events 

No. of Low Outliers MGBT Threshold H-S Plotting 
Positions 

HEC-SSP RMC-BestFit HEC-SSP RMC-BestFit Max % Difference 
01076500 106 - - - - 0.00% 
01350000 99 - - - - 0.00% 
01439500 102 - - - - 0.00% 
01555500 81 - - - - 0.00% 
01562000 98 - - - - 0.00% 
01635500 78 - - - - 0.00% 
01636500 97 - - - - 0.00% 
01668000 100 2 2 9,220 9,220 0.30% 
02037500 75 - - - - 0.00% 
02138500 88 - - - - 0.00% 
02256500 79 - - - - 0.00% 
03011020 107 - - - - 0.00% 
03051000 103 - - - - 0.00% 
03159500 78 - - - - 0.00% 
03183500 115 - - - - 0.00% 
03289500 72 5 5 6,220 6,220 0.45% 
03345500 99 34 34 11,600 11,600 1.01% 
03550000 101 - - - - 0.00% 
03558000 85 - - - - 0.00% 
03606500 69 - - - - 0.00% 
04293500 92 - - - - 0.00% 
05270500 75 1 1 275 275 0.39% 
05291000 83 29 29 950 950 0.84% 
05464500 109 5 5 8,100 8,100 0.35% 
05572000 101 1 1 1,370 1,370 0.29% 
05586500 44 - - - - 0.00% 
06062500 94 2 2 41 41 0.32% 
06176500 37 7 7 39 39 0.78% 
06216500 49 - - - - 0.00% 
06406000 61 - - - - 0.00% 
06600500 76 - - - - 0.00% 
06710500 98 - - - - 0.00% 
06897000 53 3 3 925 925 0.56% 
06898000 80 - - - - 0.00% 
06933500 91     0.00% 
07067000 99 - - - - 0.00% 
07138600 39 12 12 36 36 1.21% 
07203000 76 6 6 317 317 0.39% 
07208500 86 - - - - 0.00% 
07382000 72 - - - - 0.00% 
08133500 65 23 23 634 634 1.32% 
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Site No. No. of 
Events 

No. of Low Outliers MGBT Threshold H-S Plotting 
Positions 

HEC-SSP RMC-BestFit HEC-SSP RMC-BestFit Max % Difference 
08150000 91 16 16 1,610 1,610 0.92% 
08164000 73 1 1 1,480 1,480 0.11% 
08167000 76 - - - - 0.00% 
08171000 84 27 27 4,260 4,260 2.41% 
08189500 71 12 12 2,150 2,150 0.72% 
08378500 87 - - - - 0.00% 
08380500 93 - - - - 0.00% 
08387000 56 - - - - 0.00% 
09241000 78 22 22 2,300 2,300 0.79% 
09361500 102 2 2 2,230 2,230 0.30% 
09471000 95 3 3 1,490 1,490 0.32% 
09480000 62 8 8 380 380 0.63% 
09482500 94 - - - - 0.00% 
10128500 105 - - - - 0.00% 
10234500 97 45 45 364 364 0.99% 
11028500 71 13 13 10 10 0.72% 
11152000 105 46 46 6,580 6,580 1.06% 
11176000 57 19 19 106 106 1.19% 
11266500 94 - - - - 0.00% 
11274500 79 29 29 782 782 0.80% 
11383500 94 1 1 939 939 0.31% 
11464500 39 15 15 6,780 6,780 1.79% 
11522500 86 1 1 3,210 3,210 0.34% 
12039500 97 47 47 23,200 23,200 0.97% 
12134500 82 - - - - 0.00% 
12307500 53 12 12 5,380 5,380 0.55% 
12413000 74 - - - - 0.00% 
12414500 92 - - - - 0.00% 
12437950 21 - - - - 0.00% 
12451000 89 - - - - 0.00% 
13185000 102 1 1 2,420 2,420 0.30% 
13302500 96 42 42 8,420 8,420 0.98% 
13343660 20 3 3 10 10 1.39% 
14021000 57 - - - - 0.00% 
14048000 105 - - - - 0.00% 
14137000 99 - - - - 0.00% 
14321000 104 9 9 51,000 51,000 0.35% 
15072000 91 - - - - 0.00% 
16068000 95 5 5 964 964 0.32% 
16518000 90 - - - - 0.00% 
16587000 98 - - - - 0.00% 

 

Two additional examples from Bulletin 17C, which incorporate multiple thresholds with varying magnitudes, were used 
for further verification of the H-S plotting positions. Example #4 from Appendix 10 of Bulletin 17C (U.S. Geological 
Survey, 2018) incorporates a historical record with several large floods and paleoflood information for the Arkansas 
River at Pueblo Dam near Pueblo, Colorado. Example #7 from Bulletin 17C incorporates several large, historical 
floods and detailed paleoflood data for Reclamation’s Folsom Dam. The chronology plots for these two examples are 
shown in Figure 3 and Figure 4. These complex datasets provided a means of stress testing the H-S plotting position 
routine in RMC-BestFit. Results are provided in Figure 5 and Figure 6. RMC-BestFit produces the exact same results 
as HEC-SSP for these two examples.  
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Figure 3 – Chronology Plot of the Arkansas River at Pueblo State Park (Example #4 from Bulletin 17C (U.S. Geological Survey, 
2018)). 

 

 
Figure 4 – Chronology Plot of the America River at Fair Oaks (Example #7 from Bulletin 17C (U.S. Geological Survey, 2018)). 
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Figure 5 – Comparison of RMC-BestFit with HEC-SSP for the Hirsch-Stedinger Plotting Positions for Example #4 in Bulletin 17C 
(U.S. Geological Survey, 2018). 

 

 
Figure 6 – Comparison of RMC-BestFit with HEC-SSP for the Hirsch-Stedinger Plotting Positions for Example #7 in Bulletin 17C 
(U.S. Geological Survey, 2018). 
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Nonparametric Summary Statistics 
RMC-BestFit provides summary statistics for the systematic data and for all of the data, including low outliers, 
intervals, and perception thresholds (see Figure 7). Summary statistics for the systematic data use standard moment 
and percentile estimates, while summary statistics for all data are based on the nonparametric H-S plotting positions. 
The central moments of the nonparametric distribution are estimated using numerical integration; specifically, the 
trapezoidal rule is used with 1,000 integration steps. The nonparametric distribution functions are provided in Equation 
1 to Equation 3. Percentiles are estimated using the inverse cumulative distribution function as shown in Equation 3.  

𝑓𝑓(𝑥𝑥) =  
𝑝𝑝𝑖𝑖+1 − 𝑝𝑝𝑖𝑖
𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖

, Equation 1 

where 𝑓𝑓(𝑥𝑥) is the probability density function (PDF) of the variable 𝑋𝑋; there is an array of continuous values {𝑥𝑥} =
{𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} for 𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥 < 𝑥𝑥𝑖𝑖+1with non-exceedance probabilities {𝑝𝑝} = {𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛} with 0 ≤ 𝑝𝑝𝑖𝑖 ≤ 1.  

𝐹𝐹(𝑥𝑥) = 𝑝𝑝𝑖𝑖 + (𝑝𝑝𝑖𝑖+1 − 𝑝𝑝𝑖𝑖) �
𝑥𝑥 − 𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖

� Equation 2 

𝐹𝐹−1(𝑝𝑝) = 𝑥𝑥𝑖𝑖 + (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖) �
𝑝𝑝 − 𝑝𝑝𝑖𝑖
𝑝𝑝𝑖𝑖+1 − 𝑝𝑝𝑖𝑖

� Equation 3 

where 𝐹𝐹(𝑥𝑥) is the cumulative distribution function (CDF) of the variable 𝑋𝑋; 𝐹𝐹−1(𝑝𝑝) is the inverse CDF; and there is an 
array of continuous values {𝑥𝑥} = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} for 𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖+1with non-exceedance probabilities {𝑝𝑝} = {𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛} 
with 0 ≤ 𝑝𝑝𝑖𝑖 ≤ 1 and 𝑝𝑝𝑖𝑖 ≤ 𝑝𝑝 ≤ 𝑝𝑝𝑖𝑖+1.  

The nonparametric summary statistics were verified using Palisade’s @Risk. Results are shown in Table 2 and Figure 
8 and Figure 9. The minor differences in results are likely caused by different choices in integration methods and the 
number of integrations steps. 

 
Figure 7 – Summary Statistics for Input Data (USGS 01562000) in RMC-BestFit. 
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Table 2 – Nonparametric Summary Statistics Results 

Parameter @Risk RMC-BestFit % Difference 
Mean  16,763.82 16,762.83 0.01% 
Std. Deviation 11,405.12 11,405.08 0.00% 
Skewness 3.0303 3.0305 0.01% 
Kurtosis 15.4169 15.4186 0.01% 
Mean (of log) 4.1548 4.1549 0.00% 
Std. Dev (of log) 0.2391 0.2391 0.00% 
Skewness (of log) 0.0894 0.0894 0.00% 
Kurtosis (of log) 4.3626 4.3615 0.03% 
5% 5,014.50 5,014.50 0.00% 
25% 10,781.67 10,781.67 0.00% 
50% 13,963.33 13,963.33 0.00% 
75% 19,172.50 19,172.50 0.00% 
95% 39,851.67 39,851.67 0.00% 

 

 

 

Figure 8 – Real-space Summary Statistics for Input Data (USGS 01562000) in Palisade’s @Risk.  
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Figure 9 – Log10-space Summary Statistics for Input Data (USGS 01562000) in Palisade’s @Risk.  
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Distribution Fitting Analysis 
A distribution fitting analysis can be performed in RMC-BestFit, where univariate probability distributions are fit to the 
specified input data using the method of Maximum Likelihood Estimation (MLE). The distribution fitting analysis can 
be used to inform model selection for use in the Bayesian estimation analysis. For each fitted distribution, RMC-
BestFit provides three goodness-of-fit measures: the Akaike Information Criteria (AIC), the Bayesian Information 
Criteria (BIC), and Root-Mean Squared Error (RMSE). These measures indicate how well the distribution fits the input 
data, with a smaller value representing a better fit. 

RMC-BestFit uses the Numerics library, which was developed by the RMC, for performing a significant portion of the 
computations for the distribution fitting analysis. Numerics is a numerical library for .NET, which provides methods and 
algorithms for numerical computations in science and engineering. Numerics.dll includes routines for special 
functions, interpolation, statistics, random numbers, probability distributions, uncertainty analysis, optimization, root 
finding, and more.  

The Nelder-Mead optimization method used to perform MLE was verified using Microsoft (MS) Excel’s Solver add-in, 
and implicitly verified through verification of the MLE results for each distribution. The thirteen probability distributions 
used within RMC-BestFit were verified using textbook solutions found in (Bobee & Ashkar, 1991) and (Rao & Hamed, 
2000), and results from R-Stan for select distributions. The AIC and BIC were verified using Palisade’s @Risk 
software, and RMSE calculations were verified using MS Excel.  

The following sections describe the numerical methods used for the distribution fitting analysis in RMC-BestFit, and 
numerical verification is provided therein.  

Maximum Likelihood Estimation (MLE) 
In the distribution fitting analysis, parameters are estimated using the MLE method. The MLE method formulates a 
likelihood function using sample data 𝐷𝐷 = (𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) and the parameters 𝜃𝜃 of the probability distribution, and solves 
for the value of the parameters that maximize the likelihood function (Rao & Hamed, 2000) (Jongejan, 2018). The 
likelihood function gives the probability of the data conditional on the distribution parameters (Equation 4). 

𝐿𝐿𝑆𝑆(𝐷𝐷|θ) =  �𝑓𝑓(𝑋𝑋𝑖𝑖|θ)
𝑛𝑛𝑠𝑠

𝑖𝑖=1

 Equation 4 

where 𝐷𝐷 is the sample of systematically recorded annual discharge maxima (𝑋𝑋1, … ,𝑋𝑋𝑛𝑛𝑆𝑆); and 𝑓𝑓(∙) is the probability 
density function (PDF) of the variable 𝑋𝑋. Censored data can be incorporated into the MLE method by augmenting the 
likelihood function. Left-censored threshold data has the following likelihood function: 

𝐿𝐿𝐿𝐿(𝐷𝐷|θ) =  ��
ℎ
𝑘𝑘
�𝐹𝐹(𝑋𝑋0|θ)(ℎ−𝑘𝑘)

𝑛𝑛𝐿𝐿

𝑖𝑖=1

 Equation 5 

where 𝑋𝑋0 is the threshold; ℎ is the threshold period; 𝑘𝑘 is the number of observations that exceeded the threshold during 
the period; �ℎ𝑘𝑘� is the binomial coefficient; and 𝐹𝐹(∙) is the cumulative distribution function (CDF) of the variable 𝑋𝑋0. The 
binomial coefficient can be dropped from Equation 5 because it will be held constant as 𝜃𝜃 is varied. Interval-censored 
data has the following likelihood function: 

𝐿𝐿𝐼𝐼(𝐷𝐷|θ) = ��𝐹𝐹�𝑋𝑋𝑈𝑈𝑖𝑖�𝜃𝜃� − 𝐹𝐹�𝑋𝑋𝐿𝐿𝑖𝑖�𝜃𝜃��
𝑛𝑛𝐼𝐼

𝑖𝑖=1

 Equation 6 

where there are  𝑛𝑛𝐼𝐼 observations known to lie between upper and lower bounds, 𝑋𝑋𝑈𝑈 and 𝑋𝑋𝐿𝐿. The overall likelihood 
function is then constructed by multiplying the components: 
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𝐿𝐿(𝐷𝐷|θ) =  𝐿𝐿𝑆𝑆(𝐷𝐷|θ) ∙  𝐿𝐿𝐿𝐿(𝐷𝐷|θ) ∙  𝐿𝐿𝐼𝐼(𝐷𝐷|θ) Equation 7 

These likelihood formulations for censored data are consistent with those presented in (Stedinger & Cohn, 1986), 
(Kuczera G. , 1999), and (O'Connell, Ostenaa, Levish, & Klinger, 2002). RMC-BestFit uses the Nelder-Mead method 
(also commonly called the downhill simplex method or amoeba method) to perform MLE for every distribution. 

Nelder-Mead (Downhill Simplex) 
The Nelder-Mead method is an optimization method that requires only function evaluations, not derivatives (Press, 
Teukolsky, Vetterling, & Flannery, 2017). The Nelder-Mead algorithm contained in Numerics was translated from 
Press et al. (2017) and augmented to include constraints on parameters.  

The Microsoft (MS) Excel solver was used to verify the Nelder-Mead algorithm contained in Numerics. Equation 8 was 
used to perform numerical verification on the Nelder-Mead algorithm. The initial guess for the parameters x, y, and z 
were 0.5, 0.5, and 0.5, respectively. The lower bounds for each parameter were set to 0 and the upper bound was set 
to 1.  

𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =  (4𝑥𝑥 − 0.5)2 + (3𝑦𝑦 − 0.6)2 + (2𝑧𝑧 − 0.7)2 Equation 8 

The objective function seeks to find the parameters that minimizes 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧). The problem was solved in MS Excel as 
shown in Figure 10. 

 
Figure 10 – Nelder-Mead Verification in MS Excel. 

 



 
Verification of the Bayesian Estimation and Fitting Software (RMC-BestFit) 

 

 

  
13 

 

A unit test for the Nelder-Mead method was set up as shown in Figure 11, and unit test output is shown in Figure 12. 
As can be seen, both MS Excel and Numerics produce the same results with x, y, and z equaling 0.125, 0.2, and 0.35 
respectively. Unit tests, like the one shown below, were developed for all verification tests in the Numerics library. The 
Nelder-Mead method is implicitly verified through verification of the MLE results for each distribution; i.e., if the MLE 
result for a distribution is correct, then the numerical method used to solve the MLE must also be correct.  

 
Figure 11 – Unit Test for the Nelder-Mead algorithm contained in Numerics.dll. 

 

 
Figure 12 – Unit Test output for the Nelder-Mead algorithm. 
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Probability Distributions 
The distribution fitting analysis in RMC-BestFit fits thirteen different probability distributions to the input data. All 
probability distribution functionality is contained within Numerics. In most cases, the initial parameter values and 
parameter constraints are estimated using the Method of Moments (MOM), which equates the moments of the sample 
data with the moments of the probability distribution function. The MLE method for distribution fitting is then performed 
using the Nelder-Mead method described above.  

Verification data sets come from two primary sources: 1) The Gamma Family and Derived Distributions Applied in 
Hydrology (Bobee & Ashkar, 1991), and 2) Flood Frequency Analysis (Rao & Hamed, 2000). Each test evaluates the 
MOM fit, the MLE fit, quantile estimates, and standard error estimates, when possible. RMC-BestFit results were 
verified using the textbook solutions found in (Bobee & Ashkar, 1991) and (Rao & Hamed, 2000), and results from R-
Stan for the following distributions: Normal, Log-Normal, Gamma, Gumbel, Weibull, and Logistic. 

The probability distribution parameterizations and estimation methods used in Numerics are consistent with those 
found in (Hosking & Wallis, 1997), (Asquith, 2011), and (Krishnamoorthy, 2016). 

Normal and Related Distributions 
All of the Normal (Gaussian) and related distributions were verified using examples found in Flood Frequency 
Analysis (Rao & Hamed, 2000). Numerics contains two log-Normal distributions. The first, named “Ln-Normal” is 
based on the natural logarithm, or log base e. This distribution is parameterized using real-space moments to be more 
intuitive for multi-disciplinary end-users of the software. The other distribution, named “Log-Normal,” is generalized so 
that the log base can be specified. Hydrologists typically use log base 10, so this is the default setting used in RMC-
BestFit. 

Normal 
The Normal distribution was verified using the Tippecanoe River near Delphi, Indiana dataset provided in Flood 
Frequency Analysis (Rao & Hamed, 2000) and shown in Table 3. The MOM results are shown in Table 4, the MLE 
results are shown in Table 5 and Table 6, the results for the inverse CDF are provided in Table 7, and the results for 
the quantile standard error are shown in Table 8. All results are reported with the same significant digits as was 
reported in (Rao & Hamed, 2000). 

Table 3 – Tippecanoe River near Delphi, Indiana dataset (Rao & Hamed, 2000). 

Year Flow 
(CFS) Year Flow 

(CFS) Year Flow 
(CFS) 

1940 6,290 1957 18,800 1974 14,100 
1941 2,700 1958 21,400 1975 14,100 
1942 13,100 1959 22,600 1976 12,500 
1943 16,900 1960 14,200 1977 7,530 
1944 14,600 1961 11,000 1978 13,400 
1945 9,600 1962 12,800 1979 17,600 
1946 7,740 1963 15,700 1980 13,400 
1947 8,490 1964 4,740 1981 19,200 
1948 8,130 1965 6,950 1982 16,900 
1949 12,000 1966 11,800 1983 15,500 
1950 17,200 1967 12,100 1984 14,500 
1951 15,000 1968 20,600 1985 21,900 
1952 12,400 1969 14,600 1986 10,400 
1953 6,960 1970 14,600 1987 7,460 
1954 6,500 1971 8,900   
1955 5,840 1972 10,600   
1956 10,400 1973 14,200   
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Table 4 – Normal Distribution Method of Moments (MOM) Results. 

Parameter Rao & Hamed 
(2000) RMC-BestFit % Difference 

Mean (µ) 12,665 12,665 0.00% 
Std. Deviation (σ) 4,710 4,710 0.00% 

 

The results for MLE provided for this dataset by (Rao & Hamed, 2000) are incorrect. The MLE estimate for standard 
deviation is equal to the population standard deviation of the sample, not the sample standard deviation as reported 
by (Rao & Hamed, 2000). With this in mind, the MLE of the standard deviation is a biased estimator. The MLE results 
comparing (Rao & Hamed, 2000) with RMC-BestFit are shown in Table 5. The MLE results comparing R-Stan and 
RMC-BestFit are shown in Table 6. RMC-BestFit produces nearly identical results to R-Stan. Example code for R-
Stan is provided in Figure 13 so that others will be able to reproduce these results.  

Table 5 – Normal Distribution Maximum Likelihood Estimation (MLE) Results. 

Parameter Rao & Hamed 
(2000) RMC-BestFit % Difference 

Mean (µ) 12,665 12,665 0.00% 
Std. Deviation (σ) 4,710* 4,660.43 1.06% 

*This should be the population standard deviation of the sample, which is 4,660.42. 

Table 6 – Normal Distribution MLE Results Compared to R-Stan. 

Parameter R-Stan RMC-BestFit % Difference 
Mean (µ) 12,665.21 12,665.22 0.00% 
Std. Deviation (σ) 4,660.40 4,660.43 0.00% 

 

library(rstan) 
 
# This is example code for R-Stan with the Normal distribution. 
# Stan will automatically compile this block of code to significantly reduce runtimes. 
stan_code <- 'data {int N; real x[N];} 
                      parameters {real mu; real<lower = 0> sigma;} 
                      model {for(n in 1:N){target +=  normal_lpdf(x[n] | mu, sigma);}}' 
model <- stan_model(model_code=stan_code) 
 
# Reference: "Flood Frequency Analysis", A.R. Rao & K.H. Hamed, CRC Press, 2000. 
# Table 5.1.1 Tippecanoe River Near Delphi, Indiana (Station 43) Data. 
gageData = c(6290, 2700, 13100, 16900, 14600, 9600, 7740, 8490, 8130, 12000, 17200, 15000,  
                      12400, 6960, 6500, 5840, 10400, 18800, 21400, 22600, 14200, 11000, 12800, 15700,  
                      4740, 6950, 11800, 12100, 20600, 14600, 14600, 8900, 10600, 14200, 14100, 14100,  
                      12500, 7530, 13400, 17600, 13400, 19200, 16900, 15500, 14500, 21900, 10400, 7460) 
 
# Get the mean and standard deviation of the gage data. 
m <- mean(gageData)  
s <- sd(gageData)  
# 12665.21 
# 4709.742 
 
# Estimate the posterior mode parameter set using Maximum Likelihood Estimation (MLE). 
mle = optimizing(model, data=list(x=gageData, N=length(gageData)),  
                            algorithm="LBFGS", init=list(mu=m, sigma=s)) 
 
# Output the MLE results. 
print(mle) 
#             mu       sigma  
# 12665.208  4660.398 

Figure 13 – Example code for R-Stan with the Normal Distribution. 
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The quantile estimate results for the 100-yr return period (or 0.99 non-exceedance probability) are provided in Table 
7. These results were derived using the MOM parameters to have a 1:1 comparison with (Rao & Hamed, 2000). The 
minor differences are because Numerics uses a double-precision rational approximation to the inverse CDF, whereas 
(Rao & Hamed, 2000) uses a single-precision approximation. The CDF was verified for all distributions by plugging in 
the quantile value to ensure it computes the correct probability. The PDF of each distribution was validated implicitly 
through the MLE method; i.e., the MLE results can only be valid if the PDF is valid. 

Table 7 – Normal Distribution Quantile Results. 

Quantile Rao & Hamed 
(2000) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 23,624 23,622 0.01% 
 

Quantile Standard Error 
The quantile standard error for every distribution is estimated using a Taylor series approximation, often referred to as 
the delta method. The quantile standard error for the Normal distribution is estimated using Equation 9. This equation 
can be generalized for functions with any number of variables. The standard error is provided here because the 
calculations for the priors for quantiles in RMC-BestFit requires the partial derivatives of the inverse CDF with respect 
to each parameter. These partial derivatives are also required in Equation 9. Consequently, verification of the quantile 
standard error also provides verification of the methods used to estimate parameter variance and the partial 
derivatives. Results for the standard error for the 100-yr quantile using the MOM parameters are provided in Table 8. 

𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍 =  �
𝜕𝜕𝑋𝑋
𝜕𝜕𝜕𝜕
�
2

𝑉𝑉𝑉𝑉𝑉𝑉 𝜕𝜕 + �
𝜕𝜕𝑋𝑋
𝜕𝜕𝜕𝜕
�
2

𝑉𝑉𝑉𝑉𝑉𝑉 𝜕𝜕 + 2 �
𝜕𝜕𝑋𝑋
𝜕𝜕𝜕𝜕
� �
𝜕𝜕𝑋𝑋
𝜕𝜕𝜕𝜕
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Table 8 – Normal Distribution Quantile Standard Error. 

Quantile Rao & Hamed 
(2000) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 1,309 1,309 0.00% 
 

Log-Normal 
The Log-Normal distribution was verified using the Wabash River at Lafayette, Indiana dataset provided in Flood 
Frequency Analysis (Rao & Hamed, 2000) and shown in Table 11. The Log-Normal distribution used in Numerics is 
generalized to work with any logarithmic base. This example uses the natural logarithm, base e.  

Unfortunately, the book uses summary statistics that are significantly different than what would be generated using 
the data provided in the Table 11. Because the differences in summary statistics are sizeable, as shown in Table 9, a 
1:1 comparison cannot truly be made. Rather than using the results reported in the book, the results are based on 
sample statistics derived from MS Excel (Table 10). Using these statistics, the MOM results are shown in Table 12. 
The MLE estimate for standard deviation is equal to the population standard deviation of the sample, not the sample 
standard deviation as reported by (Rao & Hamed, 2000). The MLE results comparing (Rao & Hamed, 2000) with 
RMC-BestFit are shown in Table 13. The MLE results comparing R-Stan and RMC-BestFit are shown in Table 14. 
RMC-BestFit produces identical results to R-Stan. Results for the inverse CDF are provided in Table 15, and the 
results for the quantile standard error are shown in Table 16.  

Table 9 – Comparison of Summary Statistics for the Wabash River at Lafayette, Indiana dataset (Rao & Hamed, 2000). 

Statistic Rao & Hamed 
(2000) MS Excel % Difference 

Mean  52,621 49,222 6.67% 
Std. Dev. 25,200 18,908 28.53% 
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Table 10 – Summary Statistics for the Wabash River at Lafayette, Indiana dataset (Rao & Hamed, 2000). 

Statistic Value Of Ln 
Mean  49,222.35 10.7170 
Std. Dev. 18,907.87 0.4501 
Population Std. Dev. 18,796.32 0.4474 

 

Table 11 – Wabash River at Lafayette, Indiana dataset (Rao & Hamed, 2000). 

Year Flow 
(CFS) Year Flow 

(CFS) Year Flow 
(CFS) Year Flow 

(CFS) 
1907 41,500 1929 38,000 1951 50,600 1973 40,700 
1908 57,000 1930 74,600 1952 41,900 1974 53,400 
1909 44,000 1931 13,100 1953 35,000 1975 36,000 
1910 49,000 1932 37,600 1954 16,500 1976 43,900 
1911 31,000 1933 67,500 1955 35,300 1977 23,600 
1912 45,900 1934 21,700 1956 30,000 1978 50,500 
1913 19,000 1935 37,000 1957 52,600 1979 49,700 
1914 41,100 1936 93,500 1958 99,000 1980 48,100 
1915 37,300 1937 58,500 1959 89,000 1981 44,500 
1916 76,000 1938 63,300 1960 39,500 1982 56,400 
1917 33,200 1939 74,400 1961 55,400 1983 60,800 
1918 61,200 1940 34,200 1962 46,000 1984 40,400 
1919 76,000 1941 14,600 1963 63,000 1985 80,400 
1920 59,800 1942 44,200 1964 58,300 1986 41,600 
1921 44,400 1943 13,100 1965 36,500 1987 14,700 
1922 58,400 1944 73,300 1966 14,600 1988 33,300 
1923 53,600 1945 46,600 1967 64,900 1989 40,700 
1924 59,800 1946 39,400 1968 68,500 1990 53,300 
1925 63,300 1947 41,200 1969 69,100 1991 77,400 
1926 57,700 1948 41,300 1970 42,600   
1927 64,000 1949 62,000 1971 31,000   
1928 63,500 1950 90,000 1972 39,400   

 

Table 12 – Log-Normal Distribution MOM Results. 

Parameter Rao & Hamed 
(2000) RMC-BestFit % Difference 

Mean (µ) 10.7170 10.7170 0.00% 
Std. Deviation (σ) 0.4501 0.4501 0.00% 

 

Table 13 – Log-Normal Distribution MLE Results. 

Parameter Rao & Hamed 
(2000) RMC-BestFit % Difference 

Mean (µ) 10.7170 10.7170 0.00% 
Std. Deviation (σ) 0.4501* 0.4474 0.60% 

* (Rao & Hamed, 2000) incorrectly estimates using the sample standard deviation. This should be the population standard 
deviation, which is 0.4474. 

Table 14 – Log-Normal Distribution MLE Results Compared to R-Stan. 

Parameter R-Stan RMC-BestFit % Difference 
Mean (µ) 10.7170 10.7170 0.00% 
Std. Deviation (σ) 0.4474 0.4474 0.00% 
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Table 15 – Log-Normal Distribution Quantile Results. 

Quantile Rao & Hamed 
(2000) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 128,538 128,538 0.00% 
 

Table 16 – Log-Normal Distribution Quantile Standard Error. 

Quantile Rao & Hamed 
(2000) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 11,935 11,935 0.00% 
 

The Gamma Family of Distributions 
The Gamma family of distributions were verified using examples found in The Gamma Family and Derived 
Distributions Applied in Hydrology (Bobee & Ashkar, 1991) and Flood Frequency Analysis (Rao & Hamed, 2000). 

Exponential  
The Exponential distribution was verified using the Wabash River at Lafayette, Indiana dataset provided in Flood 
Frequency Analysis (Rao & Hamed, 2000) and shown in Table 11. Summary statistics for this dataset are provided in 
Table 10. The MOM results are shown in Table 17, the MLE results are shown in Table 18, the results for the inverse 
CDF are provided in Table 20, and the results for the quantile standard error are shown in Table 21.  

Table 17 – Exponential Distribution MOM Results. 

Parameter Rao & Hamed 
(2000) RMC-BestFit % Difference 

Location (ξ) 30,314.48 30,314.48 0.00% 
Scale (α) 18,907.87 18,907.87 0.00% 

 

The MLE results are shown in Table 18. The error in the scale parameter is likely because the Nelder-Mead solver is 
stuck in a local maximum, rather than a global. This dataset is not well-suited for the Exponential distribution, as can 
be seen below in Figure 14. The Exponential distribution has the worst AIC, BIC, and RMSE of all fitted distributions 
for this dataset. For an alternative verification test, a synthetic data set was generated from a parent Exponential 
distribution with a location of 13,100 and scale of 36,122. Results are shown below in Table 19 and Figure 15. As can 
be seen, the percent difference between the theoretical MLE and the MLE produced by the Nelder-Mead method is 
sufficiently close to zero. The results for the inverse CDF are provided in Table 20, and the results for the quantile 
standard error are shown in Table 21. These results were based on the MOM parameters.  

Table 18 – Exponential Distribution MLE Results. 

Parameter Rao & Hamed 
(2000) RMC-BestFit % Difference 

Location (ξ) 13,100.00 13,100.00 0.00% 
Scale (α) 36,122.35 35,816.48 0.85% 

 

Table 19 – Exponential Distribution MLE Results for Synthetic Dataset. 

Parameter Theoretical RMC-BestFit % Difference 
Location (ξ) 13,453.06 13,453.06 0.00% 
Scale (α) 28,808.37 28,806.02 0.01% 

 

Table 20 – Exponential Distribution Quantile Results. 

Quantile Rao & Hamed 
(2000) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 143,471 143,471 0.00% 
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Table 21 – Exponential Distribution Quantile Standard Error. 

Quantile Rao & Hamed 
(2000) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 15,986 15,986 0.00% 
 

 
Figure 14 – Distribution Fitting Analysis for the Wabash River at Lafayette, Indiana dataset. 

 

 
Figure 15 – Distribution Fitting Analysis for the Synthetic dataset. 
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Gamma 
There are three different parameterizations for the Gamma distribution in common use: 1) With a scale parameter 𝜃𝜃 
and a shape parameter 𝜅𝜅; 2) With an inverse scale parameter 𝛽𝛽 =  1/𝜃𝜃, called a rate parameter, and a shape 
parameter 𝛼𝛼 =  𝜅𝜅; and 3) With a mean parameter 𝜕𝜕 =  𝑘𝑘𝜃𝜃 =  𝛼𝛼/𝛽𝛽 and a shape parameter 𝜅𝜅. Numerics uses the first 
parameterization, with a scale parameter 𝜃𝜃 and a shape parameter 𝜅𝜅. 

The Gamma distribution was verified using the Harricana River at Amos (Quebec, Canada) dataset provided in The 
Gamma Family and Derived Distributions Applied in Hydrology (Bobee & Ashkar, 1991) and shown in Table 22. The 
MOM results are shown in Table 23, the MLE results are shown in Table 24 and Table 25, the results for the inverse 
CDF are provided in Table 26, and the results for the quantile standard error are shown in Table 27. Results are 
reported with the same significant digits as was reported in (Bobee & Ashkar, 1991). 

Table 22 – Harricana River at Amos (Quebec, Canada) (Bobee & Ashkar, 1991). 

Year Flow 
(CMS) Year Flow 

(CMS) Year Flow 
(CMS) 

1915 122 1938 240 1961 125 
1916 244 1939 230 1962 166 
1917 214 1940 192 1963 99.1 
1918 173 1941 195 1964 202 
1919 229 1942 172 1965 230 
1920 156 1943 173 1966 158 
1921 212 1944 172 1967 262 
1922 263 1945 153 1968 154 
1923 146 1946 142 1969 164 
1924 183 1947 317 1970 182 
1925 161 1948 161 1971 164 
1926 205 1949 201 1972 183 
1927 135 1950 204 1973 171 
1928 331 1951 194 1974 250 
1929 225 1952 164 1975 184 
1930 174 1953 183 1976 205 
1931 98.8 1954 161 1977 237 
1932 149 1955 167 1978 177 
1933 238 1956 179 1979 239 
1934 262 1957 185 1980 187 
1935 132 1958 117 1981 180 
1936 235 1959 192 1982 173 
1937 216 1960 337 1983 174 

 

Table 23 – Gamma Distribution MOM Results. 

Parameter Bobée & Ashkar 
(1991) RMC-BestFit % Difference 

Scale (θ) 12.02357 12.02356 0.00% 
Shape (κ) 15.91188 15.91188 0.00% 

 

Table 24 – Gamma Distribution MLE Results. 

Parameter Bobée & Ashkar 
(1991) RMC-BestFit % Difference 

Scale (θ) 11.32118 11.32103 0.00% 
Shape (κ) 16.89937 16.89928 0.00% 
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Table 25 – Gamma Distribution MLE Results Compared to R-Stan. 

Parameter R-Stan RMC-BestFit % Difference 
Scale (θ) 11.32136 11.32103 0.00% 
Shape (κ) 16.89896 16.89928 0.00% 

 

The quantile estimate results for the 100-yr return period (or 0.99 non-exceedance probability) and the standard error 
are provided in Table 26 and Table 27, respectively. These results were derived using the MLE parameters. 

Table 26 – Gamma Distribution Quantile Results. 

Quantile Bobée & Ashkar 
(1991) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 315.87 315.87 0.00% 
 
Table 27 – Gamma Distribution Quantile Standard Error. 

Quantile Bobée & Ashkar 
(1991) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 15.022 15.022 0.00% 
 

Pearson Type III 
The Pearson Type III (PIII) distribution was verified using the Harricana River at Amos (Quebec, Canada) dataset 
provided in The Gamma Family and Derived Distributions Applied in Hydrology (Bobee & Ashkar, 1991) and shown in 
Table 22. Verification results for this dataset are provided in Table 28 through Table 31. 

In Numerics, the PIII distribution is parameterized by the end-user using the moments of the distribution, mean (µ), 
standard deviation (σ), and skew (γ). The true parameters (location, scale, and shape) are computed from the user-
defined moments. This was done because the moments of the distribution are more intuitively defined by end-users. 
Numerics uses the same parameterization as (Hosking & Wallis, 1997), with the location parameter ξ, the scale 
parameter β, and the shape parameter α. 

Table 28 – Pearson Type III Distribution MOM Results. 

Parameter Bobée & Ashkar 
(1991) RMC-BestFit % Difference 

Mean (µ) 191.31739 191.31739 0.00% 
Std. Dev. (σ) 47.96161 47.96161 0.00% 
Skew (γ) 0.86055 0.86055 0.00% 
Location (ξ) 79.84941 79.84941 0.00% 
Scale (β) 20.63558 20.63657 0.00% 
Shape (α) 5.40148 5.40148 0.00% 

 

Table 29 – Pearson Type III Distribution MLE Results. 

Parameter Bobée & Ashkar 
(1991) RMC-BestFit % Difference 

Mean (µ) 191.31739 191.31738 0.00% 
Std. Dev. (σ) 47.01925 47.01928 0.00% 
Skew (γ) 0.61897 0.61896 0.00% 
Location (ξ) 39.38903 39.38849 0.00% 
Scale (β) 14.55180 14.55163 0.00% 
Shape (α) 10.44062 10.44067 0.00% 

 

The quantile estimate results for the 100-yr return period (or 0.99 non-exceedance probability) and the standard error 
are provided in Table 30 and Table 31, respectively. These results were derived using the MLE parameters. The 
minor differences in standard error are a result of differences in the derivation of the frequency factor K. Numerics 
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estimates the frequency factor given the skewness coefficient through Cornish-Fisher transformation (Fisher & 
Cornish, 1960). Whereas, (Bobee & Ashkar, 1991) uses a polynomial approximation derived by the authors.  

Table 30 – Pearson Type III Distribution Quantile Results. 

Quantile Bobée & Ashkar 
(1991) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 321.48 321.48 0.00% 
 
Table 31 – Pearson Type III Distribution Quantile Standard Error. 

Quantile Bobée & Ashkar 
(1991) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 20.045 20.048 0.01% 
 

Log-Pearson Type III 
The Log-Pearson Type III (LPIII) distribution was verified using the Harricana River at Amos (Quebec, Canada) 
dataset provided in The Gamma Family and Derived Distributions Applied in Hydrology (Bobee & Ashkar, 1991) and 
shown in Table 22. Verification results for this dataset are provided in Table 32 through Table 35. The LPIII 
distribution uses the same parameterization as the PIII. The LPIII distribution used in Numerics is generalized to work 
with any logarithmic base following the procedures shown in (Bobee & Ashkar, 1991). Because the LPIII is 
parameterized with log-spaced moments, small errors in the MLE for log-moments can lead to larger errors in the real 
parameters, as shown in Table 33. These errors can be minimized by decreasing the tolerance in the Nelder-Mead 
solver; however, these differences are well within the acceptable range for verification.  

Table 32 – Log-Pearson Type III Distribution MOM Results. 

Parameter Bobée & Ashkar 
(1991) RMC-BestFit % Difference 

Mean (of log) (µ) 2.26878 2.26878 0.00% 
Std. Dev (of log) (σ) 0.10699 0.10699 0.00% 
Skew (of log) (γ) -0.04061 -0.04061 0.00% 
Location (ξ) 7.53821 7.53821 0.00% 
Scale (β) -0.00217 -0.00217 0.00% 
Shape (α) 2,425.57481 2,425.57481 0.00% 

 

Table 33 – Log-Pearson Type III Distribution MLE Results. 

Parameter Bobée & Ashkar 
(1991) RMC-BestFit % Difference 

Mean (of log) (µ) 2.26878 2.26878 0.00% 
Std. Dev (of log) (σ) 0.10621 0.10621 0.00% 
Skew (of log) (γ) -0.02925 -0.02925 0.00% 
Location (ξ) 9.53033 9.53160 0.01% 
Scale (β) -0.00155 -0.00155 0.00% 
Shape (α) 4,674.21790 4,675.85084 0.03% 

 

The quantile estimate results for the 100-yr return period (or 0.99 non-exceedance probability) and the standard error 
are provided in Table 34 and Table 35, respectively. These results were derived using the MLE parameters. The 
minor differences in standard error are a result of differences in the derivation of the frequency factor K. Numerics 
estimates the frequency factor given the skewness coefficient through Cornish-Fisher transformation (Fisher & 
Cornish, 1960). Whereas, (Bobee & Ashkar, 1991) uses a polynomial approximation derived by the authors.  

Table 34 – Log-Pearson Type III Distribution Quantile Results. 

Quantile Bobée & Ashkar 
(1991) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 326.25 326.27 0.01% 
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Table 35 – Log-Pearson Type III Distribution Quantile Standard Error. 

Quantile Bobée & Ashkar 
(1991) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 25.000 24.857 0.57% 
 

Extreme Value Distributions 
The extreme value distributions were verified using examples found in Flood Frequency Analysis (Rao & Hamed, 
2000), synthetic data sets with Palisade’s @Risk, and R-Stan. 

Gumbel 
The Gumbel distribution was verified using the Sugar Creek at Crawfordsville, Indiana dataset provided in Flood 
Frequency Analysis (Rao & Hamed, 2000) and shown in Table 36. Verification results are provided in Table 37 
through Table 41. 

Table 36 – Sugar Creek at Crawfordsville, Indiana dataset (Rao & Hamed, 2000). 

Year Flow 
(CFS) Year Flow 

(CFS) Year Flow 
(CFS) 

1939 17,600 1958 15,100 1977 5,290 
1940 3,660 1959 14,600 1978 12,200 
1941 903 1960 7,300 1979 9,750 
1942 5,050 1961 8,580 1980 7,390 
1943 24,000 1962 15,100 1981 13,100 
1944 11,400 1963 15,100 1982 7,190 
1945 9,470 1964 21,800 1983 8,850 
1946 8,970 1965 6,200 1984 6,290 
1947 7,710 1966 2,130 1985 18,800 
1948 14,800 1967 11,100 1986 9,740 
1949 13,900 1968 14,300 1987 2,990 
1950 20,800 1969 11,200 1988 6,950 
1951 9,470 1970 6,670 1989 9,390 
1952 7,860 1971 5,440 1990 12,400 
1953 7,860 1972 9,370 1991 21,200 
1954 2,730 1973 6,900   
1955 6,480 1974 9,680   
1956 18,200 1975 6,810   
1957 26,300 1976 7,730   

 

Table 37 – Gumbel Distribution MOM Results. 

Parameter Rao & Hamed 
(2000) RMC-BestFit % Difference 

Location (ξ) 8,074.4 8,074.2 0.00% 
Scale (α) 4,441.4 4,441.4 0.00% 

 

Table 38 – Gumbel Distribution MLE Results. 

Parameter Rao & Hamed 
(2000) RMC-BestFit % Difference 

Location (ξ) 8,049.6 8,049.60 0.00% 
Scale (α) 4,478.6 4,478.60 0.00% 
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Table 39 – Gumbel Distribution MLE Results Compared to R-Stan. 

Parameter R-Stan RMC-BestFit % Difference 
Location (ξ) 8,049.705 8,049.641 0.00% 
Scale (α) 4,478.768 4,478.627 0.00% 

 

Table 40 – Gumbel Distribution Quantile Results. 

Quantile Rao & Hamed 
(2000) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 28,652 28,652 0.00% 
 
Table 41 – Gumbel Distribution Quantile Standard Error. 

Quantile Rao & Hamed 
(2000) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 2,486.5 2,486.5 0.00% 
 

Weibull 
RMC-BestFit supports the 2-parameter Weibull distribution with the parameterization commonly used in reliability 
analysis. The Weibull distribution was verified using the Tippecanoe River near Delphi, Indiana dataset provided in 
Flood Frequency Analysis (Rao & Hamed, 2000) and shown in Table 3 under the Normal distribution section. 
However, Rao and Hamed (2000) only provide solutions for the 3-parameter Weibull. Therefore, verification is 
performed using R-Stan and Palisade’s @Risk. Unfortunately, neither of these products provide solutions based on 
method of moments, nor do they provide quantile standard error estimates. Therefore, verification results are only 
provided for MLE and quantile function estimations. The verification results are shown in Table 42 through Table 44.  

Table 42 – Weibull Distribution MLE Results Compared to R-Stan. 

Parameter R-Stan RMC-BestFit % Difference 
Scale (λ) 14,196.9496 14,197.2522 0.00% 
Shape (κ) 2.9829 2.9828 0.00% 

 

Table 43 – Weibull Distribution MLE Results Compared to Palisade’s @Risk. 

Parameter @Risk RMC-BestFit % Difference 
Scale (λ) 14,197.2476 14,197.2522 0.00% 
Shape (κ) 2.9828 2.9828 0.00% 

 

Table 44 – Weibull Distribution Quantile Results. 

Quantile @Risk RMC-BestFit % Difference 
𝐹𝐹−1(0.99) 23,689.36 23,689.68 0.00% 

 

Generalized Extreme Value 
The Generalized Extreme Value distribution was verified using the White River near Nora, Indiana dataset provided in 
Flood Frequency Analysis (Rao & Hamed, 2000) and shown in Table 46. Verification results are provided in Table 45 
through Table 49. 

Table 45 – Generalized Extreme Value Distribution MOM Results. 

Parameter Rao & Hamed 
(2000) RMC-BestFit % Difference 

Location (ξ) 11,012 11,012 0.00% 
Scale (α) 6,209.4 6,209.3 0.00% 
Shape (κ) 0.0736 0.0736 0.00% 
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Table 46 – White River near Nora, Indiana dataset (Rao & Hamed, 2000). 

Year Flow 
(CFS) Year Flow 

(CFS) Year Flow 
(CFS) 

1930 23,200 1952 12,700 1974 13,200 
1931 2,950 1953 9,740 1975 14,700 
1932 10,300 1954 3,050 1976 14,300 
1933 23,200 1955 8,830 1977 4,050 
1934 4,540 1956 12,000 1978 14,600 
1935 9,960 1957 30,400 1979 14,400 
1936 10,800 1958 27,000 1980 19,200 
1937 26,900 1959 15,200 1981 7,160 
1938 23,300 1960 8,040 1982 12,100 
1939 20,400 1961 11,700 1983 8,650 
1940 8,480 1962 20,300 1984 10,600 
1941 3,150 1963 22,700 1985 24,500 
1942 9,380 1964 30,400 1986 14,400 
1943 32,400 1965 9,180 1987 6,300 
1944 20,800 1966 4,870 1988 9,560 
1945 11,100 1967 14,700 1989 15,800 
1946 7,270 1968 12,800 1990 14,300 
1947 9,600 1969 13,700 1991 28,700 
1948 14,600 1970 7,960   
1949 14,300 1971 9,830   
1950 22,500 1972 12,500   
1951 14,700 1973 10,700   

 

Table 47 – Generalized Extreme Value MLE Results. 

Parameter Rao & Hamed 
(2000) RMC-BestFit % Difference 

Location (ξ) 10,849 10,849 0.00% 
Scale (α) 5,745.6 5,745.6 0.00% 
Shape (κ) 0.005 0.005 0.00% 

 

The quantile estimate results for the 100-yr return period (or 0.99 non-exceedance probability) and the standard error 
are provided in Table 48 and Table 49, respectively. These results were derived using the MLE parameters. The 
difference in standard error estimates is likely due to rounding difference. The example in (Rao & Hamed, 2000) does 
not carry forward double precision through the full calculation of quantile variance.  

Table 48 – Generalized Extreme Value Distribution Quantile Results. 

Quantile Rao & Hamed 
(2000) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 36,977 36,978 0.00% 
 
Table 49 – Generalized Extreme Value Distribution Quantile Standard Error. 

Quantile Rao & Hamed 
(2000) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 5,142 5,136 0.12% 
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Generalized Pareto 
The Generalized Pareto distribution was verified using the White River Flows at Mt. Carmel, Indiana dataset provided 
in Flood Frequency Analysis (Rao & Hamed, 2000) and shown in Table 50. Verification results are provided in Table 
51 through Table 54. 

Table 50 – White River Flows at Mt. Carmel, Indiana dataset (Threshold = 50,000 cfs) (Rao & Hamed, 2000). 
Flow 
(CFS) 

Flow 
(CFS) 

Flow 
(CFS) 

Flow 
(CFS) 

Flow 
(CFS) 

Flow 
(CFS) 

126,000 56,400 105,000 56,400 61,000 50,900 
148,000 128,000 93,700 112,000 155,000 63,500 
66,000 106,000 277,000 76,400 96,500 63,500 
156,000 110,000 85,700 116,000 89,100 152,000 
136,000 232,000 77,300 51,400 77,900 51,000 
122,000 60,400 122,000 59,800 70,500 285,000 
183,000 60,400 106,000 63,900 73,400 114,000 
162,000 50,800 93,300 81,900 180,000 197,000 
85,200 100,000 79,000 88,200 83,700 106,000 
56,800 55,900 130,000 62,300 302,000 132,000 
56,600 167,000 126,000 162,000 133,000 83,700 
138,000 53,700 57,800 67,200 92,100 67,200 
81,000 56,700 64,700 85,500 105,000 110,000 
51,800 126,000 162,000 51,000 235,000 202,000 
90,700 100,000 71,900 286,000 213,000 127,000 
139,000 59,500 63,500 73,800 96,100 90,600 
160,000 164,000 81,500 61,300 77,100 126,000 
118,000 81,800 51,000 60,800 73,900 73,900 
50,600 56,400 84,400 91,300 55,400 86,500 
137,000 124,000 108,000 134,000 55,200 181,000 
151,000 64,600 185,000 106,000 87,800 141,000 
172,000 77,300 55,800 70,800 52,600 79,700 
52,600 65,900 94,600 106,000 106,000 97,800 
248,000 72,500 82,800 122,000 93,000 57,300 
152,000 65,100 146,000 149,000 147,000 77,200 
64,500 80,800 66,500 53,700 61,800 133,000 
61,500 69,800 57,700 85,300 101,000 82,900 
143,000 53,000 78,700 144,000 154,000 55,000 
108,000 195,000 85,100 54,800 52,000 62,000 
53,000 128,000 129,000 116,000 121,000 51,700 
134,000 114,000 75,700 67,500 86,700 54,500 
115,000 110,000 104,000 56,500 57,300 51,600 
84,100 149,000 139,000 86,700 97,500 103,000 
105,000 74,100 50,600 91,500 112,000 134,000 
85,400 75,900 53,500 105,000 88,500 71,700 
76,900 99,300 178,000 134,000 76,200 57,000 
99,100 168,000 110,000 97,300 140,000 63,900 
73,700 70,800 50,800 84,000 87,400 60,700 
122,000 104,000 76,000 141,000 154,000 81,900 
62,500 125,000 130,000 52,600 95,100 171,000 
54,300 77,300 67,300 124,000 131,000 111,000 
58,000 97,300 149,000 196,000 131,000 50,400 
144,000 140,000 78,400 84,200 54,900 50,500 
55,800 54,900 96,600 54,500 78,800 69,700 
127,000 66,000 83,300 74,500 101,000 88,900 
55,800 199,000 68,400 104,000 224,000 76,600 
107,000 99,800 84,300 57,200 54,800  
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Table 51 – Generalized Pareto Distribution MOM Results. 

Parameter Rao & Hamed 
(2000) RMC-BestFit % Difference 

Location (ξ) 50,169.23 50,170.13 0.00% 
Scale (α) 55,443 55,441 0.00% 
Shape (κ) 0.0956 0.0956 0.00% 

 

Table 52 – Generalized Pareto Distribution MLE Results. 

Parameter Rao & Hamed 
(2000) RMC-BestFit % Difference 

Location (ξ) 50,400 50,400 0.00% 
Scale (α) 55,142.29 55,142.20 0.00% 
Shape (κ) 0.0945 0.0945 0.00% 

 

Table 53 – Generalized Pareto Distribution Quantile Results. 

Quantile Rao & Hamed 
(2000) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 256,803 256,803 0.00% 
 
Table 54 – Generalized Pareto Distribution Quantile Standard Error. 

Quantile Rao & Hamed 
(2000) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 15,938 15,938 0.00% 
 

The Logistic Distributions 
The Logistic and Generalized Logistic distribution methods were verified using the examples provided in (Rao & 
Hamed, 2000). 

Logistic 
The Logistic distribution was verified using the Tippecanoe River near Delphi, Indiana dataset provided in Flood 
Frequency Analysis (Rao & Hamed, 2000) and shown in Table 3 under the Normal distribution section. The 
verification results are shown in Table 55 through Table 59.  

Table 55 – Logistic Distribution MOM Results. 

Parameter Rao & Hamed 
(2000) RMC-BestFit % Difference 

Location (ξ) 12,665 12,665 0.00% 
Scale (α) 2,596.62 2,596.62 0.00% 

 

Table 56 – Logistic Distribution MLE Results. 

Parameter Rao & Hamed 
(2000) RMC-BestFit % Difference 

Location (ξ) 12,628 12,629 0.01% 
Scale (α) 2,708.64 2,708.65 0.00% 

 

Table 57 – Logistic Distribution MLE Results Compared to R-Stan. 

Parameter R-Stan RMC-BestFit % Difference 
Location (ξ) 12,628.581 12,628.589 0.00% 
Scale (α) 2,708.545 2,708.647 0.00% 
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Table 58 – Logistic Distribution Quantile Results. 

Quantile Rao & Hamed 
(2000) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 24,597 24,597 0.00% 
 
Table 59 – Logistic Distribution Quantile Standard Error. 

Quantile Rao & Hamed 
(2000) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 1,684 1,684 0.00% 
 

Generalized Logistic 
The Generalized Logistic distribution was verified using the East Fork White River at Seymour near Delphi, Indiana 
dataset provided in Flood Frequency Analysis (Rao & Hamed, 2000) and shown in Table 60. Unfortunately, the book 
uses summary statistics that are different than what would be generated using the data provided in the table. 
Therefore, a 1:1 comparison cannot be made. The differences in summary statistics are sizeable, as shown in Table 
61. When using the summary statistics listed in the book, the MOM results are effectively identical, as shown in Table 
62. However, when using the actual data set, the results are much different as shown in Table 63. The differences in 
results derived with RMC-BestFit are consistent with the differences in summary statistics. It can be seen that it is not 
possible to perform a true verification using this dataset.  

Table 60 – East Fork White River at Seymour, Indiana dataset (Rao & Hamed, 2000). 

Year Flow 
(CFS) Year Flow 

(CFS) Year Flow 
(CFS) 

1924 24,000 1947 33,000 1970 26,300 
1925 7,920 1948 28,000 1971 27,900 
1926 21,900 1949 78,500 1972 27,000 
1927 47,100 1950 54,000 1973 22,700 
1928 30,400 1951 28,600 1974 17,500 
1929 36,100 1952 44,000 1975 46,400 
1930 67,100 1953 13,300 1976 19,300 
1931 7,030 1954 6,120 1977 12,700 
1932 28,200 1955 11,100 1978 36,000 
1933 40,100 1956 42,100 1979 39,900 
1934 10,300 1957 33,400 1980 25,400 
1935 11,100 1958 30,100 1981 30,200 
1936 17,000 1959 32,100 1982 47,000 
1937 65,600 1960 28,100 1983 39,800 
1938 32,600 1961 59,400 1984 23,800 
1939 36,200 1962 23,800 1985 29,600 
1940 46,400 1963 52,000 1986 33,400 
1941 3,650 1964 54,900 1987 15,400 
1942 16,800 1965 25,600 1988 28,400 
1943 44,800 1966 10,900 1989 26,700 
1944 37,100 1967 33,700 1990 46,500 
1945 42,900 1968 60,200 1991 61,200 
1946 15,000 1969 39,200   

 

Table 61 – Summary statistics for the East Fork White River at Seymour, Indiana dataset (Rao & Hamed, 2000). 

Statistic Rao & Hamed 
(2000) MS Excel % Difference 

Mean  32,714 32,272.35 1.36% 
Std. Dev. 16,560.28 16,160.26 2.45% 
Skewness 0.49051 0.51975 5.79% 
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Table 62 – Generalized Logistic Distribution MOM Results Using Book Summary Statistics. 

Parameter Rao & Hamed 
(2000) RMC-BestFit % Difference 

Location (ξ) 31,892 31,892 0.00% 
Scale (α) 9,030 9,030 0.00% 
Shape (κ) -0.05515 -0.05515 0.00% 

 

Table 63 – Generalized Logistic Distribution MOM Results Using Actual Dataset. 

Parameter Rao & Hamed 
(2000) RMC-BestFit % Difference 

Location (ξ) 31,892 31,425.30 1.47% 
Scale (α) 9,030 8,800.29 2.58% 
Shape (κ) -0.05515 -0.05829 5.53% 

 

Table 64 – Generalized Logistic Distribution MLE Results Using Actual Dataset. 

Parameter Rao & Hamed 
(2000) RMC-BestFit % Difference 

Location (ξ) 30,911.83 30,622.11 0.94% 
Scale (α) 9,305.02 9,026.14 3.04% 
Shape (κ) -0.14415 -0.13439 7.01% 

 

The quantile estimate results for the 100-yr return period (or 0.99 non-exceedance probability) were derived using the 
MOM parameters provided by (Rao & Hamed, 2000) in order to have a 1:1 comparison. 

Table 65 – Generalized Logistic Distribution Quantile Results. 

Quantile Rao & Hamed 
(2000) RMC-BestFit % Difference 

𝐹𝐹−1(0.99) 79,117 79,117 0.00% 
 
A simple expression cannot be obtained for the standard error of MLE estimates for the Generalized Logistic 
distribution. There are approximate numerical solutions available, but those were not implemented in Numerics. Table 
66 shows the partial derivatives of the inverse CDF with respect for each parameter. These partial derivatives are 
required for handling quantile priors in the Bayesian estimation within RMC-BestFit. 

Table 66 – Generalized Logistic Distribution Partial Derivatives. 

Parameter Rao & Hamed 
(2000) RMC-BestFit % Difference 

𝜕𝜕𝐹𝐹−1(0.99) 𝜕𝜕ξ⁄  1 1 0.00% 
𝜕𝜕𝐹𝐹−1(0.99) 𝜕𝜕α⁄  6.51695 6.51696 0.00% 
𝜕𝜕𝐹𝐹−1(0.99) 𝜕𝜕κ⁄  -154,595.08 -154,595.18 0.00% 
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Goodness-of-Fit Measures 
RMC-BestFit provides three goodness-of-fit (GOF) measures: the Akaike Information Criteria (AIC), the Bayesian 
Information Criteria (BIC), and Root Mean Square Error (RMSE). These measures indicate how well the distribution 
fits the input data, with a smaller value representing a better fit. 

AIC and BIC are used for model selection among a finite set of models. The model with the lowest AIC or BIC is 
preferred. When comparing multiple distributions, additional parameters often yield larger, optimized log-likelihood 
values. AIC and BIC penalizes for more complex models, i.e., models with additional parameters. However, for BIC, 
the penalty is a function of the sample size, and so it is typically more severe than that of AIC. The formulas for AIC 
and BIC are shown in Equation 10 and Equation 11, respectively. To address potential over-fitting, RMC-BestFit 
implements a correction for small sample sizes for AIC.  

𝐴𝐴𝐴𝐴𝐶𝐶 = 2𝑘𝑘 − 2 ln�𝐿𝐿�� + 
2𝑘𝑘2 + 2𝑘𝑘
𝑛𝑛 − 𝑘𝑘 − 1

 Equation 10 

𝐵𝐵𝐴𝐴𝐶𝐶 = ln(𝑛𝑛) 𝑘𝑘 − 2 ln�𝐿𝐿�� Equation 11 

where 𝑘𝑘 is the number of parameters; 𝑛𝑛 is the sample size; and 𝐿𝐿� is the maximum value of the likelihood function for 
the model. 

The formula for RMSE is provided in Equation 12. RMSE is computed based on the plotting positions of the input 
data. The user can change the plotting position coefficient, so this measure has a potential to be biased. To minimize 
this issue, the default plotting position coefficient in the input data interface is set to Weibull (𝛼𝛼 = 0), which is 
unbiased.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 Equation 12 

where 𝑛𝑛 is the sample size; 𝑦𝑦�𝑖𝑖 is the predicted value for item 𝑖𝑖; and 𝑦𝑦𝑖𝑖 is the observed value for step 𝑖𝑖. 

AIC and BIC were verified using Palisade’s @Risk for the Weibull distribution fit to the Tippecanoe River near Delphi, 
Indiana dataset provided in Flood Frequency Analysis (Rao & Hamed, 2000) and shown in Table 3 under the Normal 
distribution section. RMSE is verified by computing the measure manually in MS Excel. Results are provided in Table 
67. 

Table 67 – Verification of Goodness-of-Fit Measures with Palisade’s @Risk. 

Measure @Risk/Excel RMC-BestFit % Difference 
AIC 950.36 950.36 0.00% 
BIC 953.83 953.83 0.00% 
RSME 553.48 553.48 0.00% 
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Bayesian Estimation 
RMC-BestFit performs Bayesian estimation using a Markov Chain Monte Carlo (MCMC) algorithm to estimate 
distribution parameters given the specified input data and parent distribution. The Bayesian estimation method 
produces the most likely estimate for parameters (posterior mode) and a characterization of the parameter 
uncertainty. Several verification and validation tests were undertaken to ensure the Bayesian MCMC method 
employed by RMC-BestFit performs as expected. First, RMC-BestFit was verified using known theoretical solutions 
for the Normal distribution. Then, results from RMC-BestFit were compared with other widely used Bayesian software 
packages, such as R-Stan, evdbayes, and Flike. Finally, a comparison was made with flood frequency results from 
the Expected Moments Algorithm (EMA) (Cohn, Lane, & Baier, 1997) provided in the HEC-SSP software.  

Bayesian Analysis Framework 
In Bayesian analysis, the values of the flood frequency distribution parameters 𝜃𝜃 = �𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑝𝑝�  converge to a 
distribution rather than to a single best value. The uncertainty in the parameters is represented by a prior probability 
distribution 𝑃𝑃(𝜃𝜃), which is established based on information available a priori. This prior distribution is not derived from 
the observed flow data 𝐷𝐷 = (𝑋𝑋1, … ,𝑋𝑋𝑛𝑛), but instead comes from other sources that can be either subjective (e.g., 
expert opinion) or objective (e.g., previous statistical analyses or theory). After the prior distributions and the observed 
data are specified, Bayes’ theorem (Equation 13) is used to combine the a priori information about the parameters 
with the observed data, using the likelihood 𝑃𝑃(𝐷𝐷|𝜃𝜃) (Equation 14). 

𝑃𝑃(𝜃𝜃|D) =
𝑃𝑃(𝐷𝐷|𝜃𝜃) ∙ 𝑃𝑃(𝜃𝜃)

∫𝑃𝑃(𝐷𝐷|𝜃𝜃) ∙ 𝑃𝑃(𝜃𝜃) ∙ 𝑑𝑑𝜃𝜃
 Equation 13 

𝑃𝑃(𝐷𝐷|θ) =  �𝑓𝑓(𝑋𝑋𝑖𝑖|θ)
𝑛𝑛

𝑖𝑖=1

 Equation 14 

where 𝑃𝑃(𝜃𝜃|D) is the posterior probability density function (PDF) of 𝜃𝜃; 𝑃𝑃(𝜃𝜃) is the prior pdf of 𝜃𝜃; and 𝑃𝑃(𝐷𝐷|θ) is the 
likelihood function. The posterior cumulative distribution function (CDF) of 𝑋𝑋 now follows from the total probability 
theorem: 

𝐹𝐹(𝑋𝑋) =  �𝐹𝐹(𝑋𝑋|𝜃𝜃,𝐷𝐷) ∙ 𝑃𝑃(𝜃𝜃|𝐷𝐷) ∙ 𝑑𝑑𝜃𝜃  Equation 15 

which is a probability-weighted sum of the CDFs under different posterior parameter sets 𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛. Equation 15 is 
known as the Bayesian posterior predictive distribution, and is equivalent to the expected probability of exceedance 
concept first presented by (Beard, 1960). Stedinger (1983) and Kuczera (1999) refer to this integral as the design 
flood distribution, and it is considered the optimal estimator of an exceedance probability.  
In most cases, there is not a closed form solution to the denominator of Equation 13. Therefore, Monte Carlo 
simulation techniques such as MCMC are required. The RMC-BestFit software employs an adaptive Differential 
Evolution Markov Chain (DE-MCz) population-based sampler (ter Braak & Vrugt, 2008), which has proven to be very 
efficient. Several other MCMC algorithms have also been successfully used in flood frequency analysis [(Kuczera G. , 
1999); (Reis & Stedinger, 2005); (Viglione, Merz, Salinas, & Bloschl, 2013)].  
Figure 16 illustrates the basic steps in Bayesian analysis. The Bayesian approach offers a framework that is well-
suited to incorporate different sources of information, such as systematic flood records, historical floods, regional 
information, and other hydrologic information along with related uncertainties  (Viglione, Merz, Salinas, & Bloschl, 
2013). The Bayesian approach allows hydrologists to formally include their own expertise into the analysis by 
choosing a priori distributions. The possibility to combine this information with the observed data is even more 
important because, in hydrology, the samples are usually of limited size. Consequently, the Bayesian approach is 
more flexible and versatile than classical approaches.  
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Figure 16 – Diagram Illustrating the Basic Steps in Bayesian Analysis (adapted from (Meylan, 2012), which was originally taken  
(Perreault, 2000)). 

Theoretical Verification 
The Normal distribution is fundamental to most statistical modeling with well-known theoretical properties (Gelman, et 
al., 2014). The Normal distribution has two parameters: mean (location) and standard deviation (scale). From an 
objective Bayesian perspective, when the distribution for both mean and standard deviation are unknown, the 
resulting posterior distribution of the population mean and standard deviation is given by the following equations: 

𝐹𝐹(𝜕𝜕) = Φ�𝑥𝑥,
𝑠𝑠
√𝑛𝑛

� Equation 16 

𝐹𝐹(𝜕𝜕) = �
(𝑛𝑛 − 1) ∙ 𝑠𝑠2

𝜒𝜒(𝑛𝑛−1)
2  Equation 17 

where 𝜕𝜕 and 𝜕𝜕 are the population mean and standard deviation, respectively; �̅�𝑥 and 𝑠𝑠 are the sample mean and 
standard deviation, respectively; 𝑛𝑛 is the sample size; Φ is the Normal distribution; and 𝜒𝜒2 is the Chi-squared 
distribution with 𝑛𝑛 − 1 degrees of freedom. The posterior predictive distribution is then given by: 

𝐹𝐹(𝑋𝑋) =  𝑡𝑡𝑛𝑛−1

⎝

⎛ 𝑋𝑋 − 𝑥𝑥

𝑠𝑠 ∙ �1 + 1
𝑛𝑛⎠

⎞  Equation 18 

where �̅�𝑥 and 𝑠𝑠 are the sample mean and standard deviation, respectively; 𝑛𝑛 is the sample size; and 𝑡𝑡𝑛𝑛−1 is the 
Student’s t distribution with 𝑛𝑛 − 1 degrees of freedom. This equation is equivalent to the expected probability of 
exceedance concept presented in (Beard, 1960) and (U.S. Geological Survey, 1982). The confidence intervals for a 
quantile are derived using a Noncentral-t distribution as shown in (Stedinger J. R., 1982). The 100(1 − 2𝛼𝛼)% 
confidence interval for the quantile 𝑋𝑋𝑝𝑝 is: 

[𝑥𝑥 +  𝑠𝑠 ∙ 𝜁𝜁𝛼𝛼(𝑝𝑝), 𝑥𝑥 +  𝑠𝑠 ∙ 𝜁𝜁1−𝛼𝛼(𝑝𝑝)] Equation 19 

where 𝑥𝑥 and 𝑠𝑠 are the sample mean and standard deviation, respectively; 𝜁𝜁 is the Noncentral-t distribution with 𝑛𝑛 − 1 
degrees of freedom and noncentrality Φ−1(𝑝𝑝) ∙ √𝑛𝑛, where Φ−1 is the standard Normal variate of the desired 
probability, 𝑝𝑝, of exceedance. 
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Verification tests were performed using synthetic datasets for different sample sizes: 𝑛𝑛 = 30, 100,𝑉𝑉𝑛𝑛𝑑𝑑 500. The Log-
Normal (base 10) distribution was used for the verification testing because it is has traditionally been used for 
demonstration purposes in flood frequency analysis [ (U.S. Geological Survey, 1982), (Stedinger J. R., 1982), 
(Stedinger J. R., 1983), (Stedinger & Cohn, 1986), and (Reis & Stedinger, 2005)].  

Default Flat Priors 
RMC-BestFit automatically develops default flat (uniform) priors for the selected distribution, given the input data. The 
goal of this routine is to develop prior distributions that have minimal impact on the posterior distributions. This 
approach is sometimes referred to as vague priors, or weakly informative priors. Weakly informative priors contain 
information to keep the posterior within reasonable bounds without fully capturing one’s scientific knowledge about the 
underlying parameter (Gelman, et al., 2014). There are two approaches to developing a weakly informative prior as 
described by Gelman et al (2014): 

1. Start with some version of an uninformative prior distribution and then add enough information so that 
inferences are constrained to be reasonable.  
 

2. Start with a strong, highly informative prior and broaden it to account for uncertainty in one’s prior beliefs and 
in the applicability of any historically based prior distributions to new data.  

RMC-BestFit develops default flat priors by first considering the parent distribution and parameter support, and then 
peeking at the data to determine broad upper and lower constraints for the parameters. This ensures the prior 
distributions for parameters are somewhat centered near the likelihood, but with a much larger spread. The typical 
end-user of RMC-BestFit will likely not have much advanced training in Bayesian statistics. Therefore, the routine for 
default flat priors ensures the user will get reasonable results “out of the box.” The default flat priors used in RMC-
BestFit are verified through comparison with other Bayesian software (see the Comparison with R-Stan and 
Comparison with Evdbayes sections).  

Ever since Laplace advocated the principles of insufficient reason in the late eighteenth century, a flat, or uniform, 
distribution has been the obvious choice for an uninformative prior distribution (Efron & Hastie, 2016). However, 
uniform priors are not transformation invariant. This means that the uniform priors can lead to bias, especially with 
scale parameters. Figure 17 through Figure 19 show the RMC-BestFit results with default flat priors compared to the 
theoretical distributions. The posterior marginal distributions for mean agree well. However, the RMC-BestFit results 
for the posterior marginal for standard deviation are biased and slightly shifted to the right of the theoretical 
distribution. This leads to a slight shift in the credible intervals and posterior predictive distribution as seen in Figure 
19. 

 
Figure 17 – Comparison of RMC-BestFit with Default Flat Priors with the Theoretical Distribution for Mean (N = 30). 
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Figure 18 – Comparison of RMC-BestFit with Default Flat Priors with the Theoretical Distribution for Standard Deviation (N = 30). 

 

 

 
Figure 19 – Comparison of RMC-BestFit Frequency Curve with Default Flat Priors with the Theoretical Distribution (N = 30). 
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As the sample size increases, the influence of the prior distribution on posterior inferences decreases. In addition, the 
posterior marginal and joint distributions approach asymptotic Normality as the sample size approaches infinity. 
Figure 20 through Figure 25 illustrate this point. Using the default flat priors with RMC-BestFit with a sample size of 
100 results in very close agreement with the theoretical distributions. When the sample size is 500, there is near 
perfect agreement with the theoretical distributions. However, it is important to note that in practice a sample size of 
500 is rarely possible for flood frequency analysis.  

 
Figure 20 – Comparison of RMC-BestFit with Default Flat Priors with the Theoretical Distribution for Mean (N = 100). 

 

 
Figure 21 – Comparison of RMC-BestFit with Default Flat Priors with the Theoretical Distribution for Standard Deviation (N = 100). 
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Figure 22 – Comparison of RMC-BestFit Frequency Curve with Default Flat Priors with the Theoretical Distribution (N = 100). 

 

 
Figure 23 – Comparison of RMC-BestFit with Default Flat Priors with the Theoretical Distribution for Mean (N = 500). 
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Figure 24 – Comparison of RMC-BestFit with Default Flat Priors with the Theoretical Distribution for Standard Deviation (N = 500). 

 

 
Figure 25 – Comparison of RMC-BestFit Frequency Curve with Default Flat Priors with the Theoretical Distribution (N = 500). 
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Jeffreys’ Prior 
As previously stated, uniform priors are not transformation invariant. As a consequence, a more sophisticated version 
of Laplace’s principle was put forward by Jeffreys beginning in the 1930s. Jeffreys’ prior does in fact transform 
correctly under parameter changes. Jeffreys’ prior is considered an objective, or uninformative prior. The term 
“uninformative prior” is often interpreted to mean “gives Bayesian posterior intervals that closely match frequentist 
confidence intervals.” With this in mind, “uninformative” has a positive connotation, implying that the use of such a 
prior does not bias the resulting inference (Efron & Hastie, 2016). For location-scale models, Jeffreys’ prior for the 
location parameter is still a uniform distribution. However, for the scale parameter, 𝜕𝜕, the prior is simply: 

𝑓𝑓(𝜕𝜕) =
1
𝜕𝜕

 Equation 20 

For demonstration purposes, Jeffreys’ prior was implemented programmatically in RMC.BestFit.dll. Figure 26 through 
Figure 28 show that using Jeffreys’ prior results in near perfect agreement with the theoretical distributions. The 
results from RMC-BestFit when using the default flat priors versus Jeffreys’ prior are consistent with other examples in 
literature (Efron & Hastie, 2016).  

RMC-BestFit does not formally support the use of Jeffreys’ prior. In most applied contexts, there is no clear advantage 
to a truly uninformative prior like Jeffreys’ when sufficiently vague or weak priors will suffice. The bias shown in Figure 
19 would certainly not affect the statistical inference or change decisions in practice. The next section demonstrates 
that the same unbiased results from Jeffreys’ prior can be achieved using other weakly informative priors.  

 

 
Figure 26 – Comparison of RMC-BestFit with Jeffreys’ Prior with the Theoretical Distribution for Mean (N = 30). 
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Figure 27 – Comparison of RMC-BestFit with Jeffreys’ Prior with the Theoretical Distribution for Standard Deviation (N = 30). 

 

 
Figure 28 – Comparison of RMC-BestFit Frequency Curve with Jeffreys’ Prior with the Theoretical Distribution (N = 30). 
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Other Weakly Informative Priors 
RMC-BestFit allows the user to select prior distributions from several options: 

• Exponential 
• Gamma 
• Generalized Beta 
• Ln-Normal 
• Noncentral-t 
• Normal 
• PERT 
• Student-t 
• Triangular 
• Truncated Normal 
• Uniform 

There are other priors for the scale parameter that will produce the same unbiased posterior distributions as Jeffreys’ 
prior. For example, an Exponential distribution can be used for the prior for standard deviation, with the rate 
parameter for the Exponential distribution equal to the sample standard deviation of the data, as shown in Figure 29 
through Figure 31. In addition, the Ln-Normal distribution can be used as shown in Figure 32 and Figure 33, so long 
as the variance is large enough to not overly influence the posterior.  

 

 

 
Figure 29 – Default Flat Prior and Posterior for the Mean Parameter in RMC-BestFit.  
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Figure 30 – Exponential Prior and Posterior Distributions for the Standard Deviation Parameter in RMC-BestFit. 

 

 
Figure 31 – Comparison of RMC-BestFit with an Exponential Prior with the Theoretical Distribution for Standard Deviation (N = 30). 
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Figure 32 – Ln-Normal Prior and Posterior Distributions for the Standard Deviation Parameter in RMC-BestFit. 

 

 
Figure 33 – Comparison of RMC-BestFit with a Ln-Normal Prior with the Theoretical Distribution for Standard Deviation (N = 30). 

 

 

 



 
Verification of the Bayesian Estimation and Fitting Software (RMC-BestFit) 

 

 

  
43 

 

Conjugate Priors 
If the posterior distributions of the parent distribution parameters are in the same probability distribution family as the 
prior distributions, then the priors are called conjugate priors. In practice, conjugate priors have been popular because 
of the simpler computation of the posterior distributions. The MCMC sampler employed in RMC-BestFit does not 
require conjugate or conditionally conjugate priors, like that of a Gibbs sampler. Therefore, in a strict sense, conjugate 
priors are not implemented in RMC-BestFit. However, priors can be selected from the same family as the posterior. 
For example, the prior for the mean can be set as a Normal distribution centered at the sample mean, with very wide 
variance so as to not bias the posterior as shown in Figure 34. The prior for the standard deviation can be set as a 
Gamma distribution as shown in Figure 35 and Figure 36. When setting “uninformative” priors in this manner, it is 
important to set the variance very wide to not overly constrain the posterior. However, in general, rather than using the 
Gamma distribution, it is recommended to use the Exponential distribution as an alternative uninformative prior for 
scale parameters in RMC-BestFit, as previously demonstrated. 

Virtually all methods for deriving an uninformative prior are dependent on the model 𝑓𝑓(𝑋𝑋|𝜃𝜃). Therefore, there is no 
pure or correct approach that is strictly uninformative. Furthermore, if the data likelihood is truly dominant, then the 
choice among relatively flat or weakly informative priors will not matter. Nevertheless, it is important to verify that the 
posterior density is proper and to determine the sensitivity of posterior inferences to the choice of priors.  

 

 
Figure 34 – Normal Prior and Posterior for the Mean Parameter in RMC-BestFit.  
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Figure 35 – Gamma Prior and Posterior Distributions for the Standard Deviation Parameter in RMC-BestFit. 

 

 
Figure 36 – Comparison of RMC-BestFit with a Gamma Prior with the Theoretical Distribution for Standard Deviation (N = 30). 
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Informative Priors 
An informative prior provides specific, scientific information about the parameter. Prior information can be obtained 
from regional analysis, causal modeling, or expert elicitation. In flood frequency, an example of an informative prior 
would be the use of a regional skew (Kuczera G. , 1983) for the LPIII distribution as described in Bulletin 17B (U.S. 
Geological Survey, 1982) and 17C (U.S. Geological Survey, 2018). The “weighted skew” equation provided in Bulletin 
17B and 17C is the standard formula for the average of two independent Normal distributions: 

𝑅𝑅�𝑋𝑋𝑎𝑎𝑎𝑎 𝑠𝑠𝑖𝑖𝑎𝑎𝑠𝑠 ,𝑌𝑌𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛𝑎𝑎𝑟𝑟� =  
𝜕𝜕𝑋𝑋 ∙ 𝜕𝜕𝑌𝑌2 + 𝜕𝜕𝑌𝑌 ∙ 𝜕𝜕𝑋𝑋2

𝜕𝜕𝑋𝑋2 + 𝜕𝜕𝑌𝑌2
 Equation 21 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑋𝑋𝑎𝑎𝑎𝑎 𝑠𝑠𝑖𝑖𝑎𝑎𝑠𝑠,𝑌𝑌𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛𝑎𝑎𝑟𝑟� =  
𝜕𝜕𝑋𝑋2 ∙ 𝜕𝜕𝑌𝑌2

𝜕𝜕𝑋𝑋2 + 𝜕𝜕𝑌𝑌2
 Equation 22 

where 𝜕𝜕𝑋𝑋 and 𝜕𝜕𝑋𝑋2 are the at-site mean and variance for the skew parameter, respectively; and 𝜕𝜕𝑌𝑌 and 𝜕𝜕𝑌𝑌2 are the 
regional mean and variance of the skew parameter.  

The weighted skew equations provide a means for verifying the use of informative priors in RMC-BestFit. Large 
sample theory postulates that as sample sizes approach infinity, marginal and joint distributions become 
asymptotically Normally distributed. For a finite sample size n, this Normal approximation is typically more accurate for 
conditional and marginal distributions of components of the parent distribution than for the full joint distribution. As the 
sample size increases, the influence of the prior distribution on posterior inferences will decrease because the data 
likelihood will dominate. Taking this into account, regional prior information is most valuable when the at-site sample 
sizes are small relative to the effective sample size of the regional information.  

A verification was performed using inflows at Blakely Mountain Dam in Arkansas. In 2019, a hydrologic hazard 
assessment was performed which included a paleoflood analysis. The systematic gage record included 91 years of 
data. Historical flood data dating back to 1870 was incorporated into the analysis, for a total record length of 149 
years. The paleoflood analysis provided data dating back to at least 5,000 years of age. Historical and paleoflood data 
were incorporated using intervals and perception thresholds, so the effective record lengths were much shorter than 
the full 5,000 years. The posterior mode for the skew parameter, and the marginal mean and standard deviation of 
skew, for each dataset are shown in Table 68. 

Regional skew information was obtained from a USGS regional study of Arkansas, Oklahoma, and Louisiana 
(Wagner, Krieger, & Veilleux, 2016). From the USGS study, the regional skew was determined to be -0.17 with a 
mean-square error (MSE) of 0.12. This information was incorporated into the Bayesian analysis by setting the prior for 
the skew parameter of LPIII to be Normally distributed with a mean of -0.17 and standard deviation of 0.35, or √0.12.  

Verification results for each dataset are provided in Table 69 through Table 71 and illustrated in Figure 37 through 
Figure 39. The results from RMC-BestFit strongly agree with the theoretical approximation. The at-site posterior 
marginal distributions are not quite Normally distributed and exhibit some skewness. Therefore, the results will not 
match precisely with the theoretical solution. Nevertheless, the theoretical Normal approximation serves as a useful 
comparison.  

Generally, the stronger the prior (i.e., the more informative), the greater the influence it will have on the posterior. Yet, 
the asymptotic results formalize the notion that the importance of the prior distribution diminishes as the sample size 
increases (Gelman, et al., 2014). When the at-site sample sizes are small, the prior distribution is a critical part of the 
model specification. However, when the at-site sample sizes are very large, the prior distribution has little influence, 
and the data likelihood dominates the posterior. The results below confirm that the influence of the regional skew 
diminishes as the at-site data increases.  

Further verification of informative priors for parameters are provided in the Comparison with Flike and Comparison 
with EMA sections. Verification of informative priors on quantiles is provided in the Comparison with Viglione et al. 
(2013) and Comparison with Evdbayes sections.  
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Table 68 – Summary Statistics for the At-Site Skew Parameter for Each Dataset at Blakely Mountain Dam. 

Skew (of log) Systematic Historical Paleoflood 

Joint Posterior Mode  -0.4204 -0.4559 -0.3558 
Marginal Mean (µ) -0.3478 -0.3972 -0.3426 
Marginal Std. Deviation (σ) 0.2821 0.2569 0.1749 

 

 
Figure 37 – Marginal Distribution of Skew in RMC-BestFit for Systematic Data Only.  

 

 

Table 69 – Posterior Skew Statistics in RMC-BestFit Compared to the Theoretical Solution for Systematic Data Only.  

Skew (of log) Theoretical RMC-BestFit 

Joint Posterior Mode  -0.3206 -0.3113 
Marginal Mean (µ) -0.2769 -0.2864 
Marginal Std. Deviation (σ) 0.2187 0.2288 
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Figure 38 – Marginal Distribution of Skew in RMC-BestFit for Systematic and Historical Data. 

 

 

Table 70 – Posterior Skew Statistics in RMC-BestFit Compared to the Theoretical Solution for Systematic and Historical Data. 

Skew (of log) Theoretical RMC-BestFit 

Joint Posterior Mode  -0.3545 -0.3507 
Marginal Mean (µ) -0.3166 -0.3240 
Marginal Std. Deviation (σ) 0.2063 0.2166 
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Figure 39 – Marginal Distribution of Skew in RMC-BestFit for Systematic, Historical and Paleoflood Data. 

 

 

Table 71 – Posterior Skew Statistics in RMC-BestFit Compared to the Theoretical Solution for Systematic, Historical and 
Paleoflood Data. 

Skew (of log) Theoretical RMC-BestFit 

Joint Posterior Mode  -0.3181 -0.3165 
Marginal Mean (µ) -0.3075 -0.3105 
Marginal Std. Deviation (σ) 0.1561 0.1600 
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Comparison with R-Stan 
This section provides additional verification of the MCMC algorithm used in RMC-BestFit and the appropriateness of 
the default flat priors. Results from RMC-BestFit were compared to results from R-Stan, which is a widely used high-
level programming language for performing Bayesian statistical inference with MCMC sampling. R-Stan employs a 
state-of-the-art Hamiltonian Monte Carlo sampler capable of working with very complex models (Gelman, et al., 
2014). RMC-BestFit utilizes an adaptive Differential Evolution Markov Chain (DE-MCz) population-based sampler (ter 
Braak & Vrugt, 2008) for performing MCMC sampling, which is also a very efficient sampler.  

Similar to RMC-BestFit, R-Stan uses default uniform priors. The key difference is that R-Stan defaults to a uniform 
distribution bounded between negative infinity and positive infinity; whereas, RMC-BestFit develops weakly 
informative default flat priors that take into consideration the model and parameter support, and are broadly 
constrained by the data. A verification was performed to ensure the default flat priors in RMC-BestFit produced 
comparable results with R-Stan for the following distributions: Gumbel, Logistic, Normal, and Weibull. Both samplers 
were configured to be compatible with the following settings: 

• 4 chains. 
• Thinning rate of 20. 
• Warm-up of 3,000 draws. 
• 100,000 total posterior draws. 

Verification results are provided in the following subsections. Example code for R-Stan is provided in Figure 48 so that 
others will be able to reproduce these results. In each case, RMC-BestFit produces nearly identical results to R-Stan, 
which provides high confidence in the MCMC algorithm and the default priors.  

Gumbel 
The Gumbel distribution was verified using the Sugar Creek at Crawfordsville, Indiana dataset provided in Flood 
Frequency Analysis (Rao & Hamed, 2000) and shown in Table 36. Summary statistics results for the Gumbel 
distribution parameters are provided in Table 72 and Table 73. Kernel density plots are provided in Figure 40 and 
Figure 41.  

Table 72 – Parameter Summary Statistics for the Gumbel Distribution from R-Stan. 

Parameter Mean Std. Dev. 2.5% 50% 97.5% 

Location (ξ) 8,060.56 677.60 6,742.87 8,056.17 9,409.39 
Scale (α) 4,654.65 522.15 3,757.72 4,611.37 5,797.42 

 

 

Table 73 – Parameter Summary Statistics for the Gumbel Distribution from RMC-BestFit. 

Parameter Mean Std. Dev. 2.5% 50% 97.5% 

Location (ξ) 8,059.04 678.34 6,742.18 8,051.37 9,418.29 
Scale (α) 4,656.04 518.77 3,761.00 4,614.79 5,791.56 
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Figure 40 – Comparison of RMC-BestFit with R-Stan for the Gumbel Distribution Location Parameter. 

 

 

 

 
Figure 41 – Comparison of RMC-BestFit with R-Stan for the Gumbel Distribution Scale Parameter. 
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Logistic 
The Logistic distribution was verified using the Tippecanoe River near Delphi, Indiana dataset provided in Flood 
Frequency Analysis (Rao & Hamed, 2000) and shown in Table 3 under the Normal distribution section. Summary 
statistics results for the Logistic distribution parameters are provided in Table 74 and Table 75. Kernel density plots 
are provided in Figure 42 and Figure 43.  

Table 74 – Parameter Summary Statistics for the Logistic Distribution from R-Stan. 

Parameter Mean Std. Dev. 2.5% 50% 97.5% 

Location (ξ) 12,626.30 713.55 11,225.80 12,629.17 14,028.70 
Scale (α) 2,823.36 347.23 2,226.02 2,794.33 3,584.00 

 

 

Table 75 – Parameter Summary Statistics for the Logistic Distribution from RMC-BestFit. 

Parameter Mean Std. Dev. 2.5% 50% 97.5% 

Location (ξ) 12,630.79 714.36 11,224.60 12,630.88 14,038.12 
Scale (α) 2,821.31 349.51 2,222.60 2,792.57 3,591.59 

 

 

 

 
Figure 42 – Comparison of RMC-BestFit with R-Stan for the Logistic Distribution Location Parameter. 
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Figure 43 – Comparison of RMC-BestFit with R-Stan for the Logistic Distribution Scale Parameter. 

 

Normal 
The Normal distribution was verified using the Tippecanoe River near Delphi, Indiana dataset provided in Flood 
Frequency Analysis (Rao & Hamed, 2000) and shown in Table 3 under the Normal distribution section. Summary 
statistics results for the Normal distribution parameters are provided in Table 76 and Table 77. Kernel density plots 
are provided in Figure 44 and Figure 45. 

Table 76 – Parameter Summary Statistics for the Normal Distribution from R-Stan. 

Parameter Mean Std. Dev. 2.5% 50% 97.5% 

Mean (µ) 12,662.15 702.90 11,270.56 12,663.38 14,048.01 
Std. Deviation (σ) 4,840.77 517.27 3,958.41 4,796.07 5,979.78 

 

 

Table 77 – Parameter Summary Statistics for the Normal Distribution from RMC-BestFit. 

Parameter Mean Std. Dev. 2.5% 50% 97.5% 

Mean (µ) 12,668.00 701.98 11,288.64 12,669.17 14,059.29 
Std. Deviation (σ) 4,840.15 516.12 3,957.46 4,795.30 5,977.51 

 

 



 
Verification of the Bayesian Estimation and Fitting Software (RMC-BestFit) 

 

 

  
53 

 

 
Figure 44 – Comparison of RMC-BestFit with R-Stan for the Normal Distribution Mean Parameter. 

 

 

 
Figure 45 – Comparison of RMC-BestFit with R-Stan for the Normal Distribution Std. Deviation Parameter. 
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Weibull 
The Weibull distribution was verified using the Tippecanoe River near Delphi, Indiana dataset provided in Flood 
Frequency Analysis (Rao & Hamed, 2000) and shown in Table 3 under the Normal distribution section. Summary 
statistics results for the Weibull distribution parameters are provided in Table 78 and Table 79. Kernel density plots 
are provided in Figure 46 and Figure 47. 

Table 78 – Parameter Summary Statistics for the Weibull Distribution from R-Stan. 

Parameter Mean Std. Dev. 2.5% 50% 97.5% 

Scale (λ) 14,294.43 744.91 12,869.45 14,282.53 15,800.01 
Shape (κ) 2.9800 0.3400 2.3400 2.9700 3.6700 

 

 

Table 79 – Parameter Summary Statistics for the Weibull Distribution from RMC-BestFit. 

Parameter Mean Std. Dev. 2.5% 50% 97.5% 

Scale (λ) 14,293.56 745.62 12,865.77 14,280.83 15,793.87 
Shape (κ) 2.9785 0.3390 2.3428 2.9680 3.6744 

 

 

 

 
Figure 46 – Comparison of RMC-BestFit with R-Stan for the Weibull Distribution Scale Parameter. 
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Figure 47 – Comparison of RMC-BestFit with R-Stan for the Weibull Distribution Shape Parameter. 
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library(rstan) 
 
# This is example code for R-Stan with the Normal distribution. 
# Stan will automatically compile this block of code to significantly reduce runtimes. 
stan_code <- 'data {int N; real x[N];} 
                      parameters {real mu; real<lower = 0> sigma;} 
                      model {for(n in 1:N){target +=  normal_lpdf(x[n] | mu, sigma);}}' 
model <- stan_model(model_code=stan_code) 
 
# Reference: "Flood Frequency Analysis", A.R. Rao & K.H. Hamed, CRC Press, 2000. 
# Table 5.1.1 Tippecanoe River Near Delphi, Indiana (Station 43) Data. 
gageData = c(6290, 2700, 13100, 16900, 14600, 9600, 7740, 8490, 8130, 12000, 17200, 15000,  
                      12400, 6960, 6500, 5840, 10400, 18800, 21400, 22600, 14200, 11000, 12800, 15700,  
                      4740, 6950, 11800, 12100, 20600, 14600, 14600, 8900, 10600, 14200, 14100, 14100,  
                      12500, 7530, 13400, 17600, 13400, 19200, 16900, 15500, 14500, 21900, 10400, 7460) 
 
# Get the mean and standard deviation of the gage data. 
m <- mean(gageData)  
s <- sd(gageData)  
# 12665.21 
# 4709.742 
 
# Estimate the posterior mode parameter set using Maximum Likelihood Estimation (MLE). 
mle = optimizing(model, data=list(x=gageData, N=length(gageData)),  
                            algorithm="LBFGS", init=list(mu=m, sigma=s)) 
 
# Output the MLE results. 
print(mle) 
#             mu       sigma  
# 12665.208  4660.398 
 
# Perform Bayesian estimation using R-Stan. 
# Simulation settings are compatible with RMC-BestFit. 
options(mc.cores = parallel::detectCores()) 
fit <- sampling(model, data=list(x=gageData, N=length(gageData)),  
                warmup=15000, iter=515000, chains=4, thin=20) 
 
# Output the summary statistics for the Bayesian estimated parameters. 
print(fit, probs=c(0.025, 0.5, 0.975)) 
 
#              mean se_mean       sd     2.5%      50%    97.5%          n_eff Rhat 
# mu      12667.57    2.23 702.61 11290.92 12666.72 14058.52  99450    1 
# sigma   4839.08    1.65 518.56   3953.29    4795.90  5980.64  98257    1 
# lp__      -466.13    0.00      1.02   -468.86     -465.82   -465.13 100699    1 
 
# Plot Markov Chain trace plots. 
stan_trace(fit, inc_warmup = FALSE) 
 
# Plot kernel density estimates for each parameter. 
stan_dens(fit, pars = "mu") 
stan_dens(fit, pars = "sigma") 
 
# Write parameter sets to text file. 
list_of_draws <- extract(fit, pars = "mu") 
lapply(list_of_draws, write, "Normal_mu.txt", append=FALSE) 
list_of_draws <- extract(fit, pars = "sigma") 
lapply(list_of_draws, write, "Normal_sigma.txt", append=FALSE) 

Figure 48 – Example code for R-Stan for MCMC Sampling with the Normal Distribution. 
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Comparison with Viglione et al. (2013) 
Viglione et al. (2013) and (Skahill, Viglione, & Byrd, 2016) present a Bayesian analysis framework for combining and 
evaluating the worth of different types of additional data (i.e., temporal, spatial, and causal) in a flood frequency 
analysis. Temporal information expansion is directed toward collecting information on the flood behavior before (or 
after) the systematic data period (Viglione, Merz, Salinas, & Bloschl, 2013). Spatial information expansion is based on 
using flood information from neighboring catchments to improve flood frequency estimates at the site of interest. 
Causal information expansion analyzes the generating mechanisms of floods in the catchment of interest (Merz & 
Bloschl, 2008). 

Temporal information is added to the Bayesian analysis through the inclusion of interval- and threshold-censored data 
in the likelihood function as discussed in the Maximum Likelihood Estimation (MLE) section. Regional information on 
distribution parameters can be incorporated through the use of informative priors, as shown in the Informative Priors 
section. Causal information is incorporated into the analysis by first defining the prior distribution for a flood quantile: 

ℎ(𝑄𝑄𝑃𝑃) =  𝑁𝑁(𝜕𝜕𝑃𝑃 ,𝜕𝜕𝑃𝑃) Equation 23 

where 𝑄𝑄𝑃𝑃 is the flood discharge for a specific annual exceedance probability 𝑃𝑃; and ℎ(∙) is the PDF of the Normally 
distributed variable 𝑄𝑄𝑃𝑃. 𝑄𝑄𝑃𝑃 is determined from the inverse cdf  𝐹𝐹−1(∙) of the parent distribution conditional on the 
parameters: 

𝑄𝑄𝑃𝑃 =  𝐹𝐹−1(𝑃𝑃|𝜃𝜃) Equation 24 

The inverse CDF is then plugged into the PDF of the quantile prior to get: 

𝜋𝜋(𝜃𝜃) =  ℎ�𝐹𝐹−1(𝑃𝑃|𝜃𝜃)� Equation 25 

During the Bayesian MCMC routine, the likelihood of the various components are multiplied by the quantile prior 
𝜋𝜋(𝜃𝜃) to calculate a posterior distribution of the parameters, which is consistent with a reasonable range of 𝑄𝑄𝑃𝑃. The 
overall likelihood function is then constructed by multiplying all of the components: 

𝐿𝐿(𝐷𝐷|θ) =  𝐿𝐿𝑆𝑆(𝐷𝐷|θ) ∙  𝐿𝐿𝐿𝐿(𝐷𝐷|θ) ∙  𝐿𝐿𝐼𝐼(𝐷𝐷|θ) ∙ 𝜋𝜋(𝜃𝜃) Equation 26 

It can be seen in Equation 26 that the causal indicator 𝜋𝜋(𝜃𝜃) behaves similarly to a penalty function, in that it rewards 
parameter sets that produce a reasonable likelihood of 𝑄𝑄𝑃𝑃 and discounts those that do not. All other things being 
equal, parameter sets that do not agree well with ℎ(𝑄𝑄𝑃𝑃) will have lower likelihoods than those that do.  

Skahill et al. (2016) independently revisited components of the example originally profiled by (Viglione, Merz, Salinas, 
& Bloschl, 2013), performing eight distinct MCMC simulations using the Kamp at Zwettl dataset. A summary of the 
simulations performed are provided in Table 80. 

Table 80 – Summary of the Eight Distinct MCMC Simulation (Skahill, Viglione, & Byrd, 2016). 

MCMC Simulation Data of the Kamp at Zwettl 

1 Systematic data (1951-2001) 
2 Systematic data (1951-2005) 
3 Systematic data (1951-2001) + temporal information expansion 
4 Systematic data (1951-2005) + temporal information expansion 
5 Systematic data (1951-2001) + causal information expansion 
6 Systematic data (1951-2005) + causal information expansion 
7 Systematic data (1951-2001) + temporal + causal information expansion 
8 Systematic data (1951-2005) + temporal + causal information expansion 

 

 



 
Verification of the Bayesian Estimation and Fitting Software (RMC-BestFit) 

 

 

  
58 

 

For each MCMC simulation, the posterior mode (PM) estimate for the GEV parameters and the 100-yr and 1,000-yr 
discharges, including the 90% credible interval, were provided in (Skahill, Viglione, & Byrd, 2016). The same eight 
simulations were performed using RMC-BestFit and compared with the results from Skahill et al. (2016). The default 
flat priors for the GEV were used with 100,000 posterior parameter sets. Results are provided in Table 81 through 
Table 83. RMC-BestFit produces nearly identical results for each scenario.  

Table 81 – Comparison RMC-BestFit with (Skahill, Viglione, & Byrd, 2016) for Posterior Mode Parameters for the GEV Distribution. 

MCMC Simulation 
Skahill et al. (2016) - GEV Parameters RMC-BestFit - GEV Parameters 

Location (ξ) Scale (α) Shape (κ) Location (ξ) Scale (α) Shape (κ) 
1 42.9 20.2 -0.096 42.9 20.2 -0.096 
2 41.7 20.7 -0.310 41.8 20.7 -0.310 
3 43.4 21.7 -0.222 43.3 21.6 -0.221 
4 42.6 21.5 -0.281 42.7 21.5 -0.279 
5 41.9 21.0 -0.313 41.8 21.0 -0.312 
6 41.6 20.8 -0.333 41.6 20.8 -0.333 
7 42.7 21.8 -0.291 42.7 21.8 -0.292 
8 42.5 21.5 -0.313 42.5 21.6 -0.311 

 

 

Table 82 – Comparison RMC-BestFit with (Skahill, Viglione, & Byrd, 2016) for the 100-yr Quantile. 

MCMC Simulation 
Skahill et al. (2016) - Q100 (m3/s) RMC-BestFit - Q100 (m3/s) 

PM 5% 95% PM 5% 95% 
1 160 130 288 160 128 288 
2 253 184 542 253 184 545 
3 217 176 291 216 176 291 
4 244 197 331 244 197 331 
5 258 193 307 257 192 307 
6 269 217 317 269 216 317 
7 253 206 299 254 207 299 
8 264 220 308 263 220 308 

 

 

Table 83 – Comparison RMC-BestFit with (Skahill, Viglione, & Byrd, 2016) for the 1,000-yr Quantile. 

MCMC Simulation 
Skahill et al. (2016) - Q1000 (m3/s) RMC-BestFit - Q1000 (m3/s) 

PM 5% 95% PM 5% 95% 
1 241 183 649 240 163 654 
2 543 317 1853 544 310 1952 
3 399 278 647 396 274 656 
4 497 347 818 495 339 836 
5 557 335 702 554 329 725 
6 604 418 747 604 411 768 
7 527 369 671 529 362 684 
8 571 418 708 568 410 725 
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The method for incorporating a quantile prior proposed by Viglione et al. (2013), and described above, is similar to the 
weighting of two independent and Normally distributed estimates using Equation 21 and Equation 22 from the 
Informative Priors section. Accordingly, a comparison was performed between RMC-BestFit and the theoretical 
weighting method. 

Simulation #1 used the systematic Kamp at Zwettl dataset for years 1951-2001. Simulation #3 combined the 
systematic dataset with historical (temporal) information dating back to year 1600. The mean and standard deviation 
of the at-site 500-year quantile for the two datasets are shown in Table 84. 

In Viglione et al. (2013), expert elicitation was used to determine a prior for the 500-year quantile (0.002 exceedance 
probability), which was set as a Normal distribution with mean of 480 m3/s and standard deviation of 80 m3/s. 
Simulation #5 was performed using the systematic data plus the quantile prior. Simulation #7 used the systematic 
data plus the historical data and the quantile prior. Results for each dataset are provided in Table 85 and Table 86 
and illustrated in Figure 49 and Figure 50, respectfully.  

The results from RMC-BestFit agree reasonably well with the theoretical approximation. However, recall that the 
theoretical approximation assumes the two estimates are Normally distributed. It can be seen in Figure 49 that the 
quantile distribution for simulation #1 (systematic data only) exhibits considerable skewness. Therefore, it would be 
unreasonable to expect the theoretical weighting solution to match RMC-BestFit since the Normality assumption is not 
satisfied. As the at-site data increases, the Normality assumption becomes more reasonable and the theoretical 
approximation can be expected to perform better. Figure 50 shows the quantile distribution for simulation #3 (historical 
data), which has less skewness than simulation #1. As expected, the theoretical solution more closely matches RMC-
BestFit for this dataset as shown in Table 86. 

Table 84 – Summary Statistics for the At-Site 500-Year Quantile for Kamp at Zwettl. 

Q500 (m3/s) Simulation #1 Simulation #3 

Mean (µ) 264.67 350.73 
Std. Deviation (σ) 148.02 87.93 

 

 

Figure 49 – Distributions of Quantile Q500 in RMC-BestFit for MCMC Simulation #5.  
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Table 85 – Posterior Quantile Statistics in RMC-BestFit Compared to the Theoretical Solution for MCMC Simulation #5.  

Q500 (m3/s) Theoretical RMC-BestFit 

Mean (µ) 431.32 421.37 
Std. Deviation (σ) 70.38 83.75 

 

 

 

Figure 50 – Distributions of Quantile Q500 in RMC-BestFit for MCMC Simulation #7. 

 

 

Table 86 – Posterior Quantile Statistics in RMC-BestFit Compared to the Theoretical Solution for MCMC Simulation #7.  

Q500 (m3/s) Theoretical RMC-BestFit 

Mean (µ) 421.46 416.10 
Std. Deviation (σ) 59.17 67.65 
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Comparison with Evdbayes 
The evdbayes package is an add-on package for the R programming environment that provides functions for the 
Bayesian analysis of extreme value models using MCMC (Stephenson & Ribatet, 2006). The evdbayes package 
provides several options for priors, including an option for setting priors on distribution quantiles following the 
approach used in (Coles & Tawn, 1996). This same approach is also implemented in RMC-BestFit.  

A prior distribution can be constructed in terms of the quantiles �𝑞𝑞𝑝𝑝1,𝑞𝑞𝑝𝑝2,𝑞𝑞𝑝𝑝3� for specified exceedance probabilities 
𝑝𝑝1 < 𝑝𝑝2 < 𝑝𝑝3. Since 𝑞𝑞𝑝𝑝1 > 𝑞𝑞𝑝𝑝2 > 𝑞𝑞𝑝𝑝3 it is easier to work with differences �𝑞𝑞�𝑝𝑝1,𝑞𝑞�𝑝𝑝2,𝑞𝑞�𝑝𝑝3�, where 𝑞𝑞�𝑝𝑝𝑖𝑖 = 𝑞𝑞𝑝𝑝𝑖𝑖 − 𝑞𝑞𝑝𝑝𝑖𝑖−1. The 
number of exceedance probabilities must be equal to the number of distribution parameters. For example, for the 
GEV distribution there must be three quantile priors with three quantile differences. The priors on the quantile 
differences are assumed to be independent and Gamma distributed with 𝑞𝑞�𝑝𝑝1~ 𝐺𝐺𝑉𝑉𝐺𝐺𝐺𝐺𝑉𝑉(𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖). This leads to the prior 
density for the GEV quantiles as: 

𝜋𝜋(𝜃𝜃) =  | J | ∙�𝑞𝑞�𝑝𝑝𝑖𝑖

3

𝑖𝑖=1

 Equation 27 

where J is the Jacobian of the transformation from �𝑞𝑞𝑝𝑝1,𝑞𝑞𝑝𝑝2,𝑞𝑞𝑝𝑝3� to 𝜃𝜃 = (𝜉𝜉,𝛼𝛼, 𝜅𝜅). More details on this method can be 
found in (Coles & Tawn, 1996) and (Smith, 2005). This approach for quantile priors has been generalized to work for 
any of the thirteen probability distributions offered in RMC-BestFit.  

First, before verifying the method for quantile priors, a comparison was performed with uninformative priors using the 
Kamp at Zwettl dataset from 1951-2001 (Viglione, Merz, Salinas, & Bloschl, 2013). Example code for evdbayes is 
provided in Figure 51 so that others will be able to reproduce these results. The evdbayes package provides summary 
statistics for the GEV parameters, return period plots, and the posterior predictive distribution. For this comparison, 
the default flat priors were used in RMC-BestFit with 100,000 posterior parameter sets. In evdbayes, the priors for 
parameters are set to be a multivariate Normal distribution with very large variances in order to make them 
uninformative. Summary statistics of the verification results are provided in Table 87 and Table 88, and a frequency 
curve plot comparing curves is provided in Figure 52. It can be seen that RMC-BestFit and evdbayes produce 
effectively identical results. In addition, Figure 52 provides further confirmation that RMC-BestFit is correctly 
computing the posterior predictive distribution.  

Table 87 – Parameter Summary Statistics from Evdbayes with Uninformative Priors. 

Parameter Mean Std. Dev. 2.5% 50% 97.5% 

Location (ξ) 42.3582 3.335 35.98100 42.2910 49.1315 
Scale (α) 20.9698 2.703 16.31164 20.7482 26.8899 
Shape (κ) -0.1252 0.129 -0.4056 -0.1154 0.9938 

 

Table 88 – Parameter Summary Statistics from RMC-BestFit with Uninformative Priors. 

Parameter Mean Std. Dev. 2.5% 50% 97.5% 

Location (ξ) 43.0466 3.4184 36.6124 42.9615 49.9683 
Scale (α) 21.5134 2.8006 16.6868 21.2830 27.6154 
Shape (κ) -0.1162 0.1312 -0.4020 -0.1065 0.1107 
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library(evd) 
library(evdbayes) 
library(coda) 
 
# This is example code with evdbayes with the GEV distribution and uninformative priors. 
# Kamp at Zwettl, 1951-2001. Dataset from Viglione (2013). 
gageData = c(135, 52, 45, 95, 54, 94, 95, 56, 140, 72, 50.9, 54, 105, 53, 62, 51, 58, 39, 62, 68,  
             44, 52, 36, 60, 100, 41.2, 60.2, 19.7, 50.6, 35.6, 46.1, 42, 26, 32.1, 89.1, 29,  
             58.3, 46.4, 20.9,  17, 74.4, 22.6, 73.2, 41.8, 34.6, 120, 43, 23.7, 56.9, 30.4, 21.8) 
    
# Estimate the posterior mode parameter set using Maximum Likelihood Estimation (MLE).  
mle <- fgev(x=gageData, method="Nelder-Mead", std.err = FALSE) 
print(mle) 
# Estimates 
#           loc     scale     shape   
# 42.91251  20.20805   0.09625   
 
# Set up MCMC inputs 
gevCovMatrix <- diag(c(1000, 1000, 10))  
gevPriors <- prior.norm(mean=c(0,0,0), cov=gevCovMatrix) 
initialVals <-c(as.numeric(mle$param[1]), as.numeric(mle$param[2]),as.numeric(mle$param[3]))  
gevPosteriors <- posterior(n=2000000, init=initialVals, prior=gevPriors, lh="gev",  
                           data=gageData, psd=c(5,.1,.1), burn=60000, thin=as.integer(20)) 
# Run MCMC  
gevMCMC <- mcmc(gevPosteriors) 
 
# Output the summary statistics for the Bayesian estimated parameters. 
summary(gevMCMC) 
# Note: The sign of the shape parameter (xi) is reverse of the  
# Hosking parameterization (kappa) used in RMC-BestFit. 
# 
#               Mean       SD  Naive SE Time-series SE 
# mu     42.3582  3.335 0.0107066      0.0113403 
# sigma 20.9698  2.703 0.0086788      0.0095153 
# xi          0.1252  0.129 0.0004143      0.0004477 
#    
#                  2.5%         25%       50%       75%   97.5% 
# mu      35.98100 40.09090 42.2910 44.5371 49.1315 
# sigma 16.31164 19.06830 20.7482 22.6337 26.8899 
# xi         -0.09938  0.03437    0.1154  0.2049    0.4056 
 
# Plot Markov chain trace plots and kernel density estimates for each parameter. 
plot(gevMCMC) 
 
# Plot frequency curve with confidence intervals. 
rl.pst(gevMCMC, lh="gev", ylim=c(10,2000), ci=0.95) 
print(rl.pst(gevMCMC, lh="gev", ylim=c(10,2000), ci=0.95)) 
 
# Plot posterior predictive curve. 
rl.pred(gevMCMC, lh="gev", qlim=c(10,3000)) 
print(rl.pred(gevMCMC, lh="gev", qlim=c(10,3000))) 

Figure 51 – Example code for evdbayes with uninformative priors. 
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Figure 52 – Comparison of RMC-BestFit with Evdbayes with Uninformative Priors. 

 

The next verification compared RMC-BestFit with evdbayes with informative priors on quantiles. In RMC-BestFit, the 
user specifies priors on quantiles using a Normal distribution because it is more intuitive than specifying the Gamma 
distributed quantile differences. The Gamma distributions for quantile differences are estimated automatically in the 
code behind. Using the mean and variance of the difference between two independent Normal distributions, the scale 
and shape parameters of the Gamma distribution are then estimated using the direct method of moments. Table 89 
provides a summary of the prior distributions used for this example.  

Table 89 – Summary of Prior Distributions on Quantiles. 

Exceedance 
Probability 

Normal Distribution for 
Quantiles 

Gamma Distribution for 
Differences 

Mean Std. Dev. Scale Shape 
0.1 100 20 4.00 25.00 
0.01 250 40 13.33 11.25 
0.001 500 60 20.80 12.02 

 

Example code for evdbayes with informative priors is provided in Figure 54. Summary statistics of the verification 
results are provided in Table 90 and Table 91, and a frequency curve plot comparing curves is provided in Figure 53. 
RMC-BestFit and evdbayes produce nearly identical results.  

Table 90 – Parameter Summary Statistics from Evdbayes with Informative Priors on Quantiles. 

Parameter Mean Std. Dev. 2.5% 50% 97.5% 

Location (ξ) 41.4307 3.0918 35.5680 41.3467 47.7391 
Scale (α) 20.7700 2.4520 16.3861 20.6195 26.0375 
Shape (κ) -0.2694 0.0488 -0.3608 -0.2709 -0.1699 
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Table 91 – Parameter Summary Statistics from RMC-BestFit with Informative Priors on Quantiles. 

Parameter Mean Std. Dev. 2.5% 50% 97.5% 

Location (ξ) 41.4281 3.1001 35.5634 41.3612 47.7805 
Scale (α) 20.7617 2.4513 16.4351 20.5992 25.9730 
Shape (κ) -0.2690 0.0490 -0.3614 -0.2703 -0.1689 

 

 

Figure 53 – Comparison of RMC-BestFit with Evdbayes with Informative Priors on Quantiles. 
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library(evd) 
library(evdbayes) 
library(coda) 
 
# This is example code with evdbayes with the GEV distribution and Informative priors. 
# Kamp at Zwettl, 1951-2001. Dataset from Viglione (2013). 
gageData = c(135, 52, 45, 95, 54, 94, 95, 56, 140, 72, 50.9, 54, 105, 53, 62, 51, 58, 39, 62, 68,  
             44, 52, 36, 60, 100, 41.2, 60.2, 19.7, 50.6, 35.6, 46.1, 42, 26, 32.1, 89.1, 29,  
             58.3, 46.4, 20.9,  17, 74.4, 22.6, 73.2, 41.8, 34.6, 120, 43, 23.7, 56.9, 30.4, 21.8) 
    
# Estimate the posterior mode parameter set using Maximum Likelihood Estimation (MLE).      
mle <- fgev(x=gageData, method="Nelder-Mead", std.err = FALSE) 
print(mle) 
#           loc         scale     shape   
# 42.91251  20.20805   0.09625   
 
# Set up MCMC inputs 
gevPriors <- prior.quant(shape=c(25,6.25,6.25), scale=c(4,24,40)) 
initialVals <-c(as.numeric(mle$param[1]), as.numeric(mle$param[2]),as.numeric(mle$param[3]))  
gevPosteriors <- posterior(n=2000000, init=initialVals, prior=gevPriors, lh="gev",  
                           data=gageData, psd=c(5,.1,.1), burn=60000, thin=as.integer(20)) 
 
# Estimate maximum a posteriori (MAP) 
map <- mposterior(data=gageData, init=initialVals, prior=gevPriors, lh="gev", method="Nelder-Mead", 
control=list(maxit=20000)) 
print(map) 
# 41.2176265 19.9717628  0.2817834 
 
# Run MCMC  
gevMCMC <- mcmc(gevPosteriors) 
 
# Output the summary statistics for the Bayesian estimated parameters. 
summary(gevMCMC) 
# Note: The sign of the shape parameter kappa is reverse of the  
# Hosking parameterization used in RMC-BestFit. 
# 
#              Mean        SD  Naive SE Time-series SE 
# mu     41.4307 3.0918 0.0099271      0.0105737 
# sigma 20.7700 2.4520 0.0078727      0.0086493 
# xi          0.2694 0.0488 0.0001567      0.0001637 
#    
#                2.5%       25%       50%     75%     97.5% 
# mu     35.5680 39.3004 41.3467 43.4675 47.7391 
# sigma 16.3861 19.0696 20.6195 22.3158 26.0375 
# xi          0.1699   0.2376   0.2709    0.3028  0.3608 
 
# Plot Markov chain trace plots and kernel density estimates for each parameter. 
plot(gevMCMC) 
 
# Plot frequency curve with confidence intervals. 
rl.pst(gevMCMC, lh="gev", ylim=c(10,2000), ci=0.95) 
print(rl.pst(gevMCMC, lh="gev", ylim=c(10,2000), ci=0.95)) 
 
# Plot posterior predictive curve. 
rl.pred(gevMCMC, lh="gev", qlim=c(10,3000)) 
print(rl.pred(gevMCMC, lh="gev", qlim=c(10,3000))) 

Figure 54 – Example code for evdbayes with Informative Priors on Quantiles. 



 
Verification of the Bayesian Estimation and Fitting Software (RMC-BestFit) 

 

 

  
66 

 

Comparison with Flike 
A comparison was made with Flike (Kuczera G. , 1999), which is a Bayesian flood frequency analysis software 
developed by Professor George Kuczera from the School of Civil Engineering at the University of Newcastle, 
Australia. Flike is compliant with the recent major revision of Australian industry guidelines for flood estimation, 
documented in the update of Australian Rainfall and Runoff (ARR). Flike uses a novel importance sampling approach 
for estimating the posterior rather than Bayesian MCMC. In addition, Flike samples prior distributions using a 
multivariate Normal distribution, with the default priors set to have very large variances in order to make them 
uninformative. 

There are a number of self-training examples on the Flike website7. The examples most comparable with RMC-
BestFit are examples 3 through 6. Example #3 demonstrates a flood frequency analysis using the procedures 
described in Australian Rainfall and Runoff Book 3: Peak Discharge Estimation8. Specifically, this example covers the 
fitting of a LPIII distribution to an annual maximum series for the Hunter River at Singleton. Results are shown in 
Figure 55. Flike does not output the posterior mode; however, it does provide the posterior predictive distribution and 
the posterior mean quantile curve. For this example, a comparison was made with the credible intervals and the 
posterior predictive distribution. As can be seen, RMC-BestFit and Flike produce the same results.  

 
Figure 55 – Comparison of RMC-BestFit and Flike for Example #3. 

 

Example #4 is a continuation of Example #3 and it examines the benefit of using binomial censored historical flood 
information. RMC-BestFit doesn't permit right censored thresholds. Nevertheless, RMC-BestFit can still replicate the 
binomial-censored example using an interval and setting the upper bound to be extremely large, approaching infinity. 
Results for Example #4 are shown in Figure 56. RMC-BestFit and Flike produce the same results for this example. 

                                                      
7 https://flike.tuflow.com 
8 http://arr.ga.gov.au/arr-guideline 

https://flike.tuflow.com/
http://arr.ga.gov.au/arr-guideline
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Figure 56 – Comparison of RMC-BestFit and Flike for Example #4. 

 

Example #5 examines the use of regional information, building on Example #3. In this example, a regional skew 
analysis was performed and the regional skew was estimated to be 0.00 with a MSE of 0.09. This information was 
incorporated into the Bayesian analysis by setting the prior for the skew parameter of LPIII to be Normally distributed 
with a mean of 0.00 and standard deviation of 0.30. The Flike website only provides results for the credible intervals 
and posterior mean quantile for this example. Therefore, only the credible intervals were compared. As shown in 
Figure 57, RMC-BestFit and Flike produce the same credible intervals for this example.  

Example #6 is a two-part example demonstrating censoring using the MGBT. The example uses 56 years of annual 
maximum discharges for the Wimmera River at Glynwylin. In the first part of this example, the GEV distribution was fit 
to the at-site data without removal of low outliers. The Flike website only provides results for the credible intervals for 
this example. Results are shown in Figure 58 below. RMC-BestFit and Flike results are equivalent. Next, the MGBT 
test was used to remove low outliers and replace them with a left-censored threshold. This approach is consistent with 
Bulletin 17C (U.S. Geological Survey, 2018), and is implemented in HEC-SSP and RMC-BestFit. The results for part 
two of Example #6 are shown in Figure 59. Again, RMC-BestFit and Flike produce the same results.  
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Figure 57 – Comparison of RMC-BestFit and Flike for Example #5. 

 
Figure 58 – Comparison of RMC-BestFit and Flike for Example #6a. 
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Figure 59 – Comparison of RMC-BestFit and Flike for Example #6b. 
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Comparison with EMA 
The currently accepted flood-frequency methodology in the United States, described in Bulletin 17C (U.S. Geological 
Survey, 2018), recommends fitting the LPIII distribution using the Expected Moments Algorithm (EMA). EMA is a 
major improvement over the Bulletin 17B guidelines (U.S. Geological Survey, 1982), and is capable of incorporating 
historical and paleoflood information into flood frequency studies.  

EMA was developed as an alternative to MLE and the Bulletin 17B (U.S. Geological Survey, 1982) method for 
incorporating historical information in flood frequency studies (Cohn, Lane, & Baier, 1997). EMA was shown to 
achieve greater efficiency than the B17B adjustment for censored data, and nearly achieving the efficiency of MLE 
while avoiding some of the numerical complications. However, in the cases where there is no censored data, EMA 
and B17B are identical and exhibit substantial bias as compared to MLE (Cohn, Lane, & Baier, 1997). 

It would be unreasonable to expect a Bayesian estimation approach to perfectly match a moments-based fitting 
approach, such as EMA, or vice versa. The two estimation methods are very different from a theoretical perspective. 
Nevertheless, comparisons of RMC-BestFit and EMA were performed to provide some insight into how the methods 
may differ in practice. These comparisons do not validate or invalidate either method.  

RMC-BestFit was compared with EMA for the 82 USGS gage sites (see Table 1 for a listing) used for testing in 
Bulletin 17C. Several additional sites have been compared during risk assessments performed as part of the USACE 
Dam Safety program, including studies with historical and paleoflood data. In general, for most sites, RMC-BestFit 
produces similar results to EMA. In cases where there is only systematic data, EMA is identical with the method of 
moments (MOM), which means the estimators can be biased and less efficient than MLE and Bayesian estimation. 
Consequently, in those cases, the quantile standard error and confidence intervals for EMA are sometimes wider than 
RMC-BestFit. In addition, MOM can be more sensitive than Bayesian estimation for sites with only one or two events 
that are much larger than the rest of the data. In these scenarios, the data likelihood used for MLE and Bayesian 
estimation is less influenced by single large values.  

An example of this behavior is seen at site 01439500 Bush Kill at Shoemaker, PA, where out of 102 years of record, 
the largest event is more than double the next highest peak. There is only systematic data in this example. As can be 
seen in Figure 60, the EMA fit pulls upwards towards the highest peak as compared to the RMC-BestFit results. 
Furthermore, the EMA confidence intervals are considerably wider than the credible intervals from RMC-BestFit. A 
comparison of the computed parameters and resulting log-likelihood is provided in Table 92. As expected, the 
posterior mode from RMC-BestFit produces a slightly higher log-likelihood than the EMA fit.  

Table 92 – Comparison of RMC-BestFit and EMA parameters for USGS 01439500 Bush Kill at Shoemaker, PA. 

Parameter EMA RMC-BestFit 

Mean (of log) (µ) 3.3327 3.3327 
Std. Dev (of log) (σ) 0.2322 0.2306 
Skew (of log) (γ) 0.9725 0.7839 
Log-Likelihood -858.3656 -857.4655 
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Figure 60 – Comparison of RMC-BestFit and EMA for USGS 01439500 Bush Kill at Shoemaker, PA. 

 

Poor agreement between RMC-BestFit and EMA can also be expected in cases where there are many low outliers 
and the data is very negatively skewed. If the absolute value of the skewness coefficient is greater than 2, then the 
MLE method cannot produce a solution for the shape parameter of the PIII or LPIII (Bobee & Ashkar, 1991). This 
implies that the MLE estimate for the shape parameter is biased. If the absolute value of skew is greater than 
approximately 1.25, it is not recommended to use PIII/LPIII with MLE (Bobee & Ashkar, 1991). If the absolute value of 
skew is greater than 2, the method of “conditional maximum likelihood” must be applied. Conditional MLE is 
performed by first fixing the location parameter to the smallest value of the sample if the skew is positive, or the 
largest value of the sample if the skew is negative. Then, the scale and shape parameters are solved for, conditionally 
on the fixed location parameter. In cases where the absolute value of skew is greater than 1.25 and approaching 2, 
Bayesian estimation will automatically produce results that are similar to conditional MLE. 

Example #2 from Appendix 10 of Bulletin 17C (U.S. Geological Survey, 2018) provides a good example of this 
behavior. This example is from USGS site 11274500 Orestimba Creek near Newman, CA, which has 30 low outliers. 
The results from RMC-BestFit for this site are shown in Figure 61. The skewness of the data is approximately -1.75. 
The posterior mode for the location parameter of LPIII is ~15,000, which is very close the largest value of the sample 
of 12,000 cfs. This demonstrates that the Bayesian approach will automatically produce results simular to conditional 
MLE. A comparison of RMC-BestFit with EMA is provided in Figure 62. Both methods produce similar confidence 
intervals, but the computed curve from EMA provides a less biased fit for the right-hand tail. When integrating over the 
confidence intervals from EMA, an expected probability curve can be computed. Figure 63 shows that the posterior 
predictive distribution from RMC-BestFit closely matches the expected probability curve from EMA for this site.  
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Figure 61 – RMC-BestFit Results for USGS 11274500 Orestimba Creek near Newman, CA. 

 
Figure 62 – Comparison of RMC-BestFit and EMA for USGS 11274500 Orestimba Creek near Newman, CA. 
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Figure 63 – Comparison of RMC-BestFit Posterior Predictive with the EMA Expected Probability Curve for USGS 11274500 
Orestimba Creek near Newman, CA. 

 

In cases where there is historical data incorporated with intervals and perception thresholds, RMC-BestFit and EMA 
will generally produce similar results. For example, RMC-BestFit was compared to EMA for site 11446500 American 
River at Fair Oaks, CA, which is example #7 from Appendix 10 in Bulletin 17C (U.S. Geological Survey, 2018). In this 
example, there is a major historical flood in 1862 and four paleoflood events dating back over 1,000 years. Results of 
the comparison are shown in Figure 64. For this example, the differences between EMA and RMC-BestFit are 
inconsequential, and the computed curve from EMA and the posterior mode from RMC-BestFit, along with the 
confidence intervals, are very consistent. 

A final comparison was performed using Example #10 provided in the HEC-SSP example download. This example is 
for USGS station 01470500 Schuylkill River, PA, and it includes historical data, a perception threshold and regional 
skew. The regional skew is 0.001 with an MSE of 0.064. In RMC-BestFit, the regional skew is entered as an 
informative prior on skew that is Normally distributed with a mean of 0.001 and standard deviation 0.253. As shown in 
Figure 65, RMC-BestFit and EMA produce virtually identical results for this example.  

A more comprehensive investigation into the similarities and differences between RMC-BestFit and EMA, and the 
respective limitations of each, is planned for a future report.  
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Figure 64 – Comparison of RMC-BestFit and EMA for USGS 11446500 American River at Fair Oaks, CA. 

 
Figure 65 – Comparison of RMC-BestFit and EMA for USGS 01470500 Schuylkill River, PA. 
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Conclusion 
As demonstrated in this report, the computational methods used in RMC-BestFit have been verified. The Multiple 
Grubbs-Beck Test and Hirsch-Stedinger plotting positions were verified with HEC-SSP using 82 test sites. 
Nonparametric summary statistics were verified with Palisade’s @Risk. Probability distribution functionality, Maximum 
Likelihood Estimation, and goodness-of-fit measures were verified using textbook examples, R-Stan, and Palisade’s 
@Risk. Bayesian estimation was verified using theoretical posterior distributions, and other state-of-the-art software, 
such as R-Stan, evdbayes, Flike, and HEC-SSP. In all cases, RMC-BestFit produced valid results. Any minor 
differences in precision between methods were inconsequential and would not lead to a different statistical inference.  
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