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The integer square root function m 7→ ⌊
√

m⌋ can be implemented efficiently using
[1, Algorithm 1.13]. Fix integers m ≥ 1 and x0 ≥ ⌊

√
m⌋. Recursively define a

sequence as follows:

xn+1 =
⌊

xn + ⌊m/xn⌋
2

⌋
.

Note that since xn is an integer, we also have

xn+1 =
⌊

xn + m/xn

2

⌋
.

In [1, Theorem 1.7], it is shown that this sequence decreases until reaching ⌊
√

m⌋.
Here we analyze this algorithm in more detail: We show that the sequence either

attains a fixed point at ⌊
√

m⌋ or oscillates between ⌊
√

m⌋ and ⌊
√

m⌋ + 1, and we
prove a bound proportional to log2(log2(m)) on the number of steps required for
the sequence to stabilize in this manner.

This allows Algorithm 1.13 to be turned into a constant-time algorithm by
running the algorithm for a number of steps depending only on the bit-width of the
unsigned integer type used to represent m, not the value m itself, and then taking
the minimum of the final two values to account for the possibility of oscillation. (Of
course, for this to yield a constant-time algorithm, we must also use constant-time
implementations of addition, division, the minimum function, etc.)

Lemma. (1) If xn = ⌊
√

m⌋, then xn+1 ∈ {xn, xn + 1}.
(2) If xn > ⌊

√
m⌋, then ⌊

√
m⌋ ≤ xn+1 < xn.

(3) If xn > ⌊
√

m⌋, then

xn −
√

m > 2(xn+1 −
√

m).

(4) For all k > 2, if 1 < xn/
√

m < k/(k − 2), then

xn −
√

m > k(xn+1 −
√

m).

Proof. Suppose xn = ⌊
√

m⌋. For any s ≥ 1, we have

⌊s⌋ (⌊s⌋ + 3) = ⌊s⌋2 + 3 ⌊s⌋ ≥ ⌊s⌋2 + 2 ⌊s⌋ + 1 = (⌊s⌋ + 1)2 > s2.

Setting s =
√

m, we obtain xn(xn + 3) > m, so ⌊m/xn⌋ ≤ m/xn < xn + 3. Thus

xn+1 =
⌊

xn + ⌊m/xn⌋
2

⌋
≤

⌊
xn + (xn + 2)

2

⌋
= xn + 1.

Furthermore, ⌊m/xn⌋ ≥ xn, so xn+1 ≥ xn. This proves (1).
Now suppose xn > ⌊

√
m⌋. Then xn >

√
m, so m/xn < xn. Thus

xn+1 =
⌊

xn + m/xn

2

⌋
< xn.
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Furthermore, by the AM–GM inequality,
xn + m/xn

2 >
√

m,

so
xn+1 =

⌊
xn + m/xn

2

⌋
≥

⌊√
m

⌋
.

This proves (2). (Note that (2) is also proved as part of [1, Theorem 1.7].) Moreover,
xn >

√
m implies m/xn <

√
m, so

xn −
√

m > xn + m/xn − 2
√

m = 2
(

xn + m/xn

2 −
√

m

)
≥ 2(xn+1 −

√
m),

proving (3) as well.
Finally, fix k > 2 and suppose xn >

√
m and xn/

√
m < k/(k − 2). Then

(k − 2)xn < k
√

m, so
0 < (xn −

√
m)

(
k
√

m − (k − 2)xn

)
= (2k − 2)xn

√
m − (k − 2)x2

n − km

= xn

(
(2k − 2)

√
m − (k − 2)xn − km/xn

)
= xn

(
2(xn −

√
m) − k(xn + m/xn − 2

√
m)

)
.

Thus
2(xn −

√
m) > k(xn + m/xn − 2

√
m) ≥ 2k(xn+1 −

√
m),

proving (4). □

Theorem. Suppose x0 < 3
√

m. Then for all n > max(1, log2(log2(m)) − log2(3)),
min(xn, xn+1) =

⌊√
m

⌋
.

Proof. Let dn = log2(xn −
√

m) if xn >
√

m and dn = −∞ otherwise. By parts (2)
and (3) of the lemma, if dn ̸= −∞, then dn − dn+1 > 1. By part (4) of the lemma
applied to k = 2i, if 0 < (xn −

√
m)/

√
m < 2/(2i − 2), then dn − dn+1 > i. In

particular, if dn ̸= −∞ and dn < log2
√

m, then dn − dn+1 > 2. Also, if dn ̸= −∞
and dn ≤ log2

√
m + 1 − i, then dn − dn+1 > i.

If x0 < 3
√

m, then x1 −
√

m < 1
2 (x0 −

√
m) <

√
m, so d1 < log2

√
m. Thus

d1 − d2 > 2, so d2 < log2
√

m + 1 − 3. If d2 ≠ −∞, this implies d2 − d3 > 3, so
d3 < log2

√
m + 1 − 6. Continuing inductively, we see that for all n ≥ 2,

dn < log2
√

m + 1 − 3 · 2n−2

as long as d0, . . . , dn ̸= −∞. In particular, applying part (1) of the lemma, if
3 · 2n−1 > log2

√
m, then either xn or xn+1 is equal to ⌊

√
m⌋. Taking logarithms of

both sides of this inequality yields the theorem. □

Corollary. If 2b−1 ≤ m < 2b and x0 = 2⌈b/2⌉, then for all n ≥ max(2, ⌊log2(b)⌋+1),
min(xn, xn+1) =

⌊√
m

⌋
.

Proof. Since x0 < 2 · 2b/2 = 2
√

2(2b−1)1/2 ≤ 2
√

2
√

m < 3
√

m, this follows from the
theorem. □
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