diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv index c7f1313..6922a1c 100644 --- a/outputs/costs_2020.csv +++ b/outputs/costs_2020.csv @@ -580,12 +580,12 @@ clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawa clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." +coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." +coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." +coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. csp-tower,investment,144.8807,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- @@ -718,7 +718,7 @@ fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_ fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" @@ -776,12 +776,12 @@ industrial heat pump medium temperature,investment,871.2,EUR/kW,"Danish Energy A industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." +lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions @@ -815,12 +815,12 @@ micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_hea micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" micro CHP,investment,10045.3136,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." +nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." +nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions offwind,investment,1804.7687,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" @@ -858,7 +858,7 @@ seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: seawater desalination,investment,40219.7802,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). solar,FOM,1.578,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions solar,investment,733.4715,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' @@ -895,7 +895,7 @@ solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NO solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" waste CHP,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv index 2f68f36..4e96f60 100644 --- a/outputs/costs_2025.csv +++ b/outputs/costs_2025.csv @@ -580,12 +580,12 @@ clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawa clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." +coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." +coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." +coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. csp-tower,investment,121.5174,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- @@ -718,7 +718,7 @@ fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_ fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" @@ -776,12 +776,12 @@ industrial heat pump medium temperature,investment,825.0,EUR/kW,"Danish Energy A industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." +lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions @@ -815,12 +815,12 @@ micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_hea micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" micro CHP,investment,8716.8874,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." +nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." +nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", offwind,FOM,2.3741,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions offwind,investment,1602.3439,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" @@ -858,7 +858,7 @@ seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: seawater desalination,investment,36907.6923,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). solar,FOM,1.7275,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions solar,investment,612.7906,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' @@ -895,7 +895,7 @@ solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NO solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" waste CHP,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" diff --git a/outputs/costs_2030.csv b/outputs/costs_2030.csv index 3af9176..a006404 100644 --- a/outputs/costs_2030.csv +++ b/outputs/costs_2030.csv @@ -580,12 +580,12 @@ clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawa clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." +coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." +coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." +coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. csp-tower,investment,98.154,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- @@ -718,7 +718,7 @@ fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_ fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" @@ -776,12 +776,12 @@ industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy A industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." +lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions @@ -815,12 +815,12 @@ micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_hea micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" micro CHP,investment,7410.2745,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." +nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." +nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", offwind,FOM,2.3185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions offwind,investment,1523.5503,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" @@ -858,7 +858,7 @@ seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: seawater desalination,investment,32882.0513,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). solar,FOM,1.9495,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions solar,investment,492.1097,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' @@ -895,7 +895,7 @@ solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NO solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. waste CHP,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" waste CHP,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv index f88df0a..d724f86 100644 --- a/outputs/costs_2035.csv +++ b/outputs/costs_2035.csv @@ -580,12 +580,12 @@ clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawa clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." +coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." +coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." +coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. csp-tower,investment,94.35,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- @@ -718,7 +718,7 @@ fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_ fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" @@ -776,12 +776,12 @@ industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy A industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." +lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions @@ -815,12 +815,12 @@ micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_hea micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" micro CHP,investment,6998.5925,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." +nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." +nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions offwind,investment,1469.3167,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" @@ -858,7 +858,7 @@ seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: seawater desalination,investment,29589.7436,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). solar,FOM,1.9904,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions solar,investment,449.9901,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' @@ -895,7 +895,7 @@ solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NO solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" waste CHP,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv index 078455b..a1dcc8e 100644 --- a/outputs/costs_2040.csv +++ b/outputs/costs_2040.csv @@ -580,12 +580,12 @@ clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawa clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." +coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." +coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." +coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. csp-tower,investment,90.5459,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- @@ -718,7 +718,7 @@ fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_ fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" @@ -776,12 +776,12 @@ industrial heat pump medium temperature,investment,730.0,EUR/kW,"Danish Energy A industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." +lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions @@ -815,12 +815,12 @@ micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_hea micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" micro CHP,investment,6586.9106,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." +nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." +nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", offwind,FOM,2.1762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions offwind,investment,1415.0831,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" @@ -858,7 +858,7 @@ seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: seawater desalination,investment,26297.4359,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). solar,FOM,2.04,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions solar,investment,407.8706,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' @@ -895,7 +895,7 @@ solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NO solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" waste CHP,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv index e962990..2491e40 100644 --- a/outputs/costs_2045.csv +++ b/outputs/costs_2045.csv @@ -580,12 +580,12 @@ clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawa clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." +coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." +coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." +coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. csp-tower,investment,90.2787,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- @@ -718,7 +718,7 @@ fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_ fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" @@ -776,12 +776,12 @@ industrial heat pump medium temperature,investment,715.0,EUR/kW,"Danish Energy A industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." +lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions @@ -815,12 +815,12 @@ micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_hea micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" micro CHP,investment,6175.2287,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." +nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." +nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", offwind,FOM,2.1709,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions offwind,investment,1397.6772,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" @@ -858,7 +858,7 @@ seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: seawater desalination,investment,23661.5385,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). solar,FOM,2.0531,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions solar,investment,389.0293,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' @@ -895,7 +895,7 @@ solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NO solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" waste CHP,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv index d85dc3a..bd4e838 100644 --- a/outputs/costs_2050.csv +++ b/outputs/costs_2050.csv @@ -580,12 +580,12 @@ clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawa clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." +coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." +coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." +coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. csp-tower,investment,90.0115,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- @@ -718,7 +718,7 @@ fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_ fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" @@ -776,12 +776,12 @@ industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy A industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." +lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions @@ -815,12 +815,12 @@ micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_hea micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" micro CHP,investment,5763.5468,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." +nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." +nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", offwind,FOM,2.1655,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions offwind,investment,1380.2714,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" @@ -858,7 +858,7 @@ seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: seawater desalination,investment,21025.641,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). solar,FOM,2.0676,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions solar,investment,370.188,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' @@ -895,7 +895,7 @@ solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NO solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" waste CHP,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient"