diff --git a/src/core/MOM_barotropic.F90 b/src/core/MOM_barotropic.F90 index c2ca1be16e..ca1a7d20e5 100644 --- a/src/core/MOM_barotropic.F90 +++ b/src/core/MOM_barotropic.F90 @@ -338,9 +338,9 @@ module MOM_barotropic !! the time-integrated barotropic velocity [L ~> m], beyond which the marginal !! open face area is FA_u_EE. uBT_EE must be non-positive. real :: uh_crvW !< The curvature of face area with velocity for flow from the west [H T2 L-1 ~> s2 or kg s2 m-3] - !! or [H L-1 ~> 1 or kg m-3] with INTEGRAL_BT_CONTINUITY. + !! or [H L-1 ~> nondim or kg m-3] with INTEGRAL_BT_CONTINUITY. real :: uh_crvE !< The curvature of face area with velocity for flow from the east [H T2 L-1 ~> s2 or kg s2 m-3] - !! or [H L-1 ~> 1 or kg m-3] with INTEGRAL_BT_CONTINUITY. + !! or [H L-1 ~> nondim or kg m-3] with INTEGRAL_BT_CONTINUITY. real :: uh_WW !< The zonal transport when ubt=ubt_WW [H L2 T-1 ~> m3 s-1 or kg s-1], or the equivalent !! time-integrated transport with INTEGRAL_BT_CONTINUITY [H L2 ~> m3 or kg]. real :: uh_EE !< The zonal transport when ubt=ubt_EE [H L2 T-1 ~> m3 s-1 or kg s-1], or the equivalent @@ -364,9 +364,9 @@ module MOM_barotropic !! the time-integrated barotropic velocity [L ~> m], beyond which the marginal !! open face area is FA_v_NN. vBT_NN must be non-positive. real :: vh_crvS !< The curvature of face area with velocity for flow from the south [H T2 L-1 ~> s2 or kg s2 m-3] - !! or [H L-1 ~> 1 or kg m-3] with INTEGRAL_BT_CONTINUITY. + !! or [H L-1 ~> nondim or kg m-3] with INTEGRAL_BT_CONTINUITY. real :: vh_crvN !< The curvature of face area with velocity for flow from the north [H T2 L-1 ~> s2 or kg s2 m-3] - !! or [H L-1 ~> 1 or kg m-3] with INTEGRAL_BT_CONTINUITY. + !! or [H L-1 ~> nondim or kg m-3] with INTEGRAL_BT_CONTINUITY. real :: vh_SS !< The meridional transport when vbt=vbt_SS [H L2 T-1 ~> m3 s-1 or kg s-1], or the equivalent !! time-integrated transport with INTEGRAL_BT_CONTINUITY [H L2 ~> m3 or kg]. real :: vh_NN !< The meridional transport when vbt=vbt_NN [H L2 T-1 ~> m3 s-1 or kg s-1], or the equivalent @@ -622,24 +622,23 @@ subroutine btstep(U_in, V_in, eta_in, dt, bc_accel_u, bc_accel_v, forces, pbce, vhbt_prev, vhbt_sum_prev, & ! Previous transports stored for OBCs [L2 H T-1 ~> m3 s-1] vbt_int_prev, & ! Previous value of time-integrated velocity stored for OBCs [L ~> m] vhbt_int_prev ! Previous value of time-integrated transport stored for OBCs [L2 H ~> m3] - real :: mass_to_Z ! The depth unit conversion divided by the mean density (Rho0) [Z m-1 R-1 ~> m3 kg-1] !### R-1 - real :: mass_accel_to_Z ! The inverse of the mean density (Rho0) [R-1 ~> m3 kg-1]. - real :: visc_rem ! A work variable that may equal visc_rem_[uv]. Nondim. + real :: mass_to_Z ! The inverse of the the mean density (Rho0) [R-1 ~> m3 kg-1] + real :: visc_rem ! A work variable that may equal visc_rem_[uv] [nondim] real :: vel_prev ! The previous velocity [L T-1 ~> m s-1]. real :: dtbt ! The barotropic time step [T ~> s]. real :: bebt ! A copy of CS%bebt [nondim]. real :: be_proj ! The fractional amount by which velocities are projected - ! when project_velocity is true. For now be_proj is set + ! when project_velocity is true [nondim]. For now be_proj is set ! to equal bebt, as they have similar roles and meanings. real :: Idt ! The inverse of dt [T-1 ~> s-1]. real :: det_de ! The partial derivative due to self-attraction and loading - ! of the reference geopotential with the sea surface height. + ! of the reference geopotential with the sea surface height [nondim]. ! This is typically ~0.09 or less. real :: dgeo_de ! The constant of proportionality between geopotential and - ! sea surface height. It is a nondimensional number of + ! sea surface height [nondim]. It is a nondimensional number of ! order 1. For stability, this may be made larger ! than the physical problem would suggest. - real :: Instep ! The inverse of the number of barotropic time steps to take. + real :: Instep ! The inverse of the number of barotropic time steps to take [nondim]. real :: wt_end ! The weighting of the final value of eta_PF [nondim] integer :: nstep ! The number of barotropic time steps to take. type(time_type) :: & @@ -772,8 +771,7 @@ subroutine btstep(U_in, V_in, eta_in, dt, bc_accel_u, bc_accel_v, forces, pbce, Idtbt = 1.0 / dtbt bebt = CS%bebt be_proj = CS%bebt - mass_accel_to_Z = 1.0 / GV%Rho0 - mass_to_Z = US%m_to_Z / GV%Rho0 !### THis should be the same as mass_accel_to_Z. + mass_to_Z = 1.0 / GV%Rho0 !--- setup the weight when computing vbt_trans and ubt_trans if (project_velocity) then @@ -1243,7 +1241,7 @@ subroutine btstep(U_in, V_in, eta_in, dt, bc_accel_u, bc_accel_v, forces, pbce, endif endif - BT_force_u(I,j) = forces%taux(I,j) * mass_accel_to_Z * CS%IDatu(I,j)*visc_rem_u(I,j,1) + BT_force_u(I,j) = forces%taux(I,j) * mass_to_Z * CS%IDatu(I,j)*visc_rem_u(I,j,1) else BT_force_u(I,j) = 0.0 endif ; enddo ; enddo @@ -1269,11 +1267,11 @@ subroutine btstep(U_in, V_in, eta_in, dt, bc_accel_u, bc_accel_v, forces, pbce, endif endif - BT_force_v(i,J) = forces%tauy(i,J) * mass_accel_to_Z * CS%IDatv(i,J)*visc_rem_v(i,J,1) + BT_force_v(i,J) = forces%tauy(i,J) * mass_to_Z * CS%IDatv(i,J)*visc_rem_v(i,J,1) else BT_force_v(i,J) = 0.0 endif ; enddo ; enddo - if (associated(taux_bot) .and. associated(tauy_bot)) then + if (associated(taux_bot) .and. associated(tauy_bot)) then !$OMP parallel do default(shared) do j=js,je ; do I=is-1,ie ; if (G%mask2dCu(I,j) > 0.0) then BT_force_u(I,j) = BT_force_u(I,j) - taux_bot(I,j) * mass_to_Z * CS%IDatu(I,j)