From 0d8bb61629b89bff69ec1b46baee62e000a06e56 Mon Sep 17 00:00:00 2001 From: Michael Lee Date: Mon, 26 Jun 2017 17:05:03 -0700 Subject: [PATCH] Add typing_extensions subfolder This pull request adds a 'typing_exensions' subproject to 'typing'. The 'typing_extensions' module backports any new additions to 'typing' for Python 3.5+ users who are using older versions of 'typing' that were bundled with their standard library (and so can't update to the latest versions). See https://github.com/python/typing/issues/435 for motivation and additional context. --- typing_extensions/.gitignore | 11 + typing_extensions/README.md | 79 + typing_extensions/run_tests.py | 110 + typing_extensions/setup.py | 71 + .../src_py2/test_typing_extensions.py | 159 ++ .../src_py2/typing_extensions.py | 118 + .../src_py3/test_typing_extensions.py | 666 +++++ .../src_py3/typing_extensions.py | 618 +++++ .../test_data/python-2.7.13/_abcoll.py | 695 +++++ .../test_data/python-2.7.13/abc.py | 185 ++ .../test_data/python-2.7.13/collections.py | 742 ++++++ .../python-3.4.6/_collections_abc.py | 748 ++++++ .../test_data/python-3.4.6/abc.py | 248 ++ .../python-3.4.6/collections/__init__.py | 1161 ++++++++ .../python-3.4.6/collections/__main__.py | 38 + .../test_data/python-3.4.6/collections/abc.py | 2 + .../python-3.5.0/_collections_abc.py | 939 +++++++ .../test_data/python-3.5.0/abc.py | 248 ++ .../python-3.5.0/collections/__init__.py | 1217 +++++++++ .../python-3.5.0/collections/__main__.py | 38 + .../test_data/python-3.5.0/collections/abc.py | 2 + .../test_data/python-3.5.0/typing.py | 1648 ++++++++++++ .../python-3.5.1/_collections_abc.py | 939 +++++++ .../test_data/python-3.5.1/abc.py | 248 ++ .../python-3.5.1/collections/__init__.py | 1222 +++++++++ .../python-3.5.1/collections/__main__.py | 38 + .../test_data/python-3.5.1/collections/abc.py | 2 + .../test_data/python-3.5.1/typing.py | 1656 ++++++++++++ .../python-3.5.2/_collections_abc.py | 939 +++++++ .../test_data/python-3.5.2/abc.py | 248 ++ .../python-3.5.2/collections/__init__.py | 1239 +++++++++ .../python-3.5.2/collections/__main__.py | 38 + .../test_data/python-3.5.2/collections/abc.py | 2 + .../test_data/python-3.5.2/typing.py | 1843 +++++++++++++ .../python-3.5.3/_collections_abc.py | 941 +++++++ .../test_data/python-3.5.3/abc.py | 248 ++ .../python-3.5.3/collections/__init__.py | 1242 +++++++++ .../python-3.5.3/collections/__main__.py | 38 + .../test_data/python-3.5.3/collections/abc.py | 2 + .../test_data/python-3.5.3/typing.py | 2160 +++++++++++++++ .../python-3.6.0/_collections_abc.py | 1007 +++++++ .../test_data/python-3.6.0/abc.py | 248 ++ .../python-3.6.0/collections/__init__.py | 1243 +++++++++ .../test_data/python-3.6.0/collections/abc.py | 2 + .../test_data/python-3.6.0/typing.py | 2160 +++++++++++++++ .../python-3.6.1/_collections_abc.py | 1007 +++++++ .../test_data/python-3.6.1/abc.py | 248 ++ .../python-3.6.1/collections/__init__.py | 1246 +++++++++ .../test_data/python-3.6.1/collections/abc.py | 2 + .../test_data/python-3.6.1/typing.py | 2335 +++++++++++++++++ 50 files changed, 32286 insertions(+) create mode 100644 typing_extensions/.gitignore create mode 100644 typing_extensions/README.md create mode 100644 typing_extensions/run_tests.py create mode 100644 typing_extensions/setup.py create mode 100644 typing_extensions/src_py2/test_typing_extensions.py create mode 100644 typing_extensions/src_py2/typing_extensions.py create mode 100644 typing_extensions/src_py3/test_typing_extensions.py create mode 100644 typing_extensions/src_py3/typing_extensions.py create mode 100644 typing_extensions/test_data/python-2.7.13/_abcoll.py create mode 100644 typing_extensions/test_data/python-2.7.13/abc.py create mode 100644 typing_extensions/test_data/python-2.7.13/collections.py create mode 100644 typing_extensions/test_data/python-3.4.6/_collections_abc.py create mode 100644 typing_extensions/test_data/python-3.4.6/abc.py create mode 100644 typing_extensions/test_data/python-3.4.6/collections/__init__.py create mode 100644 typing_extensions/test_data/python-3.4.6/collections/__main__.py create mode 100644 typing_extensions/test_data/python-3.4.6/collections/abc.py create mode 100644 typing_extensions/test_data/python-3.5.0/_collections_abc.py create mode 100644 typing_extensions/test_data/python-3.5.0/abc.py create mode 100644 typing_extensions/test_data/python-3.5.0/collections/__init__.py create mode 100644 typing_extensions/test_data/python-3.5.0/collections/__main__.py create mode 100644 typing_extensions/test_data/python-3.5.0/collections/abc.py create mode 100644 typing_extensions/test_data/python-3.5.0/typing.py create mode 100644 typing_extensions/test_data/python-3.5.1/_collections_abc.py create mode 100644 typing_extensions/test_data/python-3.5.1/abc.py create mode 100644 typing_extensions/test_data/python-3.5.1/collections/__init__.py create mode 100644 typing_extensions/test_data/python-3.5.1/collections/__main__.py create mode 100644 typing_extensions/test_data/python-3.5.1/collections/abc.py create mode 100644 typing_extensions/test_data/python-3.5.1/typing.py create mode 100644 typing_extensions/test_data/python-3.5.2/_collections_abc.py create mode 100644 typing_extensions/test_data/python-3.5.2/abc.py create mode 100644 typing_extensions/test_data/python-3.5.2/collections/__init__.py create mode 100644 typing_extensions/test_data/python-3.5.2/collections/__main__.py create mode 100644 typing_extensions/test_data/python-3.5.2/collections/abc.py create mode 100644 typing_extensions/test_data/python-3.5.2/typing.py create mode 100644 typing_extensions/test_data/python-3.5.3/_collections_abc.py create mode 100644 typing_extensions/test_data/python-3.5.3/abc.py create mode 100644 typing_extensions/test_data/python-3.5.3/collections/__init__.py create mode 100644 typing_extensions/test_data/python-3.5.3/collections/__main__.py create mode 100644 typing_extensions/test_data/python-3.5.3/collections/abc.py create mode 100644 typing_extensions/test_data/python-3.5.3/typing.py create mode 100644 typing_extensions/test_data/python-3.6.0/_collections_abc.py create mode 100644 typing_extensions/test_data/python-3.6.0/abc.py create mode 100644 typing_extensions/test_data/python-3.6.0/collections/__init__.py create mode 100644 typing_extensions/test_data/python-3.6.0/collections/abc.py create mode 100644 typing_extensions/test_data/python-3.6.0/typing.py create mode 100644 typing_extensions/test_data/python-3.6.1/_collections_abc.py create mode 100644 typing_extensions/test_data/python-3.6.1/abc.py create mode 100644 typing_extensions/test_data/python-3.6.1/collections/__init__.py create mode 100644 typing_extensions/test_data/python-3.6.1/collections/abc.py create mode 100644 typing_extensions/test_data/python-3.6.1/typing.py diff --git a/typing_extensions/.gitignore b/typing_extensions/.gitignore new file mode 100644 index 000000000..46b620c13 --- /dev/null +++ b/typing_extensions/.gitignore @@ -0,0 +1,11 @@ +MANIFEST +build/ +dist/ +.tox/ +.idea/ +.cache/ +__pycache__/ +.mypy_cache/ +tmp/ +*.swp +*.pyc diff --git a/typing_extensions/README.md b/typing_extensions/README.md new file mode 100644 index 000000000..77c937f28 --- /dev/null +++ b/typing_extensions/README.md @@ -0,0 +1,79 @@ +# Typing Extensions + +The `typing_extensions` module contains backports of recent changes +to the `typing` module that were not present in older versions of +`typing`. + +This module is intended to be used mainly by people who are using +Python 3.5+, where the `typing` module is a part of the standard +library and cannot be updated to the latest version on PyPi. + +Users of other Python versions should continue to install and use +use the `typing` module from PyPi instead of using this one, unless +they are specifically writing code intended to be compatible with +multiple versions of Python. + +## Backported items + +This module contains the following backported items: + +### All Python versions: + +- `ClassVar` +- `Collection` +- `ContextManager` +- `Counter` +- `DefaultDict` +- `Deque` +- `NewType` +- `NoReturn` +- `overload` (note that older versions of `typing` only let you use `overload` in stubs) +- `Text` +- `Type` +- `TYPE_CHECKING` + +### Python 3.3+ only: + +- `ChainMap` + +### Python 3.5+ only: + +- `AsyncIterable` +- `AsyncIterator` +- `AsyncContextManager` +- `Awaitable` +- `Coroutine` + +### Python 3.6+ only: + +- `AsyncGenerator` + +## Other Notes and Limitations + +There are a few types who's interface was modified between different +versions of typing. For example, `typing.Sequence` was modified to +subclass `typing.Reversible` as of Python 3.5.3. + +These changes are _not_ backported to prevent subtle compatibility +issues when mixing the differing implementations of modified classes. + +## Running tests + +There are two different ways to test this module. The first is to simply run +each individual Python interpreter against `test_typing_extensions.py` in the +`src_py2` and `src_py3` folders. + +However, because multiple versions of Python for each individual release +can be onerous, you can instead run `run_tests.py` using a single Python +interpreter. The `run_tests.py` file will essentially "modify" the standard +library by changing `PYTHONPATH` to point to individual folders in the +`test_data` repo. + +Each individual folder contains a snapshot of the source code for the +`collections`, `typing,` and `abc` modules for that given release, letting us +test `typing` against those particular implementations. + +`run_tests.py` will assume that you have Python 3.6.1 and a reasonably +modern version of Python 2.7 installed on your system, aliased to +`py -2.7` and `py -3.6` on Windows, and `python` and `python3` on Linux and +Mac. diff --git a/typing_extensions/run_tests.py b/typing_extensions/run_tests.py new file mode 100644 index 000000000..b051f1ef6 --- /dev/null +++ b/typing_extensions/run_tests.py @@ -0,0 +1,110 @@ +#!/usr/bin/env python + +from typing import List, Iterator, Tuple +from contextlib import contextmanager +import glob +import os +import os.path +import shutil +import subprocess +import sys +import textwrap + +CORE_FILES_2 = [ + "./src_py2/typing_extensions.py", + "./src_py2/test_typing_extensions.py" +] +CORE_FILES_3 = [ + "./src_py3/typing_extensions.py", + "./src_py3/test_typing_extensions.py" +] +TEST_DIR = "test_data" + +if sys.platform.startswith('win32'): + PYTHON2 = "py -2.7" + PYTHON3 = "py -3.6" +else: + PYTHON2 = "python" + PYTHON3 = "python3" + + +def get_test_dirs() -> List[str]: + """Get all folders to test inside TEST_DIR.""" + return list(glob.glob(os.path.join(TEST_DIR, "*"))) + + +@contextmanager +def temp_copy(src_files: List[str], dest_dir: str) -> Iterator[None]: + """ + A context manager that temporarily copies the given files to the + given destination directory, and deletes those temp files upon + exiting. + """ + # Copy + for src_path in src_files: + shutil.copy(src_path, dest_dir) + + yield + + # Delete + for src_path in src_files: + dst_path = os.path.join(dest_dir, os.path.basename(src_path)) + os.remove(dst_path) + + +@contextmanager +def change_directory(dir_path: str) -> Iterator[None]: + """ + A context manager that temporarily changes the working directory + to the specified directory, and changes back to the original + upon exiting. + """ + original = os.getcwd() + os.chdir(dir_path) + + yield + + os.chdir(original) + + +def run_shell(command: str) -> Tuple[bool, str]: + env = os.environ.copy() + env["PYTHONPATH"] = ":".join([os.getcwd(), env["PYTHONPATH"], env["PATH"]]) + out = subprocess.run( + command, + stdout=subprocess.PIPE, + stderr=subprocess.STDOUT, + shell=True, + env=env) + success = out.returncode == 0 + stdout = '' if out.stdout is None else out.stdout.decode('utf-8') + return (success, stdout) + + +def main() -> int: + test_dirs = get_test_dirs() + exit_code = 0 + for test_dir in test_dirs: + _, version_number = test_dir.split('-') + py2 = version_number.startswith("2") + print("Testing Python {}".format(version_number)) + + core_files = CORE_FILES_2 if py2 else CORE_FILES_3 + python_exe = PYTHON2 if py2 else PYTHON3 + + with temp_copy(core_files, test_dir), change_directory(test_dir): + success, output = run_shell("{} {} {}".format( + python_exe, + "test_typing_extensions.py", + version_number)) + if success: + print(" All tests passed!") + else: + print(textwrap.indent(output, " ")) + exit_code = 1 + return exit_code + + +if __name__ == '__main__': + sys.exit(main()) + diff --git a/typing_extensions/setup.py b/typing_extensions/setup.py new file mode 100644 index 000000000..afd66262a --- /dev/null +++ b/typing_extensions/setup.py @@ -0,0 +1,71 @@ +#!/usr/bin/env python +# coding: utf-8 + +import sys +from distutils.core import setup + +if sys.version_info < (2, 7, 0) or (3, 0, 0) <= sys.version_info < (3, 3, 0): + sys.stderr.write('ERROR: You need Python 2.7 or 3.3+ ' + 'to install the typing package.\n') + exit(1) + +version = '3.6.1' +description = 'Type Hint backports for Python 3.5+' +long_description = '''\ +Typing -- Type Hints for Python + +This is a backport of the standard library typing module to Python +versions 3.5+. The typing module has seen several changes since it was +first added in Python 3.5.0, which means people who are using 3.5.0+ +but are unable to upgrade to the latest version of Python are unable +to take advantage of some new features of the typing library, such as +typing.Type or typing.Coroutine. + +This module allows those users to use the latest additions to the typing +module without worrying about naming conflicts with the standard library. +Users of Python 2.7, 3.3, and 3.4 should install the typing module +from pypi and use that directly, except when writing code that needs to +be compatible across multiple versions of Python. +''' + +classifiers = [ + 'Development Status :: 5 - Production/Stable', + 'Environment :: Console', + 'Intended Audience :: Developers', + 'License :: OSI Approved :: Python Software Foundation License', + 'Operating System :: OS Independent', + 'Programming Language :: Python :: 2.7', + 'Programming Language :: Python :: 3.3', + 'Programming Language :: Python :: 3.4', + 'Programming Language :: Python :: 3.5', + 'Programming Language :: Python :: 3.6', + 'Topic :: Software Development', +] + +if sys.version_info.major == 2: + package_dir = 'src_py2' +elif sys.version_info.major == 3: + package_dir = 'src_py3' +else: + raise AssertionError() + +install_requires = [] +if sys.version_info < (3, 5): + install_requires.append('typing >= 3.6.1') + +setup(name='typing_extensions', + version=version, + description=description, + long_description=long_description, + author='Guido van Rossum, Jukka Lehtosalo, Lukasz Langa, Michael Lee', + author_email='jukka.lehtosalo@iki.fi', + # TODO: Change URL + url='https://github.com/michael0x2a/typing_extensions', + license='PSF', + keywords='typing function annotations type hints hinting checking ' + 'checker typehints typehinting typechecking backport', + package_dir={'': package_dir}, + py_modules=['typing_extensions'], + classifiers=classifiers, + install_requires=install_requires, +) diff --git a/typing_extensions/src_py2/test_typing_extensions.py b/typing_extensions/src_py2/test_typing_extensions.py new file mode 100644 index 000000000..2b86cb286 --- /dev/null +++ b/typing_extensions/src_py2/test_typing_extensions.py @@ -0,0 +1,159 @@ +# Override version info +import sys +ORIGINAL_VERSION = sys.version_info +if len(sys.argv) >= 2: + PYTHON_VERSION = tuple(map(int, sys.argv[1].split('.'))) + sys.version_info = PYTHON_VERSION + OVERRIDING_VERSION = True +else: + PYTHON_VERSION = ORIGINAL_VERSION + OVERRIDING_VERSION = False + +import os +import abc +import contextlib +import collections +from unittest import TestCase, main, skipUnless, SkipTest + +from typing_extensions import NoReturn, ClassVar, Type, NewType +import typing +import typing_extensions + + +class BaseTestCase(TestCase): + def assertIsSubclass(self, cls, class_or_tuple, msg=None): + if not issubclass(cls, class_or_tuple): + message = '%r is not a subclass of %r' % (cls, class_or_tuple) + if msg is not None: + message += ' : %s' % msg + raise self.failureException(message) + + def assertNotIsSubclass(self, cls, class_or_tuple, msg=None): + if issubclass(cls, class_or_tuple): + message = '%r is a subclass of %r' % (cls, class_or_tuple) + if msg is not None: + message += ' : %s' % msg + raise self.failureException(message) + + def clear_caches(self): + for f in typing._cleanups: + f() + + +class EnvironmentTest(BaseTestCase): + @skipUnless(OVERRIDING_VERSION, "Environment tests apply only when overriding") + def test_environment_is_ok(self): + cwd = os.path.abspath(os.getcwd()) + def correct_dir(module): + return os.path.abspath(module.__file__).startswith(cwd) + + self.assertTrue(correct_dir(abc)) + self.assertTrue(correct_dir(collections)) + self.assertTrue(correct_dir(typing_extensions)) + + def test_python_version_is_ok(self): + self.assertTrue(sys.version_info == PYTHON_VERSION) + self.assertTrue(ORIGINAL_VERSION[0] == 2) + + +class Employee: + pass + + +class NoReturnTests(BaseTestCase): + + def test_noreturn_instance_type_error(self): + with self.assertRaises(TypeError): + isinstance(42, NoReturn) + + def test_noreturn_subclass_type_error(self): + with self.assertRaises(TypeError): + issubclass(Employee, NoReturn) + with self.assertRaises(TypeError): + issubclass(NoReturn, Employee) + + def test_repr(self): + if hasattr(typing, 'NoReturn'): + self.assertEqual(repr(NoReturn), 'typing.NoReturn') + else: + self.assertEqual(repr(NoReturn), 'typing_extensions.NoReturn') + + def test_not_generic(self): + with self.assertRaises(TypeError): + NoReturn[int] + + def test_cannot_subclass(self): + with self.assertRaises(TypeError): + class A(NoReturn): + pass + with self.assertRaises(TypeError): + class A(type(NoReturn)): + pass + + def test_cannot_instantiate(self): + with self.assertRaises(TypeError): + NoReturn() + with self.assertRaises(TypeError): + type(NoReturn)() + + +class CollectionsAbcTests(BaseTestCase): + + def test_collection(self): + self.assertIsInstance(tuple(), typing_extensions.Collection) + self.assertIsInstance(frozenset(), typing_extensions.Collection) + self.assertIsSubclass(dict, typing_extensions.Collection) + self.assertNotIsInstance(42, typing_extensions.Collection) + + def test_collection_instantiation(self): + class MyAbstractCollection(typing_extensions.Collection[int]): + pass + class MyCollection(typing_extensions.Collection[int]): + def __contains__(self, item): pass + def __iter__(self): pass + def __len__(self): pass + + self.assertIsSubclass( + type(MyCollection()), + typing_extensions.Collection) + self.assertIsSubclass( + MyCollection, + typing_extensions.Collection) + with self.assertRaises(TypeError): + MyAbstractCollection() + + def test_contextmanager(self): + @contextlib.contextmanager + def manager(): + yield 42 + + cm = manager() + self.assertIsInstance(cm, typing_extensions.ContextManager) + self.assertNotIsInstance(42, typing_extensions.ContextManager) + + +class AllTests(BaseTestCase): + def test_typing_extensions_includes_standard(self): + a = typing_extensions.__all__ + self.assertIn('ClassVar', a) + self.assertIn('Type', a) + self.assertIn('Counter', a) + self.assertIn('DefaultDict', a) + self.assertIn('Deque', a) + self.assertIn('NewType', a) + self.assertIn('overload', a) + self.assertIn('Text', a) + self.assertIn('TYPE_CHECKING', a) + + self.assertIn('Collection', a) + + def test_typing_extensions_defers_when_possible(self): + exclude = {'overload', 'Text', 'TYPE_CHECKING'} + for item in typing_extensions.__all__: + if item not in exclude and hasattr(typing, item): + self.assertIs( + getattr(typing_extensions, item), + getattr(typing, item)) + +if __name__ == '__main__': + main(argv=[sys.argv[0]] + sys.argv[2:]) diff --git a/typing_extensions/src_py2/typing_extensions.py b/typing_extensions/src_py2/typing_extensions.py new file mode 100644 index 000000000..96dd61c1e --- /dev/null +++ b/typing_extensions/src_py2/typing_extensions.py @@ -0,0 +1,118 @@ +import abc +from abc import abstractmethod, abstractproperty +import collections +import typing +from typing import ( + ClassVar, Type, + Counter, DefaultDict, Deque, + NewType, overload, Text, Type, TYPE_CHECKING, +) + +# Please keep __all__ alphabetized within each category. +__all__ = [ + # Super-special typing primitives. + 'ClassVar', + 'Type', + + # Concrete collection types. + 'Collection', + 'ContextManager', + 'Counter', + 'Deque', + 'DefaultDict', + + # One-off things. + 'NewType', + 'overload', + 'Text', + 'TYPE_CHECKING', +] + + +if hasattr(typing, 'NoReturn'): + NoReturn = typing.NoReturn +else: + # TODO: Remove once typing.py has been updated + class NoReturnMeta(typing.TypingMeta): + """Metaclass for NoReturn.""" + + def __new__(cls, name, bases, namespace): + cls.assert_no_subclassing(bases) + self = super(NoReturnMeta, cls).__new__(cls, name, bases, namespace) + return self + + + class _NoReturn(typing._FinalTypingBase): + """Special type indicating functions that never return. + Example:: + from typing import NoReturn + def stop() -> NoReturn: + raise Exception('no way') + This type is invalid in other positions, e.g., ``List[NoReturn]`` + will fail in static type checkers. + """ + __metaclass__ = NoReturnMeta + __slots__ = () + + def __instancecheck__(self, obj): + raise TypeError("NoReturn cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("NoReturn cannot be used with issubclass().") + + + NoReturn = _NoReturn(_root=True) + + +T_co = typing.TypeVar('T_co', covariant=True) + +if hasattr(typing, 'ContextManager'): + ContextManager = typing.ContextManager +else: + # TODO: Remove once typing.py has been updated + class ContextManager(typing.Generic[T_co]): + __slots__ = () + + def __enter__(self): + return self + + @abc.abstractmethod + def __exit__(self, exc_type, exc_value, traceback): + return None + + @classmethod + def __subclasshook__(cls, C): + if cls is ContextManager: + # In Python 3.6+, it is possible to set a method to None to + # explicitly indicate that the class does not implement an ABC + # (https://bugs.python.org/issue25958), but we do not support + # that pattern here because this fallback class is only used + # in Python 3.5 and earlier. + if (any("__enter__" in B.__dict__ for B in C.__mro__) and + any("__exit__" in B.__dict__ for B in C.__mro__)): + return True + return NotImplemented + + +# Backport collections.Collection +class _CollectionAbc(collections.Sized, + collections.Iterable, + collections.Container): + pass + +_CollectionAbc.register(list) +_CollectionAbc.register(tuple) +_CollectionAbc.register(set) +_CollectionAbc.register(frozenset) +_CollectionAbc.register(basestring) +_CollectionAbc.register(buffer) +_CollectionAbc.register(dict) + + +class Collection(typing.Sized, + typing.Iterable[T_co], + typing.Container[T_co]): + __slots__ = () + __extra__ = _CollectionAbc + + diff --git a/typing_extensions/src_py3/test_typing_extensions.py b/typing_extensions/src_py3/test_typing_extensions.py new file mode 100644 index 000000000..6292f443a --- /dev/null +++ b/typing_extensions/src_py3/test_typing_extensions.py @@ -0,0 +1,666 @@ +# Override version info +import sys +ORIGINAL_VERSION = sys.version_info +if len(sys.argv) >= 2: + PYTHON_VERSION = tuple(map(int, sys.argv[1].split('.'))) + sys.version_info = PYTHON_VERSION + OVERRIDING_VERSION = True +else: + PYTHON_VERSION = ORIGINAL_VERSION + OVERRIDING_VERSION = False + +import os +import abc +import contextlib +import collections +from unittest import TestCase, main, skipUnless, SkipTest + +from typing import TypeVar, Optional +from typing import T, KT, VT # Not in __all__. +from typing import Tuple, List, MutableMapping +from typing import Generic +from typing import get_type_hints +from typing import no_type_check, no_type_check_decorator +from typing import NamedTuple +from typing_extensions import NoReturn, ClassVar, Type, NewType +import typing +import typing_extensions +import collections.abc as collections_abc +import _collections_abc + +TYPING_V2 = sys.version_info >= (3, 5, 1) +TYPING_V3 = sys.version_info >= (3, 5, 3) +TYPING_V4 = sys.version_info >= (3, 6, 1) + + +class BaseTestCase(TestCase): + def assertIsSubclass(self, cls, class_or_tuple, msg=None): + if not issubclass(cls, class_or_tuple): + message = '%r is not a subclass of %r' % (cls, class_or_tuple) + if msg is not None: + message += ' : %s' % msg + raise self.failureException(message) + + def assertNotIsSubclass(self, cls, class_or_tuple, msg=None): + if issubclass(cls, class_or_tuple): + message = '%r is a subclass of %r' % (cls, class_or_tuple) + if msg is not None: + message += ' : %s' % msg + raise self.failureException(message) + + def clear_caches(self): + for f in typing._cleanups: + f() + + +class EnvironmentTest(BaseTestCase): + @skipUnless(OVERRIDING_VERSION, "Environment tests apply only when overriding") + def test_environment_is_ok(self): + cwd = os.path.abspath(os.getcwd()) + def correct_dir(module): + return os.path.abspath(module.__file__).startswith(cwd) + + self.assertTrue(correct_dir(abc)) + self.assertTrue(correct_dir(collections)) + self.assertTrue(correct_dir(collections_abc)) + self.assertTrue(correct_dir(_collections_abc)) + self.assertTrue(correct_dir(typing_extensions)) + + # Use system-installed version for other Python versions + if sys.version_info >= (3, 5, 0): + self.assertTrue(correct_dir(typing)) + + def test_python_version_is_ok(self): + self.assertTrue(sys.version_info == PYTHON_VERSION) + self.assertTrue(sys.version_info <= ORIGINAL_VERSION) + self.assertTrue(ORIGINAL_VERSION[0] == 3) + + +class Employee: + pass + + +class NoReturnTests(BaseTestCase): + + def test_noreturn_instance_type_error(self): + with self.assertRaises(TypeError): + isinstance(42, NoReturn) + + def test_noreturn_subclass_type_error_1(self): + with self.assertRaises(TypeError): + issubclass(Employee, NoReturn) + + @skipUnless(TYPING_V3, "Behavior added in typing v3") + def test_noreturn_subclass_type_error_2(self): + with self.assertRaises(TypeError): + issubclass(NoReturn, Employee) + + def test_repr(self): + if hasattr(typing, 'NoReturn'): + self.assertEqual(repr(NoReturn), 'typing.NoReturn') + else: + self.assertEqual(repr(NoReturn), 'typing_extensions.NoReturn') + + def test_not_generic(self): + with self.assertRaises(TypeError): + NoReturn[int] + + def test_cannot_subclass(self): + with self.assertRaises(TypeError): + class A(NoReturn): + pass + if TYPING_V3: + with self.assertRaises(TypeError): + class A(type(NoReturn)): + pass + + def test_cannot_instantiate(self): + with self.assertRaises(TypeError): + NoReturn() + with self.assertRaises(TypeError): + type(NoReturn)() + + +class ClassVarTests(BaseTestCase): + + def test_basics(self): + with self.assertRaises(TypeError): + ClassVar[1] + with self.assertRaises(TypeError): + ClassVar[int, str] + with self.assertRaises(TypeError): + ClassVar[int][str] + + def test_repr(self): + if hasattr(typing, 'ClassVar'): + mod_name = 'typing' + else: + mod_name = 'typing_extensions' + self.assertEqual(repr(ClassVar), mod_name + '.ClassVar') + cv = ClassVar[int] + self.assertEqual(repr(cv), mod_name + '.ClassVar[int]') + cv = ClassVar[Employee] + self.assertEqual(repr(cv), mod_name + '.ClassVar[%s.Employee]' % __name__) + + @skipUnless(TYPING_V3, "Behavior added in typing v3") + def test_cannot_subclass(self): + with self.assertRaises(TypeError): + class C(type(ClassVar)): + pass + with self.assertRaises(TypeError): + class C(type(ClassVar[int])): + pass + + def test_cannot_init(self): + with self.assertRaises(TypeError): + ClassVar() + with self.assertRaises(TypeError): + type(ClassVar)() + with self.assertRaises(TypeError): + type(ClassVar[Optional[int]])() + + def test_no_isinstance(self): + with self.assertRaises(TypeError): + isinstance(1, ClassVar[int]) + with self.assertRaises(TypeError): + issubclass(int, ClassVar) + + +class OverloadTests(BaseTestCase): + + def test_overload_fails(self): + from typing_extensions import overload + + with self.assertRaises(RuntimeError): + + @overload + def blah(): + pass + + blah() + + def test_overload_succeeds(self): + from typing_extensions import overload + + @overload + def blah(): + pass + + def blah(): + pass + + blah() + + +ASYNCIO = sys.version_info[:2] >= (3, 5, 0) + +ASYNCIO_TESTS = """ +import asyncio +from typing import Iterable +from typing_extensions import Awaitable, AsyncIterator + +T_a = TypeVar('T_a') + +class AwaitableWrapper(Awaitable[T_a]): + + def __init__(self, value): + self.value = value + + def __await__(self) -> typing.Iterator[T_a]: + yield + return self.value + +class AsyncIteratorWrapper(AsyncIterator[T_a]): + + def __init__(self, value: Iterable[T_a]): + self.value = value + + def __aiter__(self) -> AsyncIterator[T_a]: + return self + + @asyncio.coroutine + def __anext__(self) -> T_a: + data = yield from self.value + if data: + return data + else: + raise StopAsyncIteration + +class ACM: + async def __aenter__(self) -> int: + return 42 + async def __aexit__(self, etype, eval, tb): + return None +""" + +if ASYNCIO: + try: + exec(ASYNCIO_TESTS) + except ImportError: + ASYNCIO = False +else: + # fake names for the sake of static analysis + asyncio = None + AwaitableWrapper = AsyncIteratorWrapper = ACM = object + +PY36 = sys.version_info[:2] >= (3, 6) + +PY36_TESTS = """ +from test import ann_module, ann_module2, ann_module3 +from typing_extensions import AsyncContextManager + +class A: + y: float +class B(A): + x: ClassVar[Optional['B']] = None + y: int + b: int +class CSub(B): + z: ClassVar['CSub'] = B() +class G(Generic[T]): + lst: ClassVar[List[T]] = [] + +class NoneAndForward: + parent: 'NoneAndForward' + meaning: None + +class XRepr(NamedTuple): + x: int + y: int = 1 + def __str__(self): + return f'{self.x} -> {self.y}' + def __add__(self, other): + return 0 + +async def g_with(am: AsyncContextManager[int]): + x: int + async with am as x: + return x + +try: + g_with(ACM()).send(None) +except StopIteration as e: + assert e.args[0] == 42 +""" + +if PY36: + exec(PY36_TESTS) +else: + # fake names for the sake of static analysis + ann_module = ann_module2 = ann_module3 = None + A = B = CSub = G = CoolEmployee = CoolEmployeeWithDefault = object + XMeth = XRepr = NoneAndForward = object + +gth = get_type_hints + + +class GetTypeHintTests(BaseTestCase): + @skipUnless(PY36, 'Python 3.6 required') + def test_get_type_hints_modules(self): + ann_module_type_hints = {1: 2, 'f': Tuple[int, int], 'x': int, 'y': str} + self.assertEqual(gth(ann_module), ann_module_type_hints) + self.assertEqual(gth(ann_module2), {}) + self.assertEqual(gth(ann_module3), {}) + + @skipUnless(PY36, 'Python 3.6 required') + def test_get_type_hints_classes(self): + self.assertEqual(gth(ann_module.C, ann_module.__dict__), + {'y': Optional[ann_module.C]}) + self.assertIsInstance(gth(ann_module.j_class), dict) + self.assertEqual(gth(ann_module.M), {'123': 123, 'o': type}) + self.assertEqual(gth(ann_module.D), + {'j': str, 'k': str, 'y': Optional[ann_module.C]}) + self.assertEqual(gth(ann_module.Y), {'z': int}) + self.assertEqual(gth(ann_module.h_class), + {'y': Optional[ann_module.C]}) + self.assertEqual(gth(ann_module.S), {'x': str, 'y': str}) + self.assertEqual(gth(ann_module.foo), {'x': int}) + self.assertEqual(gth(NoneAndForward, globals()), + {'parent': NoneAndForward, 'meaning': type(None)}) + + @skipUnless(PY36, 'Python 3.6 required') + def test_respect_no_type_check(self): + @no_type_check + class NoTpCheck: + class Inn: + def __init__(self, x: 'not a type'): ... + self.assertTrue(NoTpCheck.__no_type_check__) + self.assertTrue(NoTpCheck.Inn.__init__.__no_type_check__) + self.assertEqual(gth(ann_module2.NTC.meth), {}) + class ABase(Generic[T]): + def meth(x: int): ... + @no_type_check + class Der(ABase): ... + self.assertEqual(gth(ABase.meth), {'x': int}) + + @skipUnless(PY36, 'Python 3.6 required') + def test_get_type_hints_ClassVar(self): + self.assertEqual(gth(ann_module2.CV, ann_module2.__dict__), + {'var': ClassVar[ann_module2.CV]}) + self.assertEqual(gth(B, globals()), + {'y': int, 'x': ClassVar[Optional[B]], 'b': int}) + self.assertEqual(gth(CSub, globals()), + {'z': ClassVar[CSub], 'y': int, 'b': int, + 'x': ClassVar[Optional[B]]}) + self.assertEqual(gth(G), {'lst': ClassVar[List[T]]}) + + +class CollectionsAbcTests(BaseTestCase): + + @skipUnless(ASYNCIO, 'Python 3.5 and multithreading required') + def test_awaitable(self): + ns = {} + exec( + "async def foo() -> typing_extensions.Awaitable[int]:\n" + " return await AwaitableWrapper(42)\n", + globals(), ns) + foo = ns['foo'] + g = foo() + self.assertIsInstance(g, typing_extensions.Awaitable) + self.assertNotIsInstance(foo, typing_extensions.Awaitable) + g.send(None) # Run foo() till completion, to avoid warning. + + @skipUnless(ASYNCIO, 'Python 3.5 and multithreading required') + def test_coroutine(self): + ns = {} + exec( + "async def foo():\n" + " return\n", + globals(), ns) + foo = ns['foo'] + g = foo() + self.assertIsInstance(g, typing_extensions.Coroutine) + with self.assertRaises(TypeError): + isinstance(g, typing_extensions.Coroutine[int]) + self.assertNotIsInstance(foo, typing_extensions.Coroutine) + try: + g.send(None) + except StopIteration: + pass + + @skipUnless(ASYNCIO, 'Python 3.5 and multithreading required') + def test_async_iterable(self): + base_it = range(10) # type: Iterator[int] + it = AsyncIteratorWrapper(base_it) + self.assertIsInstance(it, typing_extensions.AsyncIterable) + self.assertIsInstance(it, typing_extensions.AsyncIterable) + self.assertNotIsInstance(42, typing_extensions.AsyncIterable) + + @skipUnless(ASYNCIO, 'Python 3.5 and multithreading required') + def test_async_iterator(self): + base_it = range(10) # type: Iterator[int] + it = AsyncIteratorWrapper(base_it) + self.assertIsInstance(it, typing_extensions.AsyncIterator) + self.assertNotIsInstance(42, typing_extensions.AsyncIterator) + + def test_collection(self): + #if hasattr(collections_abc, 'Collection'): + self.assertIsInstance(tuple(), typing_extensions.Collection) + self.assertIsInstance(frozenset(), typing_extensions.Collection) + self.assertIsSubclass(dict, typing_extensions.Collection) + self.assertNotIsInstance(42, typing_extensions.Collection) + + @skipUnless(TYPING_V2, "Behavior added in typing v2") + def test_collection_instantiation(self): + class MyCollection(typing_extensions.Collection[int]): + def __contains__(self, item): ... + def __iter__(self): ... + def __len__(self): ... + + self.assertIsSubclass( + type(MyCollection()), + typing_extensions.Collection) + self.assertIsSubclass( + MyCollection, + typing_extensions.Collection) + + def test_deque(self): + self.assertIsSubclass(collections.deque, typing_extensions.Deque) + class MyDeque(typing_extensions.Deque[int]): ... + self.assertIsInstance(MyDeque(), collections.deque) + + def test_counter(self): + self.assertIsSubclass(collections.Counter, typing_extensions.Counter) + + @skipUnless(TYPING_V4, "Behavior added in typing v4") + def test_defaultdict_instantiation(self): + self.assertIs( + type(typing_extensions.DefaultDict()), + collections.defaultdict) + self.assertIs( + type(typing_extensions.DefaultDict[KT, VT]()), + collections.defaultdict) + self.assertIs( + type(typing_extensions.DefaultDict[str, int]()), + collections.defaultdict) + + def test_defaultdict_subclass(self): + + class MyDefDict(typing_extensions.DefaultDict[str, int]): + pass + + dd = MyDefDict() + self.assertIsInstance(dd, MyDefDict) + + self.assertIsSubclass(MyDefDict, collections.defaultdict) + if TYPING_V3: + self.assertNotIsSubclass(collections.defaultdict, MyDefDict) + + def test_chainmap_instantiation(self): + self.assertIs(type(typing_extensions.ChainMap()), collections.ChainMap) + self.assertIs(type(typing_extensions.ChainMap[KT, VT]()), collections.ChainMap) + self.assertIs(type(typing_extensions.ChainMap[str, int]()), collections.ChainMap) + class CM(typing_extensions.ChainMap[KT, VT]): ... + if TYPING_V3: + self.assertIs(type(CM[int, str]()), CM) + + def test_chainmap_subclass(self): + + class MyChainMap(typing_extensions.ChainMap[str, int]): + pass + + cm = MyChainMap() + self.assertIsInstance(cm, MyChainMap) + + self.assertIsSubclass(MyChainMap, collections.ChainMap) + if TYPING_V3: + self.assertNotIsSubclass(collections.ChainMap, MyChainMap) + + def test_deque_instantiation(self): + self.assertIs(type(typing_extensions.Deque()), collections.deque) + self.assertIs(type(typing_extensions.Deque[T]()), collections.deque) + self.assertIs(type(typing_extensions.Deque[int]()), collections.deque) + class D(typing_extensions.Deque[T]): ... + if TYPING_V3: + self.assertIs(type(D[int]()), D) + + def test_counter_instantiation(self): + self.assertIs(type(typing_extensions.Counter()), collections.Counter) + self.assertIs(type(typing_extensions.Counter[T]()), collections.Counter) + self.assertIs(type(typing_extensions.Counter[int]()), collections.Counter) + class C(typing_extensions.Counter[T]): ... + if TYPING_V3: + self.assertIs(type(C[int]()), C) + + def test_counter_subclass_instantiation(self): + + class MyCounter(typing_extensions.Counter[int]): + pass + + d = MyCounter() + self.assertIsInstance(d, MyCounter) + self.assertIsInstance(d, collections.Counter) + if TYPING_V2: + self.assertIsInstance(d, typing_extensions.Counter) + + @skipUnless(PY36, 'Python 3.6 required') + def test_async_generator(self): + ns = {} + exec("async def f():\n" + " yield 42\n", globals(), ns) + g = ns['f']() + self.assertIsSubclass(type(g), typing_extensions.AsyncGenerator) + + @skipUnless(PY36, 'Python 3.6 required') + def test_no_async_generator_instantiation(self): + with self.assertRaises(TypeError): + typing_extensions.AsyncGenerator() + with self.assertRaises(TypeError): + typing_extensions.AsyncGenerator[T, T]() + with self.assertRaises(TypeError): + typing_extensions.AsyncGenerator[int, int]() + + + @skipUnless(PY36, 'Python 3.6 required') + def test_subclassing_async_generator(self): + class G(typing_extensions.AsyncGenerator[int, int]): + def asend(self, value): + pass + def athrow(self, typ, val=None, tb=None): + pass + + ns = {} + exec('async def g(): yield 0', globals(), ns) + g = ns['g'] + self.assertIsSubclass(G, typing_extensions.AsyncGenerator) + self.assertIsSubclass(G, typing_extensions.AsyncIterable) + self.assertIsSubclass(G, collections_abc.AsyncGenerator) + self.assertIsSubclass(G, collections_abc.AsyncIterable) + self.assertNotIsSubclass(type(g), G) + + instance = G() + self.assertIsInstance(instance, typing_extensions.AsyncGenerator) + self.assertIsInstance(instance, typing_extensions.AsyncIterable) + self.assertIsInstance(instance, collections_abc.AsyncGenerator) + self.assertIsInstance(instance, collections_abc.AsyncIterable) + self.assertNotIsInstance(type(g), G) + self.assertNotIsInstance(g, G) + + +class OtherABCTests(BaseTestCase): + + def test_contextmanager(self): + @contextlib.contextmanager + def manager(): + yield 42 + + cm = manager() + self.assertIsInstance(cm, typing_extensions.ContextManager) + self.assertNotIsInstance(42, typing_extensions.ContextManager) + + @skipUnless(ASYNCIO, 'Python 3.5 required') + def test_async_contextmanager(self): + class NotACM: + pass + self.assertIsInstance(ACM(), typing_extensions.AsyncContextManager) + self.assertNotIsInstance(NotACM(), typing_extensions.AsyncContextManager) + @contextlib.contextmanager + def manager(): + yield 42 + + cm = manager() + self.assertNotIsInstance(cm, typing_extensions.AsyncContextManager) + if TYPING_V3: + self.assertEqual(typing_extensions.AsyncContextManager[int].__args__, (int,)) + if TYPING_V4: + with self.assertRaises(TypeError): + isinstance(42, typing_extensions.AsyncContextManager[int]) + with self.assertRaises(TypeError): + typing_extensions.AsyncContextManager[int, str] + + +class TypeTests(BaseTestCase): + + def test_type_basic(self): + + class User: pass + class BasicUser(User): pass + class ProUser(User): pass + + def new_user(user_class: Type[User]) -> User: + return user_class() + + new_user(BasicUser) + + def test_type_typevar(self): + + class User: pass + class BasicUser(User): pass + class ProUser(User): pass + + U = TypeVar('U', bound=User) + + def new_user(user_class: Type[U]) -> U: + return user_class() + + new_user(BasicUser) + + @skipUnless(sys.version_info != (3, 5, 2), 'Python 3.5.2 has a somewhat buggy Type impl') + def test_type_optional(self): + A = Optional[Type[BaseException]] + + def foo(a: A) -> Optional[BaseException]: + if a is None: + return None + else: + return a() + + assert isinstance(foo(KeyboardInterrupt), KeyboardInterrupt) + assert foo(None) is None + + +class NewTypeTests(BaseTestCase): + + def test_basic(self): + UserId = NewType('UserId', int) + UserName = NewType('UserName', str) + self.assertIsInstance(UserId(5), int) + self.assertIsInstance(UserName('Joe'), str) + self.assertEqual(UserId(5) + 1, 6) + + def test_errors(self): + UserId = NewType('UserId', int) + UserName = NewType('UserName', str) + with self.assertRaises(TypeError): + issubclass(UserId, int) + with self.assertRaises(TypeError): + class D(UserName): + pass + +class AllTests(BaseTestCase): + def test_typing_extensions_includes_standard(self): + a = typing_extensions.__all__ + self.assertIn('ClassVar', a) + self.assertIn('Type', a) + self.assertIn('ChainMap', a) + self.assertIn('ContextManager', a) + self.assertIn('Counter', a) + self.assertIn('DefaultDict', a) + self.assertIn('Deque', a) + self.assertIn('NewType', a) + self.assertIn('overload', a) + self.assertIn('Text', a) + self.assertIn('TYPE_CHECKING', a) + + if ASYNCIO: + self.assertIn('Awaitable', a) + self.assertIn('AsyncIterator', a) + self.assertIn('AsyncIterable', a) + self.assertIn('Coroutine', a) + self.assertIn('AsyncContextManager', a) + + if PY36: + self.assertIn('AsyncGenerator', a) + if hasattr(collections_abc, 'Collection'): + self.assertIn('Collection', a) + + def test_typing_extensions_defers_when_possible(self): + exclude = {'overload', 'Text', 'TYPE_CHECKING'} + for item in typing_extensions.__all__: + if item not in exclude and hasattr(typing, item): + self.assertIs( + getattr(typing_extensions, item), + getattr(typing, item)) + +if __name__ == '__main__': + main(argv=[sys.argv[0]] + sys.argv[2:]) diff --git a/typing_extensions/src_py3/typing_extensions.py b/typing_extensions/src_py3/typing_extensions.py new file mode 100644 index 000000000..907866f30 --- /dev/null +++ b/typing_extensions/src_py3/typing_extensions.py @@ -0,0 +1,618 @@ +import abc +from abc import abstractmethod, abstractproperty +import collections +import contextlib +import sys +import typing +try: + import collections.abc as collections_abc +except ImportError: + import collections as collections_abc # Fallback for PY3.2. + +if hasattr(typing, '_generic_new'): + _generic_new = typing._generic_new +else: + def _generic_new(base_cls, cls, *args, **kwargs): + return base_cls.__new__(cls, *args, **kwargs) + +if sys.version_info[:2] >= (3, 6): + import _collections_abc + _check_methods_in_mro = _collections_abc._check_methods +else: + def _check_methods_in_mro(C, *methods): + mro = C.__mro__ + for method in methods: + for B in mro: + if method in B.__dict__: + if B.__dict__[method] is None: + return NotImplemented + break + else: + return NotImplemented + return True + + +# Please keep __all__ alphabetized within each category. +__all__ = [ + # Super-special typing primitives. + 'ClassVar', + 'Type', + + # ABCs (from collections.abc). + # The following are added depending on presence + # of their non-generic counterparts in stdlib: + #'Awaitable', + #'AsyncIterator', + #'AsyncIterable', + #'Coroutine', + #'AsyncGenerator', + #'AsyncContextManager', + #'ChainMap', + + # Concrete collection types. + 'Collection', + 'ContextManager', + 'Counter', + 'Deque', + 'DefaultDict', + + # One-off things. + 'NewType', + 'overload', + 'Text', + 'TYPE_CHECKING', +] + + +# TODO +if hasattr(typing, 'NoReturn'): + NoReturn = typing.NoReturn +elif hasattr(typing, '_FinalTypingBase'): + class _NoReturn(typing._FinalTypingBase, _root=True): + """Special type indicating functions that never return. + Example:: + + from typing import NoReturn + + def stop() -> NoReturn: + raise Exception('no way') + + This type is invalid in other positions, e.g., ``List[NoReturn]`` + will fail in static type checkers. + """ + __slots__ = () + + def __instancecheck__(self, obj): + raise TypeError("NoReturn cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("NoReturn cannot be used with issubclass().") + + NoReturn = _NoReturn(_root=True) +else: + class NoReturnMeta(typing.TypingMeta): + """Metaclass for NoReturn""" + def __new__(cls, name, bases, namespace, _root=False): + return super().__new__(cls, name, bases, namespace, _root=_root) + + def __instancecheck__(self, obj): + raise TypeError("NoReturn cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("NoReturn cannot be used with issubclass().") + + class NoReturn(typing.Final, metaclass=NoReturnMeta, _root=True): + """Special type indicating functions that never return. + Example:: + + from typing import NoReturn + + def stop() -> NoReturn: + raise Exception('no way') + + This type is invalid in other positions, e.g., ``List[NoReturn]`` + will fail in static type checkers. + """ + __slots__ = () + + +# Some unconstrained type variables. These are used by the container types. +# (These are not for export.) +T = typing.TypeVar('T') # Any type. +KT = typing.TypeVar('KT') # Key type. +VT = typing.TypeVar('VT') # Value type. +T_co = typing.TypeVar('T_co', covariant=True) # Any type covariant containers. +V_co = typing.TypeVar('V_co', covariant=True) # Any type covariant containers. +VT_co = typing.TypeVar('VT_co', covariant=True) # Value type covariant containers. +T_contra = typing.TypeVar('T_contra', contravariant=True) # Ditto contravariant. + + +def _gorg(a): + """Return the farthest origin of a generic class (internal helper).""" + assert isinstance(a, typing.GenericMeta) + while a.__origin__ is not None: + a = a.__origin__ + return a + + +def _geqv(a, b): + """Return whether two generic classes are equivalent (internal helper). + + The intention is to consider generic class X and any of its + parameterized forms (X[T], X[int], etc.) as equivalent. + + However, X is not equivalent to a subclass of X. + + The relation is reflexive, symmetric and transitive. + """ + assert isinstance(a, typing.GenericMeta) and isinstance(b, typing.GenericMeta) + # Reduce each to its origin. + return _gorg(a) is _gorg(b) + + +if hasattr(typing, 'ClassVar'): + ClassVar = typing.ClassVar +elif hasattr(typing, '_FinalTypingBase'): + class _ClassVar(typing._FinalTypingBase, _root=True): + """Special type construct to mark class variables. + + An annotation wrapped in ClassVar indicates that a given + attribute is intended to be used as a class variable and + should not be set on instances of that class. Usage:: + + class Starship: + stats: ClassVar[Dict[str, int]] = {} # class variable + damage: int = 10 # instance variable + + ClassVar accepts only types and cannot be further subscribed. + + Note that ClassVar is not a class itself, and should not + be used with isinstance() or issubclass(). + """ + + __slots__ = ('__type__',) + + def __init__(self, tp=None, **kwds): + self.__type__ = tp + + def __getitem__(self, item): + cls = type(self) + if self.__type__ is None: + return cls(_type_check(item, + '{} accepts only single type.'.format(cls.__name__[1:])), + _root=True) + raise TypeError('{} cannot be further subscripted' + .format(cls.__name__[1:])) + + def _eval_type(self, globalns, localns): + new_tp = _eval_type(self.__type__, globalns, localns) + if new_tp == self.__type__: + return self + return type(self)(new_tp, _root=True) + + def __repr__(self): + r = super().__repr__() + if self.__type__ is not None: + r += '[{}]'.format(typing._type_repr(self.__type__)) + return r + + def __hash__(self): + return hash((type(self).__name__, self.__type__)) + + def __eq__(self, other): + if not isinstance(other, _ClassVar): + return NotImplemented + if self.__type__ is not None: + return self.__type__ == other.__type__ + return self is other + + + ClassVar = _ClassVar(_root=True) +else: + class ClassVarMeta(typing.TypingMeta): + """Metaclass for ClassVar""" + + def __new__(cls, name, bases, namespace, tp=None, _root=False): + self = super().__new__(cls, name, bases, namespace, _root=_root) + if tp is not None: + self.__type__ = tp + return self + + def __instancecheck__(self, obj): + raise TypeError("ClassVar cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("ClassVar cannot be used with issubclass().") + + def __getitem__(self, item): + cls = type(self) + if self.__type__ is not None: + raise TypeError('{} cannot be further subscripted' + .format(cls.__name__[1:])) + + param = typing._type_check( + item, + '{} accepts only single type.'.format(cls.__name__[1:])) + return cls(self.__name__, self.__bases__, + dict(self.__dict__), tp=param, _root=True) + + def _eval_type(self, globalns, localns): + new_tp = _eval_type(self.__type__, globalns, localns) + if new_tp == self.__type__: + return self + return type(self)(self.__name__, self.__bases__, + dict(self.__dict__), tp=self.__type__, + _root=True) + + def __repr__(self): + r = super().__repr__() + if self.__type__ is not None: + r += '[{}]'.format(typing._type_repr(self.__type__)) + return r + + def __hash__(self): + return hash((type(self).__name__, self.__type__)) + + def __eq__(self, other): + if not isinstance(other, ClassVar): + return NotImplemented + if self.__type__ is not None: + return self.__type__ == other.__type__ + return self is other + + + class ClassVar(typing.Final, metaclass=ClassVarMeta, _root=True): + """Special type construct to mark class variables. + + An annotation wrapped in ClassVar indicates that a given + attribute is intended to be used as a class variable and + should not be set on instances of that class. Usage:: + + class Starship: + stats: ClassVar[Dict[str, int]] = {} # class variable + damage: int = 10 # instance variable + + ClassVar accepts only types and cannot be further subscribed. + + Note that ClassVar is not a class itself, and should not + be used with isinstance() or issubclass(). + """ + + __type__ = None + + +def _overload_dummy(*args, **kwds): + """Helper for @overload to raise when called.""" + raise NotImplementedError( + "You should not call an overloaded function. " + "A series of @overload-decorated functions " + "outside a stub module should always be followed " + "by an implementation that is not @overload-ed.") + + +def overload(func): + """Decorator for overloaded functions/methods. + + In a stub file, place two or more stub definitions for the same + function in a row, each decorated with @overload. For example: + + @overload + def utf8(value: None) -> None: ... + @overload + def utf8(value: bytes) -> bytes: ... + @overload + def utf8(value: str) -> bytes: ... + + In a non-stub file (i.e. a regular .py file), do the same but + follow it with an implementation. The implementation should *not* + be decorated with @overload. For example: + + @overload + def utf8(value: None) -> None: ... + @overload + def utf8(value: bytes) -> bytes: ... + @overload + def utf8(value: str) -> bytes: ... + def utf8(value): + # implementation goes here + """ + return _overload_dummy + + + + +# This is not a real generic class. Don't use outside annotations. +if hasattr(typing, 'Type'): + Type = typing.Type +else: + # Internal type variable used for Type[]. + CT_co = typing.TypeVar('CT_co', covariant=True, bound=type) + + class Type(typing.Generic[CT_co], extra=type): + """A special construct usable to annotate class objects. + + For example, suppose we have the following classes:: + + class User: ... # Abstract base for User classes + class BasicUser(User): ... + class ProUser(User): ... + class TeamUser(User): ... + + And a function that takes a class argument that's a subclass of + User and returns an instance of the corresponding class:: + + U = TypeVar('U', bound=User) + def new_user(user_class: Type[U]) -> U: + user = user_class() + # (Here we could write the user object to a database) + return user + joe = new_user(BasicUser) + + At this point the type checker knows that joe has type BasicUser. + """ + + __slots__ = () + + +# Various ABCs mimicking those in collections.abc. +# A few are simply re-exported for completeness. + +def _define_guard(type_name): + """ + Returns True if the given type isn't defined in typing but + is defined in collections_abc. + + Adds the type to __all__ if the collection is found in either + typing or collection_abc. + """ + if hasattr(typing, type_name): + __all__.append(type_name) + globals()[type_name] = getattr(typing, type_name) + return False + elif hasattr(collections_abc, type_name): + __all__.append(type_name) + return True + else: + return False + + +if _define_guard('Awaitable'): + class Awaitable(typing.Generic[T_co], extra=collections_abc.Awaitable): + __slots__ = () + + +if _define_guard('Coroutine'): + class Coroutine(Awaitable[V_co], typing.Generic[T_co, T_contra, V_co], + extra=collections_abc.Coroutine): + __slots__ = () + + +if _define_guard('AsyncIterable'): + class AsyncIterable(typing.Generic[T_co], + extra=collections_abc.AsyncIterable): + __slots__ = () + + +if _define_guard('AsyncIterator'): + class AsyncIterator(AsyncIterable[T_co], + extra=collections_abc.AsyncIterator): + __slots__ = () + + +if hasattr(typing, 'Collection'): + Collection = typing.Collection +else: + __all__.append('Collection') + + # Backport collections.abc.Collections + class _CollectionAbc(collections.Sized, + collections.Iterable, + collections.Container): + __slots__ = () + + @classmethod + def __subclasshook__(cls, C): + if cls is _CollectionAbc: + return _check_methods_in_mro( + C, "__len__", "__iter__", "__contains__") + return NotImplemented + + extra = getattr(collections_abc, 'Collection', _CollectionAbc) + + class Collection(typing.Sized, + typing.Iterable[T_co], + typing.Container[T_co], + extra=extra): + __slots__ = () + + +if hasattr(typing, 'Deque'): + Deque = typing.Deque +else: + class Deque(collections.deque, typing.MutableSequence[T], + extra=collections.deque): + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Deque): + return collections.deque(*args, **kwds) + return _generic_new(collections.deque, cls, *args, **kwds) + + +if hasattr(typing, 'ContextManager'): + ContextManager = typing.ContextManager +elif hasattr(contextlib, 'AbstractContextManager'): + class ContextManager(typing.Generic[T_co], + extra=contextlib.AbstractContextManager): + __slots__ = () +else: + class ContextManager(typing.Generic[T_co]): + __slots__ = () + + def __enter__(self): + return self + + @abc.abstractmethod + def __exit__(self, exc_type, exc_value, traceback): + return None + + @classmethod + def __subclasshook__(cls, C): + if cls is ContextManager: + # In Python 3.6+, it is possible to set a method to None to + # explicitly indicate that the class does not implement an ABC + # (https://bugs.python.org/issue25958), but we do not support + # that pattern here because this fallback class is only used + # in Python 3.5 and earlier. + if (any("__enter__" in B.__dict__ for B in C.__mro__) and + any("__exit__" in B.__dict__ for B in C.__mro__)): + return True + return NotImplemented + + +if hasattr(typing, 'AsyncContextManager'): + AsyncContextManager = typing.AsyncContextManager + __all__.append('AsyncContextManager') +elif hasattr(contextlib, 'AbstractAsyncContextManager'): + class AsyncContextManager(typing.Generic[T_co], + extra=contextlib.AbstractAsyncContextManager): + __slots__ = () + + __all__.append('AsyncContextManager') +elif sys.version_info[:2] >= (3, 5): + exec(""" +class AsyncContextManager(typing.Generic[T_co]): + __slots__ = () + + async def __aenter__(self): + return self + + @abc.abstractmethod + async def __aexit__(self, exc_type, exc_value, traceback): + return None + + @classmethod + def __subclasshook__(cls, C): + if cls is AsyncContextManager: + return _check_methods_in_mro(C, "__aenter__", "__aexit__") + return NotImplemented + +__all__.append('AsyncContextManager') +""") + + +if hasattr(typing, 'DefaultDict'): + DefaultDict = typing.DefaultDict +else: + class DefaultDict(collections.defaultdict, typing.MutableMapping[KT, VT], + extra=collections.defaultdict): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, DefaultDict): + return collections.defaultdict(*args, **kwds) + return _generic_new(collections.defaultdict, cls, *args, **kwds) + + +if hasattr(typing, 'Counter'): + Counter = typing.Counter +elif (3, 5, 0) <= sys.version_info <= (3, 5, 1): + _TInt = typing.TypeVar('_TInt') + + class CounterMeta(typing.GenericMeta): + """Metaclass for Counter""" + def __getitem__(self, item): + return super().__getitem__((item, int)) + + class Counter(collections.Counter, + typing.Dict[T, int], + metaclass=CounterMeta, + extra=collections.Counter): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Counter): + return collections.Counter(*args, **kwds) + return _generic_new(collections.Counter, cls, *args, **kwds) + +else: + class Counter(collections.Counter, + typing.Dict[T, int], + extra=collections.Counter): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Counter): + return collections.Counter(*args, **kwds) + return _generic_new(collections.Counter, cls, *args, **kwds) + + +if hasattr(typing, 'ChainMap'): + ChainMap = typing.ChainMap + __all__.append('ChainMap') +elif hasattr(collections, 'ChainMap'): + # ChainMap only exists in 3.3+ + class ChainMap(collections.ChainMap, typing.MutableMapping[KT, VT], + extra=collections.ChainMap): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, ChainMap): + return collections.ChainMap(*args, **kwds) + return _generic_new(collections.ChainMap, cls, *args, **kwds) + + __all__.append('ChainMap') + + +if _define_guard('AsyncGenerator'): + class AsyncGenerator(AsyncIterator[T_co], typing.Generic[T_co, T_contra], + extra=collections_abc.AsyncGenerator): + __slots__ = () + + +if hasattr(typing, 'NewType'): + NewType = typing.NewType +else: + def NewType(name, tp): + """NewType creates simple unique types with almost zero + runtime overhead. NewType(name, tp) is considered a subtype of tp + by static type checkers. At runtime, NewType(name, tp) returns + a dummy function that simply returns its argument. Usage:: + + UserId = NewType('UserId', int) + + def name_by_id(user_id: UserId) -> str: + ... + + UserId('user') # Fails type check + + name_by_id(42) # Fails type check + name_by_id(UserId(42)) # OK + + num = UserId(5) + 1 # type: int + """ + + def new_type(x): + return x + + new_type.__name__ = name + new_type.__supertype__ = tp + return new_type + + +if hasattr(typing, 'Text'): + Text = typing.Text +else: + Text = str + + +if hasattr(typing, 'TYPE_CHECKING'): + TYPE_CHECKING = typing.TYPE_CHECKING +else: + # Constant that's True when type checking, but False here. + TYPE_CHECKING = False + diff --git a/typing_extensions/test_data/python-2.7.13/_abcoll.py b/typing_extensions/test_data/python-2.7.13/_abcoll.py new file mode 100644 index 000000000..b643692e3 --- /dev/null +++ b/typing_extensions/test_data/python-2.7.13/_abcoll.py @@ -0,0 +1,695 @@ +# Copyright 2007 Google, Inc. All Rights Reserved. +# Licensed to PSF under a Contributor Agreement. + +"""Abstract Base Classes (ABCs) for collections, according to PEP 3119. + +DON'T USE THIS MODULE DIRECTLY! The classes here should be imported +via collections; they are defined here only to alleviate certain +bootstrapping issues. Unit tests are in test_collections. +""" + +from abc import ABCMeta, abstractmethod +import sys + +__all__ = ["Hashable", "Iterable", "Iterator", + "Sized", "Container", "Callable", + "Set", "MutableSet", + "Mapping", "MutableMapping", + "MappingView", "KeysView", "ItemsView", "ValuesView", + "Sequence", "MutableSequence", + ] + +### ONE-TRICK PONIES ### + +def _hasattr(C, attr): + try: + return any(attr in B.__dict__ for B in C.__mro__) + except AttributeError: + # Old-style class + return hasattr(C, attr) + + +class Hashable: + __metaclass__ = ABCMeta + + @abstractmethod + def __hash__(self): + return 0 + + @classmethod + def __subclasshook__(cls, C): + if cls is Hashable: + try: + for B in C.__mro__: + if "__hash__" in B.__dict__: + if B.__dict__["__hash__"]: + return True + break + except AttributeError: + # Old-style class + if getattr(C, "__hash__", None): + return True + return NotImplemented + + +class Iterable: + __metaclass__ = ABCMeta + + @abstractmethod + def __iter__(self): + while False: + yield None + + @classmethod + def __subclasshook__(cls, C): + if cls is Iterable: + if _hasattr(C, "__iter__"): + return True + return NotImplemented + +Iterable.register(str) + + +class Iterator(Iterable): + + @abstractmethod + def next(self): + 'Return the next item from the iterator. When exhausted, raise StopIteration' + raise StopIteration + + def __iter__(self): + return self + + @classmethod + def __subclasshook__(cls, C): + if cls is Iterator: + if _hasattr(C, "next") and _hasattr(C, "__iter__"): + return True + return NotImplemented + + +class Sized: + __metaclass__ = ABCMeta + + @abstractmethod + def __len__(self): + return 0 + + @classmethod + def __subclasshook__(cls, C): + if cls is Sized: + if _hasattr(C, "__len__"): + return True + return NotImplemented + + +class Container: + __metaclass__ = ABCMeta + + @abstractmethod + def __contains__(self, x): + return False + + @classmethod + def __subclasshook__(cls, C): + if cls is Container: + if _hasattr(C, "__contains__"): + return True + return NotImplemented + + +class Callable: + __metaclass__ = ABCMeta + + @abstractmethod + def __call__(self, *args, **kwds): + return False + + @classmethod + def __subclasshook__(cls, C): + if cls is Callable: + if _hasattr(C, "__call__"): + return True + return NotImplemented + + +### SETS ### + + +class Set(Sized, Iterable, Container): + """A set is a finite, iterable container. + + This class provides concrete generic implementations of all + methods except for __contains__, __iter__ and __len__. + + To override the comparisons (presumably for speed, as the + semantics are fixed), redefine __le__ and __ge__, + then the other operations will automatically follow suit. + """ + + def __le__(self, other): + if not isinstance(other, Set): + return NotImplemented + if len(self) > len(other): + return False + for elem in self: + if elem not in other: + return False + return True + + def __lt__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) < len(other) and self.__le__(other) + + def __gt__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) > len(other) and self.__ge__(other) + + def __ge__(self, other): + if not isinstance(other, Set): + return NotImplemented + if len(self) < len(other): + return False + for elem in other: + if elem not in self: + return False + return True + + def __eq__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) == len(other) and self.__le__(other) + + def __ne__(self, other): + return not (self == other) + + @classmethod + def _from_iterable(cls, it): + '''Construct an instance of the class from any iterable input. + + Must override this method if the class constructor signature + does not accept an iterable for an input. + ''' + return cls(it) + + def __and__(self, other): + if not isinstance(other, Iterable): + return NotImplemented + return self._from_iterable(value for value in other if value in self) + + __rand__ = __and__ + + def isdisjoint(self, other): + 'Return True if two sets have a null intersection.' + for value in other: + if value in self: + return False + return True + + def __or__(self, other): + if not isinstance(other, Iterable): + return NotImplemented + chain = (e for s in (self, other) for e in s) + return self._from_iterable(chain) + + __ror__ = __or__ + + def __sub__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return self._from_iterable(value for value in self + if value not in other) + + def __rsub__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return self._from_iterable(value for value in other + if value not in self) + + def __xor__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return (self - other) | (other - self) + + __rxor__ = __xor__ + + # Sets are not hashable by default, but subclasses can change this + __hash__ = None + + def _hash(self): + """Compute the hash value of a set. + + Note that we don't define __hash__: not all sets are hashable. + But if you define a hashable set type, its __hash__ should + call this function. + + This must be compatible __eq__. + + All sets ought to compare equal if they contain the same + elements, regardless of how they are implemented, and + regardless of the order of the elements; so there's not much + freedom for __eq__ or __hash__. We match the algorithm used + by the built-in frozenset type. + """ + MAX = sys.maxint + MASK = 2 * MAX + 1 + n = len(self) + h = 1927868237 * (n + 1) + h &= MASK + for x in self: + hx = hash(x) + h ^= (hx ^ (hx << 16) ^ 89869747) * 3644798167 + h &= MASK + h = h * 69069 + 907133923 + h &= MASK + if h > MAX: + h -= MASK + 1 + if h == -1: + h = 590923713 + return h + +Set.register(frozenset) + + +class MutableSet(Set): + """A mutable set is a finite, iterable container. + + This class provides concrete generic implementations of all + methods except for __contains__, __iter__, __len__, + add(), and discard(). + + To override the comparisons (presumably for speed, as the + semantics are fixed), all you have to do is redefine __le__ and + then the other operations will automatically follow suit. + """ + + @abstractmethod + def add(self, value): + """Add an element.""" + raise NotImplementedError + + @abstractmethod + def discard(self, value): + """Remove an element. Do not raise an exception if absent.""" + raise NotImplementedError + + def remove(self, value): + """Remove an element. If not a member, raise a KeyError.""" + if value not in self: + raise KeyError(value) + self.discard(value) + + def pop(self): + """Return the popped value. Raise KeyError if empty.""" + it = iter(self) + try: + value = next(it) + except StopIteration: + raise KeyError + self.discard(value) + return value + + def clear(self): + """This is slow (creates N new iterators!) but effective.""" + try: + while True: + self.pop() + except KeyError: + pass + + def __ior__(self, it): + for value in it: + self.add(value) + return self + + def __iand__(self, it): + for value in (self - it): + self.discard(value) + return self + + def __ixor__(self, it): + if it is self: + self.clear() + else: + if not isinstance(it, Set): + it = self._from_iterable(it) + for value in it: + if value in self: + self.discard(value) + else: + self.add(value) + return self + + def __isub__(self, it): + if it is self: + self.clear() + else: + for value in it: + self.discard(value) + return self + +MutableSet.register(set) + + +### MAPPINGS ### + + +class Mapping(Sized, Iterable, Container): + + """A Mapping is a generic container for associating key/value + pairs. + + This class provides concrete generic implementations of all + methods except for __getitem__, __iter__, and __len__. + + """ + + @abstractmethod + def __getitem__(self, key): + raise KeyError + + def get(self, key, default=None): + 'D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.' + try: + return self[key] + except KeyError: + return default + + def __contains__(self, key): + try: + self[key] + except KeyError: + return False + else: + return True + + def iterkeys(self): + 'D.iterkeys() -> an iterator over the keys of D' + return iter(self) + + def itervalues(self): + 'D.itervalues() -> an iterator over the values of D' + for key in self: + yield self[key] + + def iteritems(self): + 'D.iteritems() -> an iterator over the (key, value) items of D' + for key in self: + yield (key, self[key]) + + def keys(self): + "D.keys() -> list of D's keys" + return list(self) + + def items(self): + "D.items() -> list of D's (key, value) pairs, as 2-tuples" + return [(key, self[key]) for key in self] + + def values(self): + "D.values() -> list of D's values" + return [self[key] for key in self] + + # Mappings are not hashable by default, but subclasses can change this + __hash__ = None + + def __eq__(self, other): + if not isinstance(other, Mapping): + return NotImplemented + return dict(self.items()) == dict(other.items()) + + def __ne__(self, other): + return not (self == other) + +class MappingView(Sized): + + def __init__(self, mapping): + self._mapping = mapping + + def __len__(self): + return len(self._mapping) + + def __repr__(self): + return '{0.__class__.__name__}({0._mapping!r})'.format(self) + + +class KeysView(MappingView, Set): + + @classmethod + def _from_iterable(self, it): + return set(it) + + def __contains__(self, key): + return key in self._mapping + + def __iter__(self): + for key in self._mapping: + yield key + +KeysView.register(type({}.viewkeys())) + +class ItemsView(MappingView, Set): + + @classmethod + def _from_iterable(self, it): + return set(it) + + def __contains__(self, item): + key, value = item + try: + v = self._mapping[key] + except KeyError: + return False + else: + return v == value + + def __iter__(self): + for key in self._mapping: + yield (key, self._mapping[key]) + +ItemsView.register(type({}.viewitems())) + +class ValuesView(MappingView): + + def __contains__(self, value): + for key in self._mapping: + if value == self._mapping[key]: + return True + return False + + def __iter__(self): + for key in self._mapping: + yield self._mapping[key] + +ValuesView.register(type({}.viewvalues())) + +class MutableMapping(Mapping): + + """A MutableMapping is a generic container for associating + key/value pairs. + + This class provides concrete generic implementations of all + methods except for __getitem__, __setitem__, __delitem__, + __iter__, and __len__. + + """ + + @abstractmethod + def __setitem__(self, key, value): + raise KeyError + + @abstractmethod + def __delitem__(self, key): + raise KeyError + + __marker = object() + + def pop(self, key, default=__marker): + '''D.pop(k[,d]) -> v, remove specified key and return the corresponding value. + If key is not found, d is returned if given, otherwise KeyError is raised. + ''' + try: + value = self[key] + except KeyError: + if default is self.__marker: + raise + return default + else: + del self[key] + return value + + def popitem(self): + '''D.popitem() -> (k, v), remove and return some (key, value) pair + as a 2-tuple; but raise KeyError if D is empty. + ''' + try: + key = next(iter(self)) + except StopIteration: + raise KeyError + value = self[key] + del self[key] + return key, value + + def clear(self): + 'D.clear() -> None. Remove all items from D.' + try: + while True: + self.popitem() + except KeyError: + pass + + def update(*args, **kwds): + ''' D.update([E, ]**F) -> None. Update D from mapping/iterable E and F. + If E present and has a .keys() method, does: for k in E: D[k] = E[k] + If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v + In either case, this is followed by: for k, v in F.items(): D[k] = v + ''' + if not args: + raise TypeError("descriptor 'update' of 'MutableMapping' object " + "needs an argument") + self = args[0] + args = args[1:] + if len(args) > 1: + raise TypeError('update expected at most 1 arguments, got %d' % + len(args)) + if args: + other = args[0] + if isinstance(other, Mapping): + for key in other: + self[key] = other[key] + elif hasattr(other, "keys"): + for key in other.keys(): + self[key] = other[key] + else: + for key, value in other: + self[key] = value + for key, value in kwds.items(): + self[key] = value + + def setdefault(self, key, default=None): + 'D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D' + try: + return self[key] + except KeyError: + self[key] = default + return default + +MutableMapping.register(dict) + + +### SEQUENCES ### + + +class Sequence(Sized, Iterable, Container): + """All the operations on a read-only sequence. + + Concrete subclasses must override __new__ or __init__, + __getitem__, and __len__. + """ + + @abstractmethod + def __getitem__(self, index): + raise IndexError + + def __iter__(self): + i = 0 + try: + while True: + v = self[i] + yield v + i += 1 + except IndexError: + return + + def __contains__(self, value): + for v in self: + if v == value: + return True + return False + + def __reversed__(self): + for i in reversed(range(len(self))): + yield self[i] + + def index(self, value): + '''S.index(value) -> integer -- return first index of value. + Raises ValueError if the value is not present. + ''' + for i, v in enumerate(self): + if v == value: + return i + raise ValueError + + def count(self, value): + 'S.count(value) -> integer -- return number of occurrences of value' + return sum(1 for v in self if v == value) + +Sequence.register(tuple) +Sequence.register(basestring) +Sequence.register(buffer) +Sequence.register(xrange) + + +class MutableSequence(Sequence): + + """All the operations on a read-only sequence. + + Concrete subclasses must provide __new__ or __init__, + __getitem__, __setitem__, __delitem__, __len__, and insert(). + + """ + + @abstractmethod + def __setitem__(self, index, value): + raise IndexError + + @abstractmethod + def __delitem__(self, index): + raise IndexError + + @abstractmethod + def insert(self, index, value): + 'S.insert(index, object) -- insert object before index' + raise IndexError + + def append(self, value): + 'S.append(object) -- append object to the end of the sequence' + self.insert(len(self), value) + + def reverse(self): + 'S.reverse() -- reverse *IN PLACE*' + n = len(self) + for i in range(n//2): + self[i], self[n-i-1] = self[n-i-1], self[i] + + def extend(self, values): + 'S.extend(iterable) -- extend sequence by appending elements from the iterable' + for v in values: + self.append(v) + + def pop(self, index=-1): + '''S.pop([index]) -> item -- remove and return item at index (default last). + Raise IndexError if list is empty or index is out of range. + ''' + v = self[index] + del self[index] + return v + + def remove(self, value): + '''S.remove(value) -- remove first occurrence of value. + Raise ValueError if the value is not present. + ''' + del self[self.index(value)] + + def __iadd__(self, values): + self.extend(values) + return self + +MutableSequence.register(list) diff --git a/typing_extensions/test_data/python-2.7.13/abc.py b/typing_extensions/test_data/python-2.7.13/abc.py new file mode 100644 index 000000000..02e48a1bb --- /dev/null +++ b/typing_extensions/test_data/python-2.7.13/abc.py @@ -0,0 +1,185 @@ +# Copyright 2007 Google, Inc. All Rights Reserved. +# Licensed to PSF under a Contributor Agreement. + +"""Abstract Base Classes (ABCs) according to PEP 3119.""" + +import types + +from _weakrefset import WeakSet + +# Instance of old-style class +class _C: pass +_InstanceType = type(_C()) + + +def abstractmethod(funcobj): + """A decorator indicating abstract methods. + + Requires that the metaclass is ABCMeta or derived from it. A + class that has a metaclass derived from ABCMeta cannot be + instantiated unless all of its abstract methods are overridden. + The abstract methods can be called using any of the normal + 'super' call mechanisms. + + Usage: + + class C: + __metaclass__ = ABCMeta + @abstractmethod + def my_abstract_method(self, ...): + ... + """ + funcobj.__isabstractmethod__ = True + return funcobj + + +class abstractproperty(property): + """A decorator indicating abstract properties. + + Requires that the metaclass is ABCMeta or derived from it. A + class that has a metaclass derived from ABCMeta cannot be + instantiated unless all of its abstract properties are overridden. + The abstract properties can be called using any of the normal + 'super' call mechanisms. + + Usage: + + class C: + __metaclass__ = ABCMeta + @abstractproperty + def my_abstract_property(self): + ... + + This defines a read-only property; you can also define a read-write + abstract property using the 'long' form of property declaration: + + class C: + __metaclass__ = ABCMeta + def getx(self): ... + def setx(self, value): ... + x = abstractproperty(getx, setx) + """ + __isabstractmethod__ = True + + +class ABCMeta(type): + + """Metaclass for defining Abstract Base Classes (ABCs). + + Use this metaclass to create an ABC. An ABC can be subclassed + directly, and then acts as a mix-in class. You can also register + unrelated concrete classes (even built-in classes) and unrelated + ABCs as 'virtual subclasses' -- these and their descendants will + be considered subclasses of the registering ABC by the built-in + issubclass() function, but the registering ABC won't show up in + their MRO (Method Resolution Order) nor will method + implementations defined by the registering ABC be callable (not + even via super()). + + """ + + # A global counter that is incremented each time a class is + # registered as a virtual subclass of anything. It forces the + # negative cache to be cleared before its next use. + _abc_invalidation_counter = 0 + + def __new__(mcls, name, bases, namespace): + cls = super(ABCMeta, mcls).__new__(mcls, name, bases, namespace) + # Compute set of abstract method names + abstracts = set(name + for name, value in namespace.items() + if getattr(value, "__isabstractmethod__", False)) + for base in bases: + for name in getattr(base, "__abstractmethods__", set()): + value = getattr(cls, name, None) + if getattr(value, "__isabstractmethod__", False): + abstracts.add(name) + cls.__abstractmethods__ = frozenset(abstracts) + # Set up inheritance registry + cls._abc_registry = WeakSet() + cls._abc_cache = WeakSet() + cls._abc_negative_cache = WeakSet() + cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter + return cls + + def register(cls, subclass): + """Register a virtual subclass of an ABC.""" + if not isinstance(subclass, (type, types.ClassType)): + raise TypeError("Can only register classes") + if issubclass(subclass, cls): + return # Already a subclass + # Subtle: test for cycles *after* testing for "already a subclass"; + # this means we allow X.register(X) and interpret it as a no-op. + if issubclass(cls, subclass): + # This would create a cycle, which is bad for the algorithm below + raise RuntimeError("Refusing to create an inheritance cycle") + cls._abc_registry.add(subclass) + ABCMeta._abc_invalidation_counter += 1 # Invalidate negative cache + + def _dump_registry(cls, file=None): + """Debug helper to print the ABC registry.""" + print >> file, "Class: %s.%s" % (cls.__module__, cls.__name__) + print >> file, "Inv.counter: %s" % ABCMeta._abc_invalidation_counter + for name in sorted(cls.__dict__.keys()): + if name.startswith("_abc_"): + value = getattr(cls, name) + print >> file, "%s: %r" % (name, value) + + def __instancecheck__(cls, instance): + """Override for isinstance(instance, cls).""" + # Inline the cache checking when it's simple. + subclass = getattr(instance, '__class__', None) + if subclass is not None and subclass in cls._abc_cache: + return True + subtype = type(instance) + # Old-style instances + if subtype is _InstanceType: + subtype = subclass + if subtype is subclass or subclass is None: + if (cls._abc_negative_cache_version == + ABCMeta._abc_invalidation_counter and + subtype in cls._abc_negative_cache): + return False + # Fall back to the subclass check. + return cls.__subclasscheck__(subtype) + return (cls.__subclasscheck__(subclass) or + cls.__subclasscheck__(subtype)) + + def __subclasscheck__(cls, subclass): + """Override for issubclass(subclass, cls).""" + # Check cache + if subclass in cls._abc_cache: + return True + # Check negative cache; may have to invalidate + if cls._abc_negative_cache_version < ABCMeta._abc_invalidation_counter: + # Invalidate the negative cache + cls._abc_negative_cache = WeakSet() + cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter + elif subclass in cls._abc_negative_cache: + return False + # Check the subclass hook + ok = cls.__subclasshook__(subclass) + if ok is not NotImplemented: + assert isinstance(ok, bool) + if ok: + cls._abc_cache.add(subclass) + else: + cls._abc_negative_cache.add(subclass) + return ok + # Check if it's a direct subclass + if cls in getattr(subclass, '__mro__', ()): + cls._abc_cache.add(subclass) + return True + # Check if it's a subclass of a registered class (recursive) + for rcls in cls._abc_registry: + if issubclass(subclass, rcls): + cls._abc_cache.add(subclass) + return True + # Check if it's a subclass of a subclass (recursive) + for scls in cls.__subclasses__(): + if issubclass(subclass, scls): + cls._abc_cache.add(subclass) + return True + # No dice; update negative cache + cls._abc_negative_cache.add(subclass) + return False diff --git a/typing_extensions/test_data/python-2.7.13/collections.py b/typing_extensions/test_data/python-2.7.13/collections.py new file mode 100644 index 000000000..f2ad9726d --- /dev/null +++ b/typing_extensions/test_data/python-2.7.13/collections.py @@ -0,0 +1,742 @@ +'''This module implements specialized container datatypes providing +alternatives to Python's general purpose built-in containers, dict, +list, set, and tuple. + +* namedtuple factory function for creating tuple subclasses with named fields +* deque list-like container with fast appends and pops on either end +* Counter dict subclass for counting hashable objects +* OrderedDict dict subclass that remembers the order entries were added +* defaultdict dict subclass that calls a factory function to supply missing values + +''' + +__all__ = ['Counter', 'deque', 'defaultdict', 'namedtuple', 'OrderedDict'] +# For bootstrapping reasons, the collection ABCs are defined in _abcoll.py. +# They should however be considered an integral part of collections.py. +from _abcoll import * +import _abcoll +__all__ += _abcoll.__all__ + +from _collections import deque, defaultdict +from operator import itemgetter as _itemgetter, eq as _eq +from keyword import iskeyword as _iskeyword +import sys as _sys +import heapq as _heapq +from itertools import repeat as _repeat, chain as _chain, starmap as _starmap +from itertools import imap as _imap + +try: + from thread import get_ident as _get_ident +except ImportError: + from dummy_thread import get_ident as _get_ident + + +################################################################################ +### OrderedDict +################################################################################ + +class OrderedDict(dict): + 'Dictionary that remembers insertion order' + # An inherited dict maps keys to values. + # The inherited dict provides __getitem__, __len__, __contains__, and get. + # The remaining methods are order-aware. + # Big-O running times for all methods are the same as regular dictionaries. + + # The internal self.__map dict maps keys to links in a doubly linked list. + # The circular doubly linked list starts and ends with a sentinel element. + # The sentinel element never gets deleted (this simplifies the algorithm). + # Each link is stored as a list of length three: [PREV, NEXT, KEY]. + + def __init__(*args, **kwds): + '''Initialize an ordered dictionary. The signature is the same as + regular dictionaries, but keyword arguments are not recommended because + their insertion order is arbitrary. + + ''' + if not args: + raise TypeError("descriptor '__init__' of 'OrderedDict' object " + "needs an argument") + self = args[0] + args = args[1:] + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + try: + self.__root + except AttributeError: + self.__root = root = [] # sentinel node + root[:] = [root, root, None] + self.__map = {} + self.__update(*args, **kwds) + + def __setitem__(self, key, value, dict_setitem=dict.__setitem__): + 'od.__setitem__(i, y) <==> od[i]=y' + # Setting a new item creates a new link at the end of the linked list, + # and the inherited dictionary is updated with the new key/value pair. + if key not in self: + root = self.__root + last = root[0] + last[1] = root[0] = self.__map[key] = [last, root, key] + return dict_setitem(self, key, value) + + def __delitem__(self, key, dict_delitem=dict.__delitem__): + 'od.__delitem__(y) <==> del od[y]' + # Deleting an existing item uses self.__map to find the link which gets + # removed by updating the links in the predecessor and successor nodes. + dict_delitem(self, key) + link_prev, link_next, _ = self.__map.pop(key) + link_prev[1] = link_next # update link_prev[NEXT] + link_next[0] = link_prev # update link_next[PREV] + + def __iter__(self): + 'od.__iter__() <==> iter(od)' + # Traverse the linked list in order. + root = self.__root + curr = root[1] # start at the first node + while curr is not root: + yield curr[2] # yield the curr[KEY] + curr = curr[1] # move to next node + + def __reversed__(self): + 'od.__reversed__() <==> reversed(od)' + # Traverse the linked list in reverse order. + root = self.__root + curr = root[0] # start at the last node + while curr is not root: + yield curr[2] # yield the curr[KEY] + curr = curr[0] # move to previous node + + def clear(self): + 'od.clear() -> None. Remove all items from od.' + root = self.__root + root[:] = [root, root, None] + self.__map.clear() + dict.clear(self) + + # -- the following methods do not depend on the internal structure -- + + def keys(self): + 'od.keys() -> list of keys in od' + return list(self) + + def values(self): + 'od.values() -> list of values in od' + return [self[key] for key in self] + + def items(self): + 'od.items() -> list of (key, value) pairs in od' + return [(key, self[key]) for key in self] + + def iterkeys(self): + 'od.iterkeys() -> an iterator over the keys in od' + return iter(self) + + def itervalues(self): + 'od.itervalues -> an iterator over the values in od' + for k in self: + yield self[k] + + def iteritems(self): + 'od.iteritems -> an iterator over the (key, value) pairs in od' + for k in self: + yield (k, self[k]) + + update = MutableMapping.update + + __update = update # let subclasses override update without breaking __init__ + + __marker = object() + + def pop(self, key, default=__marker): + '''od.pop(k[,d]) -> v, remove specified key and return the corresponding + value. If key is not found, d is returned if given, otherwise KeyError + is raised. + + ''' + if key in self: + result = self[key] + del self[key] + return result + if default is self.__marker: + raise KeyError(key) + return default + + def setdefault(self, key, default=None): + 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od' + if key in self: + return self[key] + self[key] = default + return default + + def popitem(self, last=True): + '''od.popitem() -> (k, v), return and remove a (key, value) pair. + Pairs are returned in LIFO order if last is true or FIFO order if false. + + ''' + if not self: + raise KeyError('dictionary is empty') + key = next(reversed(self) if last else iter(self)) + value = self.pop(key) + return key, value + + def __repr__(self, _repr_running={}): + 'od.__repr__() <==> repr(od)' + call_key = id(self), _get_ident() + if call_key in _repr_running: + return '...' + _repr_running[call_key] = 1 + try: + if not self: + return '%s()' % (self.__class__.__name__,) + return '%s(%r)' % (self.__class__.__name__, self.items()) + finally: + del _repr_running[call_key] + + def __reduce__(self): + 'Return state information for pickling' + items = [[k, self[k]] for k in self] + inst_dict = vars(self).copy() + for k in vars(OrderedDict()): + inst_dict.pop(k, None) + if inst_dict: + return (self.__class__, (items,), inst_dict) + return self.__class__, (items,) + + def copy(self): + 'od.copy() -> a shallow copy of od' + return self.__class__(self) + + @classmethod + def fromkeys(cls, iterable, value=None): + '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S. + If not specified, the value defaults to None. + + ''' + self = cls() + for key in iterable: + self[key] = value + return self + + def __eq__(self, other): + '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive + while comparison to a regular mapping is order-insensitive. + + ''' + if isinstance(other, OrderedDict): + return dict.__eq__(self, other) and all(_imap(_eq, self, other)) + return dict.__eq__(self, other) + + def __ne__(self, other): + 'od.__ne__(y) <==> od!=y' + return not self == other + + # -- the following methods support python 3.x style dictionary views -- + + def viewkeys(self): + "od.viewkeys() -> a set-like object providing a view on od's keys" + return KeysView(self) + + def viewvalues(self): + "od.viewvalues() -> an object providing a view on od's values" + return ValuesView(self) + + def viewitems(self): + "od.viewitems() -> a set-like object providing a view on od's items" + return ItemsView(self) + + +################################################################################ +### namedtuple +################################################################################ + +_class_template = '''\ +class {typename}(tuple): + '{typename}({arg_list})' + + __slots__ = () + + _fields = {field_names!r} + + def __new__(_cls, {arg_list}): + 'Create new instance of {typename}({arg_list})' + return _tuple.__new__(_cls, ({arg_list})) + + @classmethod + def _make(cls, iterable, new=tuple.__new__, len=len): + 'Make a new {typename} object from a sequence or iterable' + result = new(cls, iterable) + if len(result) != {num_fields:d}: + raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result)) + return result + + def __repr__(self): + 'Return a nicely formatted representation string' + return '{typename}({repr_fmt})' % self + + def _asdict(self): + 'Return a new OrderedDict which maps field names to their values' + return OrderedDict(zip(self._fields, self)) + + def _replace(_self, **kwds): + 'Return a new {typename} object replacing specified fields with new values' + result = _self._make(map(kwds.pop, {field_names!r}, _self)) + if kwds: + raise ValueError('Got unexpected field names: %r' % kwds.keys()) + return result + + def __getnewargs__(self): + 'Return self as a plain tuple. Used by copy and pickle.' + return tuple(self) + + __dict__ = _property(_asdict) + + def __getstate__(self): + 'Exclude the OrderedDict from pickling' + pass + +{field_defs} +''' + +_repr_template = '{name}=%r' + +_field_template = '''\ + {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}') +''' + +def namedtuple(typename, field_names, verbose=False, rename=False): + """Returns a new subclass of tuple with named fields. + + >>> Point = namedtuple('Point', ['x', 'y']) + >>> Point.__doc__ # docstring for the new class + 'Point(x, y)' + >>> p = Point(11, y=22) # instantiate with positional args or keywords + >>> p[0] + p[1] # indexable like a plain tuple + 33 + >>> x, y = p # unpack like a regular tuple + >>> x, y + (11, 22) + >>> p.x + p.y # fields also accessible by name + 33 + >>> d = p._asdict() # convert to a dictionary + >>> d['x'] + 11 + >>> Point(**d) # convert from a dictionary + Point(x=11, y=22) + >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields + Point(x=100, y=22) + + """ + + # Validate the field names. At the user's option, either generate an error + # message or automatically replace the field name with a valid name. + if isinstance(field_names, basestring): + field_names = field_names.replace(',', ' ').split() + field_names = map(str, field_names) + typename = str(typename) + if rename: + seen = set() + for index, name in enumerate(field_names): + if (not all(c.isalnum() or c=='_' for c in name) + or _iskeyword(name) + or not name + or name[0].isdigit() + or name.startswith('_') + or name in seen): + field_names[index] = '_%d' % index + seen.add(name) + for name in [typename] + field_names: + if type(name) != str: + raise TypeError('Type names and field names must be strings') + if not all(c.isalnum() or c=='_' for c in name): + raise ValueError('Type names and field names can only contain ' + 'alphanumeric characters and underscores: %r' % name) + if _iskeyword(name): + raise ValueError('Type names and field names cannot be a ' + 'keyword: %r' % name) + if name[0].isdigit(): + raise ValueError('Type names and field names cannot start with ' + 'a number: %r' % name) + seen = set() + for name in field_names: + if name.startswith('_') and not rename: + raise ValueError('Field names cannot start with an underscore: ' + '%r' % name) + if name in seen: + raise ValueError('Encountered duplicate field name: %r' % name) + seen.add(name) + + # Fill-in the class template + class_definition = _class_template.format( + typename = typename, + field_names = tuple(field_names), + num_fields = len(field_names), + arg_list = repr(tuple(field_names)).replace("'", "")[1:-1], + repr_fmt = ', '.join(_repr_template.format(name=name) + for name in field_names), + field_defs = '\n'.join(_field_template.format(index=index, name=name) + for index, name in enumerate(field_names)) + ) + if verbose: + print class_definition + + # Execute the template string in a temporary namespace and support + # tracing utilities by setting a value for frame.f_globals['__name__'] + namespace = dict(_itemgetter=_itemgetter, __name__='namedtuple_%s' % typename, + OrderedDict=OrderedDict, _property=property, _tuple=tuple) + try: + exec class_definition in namespace + except SyntaxError as e: + raise SyntaxError(e.message + ':\n' + class_definition) + result = namespace[typename] + + # For pickling to work, the __module__ variable needs to be set to the frame + # where the named tuple is created. Bypass this step in environments where + # sys._getframe is not defined (Jython for example) or sys._getframe is not + # defined for arguments greater than 0 (IronPython). + try: + result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__') + except (AttributeError, ValueError): + pass + + return result + + +######################################################################## +### Counter +######################################################################## + +class Counter(dict): + '''Dict subclass for counting hashable items. Sometimes called a bag + or multiset. Elements are stored as dictionary keys and their counts + are stored as dictionary values. + + >>> c = Counter('abcdeabcdabcaba') # count elements from a string + + >>> c.most_common(3) # three most common elements + [('a', 5), ('b', 4), ('c', 3)] + >>> sorted(c) # list all unique elements + ['a', 'b', 'c', 'd', 'e'] + >>> ''.join(sorted(c.elements())) # list elements with repetitions + 'aaaaabbbbcccdde' + >>> sum(c.values()) # total of all counts + 15 + + >>> c['a'] # count of letter 'a' + 5 + >>> for elem in 'shazam': # update counts from an iterable + ... c[elem] += 1 # by adding 1 to each element's count + >>> c['a'] # now there are seven 'a' + 7 + >>> del c['b'] # remove all 'b' + >>> c['b'] # now there are zero 'b' + 0 + + >>> d = Counter('simsalabim') # make another counter + >>> c.update(d) # add in the second counter + >>> c['a'] # now there are nine 'a' + 9 + + >>> c.clear() # empty the counter + >>> c + Counter() + + Note: If a count is set to zero or reduced to zero, it will remain + in the counter until the entry is deleted or the counter is cleared: + + >>> c = Counter('aaabbc') + >>> c['b'] -= 2 # reduce the count of 'b' by two + >>> c.most_common() # 'b' is still in, but its count is zero + [('a', 3), ('c', 1), ('b', 0)] + + ''' + # References: + # http://en.wikipedia.org/wiki/Multiset + # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html + # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm + # http://code.activestate.com/recipes/259174/ + # Knuth, TAOCP Vol. II section 4.6.3 + + def __init__(*args, **kwds): + '''Create a new, empty Counter object. And if given, count elements + from an input iterable. Or, initialize the count from another mapping + of elements to their counts. + + >>> c = Counter() # a new, empty counter + >>> c = Counter('gallahad') # a new counter from an iterable + >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping + >>> c = Counter(a=4, b=2) # a new counter from keyword args + + ''' + if not args: + raise TypeError("descriptor '__init__' of 'Counter' object " + "needs an argument") + self = args[0] + args = args[1:] + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + super(Counter, self).__init__() + self.update(*args, **kwds) + + def __missing__(self, key): + 'The count of elements not in the Counter is zero.' + # Needed so that self[missing_item] does not raise KeyError + return 0 + + def most_common(self, n=None): + '''List the n most common elements and their counts from the most + common to the least. If n is None, then list all element counts. + + >>> Counter('abcdeabcdabcaba').most_common(3) + [('a', 5), ('b', 4), ('c', 3)] + + ''' + # Emulate Bag.sortedByCount from Smalltalk + if n is None: + return sorted(self.iteritems(), key=_itemgetter(1), reverse=True) + return _heapq.nlargest(n, self.iteritems(), key=_itemgetter(1)) + + def elements(self): + '''Iterator over elements repeating each as many times as its count. + + >>> c = Counter('ABCABC') + >>> sorted(c.elements()) + ['A', 'A', 'B', 'B', 'C', 'C'] + + # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1 + >>> prime_factors = Counter({2: 2, 3: 3, 17: 1}) + >>> product = 1 + >>> for factor in prime_factors.elements(): # loop over factors + ... product *= factor # and multiply them + >>> product + 1836 + + Note, if an element's count has been set to zero or is a negative + number, elements() will ignore it. + + ''' + # Emulate Bag.do from Smalltalk and Multiset.begin from C++. + return _chain.from_iterable(_starmap(_repeat, self.iteritems())) + + # Override dict methods where necessary + + @classmethod + def fromkeys(cls, iterable, v=None): + # There is no equivalent method for counters because setting v=1 + # means that no element can have a count greater than one. + raise NotImplementedError( + 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') + + def update(*args, **kwds): + '''Like dict.update() but add counts instead of replacing them. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.update('witch') # add elements from another iterable + >>> d = Counter('watch') + >>> c.update(d) # add elements from another counter + >>> c['h'] # four 'h' in which, witch, and watch + 4 + + ''' + # The regular dict.update() operation makes no sense here because the + # replace behavior results in the some of original untouched counts + # being mixed-in with all of the other counts for a mismash that + # doesn't have a straight-forward interpretation in most counting + # contexts. Instead, we implement straight-addition. Both the inputs + # and outputs are allowed to contain zero and negative counts. + + if not args: + raise TypeError("descriptor 'update' of 'Counter' object " + "needs an argument") + self = args[0] + args = args[1:] + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + iterable = args[0] if args else None + if iterable is not None: + if isinstance(iterable, Mapping): + if self: + self_get = self.get + for elem, count in iterable.iteritems(): + self[elem] = self_get(elem, 0) + count + else: + super(Counter, self).update(iterable) # fast path when counter is empty + else: + self_get = self.get + for elem in iterable: + self[elem] = self_get(elem, 0) + 1 + if kwds: + self.update(kwds) + + def subtract(*args, **kwds): + '''Like dict.update() but subtracts counts instead of replacing them. + Counts can be reduced below zero. Both the inputs and outputs are + allowed to contain zero and negative counts. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.subtract('witch') # subtract elements from another iterable + >>> c.subtract(Counter('watch')) # subtract elements from another counter + >>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch + 0 + >>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch + -1 + + ''' + if not args: + raise TypeError("descriptor 'subtract' of 'Counter' object " + "needs an argument") + self = args[0] + args = args[1:] + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + iterable = args[0] if args else None + if iterable is not None: + self_get = self.get + if isinstance(iterable, Mapping): + for elem, count in iterable.items(): + self[elem] = self_get(elem, 0) - count + else: + for elem in iterable: + self[elem] = self_get(elem, 0) - 1 + if kwds: + self.subtract(kwds) + + def copy(self): + 'Return a shallow copy.' + return self.__class__(self) + + def __reduce__(self): + return self.__class__, (dict(self),) + + def __delitem__(self, elem): + 'Like dict.__delitem__() but does not raise KeyError for missing values.' + if elem in self: + super(Counter, self).__delitem__(elem) + + def __repr__(self): + if not self: + return '%s()' % self.__class__.__name__ + items = ', '.join(map('%r: %r'.__mod__, self.most_common())) + return '%s({%s})' % (self.__class__.__name__, items) + + # Multiset-style mathematical operations discussed in: + # Knuth TAOCP Volume II section 4.6.3 exercise 19 + # and at http://en.wikipedia.org/wiki/Multiset + # + # Outputs guaranteed to only include positive counts. + # + # To strip negative and zero counts, add-in an empty counter: + # c += Counter() + + def __add__(self, other): + '''Add counts from two counters. + + >>> Counter('abbb') + Counter('bcc') + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count + other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __sub__(self, other): + ''' Subtract count, but keep only results with positive counts. + + >>> Counter('abbbc') - Counter('bccd') + Counter({'b': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count - other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count < 0: + result[elem] = 0 - count + return result + + def __or__(self, other): + '''Union is the maximum of value in either of the input counters. + + >>> Counter('abbb') | Counter('bcc') + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = other_count if count < other_count else count + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __and__(self, other): + ''' Intersection is the minimum of corresponding counts. + + >>> Counter('abbb') & Counter('bcc') + Counter({'b': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = count if count < other_count else other_count + if newcount > 0: + result[elem] = newcount + return result + + +if __name__ == '__main__': + # verify that instances can be pickled + from cPickle import loads, dumps + Point = namedtuple('Point', 'x, y', True) + p = Point(x=10, y=20) + assert p == loads(dumps(p)) + + # test and demonstrate ability to override methods + class Point(namedtuple('Point', 'x y')): + __slots__ = () + @property + def hypot(self): + return (self.x ** 2 + self.y ** 2) ** 0.5 + def __str__(self): + return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot) + + for p in Point(3, 4), Point(14, 5/7.): + print p + + class Point(namedtuple('Point', 'x y')): + 'Point class with optimized _make() and _replace() without error-checking' + __slots__ = () + _make = classmethod(tuple.__new__) + def _replace(self, _map=map, **kwds): + return self._make(_map(kwds.get, ('x', 'y'), self)) + + print Point(11, 22)._replace(x=100) + + Point3D = namedtuple('Point3D', Point._fields + ('z',)) + print Point3D.__doc__ + + import doctest + TestResults = namedtuple('TestResults', 'failed attempted') + print TestResults(*doctest.testmod()) diff --git a/typing_extensions/test_data/python-3.4.6/_collections_abc.py b/typing_extensions/test_data/python-3.4.6/_collections_abc.py new file mode 100644 index 000000000..33b59aba1 --- /dev/null +++ b/typing_extensions/test_data/python-3.4.6/_collections_abc.py @@ -0,0 +1,748 @@ +# Copyright 2007 Google, Inc. All Rights Reserved. +# Licensed to PSF under a Contributor Agreement. + +"""Abstract Base Classes (ABCs) for collections, according to PEP 3119. + +Unit tests are in test_collections. +""" + +from abc import ABCMeta, abstractmethod +import sys + +__all__ = ["Hashable", "Iterable", "Iterator", + "Sized", "Container", "Callable", + "Set", "MutableSet", + "Mapping", "MutableMapping", + "MappingView", "KeysView", "ItemsView", "ValuesView", + "Sequence", "MutableSequence", + "ByteString", + ] + +# This module has been renamed from collections.abc to _collections_abc to +# speed up interpreter startup. Some of the types such as MutableMapping are +# required early but collections module imports a lot of other modules. +# See issue #19218 +__name__ = "collections.abc" + +# Private list of types that we want to register with the various ABCs +# so that they will pass tests like: +# it = iter(somebytearray) +# assert isinstance(it, Iterable) +# Note: in other implementations, these types many not be distinct +# and they make have their own implementation specific types that +# are not included on this list. +bytes_iterator = type(iter(b'')) +bytearray_iterator = type(iter(bytearray())) +#callable_iterator = ??? +dict_keyiterator = type(iter({}.keys())) +dict_valueiterator = type(iter({}.values())) +dict_itemiterator = type(iter({}.items())) +list_iterator = type(iter([])) +list_reverseiterator = type(iter(reversed([]))) +range_iterator = type(iter(range(0))) +set_iterator = type(iter(set())) +str_iterator = type(iter("")) +tuple_iterator = type(iter(())) +zip_iterator = type(iter(zip())) +## views ## +dict_keys = type({}.keys()) +dict_values = type({}.values()) +dict_items = type({}.items()) +## misc ## +mappingproxy = type(type.__dict__) + + +### ONE-TRICK PONIES ### + +class Hashable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __hash__(self): + return 0 + + @classmethod + def __subclasshook__(cls, C): + if cls is Hashable: + for B in C.__mro__: + if "__hash__" in B.__dict__: + if B.__dict__["__hash__"]: + return True + break + return NotImplemented + + +class Iterable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __iter__(self): + while False: + yield None + + @classmethod + def __subclasshook__(cls, C): + if cls is Iterable: + if any("__iter__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class Iterator(Iterable): + + __slots__ = () + + @abstractmethod + def __next__(self): + 'Return the next item from the iterator. When exhausted, raise StopIteration' + raise StopIteration + + def __iter__(self): + return self + + @classmethod + def __subclasshook__(cls, C): + if cls is Iterator: + if (any("__next__" in B.__dict__ for B in C.__mro__) and + any("__iter__" in B.__dict__ for B in C.__mro__)): + return True + return NotImplemented + +Iterator.register(bytes_iterator) +Iterator.register(bytearray_iterator) +#Iterator.register(callable_iterator) +Iterator.register(dict_keyiterator) +Iterator.register(dict_valueiterator) +Iterator.register(dict_itemiterator) +Iterator.register(list_iterator) +Iterator.register(list_reverseiterator) +Iterator.register(range_iterator) +Iterator.register(set_iterator) +Iterator.register(str_iterator) +Iterator.register(tuple_iterator) +Iterator.register(zip_iterator) + +class Sized(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __len__(self): + return 0 + + @classmethod + def __subclasshook__(cls, C): + if cls is Sized: + if any("__len__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class Container(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __contains__(self, x): + return False + + @classmethod + def __subclasshook__(cls, C): + if cls is Container: + if any("__contains__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class Callable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __call__(self, *args, **kwds): + return False + + @classmethod + def __subclasshook__(cls, C): + if cls is Callable: + if any("__call__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +### SETS ### + + +class Set(Sized, Iterable, Container): + + """A set is a finite, iterable container. + + This class provides concrete generic implementations of all + methods except for __contains__, __iter__ and __len__. + + To override the comparisons (presumably for speed, as the + semantics are fixed), redefine __le__ and __ge__, + then the other operations will automatically follow suit. + """ + + __slots__ = () + + def __le__(self, other): + if not isinstance(other, Set): + return NotImplemented + if len(self) > len(other): + return False + for elem in self: + if elem not in other: + return False + return True + + def __lt__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) < len(other) and self.__le__(other) + + def __gt__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) > len(other) and self.__ge__(other) + + def __ge__(self, other): + if not isinstance(other, Set): + return NotImplemented + if len(self) < len(other): + return False + for elem in other: + if elem not in self: + return False + return True + + def __eq__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) == len(other) and self.__le__(other) + + @classmethod + def _from_iterable(cls, it): + '''Construct an instance of the class from any iterable input. + + Must override this method if the class constructor signature + does not accept an iterable for an input. + ''' + return cls(it) + + def __and__(self, other): + if not isinstance(other, Iterable): + return NotImplemented + return self._from_iterable(value for value in other if value in self) + + __rand__ = __and__ + + def isdisjoint(self, other): + 'Return True if two sets have a null intersection.' + for value in other: + if value in self: + return False + return True + + def __or__(self, other): + if not isinstance(other, Iterable): + return NotImplemented + chain = (e for s in (self, other) for e in s) + return self._from_iterable(chain) + + __ror__ = __or__ + + def __sub__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return self._from_iterable(value for value in self + if value not in other) + + def __rsub__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return self._from_iterable(value for value in other + if value not in self) + + def __xor__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return (self - other) | (other - self) + + __rxor__ = __xor__ + + def _hash(self): + """Compute the hash value of a set. + + Note that we don't define __hash__: not all sets are hashable. + But if you define a hashable set type, its __hash__ should + call this function. + + This must be compatible __eq__. + + All sets ought to compare equal if they contain the same + elements, regardless of how they are implemented, and + regardless of the order of the elements; so there's not much + freedom for __eq__ or __hash__. We match the algorithm used + by the built-in frozenset type. + """ + MAX = sys.maxsize + MASK = 2 * MAX + 1 + n = len(self) + h = 1927868237 * (n + 1) + h &= MASK + for x in self: + hx = hash(x) + h ^= (hx ^ (hx << 16) ^ 89869747) * 3644798167 + h &= MASK + h = h * 69069 + 907133923 + h &= MASK + if h > MAX: + h -= MASK + 1 + if h == -1: + h = 590923713 + return h + +Set.register(frozenset) + + +class MutableSet(Set): + """A mutable set is a finite, iterable container. + + This class provides concrete generic implementations of all + methods except for __contains__, __iter__, __len__, + add(), and discard(). + + To override the comparisons (presumably for speed, as the + semantics are fixed), all you have to do is redefine __le__ and + then the other operations will automatically follow suit. + """ + + __slots__ = () + + @abstractmethod + def add(self, value): + """Add an element.""" + raise NotImplementedError + + @abstractmethod + def discard(self, value): + """Remove an element. Do not raise an exception if absent.""" + raise NotImplementedError + + def remove(self, value): + """Remove an element. If not a member, raise a KeyError.""" + if value not in self: + raise KeyError(value) + self.discard(value) + + def pop(self): + """Return the popped value. Raise KeyError if empty.""" + it = iter(self) + try: + value = next(it) + except StopIteration: + raise KeyError + self.discard(value) + return value + + def clear(self): + """This is slow (creates N new iterators!) but effective.""" + try: + while True: + self.pop() + except KeyError: + pass + + def __ior__(self, it): + for value in it: + self.add(value) + return self + + def __iand__(self, it): + for value in (self - it): + self.discard(value) + return self + + def __ixor__(self, it): + if it is self: + self.clear() + else: + if not isinstance(it, Set): + it = self._from_iterable(it) + for value in it: + if value in self: + self.discard(value) + else: + self.add(value) + return self + + def __isub__(self, it): + if it is self: + self.clear() + else: + for value in it: + self.discard(value) + return self + +MutableSet.register(set) + + +### MAPPINGS ### + + +class Mapping(Sized, Iterable, Container): + + __slots__ = () + + """A Mapping is a generic container for associating key/value + pairs. + + This class provides concrete generic implementations of all + methods except for __getitem__, __iter__, and __len__. + + """ + + @abstractmethod + def __getitem__(self, key): + raise KeyError + + def get(self, key, default=None): + 'D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.' + try: + return self[key] + except KeyError: + return default + + def __contains__(self, key): + try: + self[key] + except KeyError: + return False + else: + return True + + def keys(self): + "D.keys() -> a set-like object providing a view on D's keys" + return KeysView(self) + + def items(self): + "D.items() -> a set-like object providing a view on D's items" + return ItemsView(self) + + def values(self): + "D.values() -> an object providing a view on D's values" + return ValuesView(self) + + def __eq__(self, other): + if not isinstance(other, Mapping): + return NotImplemented + return dict(self.items()) == dict(other.items()) + +Mapping.register(mappingproxy) + + +class MappingView(Sized): + + def __init__(self, mapping): + self._mapping = mapping + + def __len__(self): + return len(self._mapping) + + def __repr__(self): + return '{0.__class__.__name__}({0._mapping!r})'.format(self) + + +class KeysView(MappingView, Set): + + @classmethod + def _from_iterable(self, it): + return set(it) + + def __contains__(self, key): + return key in self._mapping + + def __iter__(self): + yield from self._mapping + +KeysView.register(dict_keys) + + +class ItemsView(MappingView, Set): + + @classmethod + def _from_iterable(self, it): + return set(it) + + def __contains__(self, item): + key, value = item + try: + v = self._mapping[key] + except KeyError: + return False + else: + return v == value + + def __iter__(self): + for key in self._mapping: + yield (key, self._mapping[key]) + +ItemsView.register(dict_items) + + +class ValuesView(MappingView): + + def __contains__(self, value): + for key in self._mapping: + if value == self._mapping[key]: + return True + return False + + def __iter__(self): + for key in self._mapping: + yield self._mapping[key] + +ValuesView.register(dict_values) + + +class MutableMapping(Mapping): + + __slots__ = () + + """A MutableMapping is a generic container for associating + key/value pairs. + + This class provides concrete generic implementations of all + methods except for __getitem__, __setitem__, __delitem__, + __iter__, and __len__. + + """ + + @abstractmethod + def __setitem__(self, key, value): + raise KeyError + + @abstractmethod + def __delitem__(self, key): + raise KeyError + + __marker = object() + + def pop(self, key, default=__marker): + '''D.pop(k[,d]) -> v, remove specified key and return the corresponding value. + If key is not found, d is returned if given, otherwise KeyError is raised. + ''' + try: + value = self[key] + except KeyError: + if default is self.__marker: + raise + return default + else: + del self[key] + return value + + def popitem(self): + '''D.popitem() -> (k, v), remove and return some (key, value) pair + as a 2-tuple; but raise KeyError if D is empty. + ''' + try: + key = next(iter(self)) + except StopIteration: + raise KeyError + value = self[key] + del self[key] + return key, value + + def clear(self): + 'D.clear() -> None. Remove all items from D.' + try: + while True: + self.popitem() + except KeyError: + pass + + def update(*args, **kwds): + ''' D.update([E, ]**F) -> None. Update D from mapping/iterable E and F. + If E present and has a .keys() method, does: for k in E: D[k] = E[k] + If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v + In either case, this is followed by: for k, v in F.items(): D[k] = v + ''' + if not args: + raise TypeError("descriptor 'update' of 'MutableMapping' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('update expected at most 1 arguments, got %d' % + len(args)) + if args: + other = args[0] + if isinstance(other, Mapping): + for key in other: + self[key] = other[key] + elif hasattr(other, "keys"): + for key in other.keys(): + self[key] = other[key] + else: + for key, value in other: + self[key] = value + for key, value in kwds.items(): + self[key] = value + + def setdefault(self, key, default=None): + 'D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D' + try: + return self[key] + except KeyError: + self[key] = default + return default + +MutableMapping.register(dict) + + +### SEQUENCES ### + + +class Sequence(Sized, Iterable, Container): + + """All the operations on a read-only sequence. + + Concrete subclasses must override __new__ or __init__, + __getitem__, and __len__. + """ + + __slots__ = () + + @abstractmethod + def __getitem__(self, index): + raise IndexError + + def __iter__(self): + i = 0 + try: + while True: + v = self[i] + yield v + i += 1 + except IndexError: + return + + def __contains__(self, value): + for v in self: + if v == value: + return True + return False + + def __reversed__(self): + for i in reversed(range(len(self))): + yield self[i] + + def index(self, value): + '''S.index(value) -> integer -- return first index of value. + Raises ValueError if the value is not present. + ''' + for i, v in enumerate(self): + if v == value: + return i + raise ValueError + + def count(self, value): + 'S.count(value) -> integer -- return number of occurrences of value' + return sum(1 for v in self if v == value) + +Sequence.register(tuple) +Sequence.register(str) +Sequence.register(range) +Sequence.register(memoryview) + + +class ByteString(Sequence): + + """This unifies bytes and bytearray. + + XXX Should add all their methods. + """ + + __slots__ = () + +ByteString.register(bytes) +ByteString.register(bytearray) + + +class MutableSequence(Sequence): + + __slots__ = () + + """All the operations on a read-write sequence. + + Concrete subclasses must provide __new__ or __init__, + __getitem__, __setitem__, __delitem__, __len__, and insert(). + + """ + + @abstractmethod + def __setitem__(self, index, value): + raise IndexError + + @abstractmethod + def __delitem__(self, index): + raise IndexError + + @abstractmethod + def insert(self, index, value): + 'S.insert(index, value) -- insert value before index' + raise IndexError + + def append(self, value): + 'S.append(value) -- append value to the end of the sequence' + self.insert(len(self), value) + + def clear(self): + 'S.clear() -> None -- remove all items from S' + try: + while True: + self.pop() + except IndexError: + pass + + def reverse(self): + 'S.reverse() -- reverse *IN PLACE*' + n = len(self) + for i in range(n//2): + self[i], self[n-i-1] = self[n-i-1], self[i] + + def extend(self, values): + 'S.extend(iterable) -- extend sequence by appending elements from the iterable' + for v in values: + self.append(v) + + def pop(self, index=-1): + '''S.pop([index]) -> item -- remove and return item at index (default last). + Raise IndexError if list is empty or index is out of range. + ''' + v = self[index] + del self[index] + return v + + def remove(self, value): + '''S.remove(value) -- remove first occurrence of value. + Raise ValueError if the value is not present. + ''' + del self[self.index(value)] + + def __iadd__(self, values): + self.extend(values) + return self + +MutableSequence.register(list) +MutableSequence.register(bytearray) # Multiply inheriting, see ByteString diff --git a/typing_extensions/test_data/python-3.4.6/abc.py b/typing_extensions/test_data/python-3.4.6/abc.py new file mode 100644 index 000000000..0358a4696 --- /dev/null +++ b/typing_extensions/test_data/python-3.4.6/abc.py @@ -0,0 +1,248 @@ +# Copyright 2007 Google, Inc. All Rights Reserved. +# Licensed to PSF under a Contributor Agreement. + +"""Abstract Base Classes (ABCs) according to PEP 3119.""" + +from _weakrefset import WeakSet + + +def abstractmethod(funcobj): + """A decorator indicating abstract methods. + + Requires that the metaclass is ABCMeta or derived from it. A + class that has a metaclass derived from ABCMeta cannot be + instantiated unless all of its abstract methods are overridden. + The abstract methods can be called using any of the normal + 'super' call mechanisms. + + Usage: + + class C(metaclass=ABCMeta): + @abstractmethod + def my_abstract_method(self, ...): + ... + """ + funcobj.__isabstractmethod__ = True + return funcobj + + +class abstractclassmethod(classmethod): + """ + A decorator indicating abstract classmethods. + + Similar to abstractmethod. + + Usage: + + class C(metaclass=ABCMeta): + @abstractclassmethod + def my_abstract_classmethod(cls, ...): + ... + + 'abstractclassmethod' is deprecated. Use 'classmethod' with + 'abstractmethod' instead. + """ + + __isabstractmethod__ = True + + def __init__(self, callable): + callable.__isabstractmethod__ = True + super().__init__(callable) + + +class abstractstaticmethod(staticmethod): + """ + A decorator indicating abstract staticmethods. + + Similar to abstractmethod. + + Usage: + + class C(metaclass=ABCMeta): + @abstractstaticmethod + def my_abstract_staticmethod(...): + ... + + 'abstractstaticmethod' is deprecated. Use 'staticmethod' with + 'abstractmethod' instead. + """ + + __isabstractmethod__ = True + + def __init__(self, callable): + callable.__isabstractmethod__ = True + super().__init__(callable) + + +class abstractproperty(property): + """ + A decorator indicating abstract properties. + + Requires that the metaclass is ABCMeta or derived from it. A + class that has a metaclass derived from ABCMeta cannot be + instantiated unless all of its abstract properties are overridden. + The abstract properties can be called using any of the normal + 'super' call mechanisms. + + Usage: + + class C(metaclass=ABCMeta): + @abstractproperty + def my_abstract_property(self): + ... + + This defines a read-only property; you can also define a read-write + abstract property using the 'long' form of property declaration: + + class C(metaclass=ABCMeta): + def getx(self): ... + def setx(self, value): ... + x = abstractproperty(getx, setx) + + 'abstractproperty' is deprecated. Use 'property' with 'abstractmethod' + instead. + """ + + __isabstractmethod__ = True + + +class ABCMeta(type): + + """Metaclass for defining Abstract Base Classes (ABCs). + + Use this metaclass to create an ABC. An ABC can be subclassed + directly, and then acts as a mix-in class. You can also register + unrelated concrete classes (even built-in classes) and unrelated + ABCs as 'virtual subclasses' -- these and their descendants will + be considered subclasses of the registering ABC by the built-in + issubclass() function, but the registering ABC won't show up in + their MRO (Method Resolution Order) nor will method + implementations defined by the registering ABC be callable (not + even via super()). + + """ + + # A global counter that is incremented each time a class is + # registered as a virtual subclass of anything. It forces the + # negative cache to be cleared before its next use. + # Note: this counter is private. Use `abc.get_cache_token()` for + # external code. + _abc_invalidation_counter = 0 + + def __new__(mcls, name, bases, namespace): + cls = super().__new__(mcls, name, bases, namespace) + # Compute set of abstract method names + abstracts = {name + for name, value in namespace.items() + if getattr(value, "__isabstractmethod__", False)} + for base in bases: + for name in getattr(base, "__abstractmethods__", set()): + value = getattr(cls, name, None) + if getattr(value, "__isabstractmethod__", False): + abstracts.add(name) + cls.__abstractmethods__ = frozenset(abstracts) + # Set up inheritance registry + cls._abc_registry = WeakSet() + cls._abc_cache = WeakSet() + cls._abc_negative_cache = WeakSet() + cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter + return cls + + def register(cls, subclass): + """Register a virtual subclass of an ABC. + + Returns the subclass, to allow usage as a class decorator. + """ + if not isinstance(subclass, type): + raise TypeError("Can only register classes") + if issubclass(subclass, cls): + return subclass # Already a subclass + # Subtle: test for cycles *after* testing for "already a subclass"; + # this means we allow X.register(X) and interpret it as a no-op. + if issubclass(cls, subclass): + # This would create a cycle, which is bad for the algorithm below + raise RuntimeError("Refusing to create an inheritance cycle") + cls._abc_registry.add(subclass) + ABCMeta._abc_invalidation_counter += 1 # Invalidate negative cache + return subclass + + def _dump_registry(cls, file=None): + """Debug helper to print the ABC registry.""" + print("Class: %s.%s" % (cls.__module__, cls.__name__), file=file) + print("Inv.counter: %s" % ABCMeta._abc_invalidation_counter, file=file) + for name in sorted(cls.__dict__.keys()): + if name.startswith("_abc_"): + value = getattr(cls, name) + print("%s: %r" % (name, value), file=file) + + def __instancecheck__(cls, instance): + """Override for isinstance(instance, cls).""" + # Inline the cache checking + subclass = instance.__class__ + if subclass in cls._abc_cache: + return True + subtype = type(instance) + if subtype is subclass: + if (cls._abc_negative_cache_version == + ABCMeta._abc_invalidation_counter and + subclass in cls._abc_negative_cache): + return False + # Fall back to the subclass check. + return cls.__subclasscheck__(subclass) + return any(cls.__subclasscheck__(c) for c in {subclass, subtype}) + + def __subclasscheck__(cls, subclass): + """Override for issubclass(subclass, cls).""" + # Check cache + if subclass in cls._abc_cache: + return True + # Check negative cache; may have to invalidate + if cls._abc_negative_cache_version < ABCMeta._abc_invalidation_counter: + # Invalidate the negative cache + cls._abc_negative_cache = WeakSet() + cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter + elif subclass in cls._abc_negative_cache: + return False + # Check the subclass hook + ok = cls.__subclasshook__(subclass) + if ok is not NotImplemented: + assert isinstance(ok, bool) + if ok: + cls._abc_cache.add(subclass) + else: + cls._abc_negative_cache.add(subclass) + return ok + # Check if it's a direct subclass + if cls in getattr(subclass, '__mro__', ()): + cls._abc_cache.add(subclass) + return True + # Check if it's a subclass of a registered class (recursive) + for rcls in cls._abc_registry: + if issubclass(subclass, rcls): + cls._abc_cache.add(subclass) + return True + # Check if it's a subclass of a subclass (recursive) + for scls in cls.__subclasses__(): + if issubclass(subclass, scls): + cls._abc_cache.add(subclass) + return True + # No dice; update negative cache + cls._abc_negative_cache.add(subclass) + return False + + +class ABC(metaclass=ABCMeta): + """Helper class that provides a standard way to create an ABC using + inheritance. + """ + pass + + +def get_cache_token(): + """Returns the current ABC cache token. + + The token is an opaque object (supporting equality testing) identifying the + current version of the ABC cache for virtual subclasses. The token changes + with every call to ``register()`` on any ABC. + """ + return ABCMeta._abc_invalidation_counter diff --git a/typing_extensions/test_data/python-3.4.6/collections/__init__.py b/typing_extensions/test_data/python-3.4.6/collections/__init__.py new file mode 100644 index 000000000..f94210efa --- /dev/null +++ b/typing_extensions/test_data/python-3.4.6/collections/__init__.py @@ -0,0 +1,1161 @@ +__all__ = ['deque', 'defaultdict', 'namedtuple', 'UserDict', 'UserList', + 'UserString', 'Counter', 'OrderedDict', 'ChainMap'] + +# For backwards compatibility, continue to make the collections ABCs +# available through the collections module. +from _collections_abc import * +import _collections_abc +__all__ += _collections_abc.__all__ + +from _collections import deque, defaultdict +from operator import itemgetter as _itemgetter, eq as _eq +from keyword import iskeyword as _iskeyword +import sys as _sys +import heapq as _heapq +from _weakref import proxy as _proxy +from itertools import repeat as _repeat, chain as _chain, starmap as _starmap +from reprlib import recursive_repr as _recursive_repr + +################################################################################ +### OrderedDict +################################################################################ + +class _Link(object): + __slots__ = 'prev', 'next', 'key', '__weakref__' + +class OrderedDict(dict): + 'Dictionary that remembers insertion order' + # An inherited dict maps keys to values. + # The inherited dict provides __getitem__, __len__, __contains__, and get. + # The remaining methods are order-aware. + # Big-O running times for all methods are the same as regular dictionaries. + + # The internal self.__map dict maps keys to links in a doubly linked list. + # The circular doubly linked list starts and ends with a sentinel element. + # The sentinel element never gets deleted (this simplifies the algorithm). + # The sentinel is in self.__hardroot with a weakref proxy in self.__root. + # The prev links are weakref proxies (to prevent circular references). + # Individual links are kept alive by the hard reference in self.__map. + # Those hard references disappear when a key is deleted from an OrderedDict. + + def __init__(*args, **kwds): + '''Initialize an ordered dictionary. The signature is the same as + regular dictionaries, but keyword arguments are not recommended because + their insertion order is arbitrary. + + ''' + if not args: + raise TypeError("descriptor '__init__' of 'OrderedDict' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + try: + self.__root + except AttributeError: + self.__hardroot = _Link() + self.__root = root = _proxy(self.__hardroot) + root.prev = root.next = root + self.__map = {} + self.__update(*args, **kwds) + + def __setitem__(self, key, value, + dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link): + 'od.__setitem__(i, y) <==> od[i]=y' + # Setting a new item creates a new link at the end of the linked list, + # and the inherited dictionary is updated with the new key/value pair. + if key not in self: + self.__map[key] = link = Link() + root = self.__root + last = root.prev + link.prev, link.next, link.key = last, root, key + last.next = link + root.prev = proxy(link) + dict_setitem(self, key, value) + + def __delitem__(self, key, dict_delitem=dict.__delitem__): + 'od.__delitem__(y) <==> del od[y]' + # Deleting an existing item uses self.__map to find the link which gets + # removed by updating the links in the predecessor and successor nodes. + dict_delitem(self, key) + link = self.__map.pop(key) + link_prev = link.prev + link_next = link.next + link_prev.next = link_next + link_next.prev = link_prev + + def __iter__(self): + 'od.__iter__() <==> iter(od)' + # Traverse the linked list in order. + root = self.__root + curr = root.next + while curr is not root: + yield curr.key + curr = curr.next + + def __reversed__(self): + 'od.__reversed__() <==> reversed(od)' + # Traverse the linked list in reverse order. + root = self.__root + curr = root.prev + while curr is not root: + yield curr.key + curr = curr.prev + + def clear(self): + 'od.clear() -> None. Remove all items from od.' + root = self.__root + root.prev = root.next = root + self.__map.clear() + dict.clear(self) + + def popitem(self, last=True): + '''od.popitem() -> (k, v), return and remove a (key, value) pair. + Pairs are returned in LIFO order if last is true or FIFO order if false. + + ''' + if not self: + raise KeyError('dictionary is empty') + root = self.__root + if last: + link = root.prev + link_prev = link.prev + link_prev.next = root + root.prev = link_prev + else: + link = root.next + link_next = link.next + root.next = link_next + link_next.prev = root + key = link.key + del self.__map[key] + value = dict.pop(self, key) + return key, value + + def move_to_end(self, key, last=True): + '''Move an existing element to the end (or beginning if last==False). + + Raises KeyError if the element does not exist. + When last=True, acts like a fast version of self[key]=self.pop(key). + + ''' + link = self.__map[key] + link_prev = link.prev + link_next = link.next + link_prev.next = link_next + link_next.prev = link_prev + root = self.__root + if last: + last = root.prev + link.prev = last + link.next = root + last.next = root.prev = link + else: + first = root.next + link.prev = root + link.next = first + root.next = first.prev = link + + def __sizeof__(self): + sizeof = _sys.getsizeof + n = len(self) + 1 # number of links including root + size = sizeof(self.__dict__) # instance dictionary + size += sizeof(self.__map) * 2 # internal dict and inherited dict + size += sizeof(self.__hardroot) * n # link objects + size += sizeof(self.__root) * n # proxy objects + return size + + update = __update = MutableMapping.update + keys = MutableMapping.keys + values = MutableMapping.values + items = MutableMapping.items + __ne__ = MutableMapping.__ne__ + + __marker = object() + + def pop(self, key, default=__marker): + '''od.pop(k[,d]) -> v, remove specified key and return the corresponding + value. If key is not found, d is returned if given, otherwise KeyError + is raised. + + ''' + if key in self: + result = self[key] + del self[key] + return result + if default is self.__marker: + raise KeyError(key) + return default + + def setdefault(self, key, default=None): + 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od' + if key in self: + return self[key] + self[key] = default + return default + + @_recursive_repr() + def __repr__(self): + 'od.__repr__() <==> repr(od)' + if not self: + return '%s()' % (self.__class__.__name__,) + return '%s(%r)' % (self.__class__.__name__, list(self.items())) + + def __reduce__(self): + 'Return state information for pickling' + inst_dict = vars(self).copy() + for k in vars(OrderedDict()): + inst_dict.pop(k, None) + return self.__class__, (), inst_dict or None, None, iter(self.items()) + + def copy(self): + 'od.copy() -> a shallow copy of od' + return self.__class__(self) + + @classmethod + def fromkeys(cls, iterable, value=None): + '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S. + If not specified, the value defaults to None. + + ''' + self = cls() + for key in iterable: + self[key] = value + return self + + def __eq__(self, other): + '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive + while comparison to a regular mapping is order-insensitive. + + ''' + if isinstance(other, OrderedDict): + return dict.__eq__(self, other) and all(map(_eq, self, other)) + return dict.__eq__(self, other) + + +################################################################################ +### namedtuple +################################################################################ + +_class_template = """\ +from builtins import property as _property, tuple as _tuple +from operator import itemgetter as _itemgetter +from collections import OrderedDict + +class {typename}(tuple): + '{typename}({arg_list})' + + __slots__ = () + + _fields = {field_names!r} + + def __new__(_cls, {arg_list}): + 'Create new instance of {typename}({arg_list})' + return _tuple.__new__(_cls, ({arg_list})) + + @classmethod + def _make(cls, iterable, new=tuple.__new__, len=len): + 'Make a new {typename} object from a sequence or iterable' + result = new(cls, iterable) + if len(result) != {num_fields:d}: + raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result)) + return result + + def _replace(_self, **kwds): + 'Return a new {typename} object replacing specified fields with new values' + result = _self._make(map(kwds.pop, {field_names!r}, _self)) + if kwds: + raise ValueError('Got unexpected field names: %r' % list(kwds)) + return result + + def __repr__(self): + 'Return a nicely formatted representation string' + return self.__class__.__name__ + '({repr_fmt})' % self + + def _asdict(self): + 'Return a new OrderedDict which maps field names to their values.' + return OrderedDict(zip(self._fields, self)) + + def __getnewargs__(self): + 'Return self as a plain tuple. Used by copy and pickle.' + return tuple(self) + +{field_defs} +""" + +_repr_template = '{name}=%r' + +_field_template = '''\ + {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}') +''' + +def namedtuple(typename, field_names, verbose=False, rename=False): + """Returns a new subclass of tuple with named fields. + + >>> Point = namedtuple('Point', ['x', 'y']) + >>> Point.__doc__ # docstring for the new class + 'Point(x, y)' + >>> p = Point(11, y=22) # instantiate with positional args or keywords + >>> p[0] + p[1] # indexable like a plain tuple + 33 + >>> x, y = p # unpack like a regular tuple + >>> x, y + (11, 22) + >>> p.x + p.y # fields also accessable by name + 33 + >>> d = p._asdict() # convert to a dictionary + >>> d['x'] + 11 + >>> Point(**d) # convert from a dictionary + Point(x=11, y=22) + >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields + Point(x=100, y=22) + + """ + + # Validate the field names. At the user's option, either generate an error + # message or automatically replace the field name with a valid name. + if isinstance(field_names, str): + field_names = field_names.replace(',', ' ').split() + field_names = list(map(str, field_names)) + typename = str(typename) + if rename: + seen = set() + for index, name in enumerate(field_names): + if (not name.isidentifier() + or _iskeyword(name) + or name.startswith('_') + or name in seen): + field_names[index] = '_%d' % index + seen.add(name) + for name in [typename] + field_names: + if type(name) != str: + raise TypeError('Type names and field names must be strings') + if not name.isidentifier(): + raise ValueError('Type names and field names must be valid ' + 'identifiers: %r' % name) + if _iskeyword(name): + raise ValueError('Type names and field names cannot be a ' + 'keyword: %r' % name) + seen = set() + for name in field_names: + if name.startswith('_') and not rename: + raise ValueError('Field names cannot start with an underscore: ' + '%r' % name) + if name in seen: + raise ValueError('Encountered duplicate field name: %r' % name) + seen.add(name) + + # Fill-in the class template + class_definition = _class_template.format( + typename = typename, + field_names = tuple(field_names), + num_fields = len(field_names), + arg_list = repr(tuple(field_names)).replace("'", "")[1:-1], + repr_fmt = ', '.join(_repr_template.format(name=name) + for name in field_names), + field_defs = '\n'.join(_field_template.format(index=index, name=name) + for index, name in enumerate(field_names)) + ) + + # Execute the template string in a temporary namespace and support + # tracing utilities by setting a value for frame.f_globals['__name__'] + namespace = dict(__name__='namedtuple_%s' % typename) + exec(class_definition, namespace) + result = namespace[typename] + result._source = class_definition + if verbose: + print(result._source) + + # For pickling to work, the __module__ variable needs to be set to the frame + # where the named tuple is created. Bypass this step in environments where + # sys._getframe is not defined (Jython for example) or sys._getframe is not + # defined for arguments greater than 0 (IronPython). + try: + result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__') + except (AttributeError, ValueError): + pass + + return result + + +######################################################################## +### Counter +######################################################################## + +def _count_elements(mapping, iterable): + 'Tally elements from the iterable.' + mapping_get = mapping.get + for elem in iterable: + mapping[elem] = mapping_get(elem, 0) + 1 + +try: # Load C helper function if available + from _collections import _count_elements +except ImportError: + pass + +class Counter(dict): + '''Dict subclass for counting hashable items. Sometimes called a bag + or multiset. Elements are stored as dictionary keys and their counts + are stored as dictionary values. + + >>> c = Counter('abcdeabcdabcaba') # count elements from a string + + >>> c.most_common(3) # three most common elements + [('a', 5), ('b', 4), ('c', 3)] + >>> sorted(c) # list all unique elements + ['a', 'b', 'c', 'd', 'e'] + >>> ''.join(sorted(c.elements())) # list elements with repetitions + 'aaaaabbbbcccdde' + >>> sum(c.values()) # total of all counts + 15 + + >>> c['a'] # count of letter 'a' + 5 + >>> for elem in 'shazam': # update counts from an iterable + ... c[elem] += 1 # by adding 1 to each element's count + >>> c['a'] # now there are seven 'a' + 7 + >>> del c['b'] # remove all 'b' + >>> c['b'] # now there are zero 'b' + 0 + + >>> d = Counter('simsalabim') # make another counter + >>> c.update(d) # add in the second counter + >>> c['a'] # now there are nine 'a' + 9 + + >>> c.clear() # empty the counter + >>> c + Counter() + + Note: If a count is set to zero or reduced to zero, it will remain + in the counter until the entry is deleted or the counter is cleared: + + >>> c = Counter('aaabbc') + >>> c['b'] -= 2 # reduce the count of 'b' by two + >>> c.most_common() # 'b' is still in, but its count is zero + [('a', 3), ('c', 1), ('b', 0)] + + ''' + # References: + # http://en.wikipedia.org/wiki/Multiset + # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html + # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm + # http://code.activestate.com/recipes/259174/ + # Knuth, TAOCP Vol. II section 4.6.3 + + def __init__(*args, **kwds): + '''Create a new, empty Counter object. And if given, count elements + from an input iterable. Or, initialize the count from another mapping + of elements to their counts. + + >>> c = Counter() # a new, empty counter + >>> c = Counter('gallahad') # a new counter from an iterable + >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping + >>> c = Counter(a=4, b=2) # a new counter from keyword args + + ''' + if not args: + raise TypeError("descriptor '__init__' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + super(Counter, self).__init__() + self.update(*args, **kwds) + + def __missing__(self, key): + 'The count of elements not in the Counter is zero.' + # Needed so that self[missing_item] does not raise KeyError + return 0 + + def most_common(self, n=None): + '''List the n most common elements and their counts from the most + common to the least. If n is None, then list all element counts. + + >>> Counter('abcdeabcdabcaba').most_common(3) + [('a', 5), ('b', 4), ('c', 3)] + + ''' + # Emulate Bag.sortedByCount from Smalltalk + if n is None: + return sorted(self.items(), key=_itemgetter(1), reverse=True) + return _heapq.nlargest(n, self.items(), key=_itemgetter(1)) + + def elements(self): + '''Iterator over elements repeating each as many times as its count. + + >>> c = Counter('ABCABC') + >>> sorted(c.elements()) + ['A', 'A', 'B', 'B', 'C', 'C'] + + # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1 + >>> prime_factors = Counter({2: 2, 3: 3, 17: 1}) + >>> product = 1 + >>> for factor in prime_factors.elements(): # loop over factors + ... product *= factor # and multiply them + >>> product + 1836 + + Note, if an element's count has been set to zero or is a negative + number, elements() will ignore it. + + ''' + # Emulate Bag.do from Smalltalk and Multiset.begin from C++. + return _chain.from_iterable(_starmap(_repeat, self.items())) + + # Override dict methods where necessary + + @classmethod + def fromkeys(cls, iterable, v=None): + # There is no equivalent method for counters because setting v=1 + # means that no element can have a count greater than one. + raise NotImplementedError( + 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') + + def update(*args, **kwds): + '''Like dict.update() but add counts instead of replacing them. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.update('witch') # add elements from another iterable + >>> d = Counter('watch') + >>> c.update(d) # add elements from another counter + >>> c['h'] # four 'h' in which, witch, and watch + 4 + + ''' + # The regular dict.update() operation makes no sense here because the + # replace behavior results in the some of original untouched counts + # being mixed-in with all of the other counts for a mismash that + # doesn't have a straight-forward interpretation in most counting + # contexts. Instead, we implement straight-addition. Both the inputs + # and outputs are allowed to contain zero and negative counts. + + if not args: + raise TypeError("descriptor 'update' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + iterable = args[0] if args else None + if iterable is not None: + if isinstance(iterable, Mapping): + if self: + self_get = self.get + for elem, count in iterable.items(): + self[elem] = count + self_get(elem, 0) + else: + super(Counter, self).update(iterable) # fast path when counter is empty + else: + _count_elements(self, iterable) + if kwds: + self.update(kwds) + + def subtract(*args, **kwds): + '''Like dict.update() but subtracts counts instead of replacing them. + Counts can be reduced below zero. Both the inputs and outputs are + allowed to contain zero and negative counts. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.subtract('witch') # subtract elements from another iterable + >>> c.subtract(Counter('watch')) # subtract elements from another counter + >>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch + 0 + >>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch + -1 + + ''' + if not args: + raise TypeError("descriptor 'subtract' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + iterable = args[0] if args else None + if iterable is not None: + self_get = self.get + if isinstance(iterable, Mapping): + for elem, count in iterable.items(): + self[elem] = self_get(elem, 0) - count + else: + for elem in iterable: + self[elem] = self_get(elem, 0) - 1 + if kwds: + self.subtract(kwds) + + def copy(self): + 'Return a shallow copy.' + return self.__class__(self) + + def __reduce__(self): + return self.__class__, (dict(self),) + + def __delitem__(self, elem): + 'Like dict.__delitem__() but does not raise KeyError for missing values.' + if elem in self: + super().__delitem__(elem) + + def __repr__(self): + if not self: + return '%s()' % self.__class__.__name__ + try: + items = ', '.join(map('%r: %r'.__mod__, self.most_common())) + return '%s({%s})' % (self.__class__.__name__, items) + except TypeError: + # handle case where values are not orderable + return '{0}({1!r})'.format(self.__class__.__name__, dict(self)) + + # Multiset-style mathematical operations discussed in: + # Knuth TAOCP Volume II section 4.6.3 exercise 19 + # and at http://en.wikipedia.org/wiki/Multiset + # + # Outputs guaranteed to only include positive counts. + # + # To strip negative and zero counts, add-in an empty counter: + # c += Counter() + + def __add__(self, other): + '''Add counts from two counters. + + >>> Counter('abbb') + Counter('bcc') + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count + other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __sub__(self, other): + ''' Subtract count, but keep only results with positive counts. + + >>> Counter('abbbc') - Counter('bccd') + Counter({'b': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count - other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count < 0: + result[elem] = 0 - count + return result + + def __or__(self, other): + '''Union is the maximum of value in either of the input counters. + + >>> Counter('abbb') | Counter('bcc') + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = other_count if count < other_count else count + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __and__(self, other): + ''' Intersection is the minimum of corresponding counts. + + >>> Counter('abbb') & Counter('bcc') + Counter({'b': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = count if count < other_count else other_count + if newcount > 0: + result[elem] = newcount + return result + + def __pos__(self): + 'Adds an empty counter, effectively stripping negative and zero counts' + return self + Counter() + + def __neg__(self): + '''Subtracts from an empty counter. Strips positive and zero counts, + and flips the sign on negative counts. + + ''' + return Counter() - self + + def _keep_positive(self): + '''Internal method to strip elements with a negative or zero count''' + nonpositive = [elem for elem, count in self.items() if not count > 0] + for elem in nonpositive: + del self[elem] + return self + + def __iadd__(self, other): + '''Inplace add from another counter, keeping only positive counts. + + >>> c = Counter('abbb') + >>> c += Counter('bcc') + >>> c + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + for elem, count in other.items(): + self[elem] += count + return self._keep_positive() + + def __isub__(self, other): + '''Inplace subtract counter, but keep only results with positive counts. + + >>> c = Counter('abbbc') + >>> c -= Counter('bccd') + >>> c + Counter({'b': 2, 'a': 1}) + + ''' + for elem, count in other.items(): + self[elem] -= count + return self._keep_positive() + + def __ior__(self, other): + '''Inplace union is the maximum of value from either counter. + + >>> c = Counter('abbb') + >>> c |= Counter('bcc') + >>> c + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + for elem, other_count in other.items(): + count = self[elem] + if other_count > count: + self[elem] = other_count + return self._keep_positive() + + def __iand__(self, other): + '''Inplace intersection is the minimum of corresponding counts. + + >>> c = Counter('abbb') + >>> c &= Counter('bcc') + >>> c + Counter({'b': 1}) + + ''' + for elem, count in self.items(): + other_count = other[elem] + if other_count < count: + self[elem] = other_count + return self._keep_positive() + + +######################################################################## +### ChainMap (helper for configparser and string.Template) +######################################################################## + +class ChainMap(MutableMapping): + ''' A ChainMap groups multiple dicts (or other mappings) together + to create a single, updateable view. + + The underlying mappings are stored in a list. That list is public and can + accessed or updated using the *maps* attribute. There is no other state. + + Lookups search the underlying mappings successively until a key is found. + In contrast, writes, updates, and deletions only operate on the first + mapping. + + ''' + + def __init__(self, *maps): + '''Initialize a ChainMap by setting *maps* to the given mappings. + If no mappings are provided, a single empty dictionary is used. + + ''' + self.maps = list(maps) or [{}] # always at least one map + + def __missing__(self, key): + raise KeyError(key) + + def __getitem__(self, key): + for mapping in self.maps: + try: + return mapping[key] # can't use 'key in mapping' with defaultdict + except KeyError: + pass + return self.__missing__(key) # support subclasses that define __missing__ + + def get(self, key, default=None): + return self[key] if key in self else default + + def __len__(self): + return len(set().union(*self.maps)) # reuses stored hash values if possible + + def __iter__(self): + return iter(set().union(*self.maps)) + + def __contains__(self, key): + return any(key in m for m in self.maps) + + def __bool__(self): + return any(self.maps) + + @_recursive_repr() + def __repr__(self): + return '{0.__class__.__name__}({1})'.format( + self, ', '.join(map(repr, self.maps))) + + @classmethod + def fromkeys(cls, iterable, *args): + 'Create a ChainMap with a single dict created from the iterable.' + return cls(dict.fromkeys(iterable, *args)) + + def copy(self): + 'New ChainMap or subclass with a new copy of maps[0] and refs to maps[1:]' + return self.__class__(self.maps[0].copy(), *self.maps[1:]) + + __copy__ = copy + + def new_child(self, m=None): # like Django's Context.push() + '''New ChainMap with a new map followed by all previous maps. + If no map is provided, an empty dict is used. + ''' + if m is None: + m = {} + return self.__class__(m, *self.maps) + + @property + def parents(self): # like Django's Context.pop() + 'New ChainMap from maps[1:].' + return self.__class__(*self.maps[1:]) + + def __setitem__(self, key, value): + self.maps[0][key] = value + + def __delitem__(self, key): + try: + del self.maps[0][key] + except KeyError: + raise KeyError('Key not found in the first mapping: {!r}'.format(key)) + + def popitem(self): + 'Remove and return an item pair from maps[0]. Raise KeyError is maps[0] is empty.' + try: + return self.maps[0].popitem() + except KeyError: + raise KeyError('No keys found in the first mapping.') + + def pop(self, key, *args): + 'Remove *key* from maps[0] and return its value. Raise KeyError if *key* not in maps[0].' + try: + return self.maps[0].pop(key, *args) + except KeyError: + raise KeyError('Key not found in the first mapping: {!r}'.format(key)) + + def clear(self): + 'Clear maps[0], leaving maps[1:] intact.' + self.maps[0].clear() + + +################################################################################ +### UserDict +################################################################################ + +class UserDict(MutableMapping): + + # Start by filling-out the abstract methods + def __init__(*args, **kwargs): + if not args: + raise TypeError("descriptor '__init__' of 'UserDict' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + if args: + dict = args[0] + elif 'dict' in kwargs: + dict = kwargs.pop('dict') + import warnings + warnings.warn("Passing 'dict' as keyword argument is deprecated", + PendingDeprecationWarning, stacklevel=2) + else: + dict = None + self.data = {} + if dict is not None: + self.update(dict) + if len(kwargs): + self.update(kwargs) + def __len__(self): return len(self.data) + def __getitem__(self, key): + if key in self.data: + return self.data[key] + if hasattr(self.__class__, "__missing__"): + return self.__class__.__missing__(self, key) + raise KeyError(key) + def __setitem__(self, key, item): self.data[key] = item + def __delitem__(self, key): del self.data[key] + def __iter__(self): + return iter(self.data) + + # Modify __contains__ to work correctly when __missing__ is present + def __contains__(self, key): + return key in self.data + + # Now, add the methods in dicts but not in MutableMapping + def __repr__(self): return repr(self.data) + def copy(self): + if self.__class__ is UserDict: + return UserDict(self.data.copy()) + import copy + data = self.data + try: + self.data = {} + c = copy.copy(self) + finally: + self.data = data + c.update(self) + return c + @classmethod + def fromkeys(cls, iterable, value=None): + d = cls() + for key in iterable: + d[key] = value + return d + + + +################################################################################ +### UserList +################################################################################ + +class UserList(MutableSequence): + """A more or less complete user-defined wrapper around list objects.""" + def __init__(self, initlist=None): + self.data = [] + if initlist is not None: + # XXX should this accept an arbitrary sequence? + if type(initlist) == type(self.data): + self.data[:] = initlist + elif isinstance(initlist, UserList): + self.data[:] = initlist.data[:] + else: + self.data = list(initlist) + def __repr__(self): return repr(self.data) + def __lt__(self, other): return self.data < self.__cast(other) + def __le__(self, other): return self.data <= self.__cast(other) + def __eq__(self, other): return self.data == self.__cast(other) + def __ne__(self, other): return self.data != self.__cast(other) + def __gt__(self, other): return self.data > self.__cast(other) + def __ge__(self, other): return self.data >= self.__cast(other) + def __cast(self, other): + return other.data if isinstance(other, UserList) else other + def __contains__(self, item): return item in self.data + def __len__(self): return len(self.data) + def __getitem__(self, i): return self.data[i] + def __setitem__(self, i, item): self.data[i] = item + def __delitem__(self, i): del self.data[i] + def __add__(self, other): + if isinstance(other, UserList): + return self.__class__(self.data + other.data) + elif isinstance(other, type(self.data)): + return self.__class__(self.data + other) + return self.__class__(self.data + list(other)) + def __radd__(self, other): + if isinstance(other, UserList): + return self.__class__(other.data + self.data) + elif isinstance(other, type(self.data)): + return self.__class__(other + self.data) + return self.__class__(list(other) + self.data) + def __iadd__(self, other): + if isinstance(other, UserList): + self.data += other.data + elif isinstance(other, type(self.data)): + self.data += other + else: + self.data += list(other) + return self + def __mul__(self, n): + return self.__class__(self.data*n) + __rmul__ = __mul__ + def __imul__(self, n): + self.data *= n + return self + def append(self, item): self.data.append(item) + def insert(self, i, item): self.data.insert(i, item) + def pop(self, i=-1): return self.data.pop(i) + def remove(self, item): self.data.remove(item) + def clear(self): self.data.clear() + def copy(self): return self.__class__(self) + def count(self, item): return self.data.count(item) + def index(self, item, *args): return self.data.index(item, *args) + def reverse(self): self.data.reverse() + def sort(self, *args, **kwds): self.data.sort(*args, **kwds) + def extend(self, other): + if isinstance(other, UserList): + self.data.extend(other.data) + else: + self.data.extend(other) + + + +################################################################################ +### UserString +################################################################################ + +class UserString(Sequence): + def __init__(self, seq): + if isinstance(seq, str): + self.data = seq + elif isinstance(seq, UserString): + self.data = seq.data[:] + else: + self.data = str(seq) + def __str__(self): return str(self.data) + def __repr__(self): return repr(self.data) + def __int__(self): return int(self.data) + def __float__(self): return float(self.data) + def __complex__(self): return complex(self.data) + def __hash__(self): return hash(self.data) + + def __eq__(self, string): + if isinstance(string, UserString): + return self.data == string.data + return self.data == string + def __ne__(self, string): + if isinstance(string, UserString): + return self.data != string.data + return self.data != string + def __lt__(self, string): + if isinstance(string, UserString): + return self.data < string.data + return self.data < string + def __le__(self, string): + if isinstance(string, UserString): + return self.data <= string.data + return self.data <= string + def __gt__(self, string): + if isinstance(string, UserString): + return self.data > string.data + return self.data > string + def __ge__(self, string): + if isinstance(string, UserString): + return self.data >= string.data + return self.data >= string + + def __contains__(self, char): + if isinstance(char, UserString): + char = char.data + return char in self.data + + def __len__(self): return len(self.data) + def __getitem__(self, index): return self.__class__(self.data[index]) + def __add__(self, other): + if isinstance(other, UserString): + return self.__class__(self.data + other.data) + elif isinstance(other, str): + return self.__class__(self.data + other) + return self.__class__(self.data + str(other)) + def __radd__(self, other): + if isinstance(other, str): + return self.__class__(other + self.data) + return self.__class__(str(other) + self.data) + def __mul__(self, n): + return self.__class__(self.data*n) + __rmul__ = __mul__ + def __mod__(self, args): + return self.__class__(self.data % args) + + # the following methods are defined in alphabetical order: + def capitalize(self): return self.__class__(self.data.capitalize()) + def center(self, width, *args): + return self.__class__(self.data.center(width, *args)) + def count(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.count(sub, start, end) + def encode(self, encoding=None, errors=None): # XXX improve this? + if encoding: + if errors: + return self.__class__(self.data.encode(encoding, errors)) + return self.__class__(self.data.encode(encoding)) + return self.__class__(self.data.encode()) + def endswith(self, suffix, start=0, end=_sys.maxsize): + return self.data.endswith(suffix, start, end) + def expandtabs(self, tabsize=8): + return self.__class__(self.data.expandtabs(tabsize)) + def find(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.find(sub, start, end) + def format(self, *args, **kwds): + return self.data.format(*args, **kwds) + def index(self, sub, start=0, end=_sys.maxsize): + return self.data.index(sub, start, end) + def isalpha(self): return self.data.isalpha() + def isalnum(self): return self.data.isalnum() + def isdecimal(self): return self.data.isdecimal() + def isdigit(self): return self.data.isdigit() + def isidentifier(self): return self.data.isidentifier() + def islower(self): return self.data.islower() + def isnumeric(self): return self.data.isnumeric() + def isspace(self): return self.data.isspace() + def istitle(self): return self.data.istitle() + def isupper(self): return self.data.isupper() + def join(self, seq): return self.data.join(seq) + def ljust(self, width, *args): + return self.__class__(self.data.ljust(width, *args)) + def lower(self): return self.__class__(self.data.lower()) + def lstrip(self, chars=None): return self.__class__(self.data.lstrip(chars)) + def partition(self, sep): + return self.data.partition(sep) + def replace(self, old, new, maxsplit=-1): + if isinstance(old, UserString): + old = old.data + if isinstance(new, UserString): + new = new.data + return self.__class__(self.data.replace(old, new, maxsplit)) + def rfind(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.rfind(sub, start, end) + def rindex(self, sub, start=0, end=_sys.maxsize): + return self.data.rindex(sub, start, end) + def rjust(self, width, *args): + return self.__class__(self.data.rjust(width, *args)) + def rpartition(self, sep): + return self.data.rpartition(sep) + def rstrip(self, chars=None): + return self.__class__(self.data.rstrip(chars)) + def split(self, sep=None, maxsplit=-1): + return self.data.split(sep, maxsplit) + def rsplit(self, sep=None, maxsplit=-1): + return self.data.rsplit(sep, maxsplit) + def splitlines(self, keepends=False): return self.data.splitlines(keepends) + def startswith(self, prefix, start=0, end=_sys.maxsize): + return self.data.startswith(prefix, start, end) + def strip(self, chars=None): return self.__class__(self.data.strip(chars)) + def swapcase(self): return self.__class__(self.data.swapcase()) + def title(self): return self.__class__(self.data.title()) + def translate(self, *args): + return self.__class__(self.data.translate(*args)) + def upper(self): return self.__class__(self.data.upper()) + def zfill(self, width): return self.__class__(self.data.zfill(width)) diff --git a/typing_extensions/test_data/python-3.4.6/collections/__main__.py b/typing_extensions/test_data/python-3.4.6/collections/__main__.py new file mode 100644 index 000000000..763e38e0c --- /dev/null +++ b/typing_extensions/test_data/python-3.4.6/collections/__main__.py @@ -0,0 +1,38 @@ +################################################################################ +### Simple tests +################################################################################ + +# verify that instances can be pickled +from collections import namedtuple +from pickle import loads, dumps +Point = namedtuple('Point', 'x, y', True) +p = Point(x=10, y=20) +assert p == loads(dumps(p)) + +# test and demonstrate ability to override methods +class Point(namedtuple('Point', 'x y')): + __slots__ = () + @property + def hypot(self): + return (self.x ** 2 + self.y ** 2) ** 0.5 + def __str__(self): + return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot) + +for p in Point(3, 4), Point(14, 5/7.): + print (p) + +class Point(namedtuple('Point', 'x y')): + 'Point class with optimized _make() and _replace() without error-checking' + __slots__ = () + _make = classmethod(tuple.__new__) + def _replace(self, _map=map, **kwds): + return self._make(_map(kwds.get, ('x', 'y'), self)) + +print(Point(11, 22)._replace(x=100)) + +Point3D = namedtuple('Point3D', Point._fields + ('z',)) +print(Point3D.__doc__) + +import doctest, collections +TestResults = namedtuple('TestResults', 'failed attempted') +print(TestResults(*doctest.testmod(collections))) diff --git a/typing_extensions/test_data/python-3.4.6/collections/abc.py b/typing_extensions/test_data/python-3.4.6/collections/abc.py new file mode 100644 index 000000000..891600d16 --- /dev/null +++ b/typing_extensions/test_data/python-3.4.6/collections/abc.py @@ -0,0 +1,2 @@ +from _collections_abc import * +from _collections_abc import __all__ diff --git a/typing_extensions/test_data/python-3.5.0/_collections_abc.py b/typing_extensions/test_data/python-3.5.0/_collections_abc.py new file mode 100644 index 000000000..f89bb6f04 --- /dev/null +++ b/typing_extensions/test_data/python-3.5.0/_collections_abc.py @@ -0,0 +1,939 @@ +# Copyright 2007 Google, Inc. All Rights Reserved. +# Licensed to PSF under a Contributor Agreement. + +"""Abstract Base Classes (ABCs) for collections, according to PEP 3119. + +Unit tests are in test_collections. +""" + +from abc import ABCMeta, abstractmethod +import sys + +__all__ = ["Awaitable", "Coroutine", "AsyncIterable", "AsyncIterator", + "Hashable", "Iterable", "Iterator", "Generator", + "Sized", "Container", "Callable", + "Set", "MutableSet", + "Mapping", "MutableMapping", + "MappingView", "KeysView", "ItemsView", "ValuesView", + "Sequence", "MutableSequence", + "ByteString", + ] + +# This module has been renamed from collections.abc to _collections_abc to +# speed up interpreter startup. Some of the types such as MutableMapping are +# required early but collections module imports a lot of other modules. +# See issue #19218 +__name__ = "collections.abc" + +# Private list of types that we want to register with the various ABCs +# so that they will pass tests like: +# it = iter(somebytearray) +# assert isinstance(it, Iterable) +# Note: in other implementations, these types many not be distinct +# and they make have their own implementation specific types that +# are not included on this list. +bytes_iterator = type(iter(b'')) +bytearray_iterator = type(iter(bytearray())) +#callable_iterator = ??? +dict_keyiterator = type(iter({}.keys())) +dict_valueiterator = type(iter({}.values())) +dict_itemiterator = type(iter({}.items())) +list_iterator = type(iter([])) +list_reverseiterator = type(iter(reversed([]))) +range_iterator = type(iter(range(0))) +set_iterator = type(iter(set())) +str_iterator = type(iter("")) +tuple_iterator = type(iter(())) +zip_iterator = type(iter(zip())) +## views ## +dict_keys = type({}.keys()) +dict_values = type({}.values()) +dict_items = type({}.items()) +## misc ## +mappingproxy = type(type.__dict__) +generator = type((lambda: (yield))()) +## coroutine ## +async def _coro(): pass +_coro = _coro() +coroutine = type(_coro) +_coro.close() # Prevent ResourceWarning +del _coro + + +### ONE-TRICK PONIES ### + +class Hashable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __hash__(self): + return 0 + + @classmethod + def __subclasshook__(cls, C): + if cls is Hashable: + for B in C.__mro__: + if "__hash__" in B.__dict__: + if B.__dict__["__hash__"]: + return True + break + return NotImplemented + + +class Awaitable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __await__(self): + yield + + @classmethod + def __subclasshook__(cls, C): + if cls is Awaitable: + for B in C.__mro__: + if "__await__" in B.__dict__: + if B.__dict__["__await__"]: + return True + break + return NotImplemented + + +class Coroutine(Awaitable): + + __slots__ = () + + @abstractmethod + def send(self, value): + """Send a value into the coroutine. + Return next yielded value or raise StopIteration. + """ + raise StopIteration + + @abstractmethod + def throw(self, typ, val=None, tb=None): + """Raise an exception in the coroutine. + Return next yielded value or raise StopIteration. + """ + if val is None: + if tb is None: + raise typ + val = typ() + if tb is not None: + val = val.with_traceback(tb) + raise val + + def close(self): + """Raise GeneratorExit inside coroutine. + """ + try: + self.throw(GeneratorExit) + except (GeneratorExit, StopIteration): + pass + else: + raise RuntimeError("coroutine ignored GeneratorExit") + + @classmethod + def __subclasshook__(cls, C): + if cls is Coroutine: + mro = C.__mro__ + for method in ('__await__', 'send', 'throw', 'close'): + for base in mro: + if method in base.__dict__: + break + else: + return NotImplemented + return True + return NotImplemented + + +Coroutine.register(coroutine) + + +class AsyncIterable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + async def __aiter__(self): + return AsyncIterator() + + @classmethod + def __subclasshook__(cls, C): + if cls is AsyncIterable: + if any("__aiter__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class AsyncIterator(AsyncIterable): + + __slots__ = () + + @abstractmethod + async def __anext__(self): + """Return the next item or raise StopAsyncIteration when exhausted.""" + raise StopAsyncIteration + + async def __aiter__(self): + return self + + @classmethod + def __subclasshook__(cls, C): + if cls is AsyncIterator: + if (any("__anext__" in B.__dict__ for B in C.__mro__) and + any("__aiter__" in B.__dict__ for B in C.__mro__)): + return True + return NotImplemented + + +class Iterable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __iter__(self): + while False: + yield None + + @classmethod + def __subclasshook__(cls, C): + if cls is Iterable: + if any("__iter__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class Iterator(Iterable): + + __slots__ = () + + @abstractmethod + def __next__(self): + 'Return the next item from the iterator. When exhausted, raise StopIteration' + raise StopIteration + + def __iter__(self): + return self + + @classmethod + def __subclasshook__(cls, C): + if cls is Iterator: + if (any("__next__" in B.__dict__ for B in C.__mro__) and + any("__iter__" in B.__dict__ for B in C.__mro__)): + return True + return NotImplemented + +Iterator.register(bytes_iterator) +Iterator.register(bytearray_iterator) +#Iterator.register(callable_iterator) +Iterator.register(dict_keyiterator) +Iterator.register(dict_valueiterator) +Iterator.register(dict_itemiterator) +Iterator.register(list_iterator) +Iterator.register(list_reverseiterator) +Iterator.register(range_iterator) +Iterator.register(set_iterator) +Iterator.register(str_iterator) +Iterator.register(tuple_iterator) +Iterator.register(zip_iterator) + + +class Generator(Iterator): + + __slots__ = () + + def __next__(self): + """Return the next item from the generator. + When exhausted, raise StopIteration. + """ + return self.send(None) + + @abstractmethod + def send(self, value): + """Send a value into the generator. + Return next yielded value or raise StopIteration. + """ + raise StopIteration + + @abstractmethod + def throw(self, typ, val=None, tb=None): + """Raise an exception in the generator. + Return next yielded value or raise StopIteration. + """ + if val is None: + if tb is None: + raise typ + val = typ() + if tb is not None: + val = val.with_traceback(tb) + raise val + + def close(self): + """Raise GeneratorExit inside generator. + """ + try: + self.throw(GeneratorExit) + except (GeneratorExit, StopIteration): + pass + else: + raise RuntimeError("generator ignored GeneratorExit") + + @classmethod + def __subclasshook__(cls, C): + if cls is Generator: + mro = C.__mro__ + for method in ('__iter__', '__next__', 'send', 'throw', 'close'): + for base in mro: + if method in base.__dict__: + break + else: + return NotImplemented + return True + return NotImplemented + + +Generator.register(generator) + + +class Sized(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __len__(self): + return 0 + + @classmethod + def __subclasshook__(cls, C): + if cls is Sized: + if any("__len__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class Container(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __contains__(self, x): + return False + + @classmethod + def __subclasshook__(cls, C): + if cls is Container: + if any("__contains__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class Callable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __call__(self, *args, **kwds): + return False + + @classmethod + def __subclasshook__(cls, C): + if cls is Callable: + if any("__call__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +### SETS ### + + +class Set(Sized, Iterable, Container): + + """A set is a finite, iterable container. + + This class provides concrete generic implementations of all + methods except for __contains__, __iter__ and __len__. + + To override the comparisons (presumably for speed, as the + semantics are fixed), redefine __le__ and __ge__, + then the other operations will automatically follow suit. + """ + + __slots__ = () + + def __le__(self, other): + if not isinstance(other, Set): + return NotImplemented + if len(self) > len(other): + return False + for elem in self: + if elem not in other: + return False + return True + + def __lt__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) < len(other) and self.__le__(other) + + def __gt__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) > len(other) and self.__ge__(other) + + def __ge__(self, other): + if not isinstance(other, Set): + return NotImplemented + if len(self) < len(other): + return False + for elem in other: + if elem not in self: + return False + return True + + def __eq__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) == len(other) and self.__le__(other) + + @classmethod + def _from_iterable(cls, it): + '''Construct an instance of the class from any iterable input. + + Must override this method if the class constructor signature + does not accept an iterable for an input. + ''' + return cls(it) + + def __and__(self, other): + if not isinstance(other, Iterable): + return NotImplemented + return self._from_iterable(value for value in other if value in self) + + __rand__ = __and__ + + def isdisjoint(self, other): + 'Return True if two sets have a null intersection.' + for value in other: + if value in self: + return False + return True + + def __or__(self, other): + if not isinstance(other, Iterable): + return NotImplemented + chain = (e for s in (self, other) for e in s) + return self._from_iterable(chain) + + __ror__ = __or__ + + def __sub__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return self._from_iterable(value for value in self + if value not in other) + + def __rsub__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return self._from_iterable(value for value in other + if value not in self) + + def __xor__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return (self - other) | (other - self) + + __rxor__ = __xor__ + + def _hash(self): + """Compute the hash value of a set. + + Note that we don't define __hash__: not all sets are hashable. + But if you define a hashable set type, its __hash__ should + call this function. + + This must be compatible __eq__. + + All sets ought to compare equal if they contain the same + elements, regardless of how they are implemented, and + regardless of the order of the elements; so there's not much + freedom for __eq__ or __hash__. We match the algorithm used + by the built-in frozenset type. + """ + MAX = sys.maxsize + MASK = 2 * MAX + 1 + n = len(self) + h = 1927868237 * (n + 1) + h &= MASK + for x in self: + hx = hash(x) + h ^= (hx ^ (hx << 16) ^ 89869747) * 3644798167 + h &= MASK + h = h * 69069 + 907133923 + h &= MASK + if h > MAX: + h -= MASK + 1 + if h == -1: + h = 590923713 + return h + +Set.register(frozenset) + + +class MutableSet(Set): + """A mutable set is a finite, iterable container. + + This class provides concrete generic implementations of all + methods except for __contains__, __iter__, __len__, + add(), and discard(). + + To override the comparisons (presumably for speed, as the + semantics are fixed), all you have to do is redefine __le__ and + then the other operations will automatically follow suit. + """ + + __slots__ = () + + @abstractmethod + def add(self, value): + """Add an element.""" + raise NotImplementedError + + @abstractmethod + def discard(self, value): + """Remove an element. Do not raise an exception if absent.""" + raise NotImplementedError + + def remove(self, value): + """Remove an element. If not a member, raise a KeyError.""" + if value not in self: + raise KeyError(value) + self.discard(value) + + def pop(self): + """Return the popped value. Raise KeyError if empty.""" + it = iter(self) + try: + value = next(it) + except StopIteration: + raise KeyError + self.discard(value) + return value + + def clear(self): + """This is slow (creates N new iterators!) but effective.""" + try: + while True: + self.pop() + except KeyError: + pass + + def __ior__(self, it): + for value in it: + self.add(value) + return self + + def __iand__(self, it): + for value in (self - it): + self.discard(value) + return self + + def __ixor__(self, it): + if it is self: + self.clear() + else: + if not isinstance(it, Set): + it = self._from_iterable(it) + for value in it: + if value in self: + self.discard(value) + else: + self.add(value) + return self + + def __isub__(self, it): + if it is self: + self.clear() + else: + for value in it: + self.discard(value) + return self + +MutableSet.register(set) + + +### MAPPINGS ### + + +class Mapping(Sized, Iterable, Container): + + __slots__ = () + + """A Mapping is a generic container for associating key/value + pairs. + + This class provides concrete generic implementations of all + methods except for __getitem__, __iter__, and __len__. + + """ + + @abstractmethod + def __getitem__(self, key): + raise KeyError + + def get(self, key, default=None): + 'D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.' + try: + return self[key] + except KeyError: + return default + + def __contains__(self, key): + try: + self[key] + except KeyError: + return False + else: + return True + + def keys(self): + "D.keys() -> a set-like object providing a view on D's keys" + return KeysView(self) + + def items(self): + "D.items() -> a set-like object providing a view on D's items" + return ItemsView(self) + + def values(self): + "D.values() -> an object providing a view on D's values" + return ValuesView(self) + + def __eq__(self, other): + if not isinstance(other, Mapping): + return NotImplemented + return dict(self.items()) == dict(other.items()) + +Mapping.register(mappingproxy) + + +class MappingView(Sized): + + __slots__ = '_mapping', + + def __init__(self, mapping): + self._mapping = mapping + + def __len__(self): + return len(self._mapping) + + def __repr__(self): + return '{0.__class__.__name__}({0._mapping!r})'.format(self) + + +class KeysView(MappingView, Set): + + __slots__ = () + + @classmethod + def _from_iterable(self, it): + return set(it) + + def __contains__(self, key): + return key in self._mapping + + def __iter__(self): + yield from self._mapping + +KeysView.register(dict_keys) + + +class ItemsView(MappingView, Set): + + __slots__ = () + + @classmethod + def _from_iterable(self, it): + return set(it) + + def __contains__(self, item): + key, value = item + try: + v = self._mapping[key] + except KeyError: + return False + else: + return v == value + + def __iter__(self): + for key in self._mapping: + yield (key, self._mapping[key]) + +ItemsView.register(dict_items) + + +class ValuesView(MappingView): + + __slots__ = () + + def __contains__(self, value): + for key in self._mapping: + if value == self._mapping[key]: + return True + return False + + def __iter__(self): + for key in self._mapping: + yield self._mapping[key] + +ValuesView.register(dict_values) + + +class MutableMapping(Mapping): + + __slots__ = () + + """A MutableMapping is a generic container for associating + key/value pairs. + + This class provides concrete generic implementations of all + methods except for __getitem__, __setitem__, __delitem__, + __iter__, and __len__. + + """ + + @abstractmethod + def __setitem__(self, key, value): + raise KeyError + + @abstractmethod + def __delitem__(self, key): + raise KeyError + + __marker = object() + + def pop(self, key, default=__marker): + '''D.pop(k[,d]) -> v, remove specified key and return the corresponding value. + If key is not found, d is returned if given, otherwise KeyError is raised. + ''' + try: + value = self[key] + except KeyError: + if default is self.__marker: + raise + return default + else: + del self[key] + return value + + def popitem(self): + '''D.popitem() -> (k, v), remove and return some (key, value) pair + as a 2-tuple; but raise KeyError if D is empty. + ''' + try: + key = next(iter(self)) + except StopIteration: + raise KeyError + value = self[key] + del self[key] + return key, value + + def clear(self): + 'D.clear() -> None. Remove all items from D.' + try: + while True: + self.popitem() + except KeyError: + pass + + def update(*args, **kwds): + ''' D.update([E, ]**F) -> None. Update D from mapping/iterable E and F. + If E present and has a .keys() method, does: for k in E: D[k] = E[k] + If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v + In either case, this is followed by: for k, v in F.items(): D[k] = v + ''' + if not args: + raise TypeError("descriptor 'update' of 'MutableMapping' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('update expected at most 1 arguments, got %d' % + len(args)) + if args: + other = args[0] + if isinstance(other, Mapping): + for key in other: + self[key] = other[key] + elif hasattr(other, "keys"): + for key in other.keys(): + self[key] = other[key] + else: + for key, value in other: + self[key] = value + for key, value in kwds.items(): + self[key] = value + + def setdefault(self, key, default=None): + 'D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D' + try: + return self[key] + except KeyError: + self[key] = default + return default + +MutableMapping.register(dict) + + +### SEQUENCES ### + + +class Sequence(Sized, Iterable, Container): + + """All the operations on a read-only sequence. + + Concrete subclasses must override __new__ or __init__, + __getitem__, and __len__. + """ + + __slots__ = () + + @abstractmethod + def __getitem__(self, index): + raise IndexError + + def __iter__(self): + i = 0 + try: + while True: + v = self[i] + yield v + i += 1 + except IndexError: + return + + def __contains__(self, value): + for v in self: + if v == value: + return True + return False + + def __reversed__(self): + for i in reversed(range(len(self))): + yield self[i] + + def index(self, value, start=0, stop=None): + '''S.index(value, [start, [stop]]) -> integer -- return first index of value. + Raises ValueError if the value is not present. + ''' + if start is not None and start < 0: + start = max(len(self) + start, 0) + if stop is not None and stop < 0: + stop += len(self) + + i = start + while stop is None or i < stop: + try: + if self[i] == value: + return i + except IndexError: + break + i += 1 + raise ValueError + + def count(self, value): + 'S.count(value) -> integer -- return number of occurrences of value' + return sum(1 for v in self if v == value) + +Sequence.register(tuple) +Sequence.register(str) +Sequence.register(range) +Sequence.register(memoryview) + + +class ByteString(Sequence): + + """This unifies bytes and bytearray. + + XXX Should add all their methods. + """ + + __slots__ = () + +ByteString.register(bytes) +ByteString.register(bytearray) + + +class MutableSequence(Sequence): + + __slots__ = () + + """All the operations on a read-write sequence. + + Concrete subclasses must provide __new__ or __init__, + __getitem__, __setitem__, __delitem__, __len__, and insert(). + + """ + + @abstractmethod + def __setitem__(self, index, value): + raise IndexError + + @abstractmethod + def __delitem__(self, index): + raise IndexError + + @abstractmethod + def insert(self, index, value): + 'S.insert(index, value) -- insert value before index' + raise IndexError + + def append(self, value): + 'S.append(value) -- append value to the end of the sequence' + self.insert(len(self), value) + + def clear(self): + 'S.clear() -> None -- remove all items from S' + try: + while True: + self.pop() + except IndexError: + pass + + def reverse(self): + 'S.reverse() -- reverse *IN PLACE*' + n = len(self) + for i in range(n//2): + self[i], self[n-i-1] = self[n-i-1], self[i] + + def extend(self, values): + 'S.extend(iterable) -- extend sequence by appending elements from the iterable' + for v in values: + self.append(v) + + def pop(self, index=-1): + '''S.pop([index]) -> item -- remove and return item at index (default last). + Raise IndexError if list is empty or index is out of range. + ''' + v = self[index] + del self[index] + return v + + def remove(self, value): + '''S.remove(value) -- remove first occurrence of value. + Raise ValueError if the value is not present. + ''' + del self[self.index(value)] + + def __iadd__(self, values): + self.extend(values) + return self + +MutableSequence.register(list) +MutableSequence.register(bytearray) # Multiply inheriting, see ByteString diff --git a/typing_extensions/test_data/python-3.5.0/abc.py b/typing_extensions/test_data/python-3.5.0/abc.py new file mode 100644 index 000000000..1cbf96a61 --- /dev/null +++ b/typing_extensions/test_data/python-3.5.0/abc.py @@ -0,0 +1,248 @@ +# Copyright 2007 Google, Inc. All Rights Reserved. +# Licensed to PSF under a Contributor Agreement. + +"""Abstract Base Classes (ABCs) according to PEP 3119.""" + +from _weakrefset import WeakSet + + +def abstractmethod(funcobj): + """A decorator indicating abstract methods. + + Requires that the metaclass is ABCMeta or derived from it. A + class that has a metaclass derived from ABCMeta cannot be + instantiated unless all of its abstract methods are overridden. + The abstract methods can be called using any of the normal + 'super' call mechanisms. + + Usage: + + class C(metaclass=ABCMeta): + @abstractmethod + def my_abstract_method(self, ...): + ... + """ + funcobj.__isabstractmethod__ = True + return funcobj + + +class abstractclassmethod(classmethod): + """ + A decorator indicating abstract classmethods. + + Similar to abstractmethod. + + Usage: + + class C(metaclass=ABCMeta): + @abstractclassmethod + def my_abstract_classmethod(cls, ...): + ... + + 'abstractclassmethod' is deprecated. Use 'classmethod' with + 'abstractmethod' instead. + """ + + __isabstractmethod__ = True + + def __init__(self, callable): + callable.__isabstractmethod__ = True + super().__init__(callable) + + +class abstractstaticmethod(staticmethod): + """ + A decorator indicating abstract staticmethods. + + Similar to abstractmethod. + + Usage: + + class C(metaclass=ABCMeta): + @abstractstaticmethod + def my_abstract_staticmethod(...): + ... + + 'abstractstaticmethod' is deprecated. Use 'staticmethod' with + 'abstractmethod' instead. + """ + + __isabstractmethod__ = True + + def __init__(self, callable): + callable.__isabstractmethod__ = True + super().__init__(callable) + + +class abstractproperty(property): + """ + A decorator indicating abstract properties. + + Requires that the metaclass is ABCMeta or derived from it. A + class that has a metaclass derived from ABCMeta cannot be + instantiated unless all of its abstract properties are overridden. + The abstract properties can be called using any of the normal + 'super' call mechanisms. + + Usage: + + class C(metaclass=ABCMeta): + @abstractproperty + def my_abstract_property(self): + ... + + This defines a read-only property; you can also define a read-write + abstract property using the 'long' form of property declaration: + + class C(metaclass=ABCMeta): + def getx(self): ... + def setx(self, value): ... + x = abstractproperty(getx, setx) + + 'abstractproperty' is deprecated. Use 'property' with 'abstractmethod' + instead. + """ + + __isabstractmethod__ = True + + +class ABCMeta(type): + + """Metaclass for defining Abstract Base Classes (ABCs). + + Use this metaclass to create an ABC. An ABC can be subclassed + directly, and then acts as a mix-in class. You can also register + unrelated concrete classes (even built-in classes) and unrelated + ABCs as 'virtual subclasses' -- these and their descendants will + be considered subclasses of the registering ABC by the built-in + issubclass() function, but the registering ABC won't show up in + their MRO (Method Resolution Order) nor will method + implementations defined by the registering ABC be callable (not + even via super()). + + """ + + # A global counter that is incremented each time a class is + # registered as a virtual subclass of anything. It forces the + # negative cache to be cleared before its next use. + # Note: this counter is private. Use `abc.get_cache_token()` for + # external code. + _abc_invalidation_counter = 0 + + def __new__(mcls, name, bases, namespace): + cls = super().__new__(mcls, name, bases, namespace) + # Compute set of abstract method names + abstracts = {name + for name, value in namespace.items() + if getattr(value, "__isabstractmethod__", False)} + for base in bases: + for name in getattr(base, "__abstractmethods__", set()): + value = getattr(cls, name, None) + if getattr(value, "__isabstractmethod__", False): + abstracts.add(name) + cls.__abstractmethods__ = frozenset(abstracts) + # Set up inheritance registry + cls._abc_registry = WeakSet() + cls._abc_cache = WeakSet() + cls._abc_negative_cache = WeakSet() + cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter + return cls + + def register(cls, subclass): + """Register a virtual subclass of an ABC. + + Returns the subclass, to allow usage as a class decorator. + """ + if not isinstance(subclass, type): + raise TypeError("Can only register classes") + if issubclass(subclass, cls): + return subclass # Already a subclass + # Subtle: test for cycles *after* testing for "already a subclass"; + # this means we allow X.register(X) and interpret it as a no-op. + if issubclass(cls, subclass): + # This would create a cycle, which is bad for the algorithm below + raise RuntimeError("Refusing to create an inheritance cycle") + cls._abc_registry.add(subclass) + ABCMeta._abc_invalidation_counter += 1 # Invalidate negative cache + return subclass + + def _dump_registry(cls, file=None): + """Debug helper to print the ABC registry.""" + print("Class: %s.%s" % (cls.__module__, cls.__qualname__), file=file) + print("Inv.counter: %s" % ABCMeta._abc_invalidation_counter, file=file) + for name in sorted(cls.__dict__.keys()): + if name.startswith("_abc_"): + value = getattr(cls, name) + print("%s: %r" % (name, value), file=file) + + def __instancecheck__(cls, instance): + """Override for isinstance(instance, cls).""" + # Inline the cache checking + subclass = instance.__class__ + if subclass in cls._abc_cache: + return True + subtype = type(instance) + if subtype is subclass: + if (cls._abc_negative_cache_version == + ABCMeta._abc_invalidation_counter and + subclass in cls._abc_negative_cache): + return False + # Fall back to the subclass check. + return cls.__subclasscheck__(subclass) + return any(cls.__subclasscheck__(c) for c in {subclass, subtype}) + + def __subclasscheck__(cls, subclass): + """Override for issubclass(subclass, cls).""" + # Check cache + if subclass in cls._abc_cache: + return True + # Check negative cache; may have to invalidate + if cls._abc_negative_cache_version < ABCMeta._abc_invalidation_counter: + # Invalidate the negative cache + cls._abc_negative_cache = WeakSet() + cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter + elif subclass in cls._abc_negative_cache: + return False + # Check the subclass hook + ok = cls.__subclasshook__(subclass) + if ok is not NotImplemented: + assert isinstance(ok, bool) + if ok: + cls._abc_cache.add(subclass) + else: + cls._abc_negative_cache.add(subclass) + return ok + # Check if it's a direct subclass + if cls in getattr(subclass, '__mro__', ()): + cls._abc_cache.add(subclass) + return True + # Check if it's a subclass of a registered class (recursive) + for rcls in cls._abc_registry: + if issubclass(subclass, rcls): + cls._abc_cache.add(subclass) + return True + # Check if it's a subclass of a subclass (recursive) + for scls in cls.__subclasses__(): + if issubclass(subclass, scls): + cls._abc_cache.add(subclass) + return True + # No dice; update negative cache + cls._abc_negative_cache.add(subclass) + return False + + +class ABC(metaclass=ABCMeta): + """Helper class that provides a standard way to create an ABC using + inheritance. + """ + pass + + +def get_cache_token(): + """Returns the current ABC cache token. + + The token is an opaque object (supporting equality testing) identifying the + current version of the ABC cache for virtual subclasses. The token changes + with every call to ``register()`` on any ABC. + """ + return ABCMeta._abc_invalidation_counter diff --git a/typing_extensions/test_data/python-3.5.0/collections/__init__.py b/typing_extensions/test_data/python-3.5.0/collections/__init__.py new file mode 100644 index 000000000..80dc4f6d4 --- /dev/null +++ b/typing_extensions/test_data/python-3.5.0/collections/__init__.py @@ -0,0 +1,1217 @@ +__all__ = ['deque', 'defaultdict', 'namedtuple', 'UserDict', 'UserList', + 'UserString', 'Counter', 'OrderedDict', 'ChainMap'] + +# For backwards compatibility, continue to make the collections ABCs +# available through the collections module. +from _collections_abc import * +import _collections_abc +__all__ += _collections_abc.__all__ + +from operator import itemgetter as _itemgetter, eq as _eq +from keyword import iskeyword as _iskeyword +import sys as _sys +import heapq as _heapq +from _weakref import proxy as _proxy +from itertools import repeat as _repeat, chain as _chain, starmap as _starmap +from reprlib import recursive_repr as _recursive_repr + +try: + from _collections import deque +except ImportError: + pass +else: + MutableSequence.register(deque) + +try: + from _collections import defaultdict +except ImportError: + pass + + +################################################################################ +### OrderedDict +################################################################################ + +class _OrderedDictKeysView(KeysView): + + def __reversed__(self): + yield from reversed(self._mapping) + +class _OrderedDictItemsView(ItemsView): + + def __reversed__(self): + for key in reversed(self._mapping): + yield (key, self._mapping[key]) + +class _OrderedDictValuesView(ValuesView): + + def __reversed__(self): + for key in reversed(self._mapping): + yield self._mapping[key] + +class _Link(object): + __slots__ = 'prev', 'next', 'key', '__weakref__' + +class OrderedDict(dict): + 'Dictionary that remembers insertion order' + # An inherited dict maps keys to values. + # The inherited dict provides __getitem__, __len__, __contains__, and get. + # The remaining methods are order-aware. + # Big-O running times for all methods are the same as regular dictionaries. + + # The internal self.__map dict maps keys to links in a doubly linked list. + # The circular doubly linked list starts and ends with a sentinel element. + # The sentinel element never gets deleted (this simplifies the algorithm). + # The sentinel is in self.__hardroot with a weakref proxy in self.__root. + # The prev links are weakref proxies (to prevent circular references). + # Individual links are kept alive by the hard reference in self.__map. + # Those hard references disappear when a key is deleted from an OrderedDict. + + def __init__(*args, **kwds): + '''Initialize an ordered dictionary. The signature is the same as + regular dictionaries, but keyword arguments are not recommended because + their insertion order is arbitrary. + + ''' + if not args: + raise TypeError("descriptor '__init__' of 'OrderedDict' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + try: + self.__root + except AttributeError: + self.__hardroot = _Link() + self.__root = root = _proxy(self.__hardroot) + root.prev = root.next = root + self.__map = {} + self.__update(*args, **kwds) + + def __setitem__(self, key, value, + dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link): + 'od.__setitem__(i, y) <==> od[i]=y' + # Setting a new item creates a new link at the end of the linked list, + # and the inherited dictionary is updated with the new key/value pair. + if key not in self: + self.__map[key] = link = Link() + root = self.__root + last = root.prev + link.prev, link.next, link.key = last, root, key + last.next = link + root.prev = proxy(link) + dict_setitem(self, key, value) + + def __delitem__(self, key, dict_delitem=dict.__delitem__): + 'od.__delitem__(y) <==> del od[y]' + # Deleting an existing item uses self.__map to find the link which gets + # removed by updating the links in the predecessor and successor nodes. + dict_delitem(self, key) + link = self.__map.pop(key) + link_prev = link.prev + link_next = link.next + link_prev.next = link_next + link_next.prev = link_prev + link.prev = None + link.next = None + + def __iter__(self): + 'od.__iter__() <==> iter(od)' + # Traverse the linked list in order. + root = self.__root + curr = root.next + while curr is not root: + yield curr.key + curr = curr.next + + def __reversed__(self): + 'od.__reversed__() <==> reversed(od)' + # Traverse the linked list in reverse order. + root = self.__root + curr = root.prev + while curr is not root: + yield curr.key + curr = curr.prev + + def clear(self): + 'od.clear() -> None. Remove all items from od.' + root = self.__root + root.prev = root.next = root + self.__map.clear() + dict.clear(self) + + def popitem(self, last=True): + '''od.popitem() -> (k, v), return and remove a (key, value) pair. + Pairs are returned in LIFO order if last is true or FIFO order if false. + + ''' + if not self: + raise KeyError('dictionary is empty') + root = self.__root + if last: + link = root.prev + link_prev = link.prev + link_prev.next = root + root.prev = link_prev + else: + link = root.next + link_next = link.next + root.next = link_next + link_next.prev = root + key = link.key + del self.__map[key] + value = dict.pop(self, key) + return key, value + + def move_to_end(self, key, last=True): + '''Move an existing element to the end (or beginning if last==False). + + Raises KeyError if the element does not exist. + When last=True, acts like a fast version of self[key]=self.pop(key). + + ''' + link = self.__map[key] + link_prev = link.prev + link_next = link.next + link_prev.next = link_next + link_next.prev = link_prev + root = self.__root + if last: + last = root.prev + link.prev = last + link.next = root + last.next = root.prev = link + else: + first = root.next + link.prev = root + link.next = first + root.next = first.prev = link + + def __sizeof__(self): + sizeof = _sys.getsizeof + n = len(self) + 1 # number of links including root + size = sizeof(self.__dict__) # instance dictionary + size += sizeof(self.__map) * 2 # internal dict and inherited dict + size += sizeof(self.__hardroot) * n # link objects + size += sizeof(self.__root) * n # proxy objects + return size + + update = __update = MutableMapping.update + + def keys(self): + "D.keys() -> a set-like object providing a view on D's keys" + return _OrderedDictKeysView(self) + + def items(self): + "D.items() -> a set-like object providing a view on D's items" + return _OrderedDictItemsView(self) + + def values(self): + "D.values() -> an object providing a view on D's values" + return _OrderedDictValuesView(self) + + __ne__ = MutableMapping.__ne__ + + __marker = object() + + def pop(self, key, default=__marker): + '''od.pop(k[,d]) -> v, remove specified key and return the corresponding + value. If key is not found, d is returned if given, otherwise KeyError + is raised. + + ''' + if key in self: + result = self[key] + del self[key] + return result + if default is self.__marker: + raise KeyError(key) + return default + + def setdefault(self, key, default=None): + 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od' + if key in self: + return self[key] + self[key] = default + return default + + @_recursive_repr() + def __repr__(self): + 'od.__repr__() <==> repr(od)' + if not self: + return '%s()' % (self.__class__.__name__,) + return '%s(%r)' % (self.__class__.__name__, list(self.items())) + + def __reduce__(self): + 'Return state information for pickling' + inst_dict = vars(self).copy() + for k in vars(OrderedDict()): + inst_dict.pop(k, None) + return self.__class__, (), inst_dict or None, None, iter(self.items()) + + def copy(self): + 'od.copy() -> a shallow copy of od' + return self.__class__(self) + + @classmethod + def fromkeys(cls, iterable, value=None): + '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S. + If not specified, the value defaults to None. + + ''' + self = cls() + for key in iterable: + self[key] = value + return self + + def __eq__(self, other): + '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive + while comparison to a regular mapping is order-insensitive. + + ''' + if isinstance(other, OrderedDict): + return dict.__eq__(self, other) and all(map(_eq, self, other)) + return dict.__eq__(self, other) + + +try: + from _collections import OrderedDict +except ImportError: + # Leave the pure Python version in place. + pass + + +################################################################################ +### namedtuple +################################################################################ + +_class_template = """\ +from builtins import property as _property, tuple as _tuple +from operator import itemgetter as _itemgetter +from collections import OrderedDict + +class {typename}(tuple): + '{typename}({arg_list})' + + __slots__ = () + + _fields = {field_names!r} + + def __new__(_cls, {arg_list}): + 'Create new instance of {typename}({arg_list})' + return _tuple.__new__(_cls, ({arg_list})) + + @classmethod + def _make(cls, iterable, new=tuple.__new__, len=len): + 'Make a new {typename} object from a sequence or iterable' + result = new(cls, iterable) + if len(result) != {num_fields:d}: + raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result)) + return result + + def _replace(_self, **kwds): + 'Return a new {typename} object replacing specified fields with new values' + result = _self._make(map(kwds.pop, {field_names!r}, _self)) + if kwds: + raise ValueError('Got unexpected field names: %r' % list(kwds)) + return result + + def __repr__(self): + 'Return a nicely formatted representation string' + return self.__class__.__name__ + '({repr_fmt})' % self + + @property + def __dict__(self): + 'A new OrderedDict mapping field names to their values' + return OrderedDict(zip(self._fields, self)) + + def _asdict(self): + 'Return a new OrderedDict which maps field names to their values.' + return self.__dict__ + + def __getnewargs__(self): + 'Return self as a plain tuple. Used by copy and pickle.' + return tuple(self) + + def __getstate__(self): + 'Exclude the OrderedDict from pickling' + return None + +{field_defs} +""" + +_repr_template = '{name}=%r' + +_field_template = '''\ + {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}') +''' + +def namedtuple(typename, field_names, verbose=False, rename=False): + """Returns a new subclass of tuple with named fields. + + >>> Point = namedtuple('Point', ['x', 'y']) + >>> Point.__doc__ # docstring for the new class + 'Point(x, y)' + >>> p = Point(11, y=22) # instantiate with positional args or keywords + >>> p[0] + p[1] # indexable like a plain tuple + 33 + >>> x, y = p # unpack like a regular tuple + >>> x, y + (11, 22) + >>> p.x + p.y # fields also accessable by name + 33 + >>> d = p._asdict() # convert to a dictionary + >>> d['x'] + 11 + >>> Point(**d) # convert from a dictionary + Point(x=11, y=22) + >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields + Point(x=100, y=22) + + """ + + # Validate the field names. At the user's option, either generate an error + # message or automatically replace the field name with a valid name. + if isinstance(field_names, str): + field_names = field_names.replace(',', ' ').split() + field_names = list(map(str, field_names)) + typename = str(typename) + if rename: + seen = set() + for index, name in enumerate(field_names): + if (not name.isidentifier() + or _iskeyword(name) + or name.startswith('_') + or name in seen): + field_names[index] = '_%d' % index + seen.add(name) + for name in [typename] + field_names: + if type(name) != str: + raise TypeError('Type names and field names must be strings') + if not name.isidentifier(): + raise ValueError('Type names and field names must be valid ' + 'identifiers: %r' % name) + if _iskeyword(name): + raise ValueError('Type names and field names cannot be a ' + 'keyword: %r' % name) + seen = set() + for name in field_names: + if name.startswith('_') and not rename: + raise ValueError('Field names cannot start with an underscore: ' + '%r' % name) + if name in seen: + raise ValueError('Encountered duplicate field name: %r' % name) + seen.add(name) + + # Fill-in the class template + class_definition = _class_template.format( + typename = typename, + field_names = tuple(field_names), + num_fields = len(field_names), + arg_list = repr(tuple(field_names)).replace("'", "")[1:-1], + repr_fmt = ', '.join(_repr_template.format(name=name) + for name in field_names), + field_defs = '\n'.join(_field_template.format(index=index, name=name) + for index, name in enumerate(field_names)) + ) + + # Execute the template string in a temporary namespace and support + # tracing utilities by setting a value for frame.f_globals['__name__'] + namespace = dict(__name__='namedtuple_%s' % typename) + exec(class_definition, namespace) + result = namespace[typename] + result._source = class_definition + if verbose: + print(result._source) + + # For pickling to work, the __module__ variable needs to be set to the frame + # where the named tuple is created. Bypass this step in environments where + # sys._getframe is not defined (Jython for example) or sys._getframe is not + # defined for arguments greater than 0 (IronPython). + try: + result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__') + except (AttributeError, ValueError): + pass + + return result + + +######################################################################## +### Counter +######################################################################## + +def _count_elements(mapping, iterable): + 'Tally elements from the iterable.' + mapping_get = mapping.get + for elem in iterable: + mapping[elem] = mapping_get(elem, 0) + 1 + +try: # Load C helper function if available + from _collections import _count_elements +except ImportError: + pass + +class Counter(dict): + '''Dict subclass for counting hashable items. Sometimes called a bag + or multiset. Elements are stored as dictionary keys and their counts + are stored as dictionary values. + + >>> c = Counter('abcdeabcdabcaba') # count elements from a string + + >>> c.most_common(3) # three most common elements + [('a', 5), ('b', 4), ('c', 3)] + >>> sorted(c) # list all unique elements + ['a', 'b', 'c', 'd', 'e'] + >>> ''.join(sorted(c.elements())) # list elements with repetitions + 'aaaaabbbbcccdde' + >>> sum(c.values()) # total of all counts + 15 + + >>> c['a'] # count of letter 'a' + 5 + >>> for elem in 'shazam': # update counts from an iterable + ... c[elem] += 1 # by adding 1 to each element's count + >>> c['a'] # now there are seven 'a' + 7 + >>> del c['b'] # remove all 'b' + >>> c['b'] # now there are zero 'b' + 0 + + >>> d = Counter('simsalabim') # make another counter + >>> c.update(d) # add in the second counter + >>> c['a'] # now there are nine 'a' + 9 + + >>> c.clear() # empty the counter + >>> c + Counter() + + Note: If a count is set to zero or reduced to zero, it will remain + in the counter until the entry is deleted or the counter is cleared: + + >>> c = Counter('aaabbc') + >>> c['b'] -= 2 # reduce the count of 'b' by two + >>> c.most_common() # 'b' is still in, but its count is zero + [('a', 3), ('c', 1), ('b', 0)] + + ''' + # References: + # http://en.wikipedia.org/wiki/Multiset + # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html + # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm + # http://code.activestate.com/recipes/259174/ + # Knuth, TAOCP Vol. II section 4.6.3 + + def __init__(*args, **kwds): + '''Create a new, empty Counter object. And if given, count elements + from an input iterable. Or, initialize the count from another mapping + of elements to their counts. + + >>> c = Counter() # a new, empty counter + >>> c = Counter('gallahad') # a new counter from an iterable + >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping + >>> c = Counter(a=4, b=2) # a new counter from keyword args + + ''' + if not args: + raise TypeError("descriptor '__init__' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + super(Counter, self).__init__() + self.update(*args, **kwds) + + def __missing__(self, key): + 'The count of elements not in the Counter is zero.' + # Needed so that self[missing_item] does not raise KeyError + return 0 + + def most_common(self, n=None): + '''List the n most common elements and their counts from the most + common to the least. If n is None, then list all element counts. + + >>> Counter('abcdeabcdabcaba').most_common(3) + [('a', 5), ('b', 4), ('c', 3)] + + ''' + # Emulate Bag.sortedByCount from Smalltalk + if n is None: + return sorted(self.items(), key=_itemgetter(1), reverse=True) + return _heapq.nlargest(n, self.items(), key=_itemgetter(1)) + + def elements(self): + '''Iterator over elements repeating each as many times as its count. + + >>> c = Counter('ABCABC') + >>> sorted(c.elements()) + ['A', 'A', 'B', 'B', 'C', 'C'] + + # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1 + >>> prime_factors = Counter({2: 2, 3: 3, 17: 1}) + >>> product = 1 + >>> for factor in prime_factors.elements(): # loop over factors + ... product *= factor # and multiply them + >>> product + 1836 + + Note, if an element's count has been set to zero or is a negative + number, elements() will ignore it. + + ''' + # Emulate Bag.do from Smalltalk and Multiset.begin from C++. + return _chain.from_iterable(_starmap(_repeat, self.items())) + + # Override dict methods where necessary + + @classmethod + def fromkeys(cls, iterable, v=None): + # There is no equivalent method for counters because setting v=1 + # means that no element can have a count greater than one. + raise NotImplementedError( + 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') + + def update(*args, **kwds): + '''Like dict.update() but add counts instead of replacing them. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.update('witch') # add elements from another iterable + >>> d = Counter('watch') + >>> c.update(d) # add elements from another counter + >>> c['h'] # four 'h' in which, witch, and watch + 4 + + ''' + # The regular dict.update() operation makes no sense here because the + # replace behavior results in the some of original untouched counts + # being mixed-in with all of the other counts for a mismash that + # doesn't have a straight-forward interpretation in most counting + # contexts. Instead, we implement straight-addition. Both the inputs + # and outputs are allowed to contain zero and negative counts. + + if not args: + raise TypeError("descriptor 'update' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + iterable = args[0] if args else None + if iterable is not None: + if isinstance(iterable, Mapping): + if self: + self_get = self.get + for elem, count in iterable.items(): + self[elem] = count + self_get(elem, 0) + else: + super(Counter, self).update(iterable) # fast path when counter is empty + else: + _count_elements(self, iterable) + if kwds: + self.update(kwds) + + def subtract(*args, **kwds): + '''Like dict.update() but subtracts counts instead of replacing them. + Counts can be reduced below zero. Both the inputs and outputs are + allowed to contain zero and negative counts. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.subtract('witch') # subtract elements from another iterable + >>> c.subtract(Counter('watch')) # subtract elements from another counter + >>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch + 0 + >>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch + -1 + + ''' + if not args: + raise TypeError("descriptor 'subtract' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + iterable = args[0] if args else None + if iterable is not None: + self_get = self.get + if isinstance(iterable, Mapping): + for elem, count in iterable.items(): + self[elem] = self_get(elem, 0) - count + else: + for elem in iterable: + self[elem] = self_get(elem, 0) - 1 + if kwds: + self.subtract(kwds) + + def copy(self): + 'Return a shallow copy.' + return self.__class__(self) + + def __reduce__(self): + return self.__class__, (dict(self),) + + def __delitem__(self, elem): + 'Like dict.__delitem__() but does not raise KeyError for missing values.' + if elem in self: + super().__delitem__(elem) + + def __repr__(self): + if not self: + return '%s()' % self.__class__.__name__ + try: + items = ', '.join(map('%r: %r'.__mod__, self.most_common())) + return '%s({%s})' % (self.__class__.__name__, items) + except TypeError: + # handle case where values are not orderable + return '{0}({1!r})'.format(self.__class__.__name__, dict(self)) + + # Multiset-style mathematical operations discussed in: + # Knuth TAOCP Volume II section 4.6.3 exercise 19 + # and at http://en.wikipedia.org/wiki/Multiset + # + # Outputs guaranteed to only include positive counts. + # + # To strip negative and zero counts, add-in an empty counter: + # c += Counter() + + def __add__(self, other): + '''Add counts from two counters. + + >>> Counter('abbb') + Counter('bcc') + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count + other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __sub__(self, other): + ''' Subtract count, but keep only results with positive counts. + + >>> Counter('abbbc') - Counter('bccd') + Counter({'b': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count - other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count < 0: + result[elem] = 0 - count + return result + + def __or__(self, other): + '''Union is the maximum of value in either of the input counters. + + >>> Counter('abbb') | Counter('bcc') + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = other_count if count < other_count else count + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __and__(self, other): + ''' Intersection is the minimum of corresponding counts. + + >>> Counter('abbb') & Counter('bcc') + Counter({'b': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = count if count < other_count else other_count + if newcount > 0: + result[elem] = newcount + return result + + def __pos__(self): + 'Adds an empty counter, effectively stripping negative and zero counts' + result = Counter() + for elem, count in self.items(): + if count > 0: + result[elem] = count + return result + + def __neg__(self): + '''Subtracts from an empty counter. Strips positive and zero counts, + and flips the sign on negative counts. + + ''' + result = Counter() + for elem, count in self.items(): + if count < 0: + result[elem] = 0 - count + return result + + def _keep_positive(self): + '''Internal method to strip elements with a negative or zero count''' + nonpositive = [elem for elem, count in self.items() if not count > 0] + for elem in nonpositive: + del self[elem] + return self + + def __iadd__(self, other): + '''Inplace add from another counter, keeping only positive counts. + + >>> c = Counter('abbb') + >>> c += Counter('bcc') + >>> c + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + for elem, count in other.items(): + self[elem] += count + return self._keep_positive() + + def __isub__(self, other): + '''Inplace subtract counter, but keep only results with positive counts. + + >>> c = Counter('abbbc') + >>> c -= Counter('bccd') + >>> c + Counter({'b': 2, 'a': 1}) + + ''' + for elem, count in other.items(): + self[elem] -= count + return self._keep_positive() + + def __ior__(self, other): + '''Inplace union is the maximum of value from either counter. + + >>> c = Counter('abbb') + >>> c |= Counter('bcc') + >>> c + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + for elem, other_count in other.items(): + count = self[elem] + if other_count > count: + self[elem] = other_count + return self._keep_positive() + + def __iand__(self, other): + '''Inplace intersection is the minimum of corresponding counts. + + >>> c = Counter('abbb') + >>> c &= Counter('bcc') + >>> c + Counter({'b': 1}) + + ''' + for elem, count in self.items(): + other_count = other[elem] + if other_count < count: + self[elem] = other_count + return self._keep_positive() + + +######################################################################## +### ChainMap (helper for configparser and string.Template) +######################################################################## + +class ChainMap(MutableMapping): + ''' A ChainMap groups multiple dicts (or other mappings) together + to create a single, updateable view. + + The underlying mappings are stored in a list. That list is public and can + accessed or updated using the *maps* attribute. There is no other state. + + Lookups search the underlying mappings successively until a key is found. + In contrast, writes, updates, and deletions only operate on the first + mapping. + + ''' + + def __init__(self, *maps): + '''Initialize a ChainMap by setting *maps* to the given mappings. + If no mappings are provided, a single empty dictionary is used. + + ''' + self.maps = list(maps) or [{}] # always at least one map + + def __missing__(self, key): + raise KeyError(key) + + def __getitem__(self, key): + for mapping in self.maps: + try: + return mapping[key] # can't use 'key in mapping' with defaultdict + except KeyError: + pass + return self.__missing__(key) # support subclasses that define __missing__ + + def get(self, key, default=None): + return self[key] if key in self else default + + def __len__(self): + return len(set().union(*self.maps)) # reuses stored hash values if possible + + def __iter__(self): + return iter(set().union(*self.maps)) + + def __contains__(self, key): + return any(key in m for m in self.maps) + + def __bool__(self): + return any(self.maps) + + @_recursive_repr() + def __repr__(self): + return '{0.__class__.__name__}({1})'.format( + self, ', '.join(map(repr, self.maps))) + + @classmethod + def fromkeys(cls, iterable, *args): + 'Create a ChainMap with a single dict created from the iterable.' + return cls(dict.fromkeys(iterable, *args)) + + def copy(self): + 'New ChainMap or subclass with a new copy of maps[0] and refs to maps[1:]' + return self.__class__(self.maps[0].copy(), *self.maps[1:]) + + __copy__ = copy + + def new_child(self, m=None): # like Django's Context.push() + ''' + New ChainMap with a new map followed by all previous maps. If no + map is provided, an empty dict is used. + ''' + if m is None: + m = {} + return self.__class__(m, *self.maps) + + @property + def parents(self): # like Django's Context.pop() + 'New ChainMap from maps[1:].' + return self.__class__(*self.maps[1:]) + + def __setitem__(self, key, value): + self.maps[0][key] = value + + def __delitem__(self, key): + try: + del self.maps[0][key] + except KeyError: + raise KeyError('Key not found in the first mapping: {!r}'.format(key)) + + def popitem(self): + 'Remove and return an item pair from maps[0]. Raise KeyError is maps[0] is empty.' + try: + return self.maps[0].popitem() + except KeyError: + raise KeyError('No keys found in the first mapping.') + + def pop(self, key, *args): + 'Remove *key* from maps[0] and return its value. Raise KeyError if *key* not in maps[0].' + try: + return self.maps[0].pop(key, *args) + except KeyError: + raise KeyError('Key not found in the first mapping: {!r}'.format(key)) + + def clear(self): + 'Clear maps[0], leaving maps[1:] intact.' + self.maps[0].clear() + + +################################################################################ +### UserDict +################################################################################ + +class UserDict(MutableMapping): + + # Start by filling-out the abstract methods + def __init__(self, dict=None, **kwargs): + self.data = {} + if dict is not None: + self.update(dict) + if len(kwargs): + self.update(kwargs) + def __len__(self): return len(self.data) + def __getitem__(self, key): + if key in self.data: + return self.data[key] + if hasattr(self.__class__, "__missing__"): + return self.__class__.__missing__(self, key) + raise KeyError(key) + def __setitem__(self, key, item): self.data[key] = item + def __delitem__(self, key): del self.data[key] + def __iter__(self): + return iter(self.data) + + # Modify __contains__ to work correctly when __missing__ is present + def __contains__(self, key): + return key in self.data + + # Now, add the methods in dicts but not in MutableMapping + def __repr__(self): return repr(self.data) + def copy(self): + if self.__class__ is UserDict: + return UserDict(self.data.copy()) + import copy + data = self.data + try: + self.data = {} + c = copy.copy(self) + finally: + self.data = data + c.update(self) + return c + @classmethod + def fromkeys(cls, iterable, value=None): + d = cls() + for key in iterable: + d[key] = value + return d + + + +################################################################################ +### UserList +################################################################################ + +class UserList(MutableSequence): + """A more or less complete user-defined wrapper around list objects.""" + def __init__(self, initlist=None): + self.data = [] + if initlist is not None: + # XXX should this accept an arbitrary sequence? + if type(initlist) == type(self.data): + self.data[:] = initlist + elif isinstance(initlist, UserList): + self.data[:] = initlist.data[:] + else: + self.data = list(initlist) + def __repr__(self): return repr(self.data) + def __lt__(self, other): return self.data < self.__cast(other) + def __le__(self, other): return self.data <= self.__cast(other) + def __eq__(self, other): return self.data == self.__cast(other) + def __gt__(self, other): return self.data > self.__cast(other) + def __ge__(self, other): return self.data >= self.__cast(other) + def __cast(self, other): + return other.data if isinstance(other, UserList) else other + def __contains__(self, item): return item in self.data + def __len__(self): return len(self.data) + def __getitem__(self, i): return self.data[i] + def __setitem__(self, i, item): self.data[i] = item + def __delitem__(self, i): del self.data[i] + def __add__(self, other): + if isinstance(other, UserList): + return self.__class__(self.data + other.data) + elif isinstance(other, type(self.data)): + return self.__class__(self.data + other) + return self.__class__(self.data + list(other)) + def __radd__(self, other): + if isinstance(other, UserList): + return self.__class__(other.data + self.data) + elif isinstance(other, type(self.data)): + return self.__class__(other + self.data) + return self.__class__(list(other) + self.data) + def __iadd__(self, other): + if isinstance(other, UserList): + self.data += other.data + elif isinstance(other, type(self.data)): + self.data += other + else: + self.data += list(other) + return self + def __mul__(self, n): + return self.__class__(self.data*n) + __rmul__ = __mul__ + def __imul__(self, n): + self.data *= n + return self + def append(self, item): self.data.append(item) + def insert(self, i, item): self.data.insert(i, item) + def pop(self, i=-1): return self.data.pop(i) + def remove(self, item): self.data.remove(item) + def clear(self): self.data.clear() + def copy(self): return self.__class__(self) + def count(self, item): return self.data.count(item) + def index(self, item, *args): return self.data.index(item, *args) + def reverse(self): self.data.reverse() + def sort(self, *args, **kwds): self.data.sort(*args, **kwds) + def extend(self, other): + if isinstance(other, UserList): + self.data.extend(other.data) + else: + self.data.extend(other) + + + +################################################################################ +### UserString +################################################################################ + +class UserString(Sequence): + def __init__(self, seq): + if isinstance(seq, str): + self.data = seq + elif isinstance(seq, UserString): + self.data = seq.data[:] + else: + self.data = str(seq) + def __str__(self): return str(self.data) + def __repr__(self): return repr(self.data) + def __int__(self): return int(self.data) + def __float__(self): return float(self.data) + def __complex__(self): return complex(self.data) + def __hash__(self): return hash(self.data) + def __getnewargs__(self): + return (self.data[:],) + + def __eq__(self, string): + if isinstance(string, UserString): + return self.data == string.data + return self.data == string + def __lt__(self, string): + if isinstance(string, UserString): + return self.data < string.data + return self.data < string + def __le__(self, string): + if isinstance(string, UserString): + return self.data <= string.data + return self.data <= string + def __gt__(self, string): + if isinstance(string, UserString): + return self.data > string.data + return self.data > string + def __ge__(self, string): + if isinstance(string, UserString): + return self.data >= string.data + return self.data >= string + + def __contains__(self, char): + if isinstance(char, UserString): + char = char.data + return char in self.data + + def __len__(self): return len(self.data) + def __getitem__(self, index): return self.__class__(self.data[index]) + def __add__(self, other): + if isinstance(other, UserString): + return self.__class__(self.data + other.data) + elif isinstance(other, str): + return self.__class__(self.data + other) + return self.__class__(self.data + str(other)) + def __radd__(self, other): + if isinstance(other, str): + return self.__class__(other + self.data) + return self.__class__(str(other) + self.data) + def __mul__(self, n): + return self.__class__(self.data*n) + __rmul__ = __mul__ + def __mod__(self, args): + return self.__class__(self.data % args) + def __rmod__(self, format): + return self.__class__(format % args) + + # the following methods are defined in alphabetical order: + def capitalize(self): return self.__class__(self.data.capitalize()) + def casefold(self): + return self.__class__(self.data.casefold()) + def center(self, width, *args): + return self.__class__(self.data.center(width, *args)) + def count(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.count(sub, start, end) + def encode(self, encoding=None, errors=None): # XXX improve this? + if encoding: + if errors: + return self.__class__(self.data.encode(encoding, errors)) + return self.__class__(self.data.encode(encoding)) + return self.__class__(self.data.encode()) + def endswith(self, suffix, start=0, end=_sys.maxsize): + return self.data.endswith(suffix, start, end) + def expandtabs(self, tabsize=8): + return self.__class__(self.data.expandtabs(tabsize)) + def find(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.find(sub, start, end) + def format(self, *args, **kwds): + return self.data.format(*args, **kwds) + def format_map(self, mapping): + return self.data.format_map(mapping) + def index(self, sub, start=0, end=_sys.maxsize): + return self.data.index(sub, start, end) + def isalpha(self): return self.data.isalpha() + def isalnum(self): return self.data.isalnum() + def isdecimal(self): return self.data.isdecimal() + def isdigit(self): return self.data.isdigit() + def isidentifier(self): return self.data.isidentifier() + def islower(self): return self.data.islower() + def isnumeric(self): return self.data.isnumeric() + def isprintable(self): return self.data.isprintable() + def isspace(self): return self.data.isspace() + def istitle(self): return self.data.istitle() + def isupper(self): return self.data.isupper() + def join(self, seq): return self.data.join(seq) + def ljust(self, width, *args): + return self.__class__(self.data.ljust(width, *args)) + def lower(self): return self.__class__(self.data.lower()) + def lstrip(self, chars=None): return self.__class__(self.data.lstrip(chars)) + maketrans = str.maketrans + def partition(self, sep): + return self.data.partition(sep) + def replace(self, old, new, maxsplit=-1): + if isinstance(old, UserString): + old = old.data + if isinstance(new, UserString): + new = new.data + return self.__class__(self.data.replace(old, new, maxsplit)) + def rfind(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.rfind(sub, start, end) + def rindex(self, sub, start=0, end=_sys.maxsize): + return self.data.rindex(sub, start, end) + def rjust(self, width, *args): + return self.__class__(self.data.rjust(width, *args)) + def rpartition(self, sep): + return self.data.rpartition(sep) + def rstrip(self, chars=None): + return self.__class__(self.data.rstrip(chars)) + def split(self, sep=None, maxsplit=-1): + return self.data.split(sep, maxsplit) + def rsplit(self, sep=None, maxsplit=-1): + return self.data.rsplit(sep, maxsplit) + def splitlines(self, keepends=False): return self.data.splitlines(keepends) + def startswith(self, prefix, start=0, end=_sys.maxsize): + return self.data.startswith(prefix, start, end) + def strip(self, chars=None): return self.__class__(self.data.strip(chars)) + def swapcase(self): return self.__class__(self.data.swapcase()) + def title(self): return self.__class__(self.data.title()) + def translate(self, *args): + return self.__class__(self.data.translate(*args)) + def upper(self): return self.__class__(self.data.upper()) + def zfill(self, width): return self.__class__(self.data.zfill(width)) diff --git a/typing_extensions/test_data/python-3.5.0/collections/__main__.py b/typing_extensions/test_data/python-3.5.0/collections/__main__.py new file mode 100644 index 000000000..763e38e0c --- /dev/null +++ b/typing_extensions/test_data/python-3.5.0/collections/__main__.py @@ -0,0 +1,38 @@ +################################################################################ +### Simple tests +################################################################################ + +# verify that instances can be pickled +from collections import namedtuple +from pickle import loads, dumps +Point = namedtuple('Point', 'x, y', True) +p = Point(x=10, y=20) +assert p == loads(dumps(p)) + +# test and demonstrate ability to override methods +class Point(namedtuple('Point', 'x y')): + __slots__ = () + @property + def hypot(self): + return (self.x ** 2 + self.y ** 2) ** 0.5 + def __str__(self): + return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot) + +for p in Point(3, 4), Point(14, 5/7.): + print (p) + +class Point(namedtuple('Point', 'x y')): + 'Point class with optimized _make() and _replace() without error-checking' + __slots__ = () + _make = classmethod(tuple.__new__) + def _replace(self, _map=map, **kwds): + return self._make(_map(kwds.get, ('x', 'y'), self)) + +print(Point(11, 22)._replace(x=100)) + +Point3D = namedtuple('Point3D', Point._fields + ('z',)) +print(Point3D.__doc__) + +import doctest, collections +TestResults = namedtuple('TestResults', 'failed attempted') +print(TestResults(*doctest.testmod(collections))) diff --git a/typing_extensions/test_data/python-3.5.0/collections/abc.py b/typing_extensions/test_data/python-3.5.0/collections/abc.py new file mode 100644 index 000000000..891600d16 --- /dev/null +++ b/typing_extensions/test_data/python-3.5.0/collections/abc.py @@ -0,0 +1,2 @@ +from _collections_abc import * +from _collections_abc import __all__ diff --git a/typing_extensions/test_data/python-3.5.0/typing.py b/typing_extensions/test_data/python-3.5.0/typing.py new file mode 100644 index 000000000..1a4982ead --- /dev/null +++ b/typing_extensions/test_data/python-3.5.0/typing.py @@ -0,0 +1,1648 @@ +# TODO nits: +# Get rid of asserts that are the caller's fault. +# Docstrings (e.g. ABCs). + +import abc +from abc import abstractmethod, abstractproperty +import collections +import functools +import re as stdlib_re # Avoid confusion with the re we export. +import sys +import types +try: + import collections.abc as collections_abc +except ImportError: + import collections as collections_abc # Fallback for PY3.2. + + +# Please keep __all__ alphabetized within each category. +__all__ = [ + # Super-special typing primitives. + 'Any', + 'Callable', + 'Generic', + 'Optional', + 'TypeVar', + 'Union', + 'Tuple', + + # ABCs (from collections.abc). + 'AbstractSet', # collections.abc.Set. + 'ByteString', + 'Container', + 'Hashable', + 'ItemsView', + 'Iterable', + 'Iterator', + 'KeysView', + 'Mapping', + 'MappingView', + 'MutableMapping', + 'MutableSequence', + 'MutableSet', + 'Sequence', + 'Sized', + 'ValuesView', + + # Structural checks, a.k.a. protocols. + 'Reversible', + 'SupportsAbs', + 'SupportsFloat', + 'SupportsInt', + 'SupportsRound', + + # Concrete collection types. + 'Dict', + 'List', + 'Set', + 'NamedTuple', # Not really a type. + 'Generator', + + # One-off things. + 'AnyStr', + 'cast', + 'get_type_hints', + 'no_type_check', + 'no_type_check_decorator', + 'overload', + + # Submodules. + 'io', + 're', +] + + +def _qualname(x): + if sys.version_info[:2] >= (3, 3): + return x.__qualname__ + else: + # Fall back to just name. + return x.__name__ + + +class TypingMeta(type): + """Metaclass for every type defined below. + + This overrides __new__() to require an extra keyword parameter + '_root', which serves as a guard against naive subclassing of the + typing classes. Any legitimate class defined using a metaclass + derived from TypingMeta (including internal subclasses created by + e.g. Union[X, Y]) must pass _root=True. + + This also defines a dummy constructor (all the work is done in + __new__) and a nicer repr(). + """ + + _is_protocol = False + + def __new__(cls, name, bases, namespace, *, _root=False): + if not _root: + raise TypeError("Cannot subclass %s" % + (', '.join(map(_type_repr, bases)) or '()')) + return super().__new__(cls, name, bases, namespace) + + def __init__(self, *args, **kwds): + pass + + def _eval_type(self, globalns, localns): + """Override this in subclasses to interpret forward references. + + For example, Union['C'] is internally stored as + Union[_ForwardRef('C')], which should evaluate to _Union[C], + where C is an object found in globalns or localns (searching + localns first, of course). + """ + return self + + def _has_type_var(self): + return False + + def __repr__(self): + return '%s.%s' % (self.__module__, _qualname(self)) + + +class Final: + """Mix-in class to prevent instantiation.""" + + __slots__ = () + + def __new__(self, *args, **kwds): + raise TypeError("Cannot instantiate %r" % self.__class__) + + +class _ForwardRef(TypingMeta): + """Wrapper to hold a forward reference.""" + + def __new__(cls, arg): + if not isinstance(arg, str): + raise TypeError('ForwardRef must be a string -- got %r' % (arg,)) + try: + code = compile(arg, '', 'eval') + except SyntaxError: + raise SyntaxError('ForwardRef must be an expression -- got %r' % + (arg,)) + self = super().__new__(cls, arg, (), {}, _root=True) + self.__forward_arg__ = arg + self.__forward_code__ = code + self.__forward_evaluated__ = False + self.__forward_value__ = None + typing_globals = globals() + frame = sys._getframe(1) + while frame is not None and frame.f_globals is typing_globals: + frame = frame.f_back + assert frame is not None + self.__forward_frame__ = frame + return self + + def _eval_type(self, globalns, localns): + if not isinstance(localns, dict): + raise TypeError('ForwardRef localns must be a dict -- got %r' % + (localns,)) + if not isinstance(globalns, dict): + raise TypeError('ForwardRef globalns must be a dict -- got %r' % + (globalns,)) + if not self.__forward_evaluated__: + if globalns is None and localns is None: + globalns = localns = {} + elif globalns is None: + globalns = localns + elif localns is None: + localns = globalns + self.__forward_value__ = _type_check( + eval(self.__forward_code__, globalns, localns), + "Forward references must evaluate to types.") + self.__forward_evaluated__ = True + return self.__forward_value__ + + def __instancecheck__(self, obj): + raise TypeError("Forward references cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if not self.__forward_evaluated__: + globalns = self.__forward_frame__.f_globals + localns = self.__forward_frame__.f_locals + try: + self._eval_type(globalns, localns) + except NameError: + return False # Too early. + return issubclass(cls, self.__forward_value__) + + def __repr__(self): + return '_ForwardRef(%r)' % (self.__forward_arg__,) + + +class _TypeAlias: + """Internal helper class for defining generic variants of concrete types. + + Note that this is not a type; let's call it a pseudo-type. It can + be used in instance and subclass checks, e.g. isinstance(m, Match) + or issubclass(type(m), Match). However, it cannot be itself the + target of an issubclass() call; e.g. issubclass(Match, C) (for + some arbitrary class C) raises TypeError rather than returning + False. + """ + + __slots__ = ('name', 'type_var', 'impl_type', 'type_checker') + + def __new__(cls, *args, **kwds): + """Constructor. + + This only exists to give a better error message in case + someone tries to subclass a type alias (not a good idea). + """ + if (len(args) == 3 and + isinstance(args[0], str) and + isinstance(args[1], tuple)): + # Close enough. + raise TypeError("A type alias cannot be subclassed") + return object.__new__(cls) + + def __init__(self, name, type_var, impl_type, type_checker): + """Initializer. + + Args: + name: The name, e.g. 'Pattern'. + type_var: The type parameter, e.g. AnyStr, or the + specific type, e.g. str. + impl_type: The implementation type. + type_checker: Function that takes an impl_type instance. + and returns a value that should be a type_var instance. + """ + assert isinstance(name, str), repr(name) + assert isinstance(type_var, type), repr(type_var) + assert isinstance(impl_type, type), repr(impl_type) + assert not isinstance(impl_type, TypingMeta), repr(impl_type) + self.name = name + self.type_var = type_var + self.impl_type = impl_type + self.type_checker = type_checker + + def __repr__(self): + return "%s[%s]" % (self.name, _type_repr(self.type_var)) + + def __getitem__(self, parameter): + assert isinstance(parameter, type), repr(parameter) + if not isinstance(self.type_var, TypeVar): + raise TypeError("%s cannot be further parameterized." % self) + if self.type_var.__constraints__: + if not issubclass(parameter, Union[self.type_var.__constraints__]): + raise TypeError("%s is not a valid substitution for %s." % + (parameter, self.type_var)) + return self.__class__(self.name, parameter, + self.impl_type, self.type_checker) + + def __instancecheck__(self, obj): + raise TypeError("Type aliases cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if cls is Any: + return True + if isinstance(cls, _TypeAlias): + # Covariance. For now, we compare by name. + return (cls.name == self.name and + issubclass(cls.type_var, self.type_var)) + else: + # Note that this is too lenient, because the + # implementation type doesn't carry information about + # whether it is about bytes or str (for example). + return issubclass(cls, self.impl_type) + + +def _has_type_var(t): + return t is not None and isinstance(t, TypingMeta) and t._has_type_var() + + +def _eval_type(t, globalns, localns): + if isinstance(t, TypingMeta): + return t._eval_type(globalns, localns) + else: + return t + + +def _type_check(arg, msg): + """Check that the argument is a type, and return it. + + As a special case, accept None and return type(None) instead. + Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable. + + The msg argument is a human-readable error message, e.g. + + "Union[arg, ...]: arg should be a type." + + We append the repr() of the actual value (truncated to 100 chars). + """ + if arg is None: + return type(None) + if isinstance(arg, str): + arg = _ForwardRef(arg) + if not isinstance(arg, (type, _TypeAlias)): + raise TypeError(msg + " Got %.100r." % (arg,)) + return arg + + +def _type_repr(obj): + """Return the repr() of an object, special-casing types. + + If obj is a type, we return a shorter version than the default + type.__repr__, based on the module and qualified name, which is + typically enough to uniquely identify a type. For everything + else, we fall back on repr(obj). + """ + if isinstance(obj, type) and not isinstance(obj, TypingMeta): + if obj.__module__ == 'builtins': + return _qualname(obj) + else: + return '%s.%s' % (obj.__module__, _qualname(obj)) + else: + return repr(obj) + + +class AnyMeta(TypingMeta): + """Metaclass for Any.""" + + def __new__(cls, name, bases, namespace, _root=False): + self = super().__new__(cls, name, bases, namespace, _root=_root) + return self + + def __instancecheck__(self, obj): + raise TypeError("Any cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if not isinstance(cls, type): + return super().__subclasscheck__(cls) # To TypeError. + return True + + +class Any(Final, metaclass=AnyMeta, _root=True): + """Special type indicating an unconstrained type. + + - Any object is an instance of Any. + - Any class is a subclass of Any. + - As a special case, Any and object are subclasses of each other. + """ + + __slots__ = () + + +class TypeVar(TypingMeta, metaclass=TypingMeta, _root=True): + """Type variable. + + Usage:: + + T = TypeVar('T') # Can be anything + A = TypeVar('A', str, bytes) # Must be str or bytes + + Type variables exist primarily for the benefit of static type + checkers. They serve as the parameters for generic types as well + as for generic function definitions. See class Generic for more + information on generic types. Generic functions work as follows: + + def repeat(x: T, n: int) -> Sequence[T]: + '''Return a list containing n references to x.''' + return [x]*n + + def longest(x: A, y: A) -> A: + '''Return the longest of two strings.''' + return x if len(x) >= len(y) else y + + The latter example's signature is essentially the overloading + of (str, str) -> str and (bytes, bytes) -> bytes. Also note + that if the arguments are instances of some subclass of str, + the return type is still plain str. + + At runtime, isinstance(x, T) will raise TypeError. However, + issubclass(C, T) is true for any class C, and issubclass(str, A) + and issubclass(bytes, A) are true, and issubclass(int, A) is + false. + + Type variables may be marked covariant or contravariant by passing + covariant=True or contravariant=True. See PEP 484 for more + details. By default type variables are invariant. + + Type variables can be introspected. e.g.: + + T.__name__ == 'T' + T.__constraints__ == () + T.__covariant__ == False + T.__contravariant__ = False + A.__constraints__ == (str, bytes) + """ + + def __new__(cls, name, *constraints, bound=None, + covariant=False, contravariant=False): + self = super().__new__(cls, name, (Final,), {}, _root=True) + if covariant and contravariant: + raise ValueError("Bivariant type variables are not supported.") + self.__covariant__ = bool(covariant) + self.__contravariant__ = bool(contravariant) + if constraints and bound is not None: + raise TypeError("Constraints cannot be combined with bound=...") + if constraints and len(constraints) == 1: + raise TypeError("A single constraint is not allowed") + msg = "TypeVar(name, constraint, ...): constraints must be types." + self.__constraints__ = tuple(_type_check(t, msg) for t in constraints) + if bound: + self.__bound__ = _type_check(bound, "Bound must be a type.") + else: + self.__bound__ = None + return self + + def _has_type_var(self): + return True + + def __repr__(self): + if self.__covariant__: + prefix = '+' + elif self.__contravariant__: + prefix = '-' + else: + prefix = '~' + return prefix + self.__name__ + + def __instancecheck__(self, instance): + raise TypeError("Type variables cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + # TODO: Make this raise TypeError too? + if cls is self: + return True + if cls is Any: + return True + if self.__bound__ is not None: + return issubclass(cls, self.__bound__) + if self.__constraints__: + return any(issubclass(cls, c) for c in self.__constraints__) + return True + + +# Some unconstrained type variables. These are used by the container types. +T = TypeVar('T') # Any type. +KT = TypeVar('KT') # Key type. +VT = TypeVar('VT') # Value type. +T_co = TypeVar('T_co', covariant=True) # Any type covariant containers. +V_co = TypeVar('V_co', covariant=True) # Any type covariant containers. +VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers. +T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant. + +# A useful type variable with constraints. This represents string types. +# TODO: What about bytearray, memoryview? +AnyStr = TypeVar('AnyStr', bytes, str) + + +class UnionMeta(TypingMeta): + """Metaclass for Union.""" + + def __new__(cls, name, bases, namespace, parameters=None, _root=False): + if parameters is None: + return super().__new__(cls, name, bases, namespace, _root=_root) + if not isinstance(parameters, tuple): + raise TypeError("Expected parameters=") + # Flatten out Union[Union[...], ...] and type-check non-Union args. + params = [] + msg = "Union[arg, ...]: each arg must be a type." + for p in parameters: + if isinstance(p, UnionMeta): + params.extend(p.__union_params__) + else: + params.append(_type_check(p, msg)) + # Weed out strict duplicates, preserving the first of each occurrence. + all_params = set(params) + if len(all_params) < len(params): + new_params = [] + for t in params: + if t in all_params: + new_params.append(t) + all_params.remove(t) + params = new_params + assert not all_params, all_params + # Weed out subclasses. + # E.g. Union[int, Employee, Manager] == Union[int, Employee]. + # If Any or object is present it will be the sole survivor. + # If both Any and object are present, Any wins. + # Never discard type variables, except against Any. + # (In particular, Union[str, AnyStr] != AnyStr.) + all_params = set(params) + for t1 in params: + if t1 is Any: + return Any + if isinstance(t1, TypeVar): + continue + if any(issubclass(t1, t2) + for t2 in all_params - {t1} if not isinstance(t2, TypeVar)): + all_params.remove(t1) + # It's not a union if there's only one type left. + if len(all_params) == 1: + return all_params.pop() + # Create a new class with these params. + self = super().__new__(cls, name, bases, {}, _root=True) + self.__union_params__ = tuple(t for t in params if t in all_params) + self.__union_set_params__ = frozenset(self.__union_params__) + return self + + def _eval_type(self, globalns, localns): + p = tuple(_eval_type(t, globalns, localns) + for t in self.__union_params__) + if p == self.__union_params__: + return self + else: + return self.__class__(self.__name__, self.__bases__, {}, + p, _root=True) + + def _has_type_var(self): + if self.__union_params__: + for t in self.__union_params__: + if _has_type_var(t): + return True + return False + + def __repr__(self): + r = super().__repr__() + if self.__union_params__: + r += '[%s]' % (', '.join(_type_repr(t) + for t in self.__union_params__)) + return r + + def __getitem__(self, parameters): + if self.__union_params__ is not None: + raise TypeError( + "Cannot subscript an existing Union. Use Union[u, t] instead.") + if parameters == (): + raise TypeError("Cannot take a Union of no types.") + if not isinstance(parameters, tuple): + parameters = (parameters,) + return self.__class__(self.__name__, self.__bases__, + dict(self.__dict__), parameters, _root=True) + + def __eq__(self, other): + if not isinstance(other, UnionMeta): + return NotImplemented + return self.__union_set_params__ == other.__union_set_params__ + + def __hash__(self): + return hash(self.__union_set_params__) + + def __instancecheck__(self, obj): + raise TypeError("Unions cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if cls is Any: + return True + if self.__union_params__ is None: + return isinstance(cls, UnionMeta) + elif isinstance(cls, UnionMeta): + if cls.__union_params__ is None: + return False + return all(issubclass(c, self) for c in (cls.__union_params__)) + elif isinstance(cls, TypeVar): + if cls in self.__union_params__: + return True + if cls.__constraints__: + return issubclass(Union[cls.__constraints__], self) + return False + else: + return any(issubclass(cls, t) for t in self.__union_params__) + + +class Union(Final, metaclass=UnionMeta, _root=True): + """Union type; Union[X, Y] means either X or Y. + + To define a union, use e.g. Union[int, str]. Details: + + - The arguments must be types and there must be at least one. + + - None as an argument is a special case and is replaced by + type(None). + + - Unions of unions are flattened, e.g.:: + + Union[Union[int, str], float] == Union[int, str, float] + + - Unions of a single argument vanish, e.g.:: + + Union[int] == int # The constructor actually returns int + + - Redundant arguments are skipped, e.g.:: + + Union[int, str, int] == Union[int, str] + + - When comparing unions, the argument order is ignored, e.g.:: + + Union[int, str] == Union[str, int] + + - When two arguments have a subclass relationship, the least + derived argument is kept, e.g.:: + + class Employee: pass + class Manager(Employee): pass + Union[int, Employee, Manager] == Union[int, Employee] + Union[Manager, int, Employee] == Union[int, Employee] + Union[Employee, Manager] == Employee + + - Corollary: if Any is present it is the sole survivor, e.g.:: + + Union[int, Any] == Any + + - Similar for object:: + + Union[int, object] == object + + - To cut a tie: Union[object, Any] == Union[Any, object] == Any. + + - You cannot subclass or instantiate a union. + + - You cannot write Union[X][Y] (what would it mean?). + + - You can use Optional[X] as a shorthand for Union[X, None]. + """ + + # Unsubscripted Union type has params set to None. + __union_params__ = None + __union_set_params__ = None + + +class OptionalMeta(TypingMeta): + """Metaclass for Optional.""" + + def __new__(cls, name, bases, namespace, _root=False): + return super().__new__(cls, name, bases, namespace, _root=_root) + + def __getitem__(self, arg): + arg = _type_check(arg, "Optional[t] requires a single type.") + return Union[arg, type(None)] + + +class Optional(Final, metaclass=OptionalMeta, _root=True): + """Optional type. + + Optional[X] is equivalent to Union[X, type(None)]. + """ + + __slots__ = () + + +class TupleMeta(TypingMeta): + """Metaclass for Tuple.""" + + def __new__(cls, name, bases, namespace, parameters=None, + use_ellipsis=False, _root=False): + self = super().__new__(cls, name, bases, namespace, _root=_root) + self.__tuple_params__ = parameters + self.__tuple_use_ellipsis__ = use_ellipsis + return self + + def _has_type_var(self): + if self.__tuple_params__: + for t in self.__tuple_params__: + if _has_type_var(t): + return True + return False + + def _eval_type(self, globalns, localns): + tp = self.__tuple_params__ + if tp is None: + return self + p = tuple(_eval_type(t, globalns, localns) for t in tp) + if p == self.__tuple_params__: + return self + else: + return self.__class__(self.__name__, self.__bases__, {}, + p, _root=True) + + def __repr__(self): + r = super().__repr__() + if self.__tuple_params__ is not None: + params = [_type_repr(p) for p in self.__tuple_params__] + if self.__tuple_use_ellipsis__: + params.append('...') + r += '[%s]' % ( + ', '.join(params)) + return r + + def __getitem__(self, parameters): + if self.__tuple_params__ is not None: + raise TypeError("Cannot re-parameterize %r" % (self,)) + if not isinstance(parameters, tuple): + parameters = (parameters,) + if len(parameters) == 2 and parameters[1] == Ellipsis: + parameters = parameters[:1] + use_ellipsis = True + msg = "Tuple[t, ...]: t must be a type." + else: + use_ellipsis = False + msg = "Tuple[t0, t1, ...]: each t must be a type." + parameters = tuple(_type_check(p, msg) for p in parameters) + return self.__class__(self.__name__, self.__bases__, + dict(self.__dict__), parameters, + use_ellipsis=use_ellipsis, _root=True) + + def __eq__(self, other): + if not isinstance(other, TupleMeta): + return NotImplemented + return self.__tuple_params__ == other.__tuple_params__ + + def __hash__(self): + return hash(self.__tuple_params__) + + def __instancecheck__(self, obj): + raise TypeError("Tuples cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if cls is Any: + return True + if not isinstance(cls, type): + return super().__subclasscheck__(cls) # To TypeError. + if issubclass(cls, tuple): + return True # Special case. + if not isinstance(cls, TupleMeta): + return super().__subclasscheck__(cls) # False. + if self.__tuple_params__ is None: + return True + if cls.__tuple_params__ is None: + return False # ??? + if cls.__tuple_use_ellipsis__ != self.__tuple_use_ellipsis__: + return False + # Covariance. + return (len(self.__tuple_params__) == len(cls.__tuple_params__) and + all(issubclass(x, p) + for x, p in zip(cls.__tuple_params__, + self.__tuple_params__))) + + +class Tuple(Final, metaclass=TupleMeta, _root=True): + """Tuple type; Tuple[X, Y] is the cross-product type of X and Y. + + Example: Tuple[T1, T2] is a tuple of two elements corresponding + to type variables T1 and T2. Tuple[int, float, str] is a tuple + of an int, a float and a string. + + To specify a variable-length tuple of homogeneous type, use Sequence[T]. + """ + + __slots__ = () + + +class CallableMeta(TypingMeta): + """Metaclass for Callable.""" + + def __new__(cls, name, bases, namespace, _root=False, + args=None, result=None): + if args is None and result is None: + pass # Must be 'class Callable'. + else: + if args is not Ellipsis: + if not isinstance(args, list): + raise TypeError("Callable[args, result]: " + "args must be a list." + " Got %.100r." % (args,)) + msg = "Callable[[arg, ...], result]: each arg must be a type." + args = tuple(_type_check(arg, msg) for arg in args) + msg = "Callable[args, result]: result must be a type." + result = _type_check(result, msg) + self = super().__new__(cls, name, bases, namespace, _root=_root) + self.__args__ = args + self.__result__ = result + return self + + def _has_type_var(self): + if self.__args__: + for t in self.__args__: + if _has_type_var(t): + return True + return _has_type_var(self.__result__) + + def _eval_type(self, globalns, localns): + if self.__args__ is None and self.__result__ is None: + return self + if self.__args__ is Ellipsis: + args = self.__args__ + else: + args = [_eval_type(t, globalns, localns) for t in self.__args__] + result = _eval_type(self.__result__, globalns, localns) + if args == self.__args__ and result == self.__result__: + return self + else: + return self.__class__(self.__name__, self.__bases__, {}, + args=args, result=result, _root=True) + + def __repr__(self): + r = super().__repr__() + if self.__args__ is not None or self.__result__ is not None: + if self.__args__ is Ellipsis: + args_r = '...' + else: + args_r = '[%s]' % ', '.join(_type_repr(t) + for t in self.__args__) + r += '[%s, %s]' % (args_r, _type_repr(self.__result__)) + return r + + def __getitem__(self, parameters): + if self.__args__ is not None or self.__result__ is not None: + raise TypeError("This Callable type is already parameterized.") + if not isinstance(parameters, tuple) or len(parameters) != 2: + raise TypeError( + "Callable must be used as Callable[[arg, ...], result].") + args, result = parameters + return self.__class__(self.__name__, self.__bases__, + dict(self.__dict__), _root=True, + args=args, result=result) + + def __eq__(self, other): + if not isinstance(other, CallableMeta): + return NotImplemented + return (self.__args__ == other.__args__ and + self.__result__ == other.__result__) + + def __hash__(self): + return hash(self.__args__) ^ hash(self.__result__) + + def __instancecheck__(self, obj): + # For unparametrized Callable we allow this, because + # typing.Callable should be equivalent to + # collections.abc.Callable. + if self.__args__ is None and self.__result__ is None: + return isinstance(obj, collections_abc.Callable) + else: + raise TypeError("Callable[] cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if cls is Any: + return True + if not isinstance(cls, CallableMeta): + return super().__subclasscheck__(cls) + if self.__args__ is None and self.__result__ is None: + return True + # We're not doing covariance or contravariance -- this is *invariance*. + return self == cls + + +class Callable(Final, metaclass=CallableMeta, _root=True): + """Callable type; Callable[[int], str] is a function of (int) -> str. + + The subscription syntax must always be used with exactly two + values: the argument list and the return type. The argument list + must be a list of types; the return type must be a single type. + + There is no syntax to indicate optional or keyword arguments, + such function types are rarely used as callback types. + """ + + __slots__ = () + + +def _gorg(a): + """Return the farthest origin of a generic class.""" + assert isinstance(a, GenericMeta) + while a.__origin__ is not None: + a = a.__origin__ + return a + + +def _geqv(a, b): + """Return whether two generic classes are equivalent. + + The intention is to consider generic class X and any of its + parameterized forms (X[T], X[int], etc.) as equivalent. + + However, X is not equivalent to a subclass of X. + + The relation is reflexive, symmetric and transitive. + """ + assert isinstance(a, GenericMeta) and isinstance(b, GenericMeta) + # Reduce each to its origin. + return _gorg(a) is _gorg(b) + + +class GenericMeta(TypingMeta, abc.ABCMeta): + """Metaclass for generic types.""" + + # TODO: Constrain more how Generic is used; only a few + # standard patterns should be allowed. + + # TODO: Use a more precise rule than matching __name__ to decide + # whether two classes are the same. Also, save the formal + # parameters. (These things are related! A solution lies in + # using origin.) + + __extra__ = None + + def __new__(cls, name, bases, namespace, + parameters=None, origin=None, extra=None): + if parameters is None: + # Extract parameters from direct base classes. Only + # direct bases are considered and only those that are + # themselves generic, and parameterized with type + # variables. Don't use bases like Any, Union, Tuple, + # Callable or type variables. + params = None + for base in bases: + if isinstance(base, TypingMeta): + if not isinstance(base, GenericMeta): + raise TypeError( + "You cannot inherit from magic class %s" % + repr(base)) + if base.__parameters__ is None: + continue # The base is unparameterized. + for bp in base.__parameters__: + if _has_type_var(bp) and not isinstance(bp, TypeVar): + raise TypeError( + "Cannot inherit from a generic class " + "parameterized with " + "non-type-variable %s" % bp) + if params is None: + params = [] + if bp not in params: + params.append(bp) + if params is not None: + parameters = tuple(params) + self = super().__new__(cls, name, bases, namespace, _root=True) + self.__parameters__ = parameters + if extra is not None: + self.__extra__ = extra + # Else __extra__ is inherited, eventually from the + # (meta-)class default above. + self.__origin__ = origin + return self + + def _has_type_var(self): + if self.__parameters__: + for t in self.__parameters__: + if _has_type_var(t): + return True + return False + + def __repr__(self): + r = super().__repr__() + if self.__parameters__ is not None: + r += '[%s]' % ( + ', '.join(_type_repr(p) for p in self.__parameters__)) + return r + + def __eq__(self, other): + if not isinstance(other, GenericMeta): + return NotImplemented + return (_geqv(self, other) and + self.__parameters__ == other.__parameters__) + + def __hash__(self): + return hash((self.__name__, self.__parameters__)) + + def __getitem__(self, params): + if not isinstance(params, tuple): + params = (params,) + if not params: + raise TypeError("Cannot have empty parameter list") + msg = "Parameters to generic types must be types." + params = tuple(_type_check(p, msg) for p in params) + if self.__parameters__ is None: + for p in params: + if not isinstance(p, TypeVar): + raise TypeError("Initial parameters must be " + "type variables; got %s" % p) + if len(set(params)) != len(params): + raise TypeError( + "All type variables in Generic[...] must be distinct.") + else: + if len(params) != len(self.__parameters__): + raise TypeError("Cannot change parameter count from %d to %d" % + (len(self.__parameters__), len(params))) + for new, old in zip(params, self.__parameters__): + if isinstance(old, TypeVar): + if not old.__constraints__: + # Substituting for an unconstrained TypeVar is OK. + continue + if issubclass(new, Union[old.__constraints__]): + # Specializing a constrained type variable is OK. + continue + if not issubclass(new, old): + raise TypeError( + "Cannot substitute %s for %s in %s" % + (_type_repr(new), _type_repr(old), self)) + + return self.__class__(self.__name__, self.__bases__, + dict(self.__dict__), + parameters=params, + origin=self, + extra=self.__extra__) + + def __instancecheck__(self, instance): + # Since we extend ABC.__subclasscheck__ and + # ABC.__instancecheck__ inlines the cache checking done by the + # latter, we must extend __instancecheck__ too. For simplicity + # we just skip the cache check -- instance checks for generic + # classes are supposed to be rare anyways. + return self.__subclasscheck__(instance.__class__) + + def __subclasscheck__(self, cls): + if cls is Any: + return True + if isinstance(cls, GenericMeta): + # For a class C(Generic[T]) where T is co-variant, + # C[X] is a subclass of C[Y] iff X is a subclass of Y. + origin = self.__origin__ + if origin is not None and origin is cls.__origin__: + assert len(self.__parameters__) == len(origin.__parameters__) + assert len(cls.__parameters__) == len(origin.__parameters__) + for p_self, p_cls, p_origin in zip(self.__parameters__, + cls.__parameters__, + origin.__parameters__): + if isinstance(p_origin, TypeVar): + if p_origin.__covariant__: + # Covariant -- p_cls must be a subclass of p_self. + if not issubclass(p_cls, p_self): + break + elif p_origin.__contravariant__: + # Contravariant. I think it's the opposite. :-) + if not issubclass(p_self, p_cls): + break + else: + # Invariant -- p_cls and p_self must equal. + if p_self != p_cls: + break + else: + # If the origin's parameter is not a typevar, + # insist on invariance. + if p_self != p_cls: + break + else: + return True + # If we break out of the loop, the superclass gets a chance. + if super().__subclasscheck__(cls): + return True + if self.__extra__ is None or isinstance(cls, GenericMeta): + return False + return issubclass(cls, self.__extra__) + + +class Generic(metaclass=GenericMeta): + """Abstract base class for generic types. + + A generic type is typically declared by inheriting from an + instantiation of this class with one or more type variables. + For example, a generic mapping type might be defined as:: + + class Mapping(Generic[KT, VT]): + def __getitem__(self, key: KT) -> VT: + ... + # Etc. + + This class can then be used as follows:: + + def lookup_name(mapping: Mapping, key: KT, default: VT) -> VT: + try: + return mapping[key] + except KeyError: + return default + + For clarity the type variables may be redefined, e.g.:: + + X = TypeVar('X') + Y = TypeVar('Y') + def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y: + # Same body as above. + """ + + __slots__ = () + + def __new__(cls, *args, **kwds): + next_in_mro = object + # Look for the last occurrence of Generic or Generic[...]. + for i, c in enumerate(cls.__mro__[:-1]): + if isinstance(c, GenericMeta) and _gorg(c) is Generic: + next_in_mro = cls.__mro__[i+1] + return next_in_mro.__new__(_gorg(cls)) + + +def cast(typ, val): + """Cast a value to a type. + + This returns the value unchanged. To the type checker this + signals that the return value has the designated type, but at + runtime we intentionally don't check anything (we want this + to be as fast as possible). + """ + return val + + +def _get_defaults(func): + """Internal helper to extract the default arguments, by name.""" + code = func.__code__ + pos_count = code.co_argcount + kw_count = code.co_kwonlyargcount + arg_names = code.co_varnames + kwarg_names = arg_names[pos_count:pos_count + kw_count] + arg_names = arg_names[:pos_count] + defaults = func.__defaults__ or () + kwdefaults = func.__kwdefaults__ + res = dict(kwdefaults) if kwdefaults else {} + pos_offset = pos_count - len(defaults) + for name, value in zip(arg_names[pos_offset:], defaults): + assert name not in res + res[name] = value + return res + + +def get_type_hints(obj, globalns=None, localns=None): + """Return type hints for a function or method object. + + This is often the same as obj.__annotations__, but it handles + forward references encoded as string literals, and if necessary + adds Optional[t] if a default value equal to None is set. + + BEWARE -- the behavior of globalns and localns is counterintuitive + (unless you are familiar with how eval() and exec() work). The + search order is locals first, then globals. + + - If no dict arguments are passed, an attempt is made to use the + globals from obj, and these are also used as the locals. If the + object does not appear to have globals, an exception is raised. + + - If one dict argument is passed, it is used for both globals and + locals. + + - If two dict arguments are passed, they specify globals and + locals, respectively. + """ + if getattr(obj, '__no_type_check__', None): + return {} + if globalns is None: + globalns = getattr(obj, '__globals__', {}) + if localns is None: + localns = globalns + elif localns is None: + localns = globalns + defaults = _get_defaults(obj) + hints = dict(obj.__annotations__) + for name, value in hints.items(): + if isinstance(value, str): + value = _ForwardRef(value) + value = _eval_type(value, globalns, localns) + if name in defaults and defaults[name] is None: + value = Optional[value] + hints[name] = value + return hints + + +# TODO: Also support this as a class decorator. +def no_type_check(arg): + """Decorator to indicate that annotations are not type hints. + + The argument must be a class or function; if it is a class, it + applies recursively to all methods defined in that class (but not + to methods defined in its superclasses or subclasses). + + This mutates the function(s) in place. + """ + if isinstance(arg, type): + for obj in arg.__dict__.values(): + if isinstance(obj, types.FunctionType): + obj.__no_type_check__ = True + else: + arg.__no_type_check__ = True + return arg + + +def no_type_check_decorator(decorator): + """Decorator to give another decorator the @no_type_check effect. + + This wraps the decorator with something that wraps the decorated + function in @no_type_check. + """ + + @functools.wraps(decorator) + def wrapped_decorator(*args, **kwds): + func = decorator(*args, **kwds) + func = no_type_check(func) + return func + + return wrapped_decorator + + +def overload(func): + raise RuntimeError("Overloading is only supported in library stubs") + + +class _ProtocolMeta(GenericMeta): + """Internal metaclass for _Protocol. + + This exists so _Protocol classes can be generic without deriving + from Generic. + """ + + def __instancecheck__(self, obj): + raise TypeError("Protocols cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if not self._is_protocol: + # No structural checks since this isn't a protocol. + return NotImplemented + + if self is _Protocol: + # Every class is a subclass of the empty protocol. + return True + + # Find all attributes defined in the protocol. + attrs = self._get_protocol_attrs() + + for attr in attrs: + if not any(attr in d.__dict__ for d in cls.__mro__): + return False + return True + + def _get_protocol_attrs(self): + # Get all Protocol base classes. + protocol_bases = [] + for c in self.__mro__: + if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol': + protocol_bases.append(c) + + # Get attributes included in protocol. + attrs = set() + for base in protocol_bases: + for attr in base.__dict__.keys(): + # Include attributes not defined in any non-protocol bases. + for c in self.__mro__: + if (c is not base and attr in c.__dict__ and + not getattr(c, '_is_protocol', False)): + break + else: + if (not attr.startswith('_abc_') and + attr != '__abstractmethods__' and + attr != '_is_protocol' and + attr != '__dict__' and + attr != '__slots__' and + attr != '_get_protocol_attrs' and + attr != '__parameters__' and + attr != '__origin__' and + attr != '__module__'): + attrs.add(attr) + + return attrs + + +class _Protocol(metaclass=_ProtocolMeta): + """Internal base class for protocol classes. + + This implements a simple-minded structural isinstance check + (similar but more general than the one-offs in collections.abc + such as Hashable). + """ + + __slots__ = () + + _is_protocol = True + + +# Various ABCs mimicking those in collections.abc. +# A few are simply re-exported for completeness. + +Hashable = collections_abc.Hashable # Not generic. + + +class Iterable(Generic[T_co], extra=collections_abc.Iterable): + __slots__ = () + + +class Iterator(Iterable[T_co], extra=collections_abc.Iterator): + __slots__ = () + + +class SupportsInt(_Protocol): + __slots__ = () + + @abstractmethod + def __int__(self) -> int: + pass + + +class SupportsFloat(_Protocol): + __slots__ = () + + @abstractmethod + def __float__(self) -> float: + pass + + +class SupportsComplex(_Protocol): + __slots__ = () + + @abstractmethod + def __complex__(self) -> complex: + pass + + +class SupportsBytes(_Protocol): + __slots__ = () + + @abstractmethod + def __bytes__(self) -> bytes: + pass + + +class SupportsAbs(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __abs__(self) -> T_co: + pass + + +class SupportsRound(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __round__(self, ndigits: int = 0) -> T_co: + pass + + +class Reversible(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __reversed__(self) -> 'Iterator[T_co]': + pass + + +Sized = collections_abc.Sized # Not generic. + + +class Container(Generic[T_co], extra=collections_abc.Container): + __slots__ = () + + +# Callable was defined earlier. + + +class AbstractSet(Sized, Iterable[T_co], Container[T_co], + extra=collections_abc.Set): + pass + + +class MutableSet(AbstractSet[T], extra=collections_abc.MutableSet): + pass + + +# NOTE: Only the value type is covariant. +class Mapping(Sized, Iterable[KT], Container[KT], Generic[VT_co], + extra=collections_abc.Mapping): + pass + + +class MutableMapping(Mapping[KT, VT], extra=collections_abc.MutableMapping): + pass + + +class Sequence(Sized, Iterable[T_co], Container[T_co], + extra=collections_abc.Sequence): + pass + + +class MutableSequence(Sequence[T], extra=collections_abc.MutableSequence): + pass + + +class ByteString(Sequence[int], extra=collections_abc.ByteString): + pass + + +ByteString.register(type(memoryview(b''))) + + +class List(list, MutableSequence[T]): + + def __new__(cls, *args, **kwds): + if _geqv(cls, List): + raise TypeError("Type List cannot be instantiated; " + "use list() instead") + return list.__new__(cls, *args, **kwds) + + +class Set(set, MutableSet[T]): + + def __new__(cls, *args, **kwds): + if _geqv(cls, Set): + raise TypeError("Type Set cannot be instantiated; " + "use set() instead") + return set.__new__(cls, *args, **kwds) + + +class _FrozenSetMeta(GenericMeta): + """This metaclass ensures set is not a subclass of FrozenSet. + + Without this metaclass, set would be considered a subclass of + FrozenSet, because FrozenSet.__extra__ is collections.abc.Set, and + set is a subclass of that. + """ + + def __subclasscheck__(self, cls): + if issubclass(cls, Set): + return False + return super().__subclasscheck__(cls) + + +class FrozenSet(frozenset, AbstractSet[T_co], metaclass=_FrozenSetMeta): + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, FrozenSet): + raise TypeError("Type FrozenSet cannot be instantiated; " + "use frozenset() instead") + return frozenset.__new__(cls, *args, **kwds) + + +class MappingView(Sized, Iterable[T_co], extra=collections_abc.MappingView): + pass + + +class KeysView(MappingView[KT], AbstractSet[KT], + extra=collections_abc.KeysView): + pass + + +# TODO: Enable Set[Tuple[KT, VT_co]] instead of Generic[KT, VT_co]. +class ItemsView(MappingView, Generic[KT, VT_co], + extra=collections_abc.ItemsView): + pass + + +class ValuesView(MappingView[VT_co], extra=collections_abc.ValuesView): + pass + + +class Dict(dict, MutableMapping[KT, VT]): + + def __new__(cls, *args, **kwds): + if _geqv(cls, Dict): + raise TypeError("Type Dict cannot be instantiated; " + "use dict() instead") + return dict.__new__(cls, *args, **kwds) + + +# Determine what base class to use for Generator. +if hasattr(collections_abc, 'Generator'): + # Sufficiently recent versions of 3.5 have a Generator ABC. + _G_base = collections_abc.Generator +else: + # Fall back on the exact type. + _G_base = types.GeneratorType + + +class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co], + extra=_G_base): + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Generator): + raise TypeError("Type Generator cannot be instantiated; " + "create a subclass instead") + return super().__new__(cls, *args, **kwds) + + +def NamedTuple(typename, fields): + """Typed version of namedtuple. + + Usage:: + + Employee = typing.NamedTuple('Employee', [('name', str), 'id', int)]) + + This is equivalent to:: + + Employee = collections.namedtuple('Employee', ['name', 'id']) + + The resulting class has one extra attribute: _field_types, + giving a dict mapping field names to types. (The field names + are in the _fields attribute, which is part of the namedtuple + API.) + """ + fields = [(n, t) for n, t in fields] + cls = collections.namedtuple(typename, [n for n, t in fields]) + cls._field_types = dict(fields) + return cls + + +class IO(Generic[AnyStr]): + """Generic base class for TextIO and BinaryIO. + + This is an abstract, generic version of the return of open(). + + NOTE: This does not distinguish between the different possible + classes (text vs. binary, read vs. write vs. read/write, + append-only, unbuffered). The TextIO and BinaryIO subclasses + below capture the distinctions between text vs. binary, which is + pervasive in the interface; however we currently do not offer a + way to track the other distinctions in the type system. + """ + + __slots__ = () + + @abstractproperty + def mode(self) -> str: + pass + + @abstractproperty + def name(self) -> str: + pass + + @abstractmethod + def close(self) -> None: + pass + + @abstractmethod + def closed(self) -> bool: + pass + + @abstractmethod + def fileno(self) -> int: + pass + + @abstractmethod + def flush(self) -> None: + pass + + @abstractmethod + def isatty(self) -> bool: + pass + + @abstractmethod + def read(self, n: int = -1) -> AnyStr: + pass + + @abstractmethod + def readable(self) -> bool: + pass + + @abstractmethod + def readline(self, limit: int = -1) -> AnyStr: + pass + + @abstractmethod + def readlines(self, hint: int = -1) -> List[AnyStr]: + pass + + @abstractmethod + def seek(self, offset: int, whence: int = 0) -> int: + pass + + @abstractmethod + def seekable(self) -> bool: + pass + + @abstractmethod + def tell(self) -> int: + pass + + @abstractmethod + def truncate(self, size: int = None) -> int: + pass + + @abstractmethod + def writable(self) -> bool: + pass + + @abstractmethod + def write(self, s: AnyStr) -> int: + pass + + @abstractmethod + def writelines(self, lines: List[AnyStr]) -> None: + pass + + @abstractmethod + def __enter__(self) -> 'IO[AnyStr]': + pass + + @abstractmethod + def __exit__(self, type, value, traceback) -> None: + pass + + +class BinaryIO(IO[bytes]): + """Typed version of the return of open() in binary mode.""" + + __slots__ = () + + @abstractmethod + def write(self, s: Union[bytes, bytearray]) -> int: + pass + + @abstractmethod + def __enter__(self) -> 'BinaryIO': + pass + + +class TextIO(IO[str]): + """Typed version of the return of open() in text mode.""" + + __slots__ = () + + @abstractproperty + def buffer(self) -> BinaryIO: + pass + + @abstractproperty + def encoding(self) -> str: + pass + + @abstractproperty + def errors(self) -> str: + pass + + @abstractproperty + def line_buffering(self) -> bool: + pass + + @abstractproperty + def newlines(self) -> Any: + pass + + @abstractmethod + def __enter__(self) -> 'TextIO': + pass + + +class io: + """Wrapper namespace for IO generic classes.""" + + __all__ = ['IO', 'TextIO', 'BinaryIO'] + IO = IO + TextIO = TextIO + BinaryIO = BinaryIO + +io.__name__ = __name__ + '.io' +sys.modules[io.__name__] = io + + +Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')), + lambda p: p.pattern) +Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')), + lambda m: m.re.pattern) + + +class re: + """Wrapper namespace for re type aliases.""" + + __all__ = ['Pattern', 'Match'] + Pattern = Pattern + Match = Match + +re.__name__ = __name__ + '.re' +sys.modules[re.__name__] = re diff --git a/typing_extensions/test_data/python-3.5.1/_collections_abc.py b/typing_extensions/test_data/python-3.5.1/_collections_abc.py new file mode 100644 index 000000000..f89bb6f04 --- /dev/null +++ b/typing_extensions/test_data/python-3.5.1/_collections_abc.py @@ -0,0 +1,939 @@ +# Copyright 2007 Google, Inc. All Rights Reserved. +# Licensed to PSF under a Contributor Agreement. + +"""Abstract Base Classes (ABCs) for collections, according to PEP 3119. + +Unit tests are in test_collections. +""" + +from abc import ABCMeta, abstractmethod +import sys + +__all__ = ["Awaitable", "Coroutine", "AsyncIterable", "AsyncIterator", + "Hashable", "Iterable", "Iterator", "Generator", + "Sized", "Container", "Callable", + "Set", "MutableSet", + "Mapping", "MutableMapping", + "MappingView", "KeysView", "ItemsView", "ValuesView", + "Sequence", "MutableSequence", + "ByteString", + ] + +# This module has been renamed from collections.abc to _collections_abc to +# speed up interpreter startup. Some of the types such as MutableMapping are +# required early but collections module imports a lot of other modules. +# See issue #19218 +__name__ = "collections.abc" + +# Private list of types that we want to register with the various ABCs +# so that they will pass tests like: +# it = iter(somebytearray) +# assert isinstance(it, Iterable) +# Note: in other implementations, these types many not be distinct +# and they make have their own implementation specific types that +# are not included on this list. +bytes_iterator = type(iter(b'')) +bytearray_iterator = type(iter(bytearray())) +#callable_iterator = ??? +dict_keyiterator = type(iter({}.keys())) +dict_valueiterator = type(iter({}.values())) +dict_itemiterator = type(iter({}.items())) +list_iterator = type(iter([])) +list_reverseiterator = type(iter(reversed([]))) +range_iterator = type(iter(range(0))) +set_iterator = type(iter(set())) +str_iterator = type(iter("")) +tuple_iterator = type(iter(())) +zip_iterator = type(iter(zip())) +## views ## +dict_keys = type({}.keys()) +dict_values = type({}.values()) +dict_items = type({}.items()) +## misc ## +mappingproxy = type(type.__dict__) +generator = type((lambda: (yield))()) +## coroutine ## +async def _coro(): pass +_coro = _coro() +coroutine = type(_coro) +_coro.close() # Prevent ResourceWarning +del _coro + + +### ONE-TRICK PONIES ### + +class Hashable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __hash__(self): + return 0 + + @classmethod + def __subclasshook__(cls, C): + if cls is Hashable: + for B in C.__mro__: + if "__hash__" in B.__dict__: + if B.__dict__["__hash__"]: + return True + break + return NotImplemented + + +class Awaitable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __await__(self): + yield + + @classmethod + def __subclasshook__(cls, C): + if cls is Awaitable: + for B in C.__mro__: + if "__await__" in B.__dict__: + if B.__dict__["__await__"]: + return True + break + return NotImplemented + + +class Coroutine(Awaitable): + + __slots__ = () + + @abstractmethod + def send(self, value): + """Send a value into the coroutine. + Return next yielded value or raise StopIteration. + """ + raise StopIteration + + @abstractmethod + def throw(self, typ, val=None, tb=None): + """Raise an exception in the coroutine. + Return next yielded value or raise StopIteration. + """ + if val is None: + if tb is None: + raise typ + val = typ() + if tb is not None: + val = val.with_traceback(tb) + raise val + + def close(self): + """Raise GeneratorExit inside coroutine. + """ + try: + self.throw(GeneratorExit) + except (GeneratorExit, StopIteration): + pass + else: + raise RuntimeError("coroutine ignored GeneratorExit") + + @classmethod + def __subclasshook__(cls, C): + if cls is Coroutine: + mro = C.__mro__ + for method in ('__await__', 'send', 'throw', 'close'): + for base in mro: + if method in base.__dict__: + break + else: + return NotImplemented + return True + return NotImplemented + + +Coroutine.register(coroutine) + + +class AsyncIterable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + async def __aiter__(self): + return AsyncIterator() + + @classmethod + def __subclasshook__(cls, C): + if cls is AsyncIterable: + if any("__aiter__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class AsyncIterator(AsyncIterable): + + __slots__ = () + + @abstractmethod + async def __anext__(self): + """Return the next item or raise StopAsyncIteration when exhausted.""" + raise StopAsyncIteration + + async def __aiter__(self): + return self + + @classmethod + def __subclasshook__(cls, C): + if cls is AsyncIterator: + if (any("__anext__" in B.__dict__ for B in C.__mro__) and + any("__aiter__" in B.__dict__ for B in C.__mro__)): + return True + return NotImplemented + + +class Iterable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __iter__(self): + while False: + yield None + + @classmethod + def __subclasshook__(cls, C): + if cls is Iterable: + if any("__iter__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class Iterator(Iterable): + + __slots__ = () + + @abstractmethod + def __next__(self): + 'Return the next item from the iterator. When exhausted, raise StopIteration' + raise StopIteration + + def __iter__(self): + return self + + @classmethod + def __subclasshook__(cls, C): + if cls is Iterator: + if (any("__next__" in B.__dict__ for B in C.__mro__) and + any("__iter__" in B.__dict__ for B in C.__mro__)): + return True + return NotImplemented + +Iterator.register(bytes_iterator) +Iterator.register(bytearray_iterator) +#Iterator.register(callable_iterator) +Iterator.register(dict_keyiterator) +Iterator.register(dict_valueiterator) +Iterator.register(dict_itemiterator) +Iterator.register(list_iterator) +Iterator.register(list_reverseiterator) +Iterator.register(range_iterator) +Iterator.register(set_iterator) +Iterator.register(str_iterator) +Iterator.register(tuple_iterator) +Iterator.register(zip_iterator) + + +class Generator(Iterator): + + __slots__ = () + + def __next__(self): + """Return the next item from the generator. + When exhausted, raise StopIteration. + """ + return self.send(None) + + @abstractmethod + def send(self, value): + """Send a value into the generator. + Return next yielded value or raise StopIteration. + """ + raise StopIteration + + @abstractmethod + def throw(self, typ, val=None, tb=None): + """Raise an exception in the generator. + Return next yielded value or raise StopIteration. + """ + if val is None: + if tb is None: + raise typ + val = typ() + if tb is not None: + val = val.with_traceback(tb) + raise val + + def close(self): + """Raise GeneratorExit inside generator. + """ + try: + self.throw(GeneratorExit) + except (GeneratorExit, StopIteration): + pass + else: + raise RuntimeError("generator ignored GeneratorExit") + + @classmethod + def __subclasshook__(cls, C): + if cls is Generator: + mro = C.__mro__ + for method in ('__iter__', '__next__', 'send', 'throw', 'close'): + for base in mro: + if method in base.__dict__: + break + else: + return NotImplemented + return True + return NotImplemented + + +Generator.register(generator) + + +class Sized(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __len__(self): + return 0 + + @classmethod + def __subclasshook__(cls, C): + if cls is Sized: + if any("__len__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class Container(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __contains__(self, x): + return False + + @classmethod + def __subclasshook__(cls, C): + if cls is Container: + if any("__contains__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class Callable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __call__(self, *args, **kwds): + return False + + @classmethod + def __subclasshook__(cls, C): + if cls is Callable: + if any("__call__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +### SETS ### + + +class Set(Sized, Iterable, Container): + + """A set is a finite, iterable container. + + This class provides concrete generic implementations of all + methods except for __contains__, __iter__ and __len__. + + To override the comparisons (presumably for speed, as the + semantics are fixed), redefine __le__ and __ge__, + then the other operations will automatically follow suit. + """ + + __slots__ = () + + def __le__(self, other): + if not isinstance(other, Set): + return NotImplemented + if len(self) > len(other): + return False + for elem in self: + if elem not in other: + return False + return True + + def __lt__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) < len(other) and self.__le__(other) + + def __gt__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) > len(other) and self.__ge__(other) + + def __ge__(self, other): + if not isinstance(other, Set): + return NotImplemented + if len(self) < len(other): + return False + for elem in other: + if elem not in self: + return False + return True + + def __eq__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) == len(other) and self.__le__(other) + + @classmethod + def _from_iterable(cls, it): + '''Construct an instance of the class from any iterable input. + + Must override this method if the class constructor signature + does not accept an iterable for an input. + ''' + return cls(it) + + def __and__(self, other): + if not isinstance(other, Iterable): + return NotImplemented + return self._from_iterable(value for value in other if value in self) + + __rand__ = __and__ + + def isdisjoint(self, other): + 'Return True if two sets have a null intersection.' + for value in other: + if value in self: + return False + return True + + def __or__(self, other): + if not isinstance(other, Iterable): + return NotImplemented + chain = (e for s in (self, other) for e in s) + return self._from_iterable(chain) + + __ror__ = __or__ + + def __sub__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return self._from_iterable(value for value in self + if value not in other) + + def __rsub__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return self._from_iterable(value for value in other + if value not in self) + + def __xor__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return (self - other) | (other - self) + + __rxor__ = __xor__ + + def _hash(self): + """Compute the hash value of a set. + + Note that we don't define __hash__: not all sets are hashable. + But if you define a hashable set type, its __hash__ should + call this function. + + This must be compatible __eq__. + + All sets ought to compare equal if they contain the same + elements, regardless of how they are implemented, and + regardless of the order of the elements; so there's not much + freedom for __eq__ or __hash__. We match the algorithm used + by the built-in frozenset type. + """ + MAX = sys.maxsize + MASK = 2 * MAX + 1 + n = len(self) + h = 1927868237 * (n + 1) + h &= MASK + for x in self: + hx = hash(x) + h ^= (hx ^ (hx << 16) ^ 89869747) * 3644798167 + h &= MASK + h = h * 69069 + 907133923 + h &= MASK + if h > MAX: + h -= MASK + 1 + if h == -1: + h = 590923713 + return h + +Set.register(frozenset) + + +class MutableSet(Set): + """A mutable set is a finite, iterable container. + + This class provides concrete generic implementations of all + methods except for __contains__, __iter__, __len__, + add(), and discard(). + + To override the comparisons (presumably for speed, as the + semantics are fixed), all you have to do is redefine __le__ and + then the other operations will automatically follow suit. + """ + + __slots__ = () + + @abstractmethod + def add(self, value): + """Add an element.""" + raise NotImplementedError + + @abstractmethod + def discard(self, value): + """Remove an element. Do not raise an exception if absent.""" + raise NotImplementedError + + def remove(self, value): + """Remove an element. If not a member, raise a KeyError.""" + if value not in self: + raise KeyError(value) + self.discard(value) + + def pop(self): + """Return the popped value. Raise KeyError if empty.""" + it = iter(self) + try: + value = next(it) + except StopIteration: + raise KeyError + self.discard(value) + return value + + def clear(self): + """This is slow (creates N new iterators!) but effective.""" + try: + while True: + self.pop() + except KeyError: + pass + + def __ior__(self, it): + for value in it: + self.add(value) + return self + + def __iand__(self, it): + for value in (self - it): + self.discard(value) + return self + + def __ixor__(self, it): + if it is self: + self.clear() + else: + if not isinstance(it, Set): + it = self._from_iterable(it) + for value in it: + if value in self: + self.discard(value) + else: + self.add(value) + return self + + def __isub__(self, it): + if it is self: + self.clear() + else: + for value in it: + self.discard(value) + return self + +MutableSet.register(set) + + +### MAPPINGS ### + + +class Mapping(Sized, Iterable, Container): + + __slots__ = () + + """A Mapping is a generic container for associating key/value + pairs. + + This class provides concrete generic implementations of all + methods except for __getitem__, __iter__, and __len__. + + """ + + @abstractmethod + def __getitem__(self, key): + raise KeyError + + def get(self, key, default=None): + 'D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.' + try: + return self[key] + except KeyError: + return default + + def __contains__(self, key): + try: + self[key] + except KeyError: + return False + else: + return True + + def keys(self): + "D.keys() -> a set-like object providing a view on D's keys" + return KeysView(self) + + def items(self): + "D.items() -> a set-like object providing a view on D's items" + return ItemsView(self) + + def values(self): + "D.values() -> an object providing a view on D's values" + return ValuesView(self) + + def __eq__(self, other): + if not isinstance(other, Mapping): + return NotImplemented + return dict(self.items()) == dict(other.items()) + +Mapping.register(mappingproxy) + + +class MappingView(Sized): + + __slots__ = '_mapping', + + def __init__(self, mapping): + self._mapping = mapping + + def __len__(self): + return len(self._mapping) + + def __repr__(self): + return '{0.__class__.__name__}({0._mapping!r})'.format(self) + + +class KeysView(MappingView, Set): + + __slots__ = () + + @classmethod + def _from_iterable(self, it): + return set(it) + + def __contains__(self, key): + return key in self._mapping + + def __iter__(self): + yield from self._mapping + +KeysView.register(dict_keys) + + +class ItemsView(MappingView, Set): + + __slots__ = () + + @classmethod + def _from_iterable(self, it): + return set(it) + + def __contains__(self, item): + key, value = item + try: + v = self._mapping[key] + except KeyError: + return False + else: + return v == value + + def __iter__(self): + for key in self._mapping: + yield (key, self._mapping[key]) + +ItemsView.register(dict_items) + + +class ValuesView(MappingView): + + __slots__ = () + + def __contains__(self, value): + for key in self._mapping: + if value == self._mapping[key]: + return True + return False + + def __iter__(self): + for key in self._mapping: + yield self._mapping[key] + +ValuesView.register(dict_values) + + +class MutableMapping(Mapping): + + __slots__ = () + + """A MutableMapping is a generic container for associating + key/value pairs. + + This class provides concrete generic implementations of all + methods except for __getitem__, __setitem__, __delitem__, + __iter__, and __len__. + + """ + + @abstractmethod + def __setitem__(self, key, value): + raise KeyError + + @abstractmethod + def __delitem__(self, key): + raise KeyError + + __marker = object() + + def pop(self, key, default=__marker): + '''D.pop(k[,d]) -> v, remove specified key and return the corresponding value. + If key is not found, d is returned if given, otherwise KeyError is raised. + ''' + try: + value = self[key] + except KeyError: + if default is self.__marker: + raise + return default + else: + del self[key] + return value + + def popitem(self): + '''D.popitem() -> (k, v), remove and return some (key, value) pair + as a 2-tuple; but raise KeyError if D is empty. + ''' + try: + key = next(iter(self)) + except StopIteration: + raise KeyError + value = self[key] + del self[key] + return key, value + + def clear(self): + 'D.clear() -> None. Remove all items from D.' + try: + while True: + self.popitem() + except KeyError: + pass + + def update(*args, **kwds): + ''' D.update([E, ]**F) -> None. Update D from mapping/iterable E and F. + If E present and has a .keys() method, does: for k in E: D[k] = E[k] + If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v + In either case, this is followed by: for k, v in F.items(): D[k] = v + ''' + if not args: + raise TypeError("descriptor 'update' of 'MutableMapping' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('update expected at most 1 arguments, got %d' % + len(args)) + if args: + other = args[0] + if isinstance(other, Mapping): + for key in other: + self[key] = other[key] + elif hasattr(other, "keys"): + for key in other.keys(): + self[key] = other[key] + else: + for key, value in other: + self[key] = value + for key, value in kwds.items(): + self[key] = value + + def setdefault(self, key, default=None): + 'D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D' + try: + return self[key] + except KeyError: + self[key] = default + return default + +MutableMapping.register(dict) + + +### SEQUENCES ### + + +class Sequence(Sized, Iterable, Container): + + """All the operations on a read-only sequence. + + Concrete subclasses must override __new__ or __init__, + __getitem__, and __len__. + """ + + __slots__ = () + + @abstractmethod + def __getitem__(self, index): + raise IndexError + + def __iter__(self): + i = 0 + try: + while True: + v = self[i] + yield v + i += 1 + except IndexError: + return + + def __contains__(self, value): + for v in self: + if v == value: + return True + return False + + def __reversed__(self): + for i in reversed(range(len(self))): + yield self[i] + + def index(self, value, start=0, stop=None): + '''S.index(value, [start, [stop]]) -> integer -- return first index of value. + Raises ValueError if the value is not present. + ''' + if start is not None and start < 0: + start = max(len(self) + start, 0) + if stop is not None and stop < 0: + stop += len(self) + + i = start + while stop is None or i < stop: + try: + if self[i] == value: + return i + except IndexError: + break + i += 1 + raise ValueError + + def count(self, value): + 'S.count(value) -> integer -- return number of occurrences of value' + return sum(1 for v in self if v == value) + +Sequence.register(tuple) +Sequence.register(str) +Sequence.register(range) +Sequence.register(memoryview) + + +class ByteString(Sequence): + + """This unifies bytes and bytearray. + + XXX Should add all their methods. + """ + + __slots__ = () + +ByteString.register(bytes) +ByteString.register(bytearray) + + +class MutableSequence(Sequence): + + __slots__ = () + + """All the operations on a read-write sequence. + + Concrete subclasses must provide __new__ or __init__, + __getitem__, __setitem__, __delitem__, __len__, and insert(). + + """ + + @abstractmethod + def __setitem__(self, index, value): + raise IndexError + + @abstractmethod + def __delitem__(self, index): + raise IndexError + + @abstractmethod + def insert(self, index, value): + 'S.insert(index, value) -- insert value before index' + raise IndexError + + def append(self, value): + 'S.append(value) -- append value to the end of the sequence' + self.insert(len(self), value) + + def clear(self): + 'S.clear() -> None -- remove all items from S' + try: + while True: + self.pop() + except IndexError: + pass + + def reverse(self): + 'S.reverse() -- reverse *IN PLACE*' + n = len(self) + for i in range(n//2): + self[i], self[n-i-1] = self[n-i-1], self[i] + + def extend(self, values): + 'S.extend(iterable) -- extend sequence by appending elements from the iterable' + for v in values: + self.append(v) + + def pop(self, index=-1): + '''S.pop([index]) -> item -- remove and return item at index (default last). + Raise IndexError if list is empty or index is out of range. + ''' + v = self[index] + del self[index] + return v + + def remove(self, value): + '''S.remove(value) -- remove first occurrence of value. + Raise ValueError if the value is not present. + ''' + del self[self.index(value)] + + def __iadd__(self, values): + self.extend(values) + return self + +MutableSequence.register(list) +MutableSequence.register(bytearray) # Multiply inheriting, see ByteString diff --git a/typing_extensions/test_data/python-3.5.1/abc.py b/typing_extensions/test_data/python-3.5.1/abc.py new file mode 100644 index 000000000..1cbf96a61 --- /dev/null +++ b/typing_extensions/test_data/python-3.5.1/abc.py @@ -0,0 +1,248 @@ +# Copyright 2007 Google, Inc. All Rights Reserved. +# Licensed to PSF under a Contributor Agreement. + +"""Abstract Base Classes (ABCs) according to PEP 3119.""" + +from _weakrefset import WeakSet + + +def abstractmethod(funcobj): + """A decorator indicating abstract methods. + + Requires that the metaclass is ABCMeta or derived from it. A + class that has a metaclass derived from ABCMeta cannot be + instantiated unless all of its abstract methods are overridden. + The abstract methods can be called using any of the normal + 'super' call mechanisms. + + Usage: + + class C(metaclass=ABCMeta): + @abstractmethod + def my_abstract_method(self, ...): + ... + """ + funcobj.__isabstractmethod__ = True + return funcobj + + +class abstractclassmethod(classmethod): + """ + A decorator indicating abstract classmethods. + + Similar to abstractmethod. + + Usage: + + class C(metaclass=ABCMeta): + @abstractclassmethod + def my_abstract_classmethod(cls, ...): + ... + + 'abstractclassmethod' is deprecated. Use 'classmethod' with + 'abstractmethod' instead. + """ + + __isabstractmethod__ = True + + def __init__(self, callable): + callable.__isabstractmethod__ = True + super().__init__(callable) + + +class abstractstaticmethod(staticmethod): + """ + A decorator indicating abstract staticmethods. + + Similar to abstractmethod. + + Usage: + + class C(metaclass=ABCMeta): + @abstractstaticmethod + def my_abstract_staticmethod(...): + ... + + 'abstractstaticmethod' is deprecated. Use 'staticmethod' with + 'abstractmethod' instead. + """ + + __isabstractmethod__ = True + + def __init__(self, callable): + callable.__isabstractmethod__ = True + super().__init__(callable) + + +class abstractproperty(property): + """ + A decorator indicating abstract properties. + + Requires that the metaclass is ABCMeta or derived from it. A + class that has a metaclass derived from ABCMeta cannot be + instantiated unless all of its abstract properties are overridden. + The abstract properties can be called using any of the normal + 'super' call mechanisms. + + Usage: + + class C(metaclass=ABCMeta): + @abstractproperty + def my_abstract_property(self): + ... + + This defines a read-only property; you can also define a read-write + abstract property using the 'long' form of property declaration: + + class C(metaclass=ABCMeta): + def getx(self): ... + def setx(self, value): ... + x = abstractproperty(getx, setx) + + 'abstractproperty' is deprecated. Use 'property' with 'abstractmethod' + instead. + """ + + __isabstractmethod__ = True + + +class ABCMeta(type): + + """Metaclass for defining Abstract Base Classes (ABCs). + + Use this metaclass to create an ABC. An ABC can be subclassed + directly, and then acts as a mix-in class. You can also register + unrelated concrete classes (even built-in classes) and unrelated + ABCs as 'virtual subclasses' -- these and their descendants will + be considered subclasses of the registering ABC by the built-in + issubclass() function, but the registering ABC won't show up in + their MRO (Method Resolution Order) nor will method + implementations defined by the registering ABC be callable (not + even via super()). + + """ + + # A global counter that is incremented each time a class is + # registered as a virtual subclass of anything. It forces the + # negative cache to be cleared before its next use. + # Note: this counter is private. Use `abc.get_cache_token()` for + # external code. + _abc_invalidation_counter = 0 + + def __new__(mcls, name, bases, namespace): + cls = super().__new__(mcls, name, bases, namespace) + # Compute set of abstract method names + abstracts = {name + for name, value in namespace.items() + if getattr(value, "__isabstractmethod__", False)} + for base in bases: + for name in getattr(base, "__abstractmethods__", set()): + value = getattr(cls, name, None) + if getattr(value, "__isabstractmethod__", False): + abstracts.add(name) + cls.__abstractmethods__ = frozenset(abstracts) + # Set up inheritance registry + cls._abc_registry = WeakSet() + cls._abc_cache = WeakSet() + cls._abc_negative_cache = WeakSet() + cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter + return cls + + def register(cls, subclass): + """Register a virtual subclass of an ABC. + + Returns the subclass, to allow usage as a class decorator. + """ + if not isinstance(subclass, type): + raise TypeError("Can only register classes") + if issubclass(subclass, cls): + return subclass # Already a subclass + # Subtle: test for cycles *after* testing for "already a subclass"; + # this means we allow X.register(X) and interpret it as a no-op. + if issubclass(cls, subclass): + # This would create a cycle, which is bad for the algorithm below + raise RuntimeError("Refusing to create an inheritance cycle") + cls._abc_registry.add(subclass) + ABCMeta._abc_invalidation_counter += 1 # Invalidate negative cache + return subclass + + def _dump_registry(cls, file=None): + """Debug helper to print the ABC registry.""" + print("Class: %s.%s" % (cls.__module__, cls.__qualname__), file=file) + print("Inv.counter: %s" % ABCMeta._abc_invalidation_counter, file=file) + for name in sorted(cls.__dict__.keys()): + if name.startswith("_abc_"): + value = getattr(cls, name) + print("%s: %r" % (name, value), file=file) + + def __instancecheck__(cls, instance): + """Override for isinstance(instance, cls).""" + # Inline the cache checking + subclass = instance.__class__ + if subclass in cls._abc_cache: + return True + subtype = type(instance) + if subtype is subclass: + if (cls._abc_negative_cache_version == + ABCMeta._abc_invalidation_counter and + subclass in cls._abc_negative_cache): + return False + # Fall back to the subclass check. + return cls.__subclasscheck__(subclass) + return any(cls.__subclasscheck__(c) for c in {subclass, subtype}) + + def __subclasscheck__(cls, subclass): + """Override for issubclass(subclass, cls).""" + # Check cache + if subclass in cls._abc_cache: + return True + # Check negative cache; may have to invalidate + if cls._abc_negative_cache_version < ABCMeta._abc_invalidation_counter: + # Invalidate the negative cache + cls._abc_negative_cache = WeakSet() + cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter + elif subclass in cls._abc_negative_cache: + return False + # Check the subclass hook + ok = cls.__subclasshook__(subclass) + if ok is not NotImplemented: + assert isinstance(ok, bool) + if ok: + cls._abc_cache.add(subclass) + else: + cls._abc_negative_cache.add(subclass) + return ok + # Check if it's a direct subclass + if cls in getattr(subclass, '__mro__', ()): + cls._abc_cache.add(subclass) + return True + # Check if it's a subclass of a registered class (recursive) + for rcls in cls._abc_registry: + if issubclass(subclass, rcls): + cls._abc_cache.add(subclass) + return True + # Check if it's a subclass of a subclass (recursive) + for scls in cls.__subclasses__(): + if issubclass(subclass, scls): + cls._abc_cache.add(subclass) + return True + # No dice; update negative cache + cls._abc_negative_cache.add(subclass) + return False + + +class ABC(metaclass=ABCMeta): + """Helper class that provides a standard way to create an ABC using + inheritance. + """ + pass + + +def get_cache_token(): + """Returns the current ABC cache token. + + The token is an opaque object (supporting equality testing) identifying the + current version of the ABC cache for virtual subclasses. The token changes + with every call to ``register()`` on any ABC. + """ + return ABCMeta._abc_invalidation_counter diff --git a/typing_extensions/test_data/python-3.5.1/collections/__init__.py b/typing_extensions/test_data/python-3.5.1/collections/__init__.py new file mode 100644 index 000000000..e8312a908 --- /dev/null +++ b/typing_extensions/test_data/python-3.5.1/collections/__init__.py @@ -0,0 +1,1222 @@ +__all__ = ['deque', 'defaultdict', 'namedtuple', 'UserDict', 'UserList', + 'UserString', 'Counter', 'OrderedDict', 'ChainMap'] + +# For backwards compatibility, continue to make the collections ABCs +# available through the collections module. +from _collections_abc import * +import _collections_abc +__all__ += _collections_abc.__all__ + +from operator import itemgetter as _itemgetter, eq as _eq +from keyword import iskeyword as _iskeyword +import sys as _sys +import heapq as _heapq +from _weakref import proxy as _proxy +from itertools import repeat as _repeat, chain as _chain, starmap as _starmap +from reprlib import recursive_repr as _recursive_repr + +try: + from _collections import deque +except ImportError: + pass +else: + MutableSequence.register(deque) + +try: + from _collections import defaultdict +except ImportError: + pass + + +################################################################################ +### OrderedDict +################################################################################ + +class _OrderedDictKeysView(KeysView): + + def __reversed__(self): + yield from reversed(self._mapping) + +class _OrderedDictItemsView(ItemsView): + + def __reversed__(self): + for key in reversed(self._mapping): + yield (key, self._mapping[key]) + +class _OrderedDictValuesView(ValuesView): + + def __reversed__(self): + for key in reversed(self._mapping): + yield self._mapping[key] + +class _Link(object): + __slots__ = 'prev', 'next', 'key', '__weakref__' + +class OrderedDict(dict): + 'Dictionary that remembers insertion order' + # An inherited dict maps keys to values. + # The inherited dict provides __getitem__, __len__, __contains__, and get. + # The remaining methods are order-aware. + # Big-O running times for all methods are the same as regular dictionaries. + + # The internal self.__map dict maps keys to links in a doubly linked list. + # The circular doubly linked list starts and ends with a sentinel element. + # The sentinel element never gets deleted (this simplifies the algorithm). + # The sentinel is in self.__hardroot with a weakref proxy in self.__root. + # The prev links are weakref proxies (to prevent circular references). + # Individual links are kept alive by the hard reference in self.__map. + # Those hard references disappear when a key is deleted from an OrderedDict. + + def __init__(*args, **kwds): + '''Initialize an ordered dictionary. The signature is the same as + regular dictionaries, but keyword arguments are not recommended because + their insertion order is arbitrary. + + ''' + if not args: + raise TypeError("descriptor '__init__' of 'OrderedDict' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + try: + self.__root + except AttributeError: + self.__hardroot = _Link() + self.__root = root = _proxy(self.__hardroot) + root.prev = root.next = root + self.__map = {} + self.__update(*args, **kwds) + + def __setitem__(self, key, value, + dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link): + 'od.__setitem__(i, y) <==> od[i]=y' + # Setting a new item creates a new link at the end of the linked list, + # and the inherited dictionary is updated with the new key/value pair. + if key not in self: + self.__map[key] = link = Link() + root = self.__root + last = root.prev + link.prev, link.next, link.key = last, root, key + last.next = link + root.prev = proxy(link) + dict_setitem(self, key, value) + + def __delitem__(self, key, dict_delitem=dict.__delitem__): + 'od.__delitem__(y) <==> del od[y]' + # Deleting an existing item uses self.__map to find the link which gets + # removed by updating the links in the predecessor and successor nodes. + dict_delitem(self, key) + link = self.__map.pop(key) + link_prev = link.prev + link_next = link.next + link_prev.next = link_next + link_next.prev = link_prev + link.prev = None + link.next = None + + def __iter__(self): + 'od.__iter__() <==> iter(od)' + # Traverse the linked list in order. + root = self.__root + curr = root.next + while curr is not root: + yield curr.key + curr = curr.next + + def __reversed__(self): + 'od.__reversed__() <==> reversed(od)' + # Traverse the linked list in reverse order. + root = self.__root + curr = root.prev + while curr is not root: + yield curr.key + curr = curr.prev + + def clear(self): + 'od.clear() -> None. Remove all items from od.' + root = self.__root + root.prev = root.next = root + self.__map.clear() + dict.clear(self) + + def popitem(self, last=True): + '''od.popitem() -> (k, v), return and remove a (key, value) pair. + Pairs are returned in LIFO order if last is true or FIFO order if false. + + ''' + if not self: + raise KeyError('dictionary is empty') + root = self.__root + if last: + link = root.prev + link_prev = link.prev + link_prev.next = root + root.prev = link_prev + else: + link = root.next + link_next = link.next + root.next = link_next + link_next.prev = root + key = link.key + del self.__map[key] + value = dict.pop(self, key) + return key, value + + def move_to_end(self, key, last=True): + '''Move an existing element to the end (or beginning if last==False). + + Raises KeyError if the element does not exist. + When last=True, acts like a fast version of self[key]=self.pop(key). + + ''' + link = self.__map[key] + link_prev = link.prev + link_next = link.next + link_prev.next = link_next + link_next.prev = link_prev + root = self.__root + if last: + last = root.prev + link.prev = last + link.next = root + last.next = root.prev = link + else: + first = root.next + link.prev = root + link.next = first + root.next = first.prev = link + + def __sizeof__(self): + sizeof = _sys.getsizeof + n = len(self) + 1 # number of links including root + size = sizeof(self.__dict__) # instance dictionary + size += sizeof(self.__map) * 2 # internal dict and inherited dict + size += sizeof(self.__hardroot) * n # link objects + size += sizeof(self.__root) * n # proxy objects + return size + + update = __update = MutableMapping.update + + def keys(self): + "D.keys() -> a set-like object providing a view on D's keys" + return _OrderedDictKeysView(self) + + def items(self): + "D.items() -> a set-like object providing a view on D's items" + return _OrderedDictItemsView(self) + + def values(self): + "D.values() -> an object providing a view on D's values" + return _OrderedDictValuesView(self) + + __ne__ = MutableMapping.__ne__ + + __marker = object() + + def pop(self, key, default=__marker): + '''od.pop(k[,d]) -> v, remove specified key and return the corresponding + value. If key is not found, d is returned if given, otherwise KeyError + is raised. + + ''' + if key in self: + result = self[key] + del self[key] + return result + if default is self.__marker: + raise KeyError(key) + return default + + def setdefault(self, key, default=None): + 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od' + if key in self: + return self[key] + self[key] = default + return default + + @_recursive_repr() + def __repr__(self): + 'od.__repr__() <==> repr(od)' + if not self: + return '%s()' % (self.__class__.__name__,) + return '%s(%r)' % (self.__class__.__name__, list(self.items())) + + def __reduce__(self): + 'Return state information for pickling' + inst_dict = vars(self).copy() + for k in vars(OrderedDict()): + inst_dict.pop(k, None) + return self.__class__, (), inst_dict or None, None, iter(self.items()) + + def copy(self): + 'od.copy() -> a shallow copy of od' + return self.__class__(self) + + @classmethod + def fromkeys(cls, iterable, value=None): + '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S. + If not specified, the value defaults to None. + + ''' + self = cls() + for key in iterable: + self[key] = value + return self + + def __eq__(self, other): + '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive + while comparison to a regular mapping is order-insensitive. + + ''' + if isinstance(other, OrderedDict): + return dict.__eq__(self, other) and all(map(_eq, self, other)) + return dict.__eq__(self, other) + + +try: + from _collections import OrderedDict +except ImportError: + # Leave the pure Python version in place. + pass + + +################################################################################ +### namedtuple +################################################################################ + +_class_template = """\ +from builtins import property as _property, tuple as _tuple +from operator import itemgetter as _itemgetter +from collections import OrderedDict + +class {typename}(tuple): + '{typename}({arg_list})' + + __slots__ = () + + _fields = {field_names!r} + + def __new__(_cls, {arg_list}): + 'Create new instance of {typename}({arg_list})' + return _tuple.__new__(_cls, ({arg_list})) + + @classmethod + def _make(cls, iterable, new=tuple.__new__, len=len): + 'Make a new {typename} object from a sequence or iterable' + result = new(cls, iterable) + if len(result) != {num_fields:d}: + raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result)) + return result + + def _replace(_self, **kwds): + 'Return a new {typename} object replacing specified fields with new values' + result = _self._make(map(kwds.pop, {field_names!r}, _self)) + if kwds: + raise ValueError('Got unexpected field names: %r' % list(kwds)) + return result + + def __repr__(self): + 'Return a nicely formatted representation string' + return self.__class__.__name__ + '({repr_fmt})' % self + + def _asdict(self): + 'Return a new OrderedDict which maps field names to their values.' + return OrderedDict(zip(self._fields, self)) + + def __getnewargs__(self): + 'Return self as a plain tuple. Used by copy and pickle.' + return tuple(self) + +{field_defs} +""" + +_repr_template = '{name}=%r' + +_field_template = '''\ + {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}') +''' + +def namedtuple(typename, field_names, verbose=False, rename=False): + """Returns a new subclass of tuple with named fields. + + >>> Point = namedtuple('Point', ['x', 'y']) + >>> Point.__doc__ # docstring for the new class + 'Point(x, y)' + >>> p = Point(11, y=22) # instantiate with positional args or keywords + >>> p[0] + p[1] # indexable like a plain tuple + 33 + >>> x, y = p # unpack like a regular tuple + >>> x, y + (11, 22) + >>> p.x + p.y # fields also accessable by name + 33 + >>> d = p._asdict() # convert to a dictionary + >>> d['x'] + 11 + >>> Point(**d) # convert from a dictionary + Point(x=11, y=22) + >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields + Point(x=100, y=22) + + """ + + # Validate the field names. At the user's option, either generate an error + # message or automatically replace the field name with a valid name. + if isinstance(field_names, str): + field_names = field_names.replace(',', ' ').split() + field_names = list(map(str, field_names)) + typename = str(typename) + if rename: + seen = set() + for index, name in enumerate(field_names): + if (not name.isidentifier() + or _iskeyword(name) + or name.startswith('_') + or name in seen): + field_names[index] = '_%d' % index + seen.add(name) + for name in [typename] + field_names: + if type(name) != str: + raise TypeError('Type names and field names must be strings') + if not name.isidentifier(): + raise ValueError('Type names and field names must be valid ' + 'identifiers: %r' % name) + if _iskeyword(name): + raise ValueError('Type names and field names cannot be a ' + 'keyword: %r' % name) + seen = set() + for name in field_names: + if name.startswith('_') and not rename: + raise ValueError('Field names cannot start with an underscore: ' + '%r' % name) + if name in seen: + raise ValueError('Encountered duplicate field name: %r' % name) + seen.add(name) + + # Fill-in the class template + class_definition = _class_template.format( + typename = typename, + field_names = tuple(field_names), + num_fields = len(field_names), + arg_list = repr(tuple(field_names)).replace("'", "")[1:-1], + repr_fmt = ', '.join(_repr_template.format(name=name) + for name in field_names), + field_defs = '\n'.join(_field_template.format(index=index, name=name) + for index, name in enumerate(field_names)) + ) + + # Execute the template string in a temporary namespace and support + # tracing utilities by setting a value for frame.f_globals['__name__'] + namespace = dict(__name__='namedtuple_%s' % typename) + exec(class_definition, namespace) + result = namespace[typename] + result._source = class_definition + if verbose: + print(result._source) + + # For pickling to work, the __module__ variable needs to be set to the frame + # where the named tuple is created. Bypass this step in environments where + # sys._getframe is not defined (Jython for example) or sys._getframe is not + # defined for arguments greater than 0 (IronPython). + try: + result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__') + except (AttributeError, ValueError): + pass + + return result + + +######################################################################## +### Counter +######################################################################## + +def _count_elements(mapping, iterable): + 'Tally elements from the iterable.' + mapping_get = mapping.get + for elem in iterable: + mapping[elem] = mapping_get(elem, 0) + 1 + +try: # Load C helper function if available + from _collections import _count_elements +except ImportError: + pass + +class Counter(dict): + '''Dict subclass for counting hashable items. Sometimes called a bag + or multiset. Elements are stored as dictionary keys and their counts + are stored as dictionary values. + + >>> c = Counter('abcdeabcdabcaba') # count elements from a string + + >>> c.most_common(3) # three most common elements + [('a', 5), ('b', 4), ('c', 3)] + >>> sorted(c) # list all unique elements + ['a', 'b', 'c', 'd', 'e'] + >>> ''.join(sorted(c.elements())) # list elements with repetitions + 'aaaaabbbbcccdde' + >>> sum(c.values()) # total of all counts + 15 + + >>> c['a'] # count of letter 'a' + 5 + >>> for elem in 'shazam': # update counts from an iterable + ... c[elem] += 1 # by adding 1 to each element's count + >>> c['a'] # now there are seven 'a' + 7 + >>> del c['b'] # remove all 'b' + >>> c['b'] # now there are zero 'b' + 0 + + >>> d = Counter('simsalabim') # make another counter + >>> c.update(d) # add in the second counter + >>> c['a'] # now there are nine 'a' + 9 + + >>> c.clear() # empty the counter + >>> c + Counter() + + Note: If a count is set to zero or reduced to zero, it will remain + in the counter until the entry is deleted or the counter is cleared: + + >>> c = Counter('aaabbc') + >>> c['b'] -= 2 # reduce the count of 'b' by two + >>> c.most_common() # 'b' is still in, but its count is zero + [('a', 3), ('c', 1), ('b', 0)] + + ''' + # References: + # http://en.wikipedia.org/wiki/Multiset + # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html + # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm + # http://code.activestate.com/recipes/259174/ + # Knuth, TAOCP Vol. II section 4.6.3 + + def __init__(*args, **kwds): + '''Create a new, empty Counter object. And if given, count elements + from an input iterable. Or, initialize the count from another mapping + of elements to their counts. + + >>> c = Counter() # a new, empty counter + >>> c = Counter('gallahad') # a new counter from an iterable + >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping + >>> c = Counter(a=4, b=2) # a new counter from keyword args + + ''' + if not args: + raise TypeError("descriptor '__init__' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + super(Counter, self).__init__() + self.update(*args, **kwds) + + def __missing__(self, key): + 'The count of elements not in the Counter is zero.' + # Needed so that self[missing_item] does not raise KeyError + return 0 + + def most_common(self, n=None): + '''List the n most common elements and their counts from the most + common to the least. If n is None, then list all element counts. + + >>> Counter('abcdeabcdabcaba').most_common(3) + [('a', 5), ('b', 4), ('c', 3)] + + ''' + # Emulate Bag.sortedByCount from Smalltalk + if n is None: + return sorted(self.items(), key=_itemgetter(1), reverse=True) + return _heapq.nlargest(n, self.items(), key=_itemgetter(1)) + + def elements(self): + '''Iterator over elements repeating each as many times as its count. + + >>> c = Counter('ABCABC') + >>> sorted(c.elements()) + ['A', 'A', 'B', 'B', 'C', 'C'] + + # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1 + >>> prime_factors = Counter({2: 2, 3: 3, 17: 1}) + >>> product = 1 + >>> for factor in prime_factors.elements(): # loop over factors + ... product *= factor # and multiply them + >>> product + 1836 + + Note, if an element's count has been set to zero or is a negative + number, elements() will ignore it. + + ''' + # Emulate Bag.do from Smalltalk and Multiset.begin from C++. + return _chain.from_iterable(_starmap(_repeat, self.items())) + + # Override dict methods where necessary + + @classmethod + def fromkeys(cls, iterable, v=None): + # There is no equivalent method for counters because setting v=1 + # means that no element can have a count greater than one. + raise NotImplementedError( + 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') + + def update(*args, **kwds): + '''Like dict.update() but add counts instead of replacing them. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.update('witch') # add elements from another iterable + >>> d = Counter('watch') + >>> c.update(d) # add elements from another counter + >>> c['h'] # four 'h' in which, witch, and watch + 4 + + ''' + # The regular dict.update() operation makes no sense here because the + # replace behavior results in the some of original untouched counts + # being mixed-in with all of the other counts for a mismash that + # doesn't have a straight-forward interpretation in most counting + # contexts. Instead, we implement straight-addition. Both the inputs + # and outputs are allowed to contain zero and negative counts. + + if not args: + raise TypeError("descriptor 'update' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + iterable = args[0] if args else None + if iterable is not None: + if isinstance(iterable, Mapping): + if self: + self_get = self.get + for elem, count in iterable.items(): + self[elem] = count + self_get(elem, 0) + else: + super(Counter, self).update(iterable) # fast path when counter is empty + else: + _count_elements(self, iterable) + if kwds: + self.update(kwds) + + def subtract(*args, **kwds): + '''Like dict.update() but subtracts counts instead of replacing them. + Counts can be reduced below zero. Both the inputs and outputs are + allowed to contain zero and negative counts. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.subtract('witch') # subtract elements from another iterable + >>> c.subtract(Counter('watch')) # subtract elements from another counter + >>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch + 0 + >>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch + -1 + + ''' + if not args: + raise TypeError("descriptor 'subtract' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + iterable = args[0] if args else None + if iterable is not None: + self_get = self.get + if isinstance(iterable, Mapping): + for elem, count in iterable.items(): + self[elem] = self_get(elem, 0) - count + else: + for elem in iterable: + self[elem] = self_get(elem, 0) - 1 + if kwds: + self.subtract(kwds) + + def copy(self): + 'Return a shallow copy.' + return self.__class__(self) + + def __reduce__(self): + return self.__class__, (dict(self),) + + def __delitem__(self, elem): + 'Like dict.__delitem__() but does not raise KeyError for missing values.' + if elem in self: + super().__delitem__(elem) + + def __repr__(self): + if not self: + return '%s()' % self.__class__.__name__ + try: + items = ', '.join(map('%r: %r'.__mod__, self.most_common())) + return '%s({%s})' % (self.__class__.__name__, items) + except TypeError: + # handle case where values are not orderable + return '{0}({1!r})'.format(self.__class__.__name__, dict(self)) + + # Multiset-style mathematical operations discussed in: + # Knuth TAOCP Volume II section 4.6.3 exercise 19 + # and at http://en.wikipedia.org/wiki/Multiset + # + # Outputs guaranteed to only include positive counts. + # + # To strip negative and zero counts, add-in an empty counter: + # c += Counter() + + def __add__(self, other): + '''Add counts from two counters. + + >>> Counter('abbb') + Counter('bcc') + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count + other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __sub__(self, other): + ''' Subtract count, but keep only results with positive counts. + + >>> Counter('abbbc') - Counter('bccd') + Counter({'b': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count - other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count < 0: + result[elem] = 0 - count + return result + + def __or__(self, other): + '''Union is the maximum of value in either of the input counters. + + >>> Counter('abbb') | Counter('bcc') + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = other_count if count < other_count else count + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __and__(self, other): + ''' Intersection is the minimum of corresponding counts. + + >>> Counter('abbb') & Counter('bcc') + Counter({'b': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = count if count < other_count else other_count + if newcount > 0: + result[elem] = newcount + return result + + def __pos__(self): + 'Adds an empty counter, effectively stripping negative and zero counts' + result = Counter() + for elem, count in self.items(): + if count > 0: + result[elem] = count + return result + + def __neg__(self): + '''Subtracts from an empty counter. Strips positive and zero counts, + and flips the sign on negative counts. + + ''' + result = Counter() + for elem, count in self.items(): + if count < 0: + result[elem] = 0 - count + return result + + def _keep_positive(self): + '''Internal method to strip elements with a negative or zero count''' + nonpositive = [elem for elem, count in self.items() if not count > 0] + for elem in nonpositive: + del self[elem] + return self + + def __iadd__(self, other): + '''Inplace add from another counter, keeping only positive counts. + + >>> c = Counter('abbb') + >>> c += Counter('bcc') + >>> c + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + for elem, count in other.items(): + self[elem] += count + return self._keep_positive() + + def __isub__(self, other): + '''Inplace subtract counter, but keep only results with positive counts. + + >>> c = Counter('abbbc') + >>> c -= Counter('bccd') + >>> c + Counter({'b': 2, 'a': 1}) + + ''' + for elem, count in other.items(): + self[elem] -= count + return self._keep_positive() + + def __ior__(self, other): + '''Inplace union is the maximum of value from either counter. + + >>> c = Counter('abbb') + >>> c |= Counter('bcc') + >>> c + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + for elem, other_count in other.items(): + count = self[elem] + if other_count > count: + self[elem] = other_count + return self._keep_positive() + + def __iand__(self, other): + '''Inplace intersection is the minimum of corresponding counts. + + >>> c = Counter('abbb') + >>> c &= Counter('bcc') + >>> c + Counter({'b': 1}) + + ''' + for elem, count in self.items(): + other_count = other[elem] + if other_count < count: + self[elem] = other_count + return self._keep_positive() + + +######################################################################## +### ChainMap (helper for configparser and string.Template) +######################################################################## + +class ChainMap(MutableMapping): + ''' A ChainMap groups multiple dicts (or other mappings) together + to create a single, updateable view. + + The underlying mappings are stored in a list. That list is public and can + accessed or updated using the *maps* attribute. There is no other state. + + Lookups search the underlying mappings successively until a key is found. + In contrast, writes, updates, and deletions only operate on the first + mapping. + + ''' + + def __init__(self, *maps): + '''Initialize a ChainMap by setting *maps* to the given mappings. + If no mappings are provided, a single empty dictionary is used. + + ''' + self.maps = list(maps) or [{}] # always at least one map + + def __missing__(self, key): + raise KeyError(key) + + def __getitem__(self, key): + for mapping in self.maps: + try: + return mapping[key] # can't use 'key in mapping' with defaultdict + except KeyError: + pass + return self.__missing__(key) # support subclasses that define __missing__ + + def get(self, key, default=None): + return self[key] if key in self else default + + def __len__(self): + return len(set().union(*self.maps)) # reuses stored hash values if possible + + def __iter__(self): + return iter(set().union(*self.maps)) + + def __contains__(self, key): + return any(key in m for m in self.maps) + + def __bool__(self): + return any(self.maps) + + @_recursive_repr() + def __repr__(self): + return '{0.__class__.__name__}({1})'.format( + self, ', '.join(map(repr, self.maps))) + + @classmethod + def fromkeys(cls, iterable, *args): + 'Create a ChainMap with a single dict created from the iterable.' + return cls(dict.fromkeys(iterable, *args)) + + def copy(self): + 'New ChainMap or subclass with a new copy of maps[0] and refs to maps[1:]' + return self.__class__(self.maps[0].copy(), *self.maps[1:]) + + __copy__ = copy + + def new_child(self, m=None): # like Django's Context.push() + '''New ChainMap with a new map followed by all previous maps. + If no map is provided, an empty dict is used. + ''' + if m is None: + m = {} + return self.__class__(m, *self.maps) + + @property + def parents(self): # like Django's Context.pop() + 'New ChainMap from maps[1:].' + return self.__class__(*self.maps[1:]) + + def __setitem__(self, key, value): + self.maps[0][key] = value + + def __delitem__(self, key): + try: + del self.maps[0][key] + except KeyError: + raise KeyError('Key not found in the first mapping: {!r}'.format(key)) + + def popitem(self): + 'Remove and return an item pair from maps[0]. Raise KeyError is maps[0] is empty.' + try: + return self.maps[0].popitem() + except KeyError: + raise KeyError('No keys found in the first mapping.') + + def pop(self, key, *args): + 'Remove *key* from maps[0] and return its value. Raise KeyError if *key* not in maps[0].' + try: + return self.maps[0].pop(key, *args) + except KeyError: + raise KeyError('Key not found in the first mapping: {!r}'.format(key)) + + def clear(self): + 'Clear maps[0], leaving maps[1:] intact.' + self.maps[0].clear() + + +################################################################################ +### UserDict +################################################################################ + +class UserDict(MutableMapping): + + # Start by filling-out the abstract methods + def __init__(*args, **kwargs): + if not args: + raise TypeError("descriptor '__init__' of 'UserDict' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + if args: + dict = args[0] + elif 'dict' in kwargs: + dict = kwargs.pop('dict') + import warnings + warnings.warn("Passing 'dict' as keyword argument is deprecated", + PendingDeprecationWarning, stacklevel=2) + else: + dict = None + self.data = {} + if dict is not None: + self.update(dict) + if len(kwargs): + self.update(kwargs) + def __len__(self): return len(self.data) + def __getitem__(self, key): + if key in self.data: + return self.data[key] + if hasattr(self.__class__, "__missing__"): + return self.__class__.__missing__(self, key) + raise KeyError(key) + def __setitem__(self, key, item): self.data[key] = item + def __delitem__(self, key): del self.data[key] + def __iter__(self): + return iter(self.data) + + # Modify __contains__ to work correctly when __missing__ is present + def __contains__(self, key): + return key in self.data + + # Now, add the methods in dicts but not in MutableMapping + def __repr__(self): return repr(self.data) + def copy(self): + if self.__class__ is UserDict: + return UserDict(self.data.copy()) + import copy + data = self.data + try: + self.data = {} + c = copy.copy(self) + finally: + self.data = data + c.update(self) + return c + @classmethod + def fromkeys(cls, iterable, value=None): + d = cls() + for key in iterable: + d[key] = value + return d + + + +################################################################################ +### UserList +################################################################################ + +class UserList(MutableSequence): + """A more or less complete user-defined wrapper around list objects.""" + def __init__(self, initlist=None): + self.data = [] + if initlist is not None: + # XXX should this accept an arbitrary sequence? + if type(initlist) == type(self.data): + self.data[:] = initlist + elif isinstance(initlist, UserList): + self.data[:] = initlist.data[:] + else: + self.data = list(initlist) + def __repr__(self): return repr(self.data) + def __lt__(self, other): return self.data < self.__cast(other) + def __le__(self, other): return self.data <= self.__cast(other) + def __eq__(self, other): return self.data == self.__cast(other) + def __gt__(self, other): return self.data > self.__cast(other) + def __ge__(self, other): return self.data >= self.__cast(other) + def __cast(self, other): + return other.data if isinstance(other, UserList) else other + def __contains__(self, item): return item in self.data + def __len__(self): return len(self.data) + def __getitem__(self, i): return self.data[i] + def __setitem__(self, i, item): self.data[i] = item + def __delitem__(self, i): del self.data[i] + def __add__(self, other): + if isinstance(other, UserList): + return self.__class__(self.data + other.data) + elif isinstance(other, type(self.data)): + return self.__class__(self.data + other) + return self.__class__(self.data + list(other)) + def __radd__(self, other): + if isinstance(other, UserList): + return self.__class__(other.data + self.data) + elif isinstance(other, type(self.data)): + return self.__class__(other + self.data) + return self.__class__(list(other) + self.data) + def __iadd__(self, other): + if isinstance(other, UserList): + self.data += other.data + elif isinstance(other, type(self.data)): + self.data += other + else: + self.data += list(other) + return self + def __mul__(self, n): + return self.__class__(self.data*n) + __rmul__ = __mul__ + def __imul__(self, n): + self.data *= n + return self + def append(self, item): self.data.append(item) + def insert(self, i, item): self.data.insert(i, item) + def pop(self, i=-1): return self.data.pop(i) + def remove(self, item): self.data.remove(item) + def clear(self): self.data.clear() + def copy(self): return self.__class__(self) + def count(self, item): return self.data.count(item) + def index(self, item, *args): return self.data.index(item, *args) + def reverse(self): self.data.reverse() + def sort(self, *args, **kwds): self.data.sort(*args, **kwds) + def extend(self, other): + if isinstance(other, UserList): + self.data.extend(other.data) + else: + self.data.extend(other) + + + +################################################################################ +### UserString +################################################################################ + +class UserString(Sequence): + def __init__(self, seq): + if isinstance(seq, str): + self.data = seq + elif isinstance(seq, UserString): + self.data = seq.data[:] + else: + self.data = str(seq) + def __str__(self): return str(self.data) + def __repr__(self): return repr(self.data) + def __int__(self): return int(self.data) + def __float__(self): return float(self.data) + def __complex__(self): return complex(self.data) + def __hash__(self): return hash(self.data) + def __getnewargs__(self): + return (self.data[:],) + + def __eq__(self, string): + if isinstance(string, UserString): + return self.data == string.data + return self.data == string + def __lt__(self, string): + if isinstance(string, UserString): + return self.data < string.data + return self.data < string + def __le__(self, string): + if isinstance(string, UserString): + return self.data <= string.data + return self.data <= string + def __gt__(self, string): + if isinstance(string, UserString): + return self.data > string.data + return self.data > string + def __ge__(self, string): + if isinstance(string, UserString): + return self.data >= string.data + return self.data >= string + + def __contains__(self, char): + if isinstance(char, UserString): + char = char.data + return char in self.data + + def __len__(self): return len(self.data) + def __getitem__(self, index): return self.__class__(self.data[index]) + def __add__(self, other): + if isinstance(other, UserString): + return self.__class__(self.data + other.data) + elif isinstance(other, str): + return self.__class__(self.data + other) + return self.__class__(self.data + str(other)) + def __radd__(self, other): + if isinstance(other, str): + return self.__class__(other + self.data) + return self.__class__(str(other) + self.data) + def __mul__(self, n): + return self.__class__(self.data*n) + __rmul__ = __mul__ + def __mod__(self, args): + return self.__class__(self.data % args) + def __rmod__(self, format): + return self.__class__(format % args) + + # the following methods are defined in alphabetical order: + def capitalize(self): return self.__class__(self.data.capitalize()) + def casefold(self): + return self.__class__(self.data.casefold()) + def center(self, width, *args): + return self.__class__(self.data.center(width, *args)) + def count(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.count(sub, start, end) + def encode(self, encoding=None, errors=None): # XXX improve this? + if encoding: + if errors: + return self.__class__(self.data.encode(encoding, errors)) + return self.__class__(self.data.encode(encoding)) + return self.__class__(self.data.encode()) + def endswith(self, suffix, start=0, end=_sys.maxsize): + return self.data.endswith(suffix, start, end) + def expandtabs(self, tabsize=8): + return self.__class__(self.data.expandtabs(tabsize)) + def find(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.find(sub, start, end) + def format(self, *args, **kwds): + return self.data.format(*args, **kwds) + def format_map(self, mapping): + return self.data.format_map(mapping) + def index(self, sub, start=0, end=_sys.maxsize): + return self.data.index(sub, start, end) + def isalpha(self): return self.data.isalpha() + def isalnum(self): return self.data.isalnum() + def isdecimal(self): return self.data.isdecimal() + def isdigit(self): return self.data.isdigit() + def isidentifier(self): return self.data.isidentifier() + def islower(self): return self.data.islower() + def isnumeric(self): return self.data.isnumeric() + def isprintable(self): return self.data.isprintable() + def isspace(self): return self.data.isspace() + def istitle(self): return self.data.istitle() + def isupper(self): return self.data.isupper() + def join(self, seq): return self.data.join(seq) + def ljust(self, width, *args): + return self.__class__(self.data.ljust(width, *args)) + def lower(self): return self.__class__(self.data.lower()) + def lstrip(self, chars=None): return self.__class__(self.data.lstrip(chars)) + maketrans = str.maketrans + def partition(self, sep): + return self.data.partition(sep) + def replace(self, old, new, maxsplit=-1): + if isinstance(old, UserString): + old = old.data + if isinstance(new, UserString): + new = new.data + return self.__class__(self.data.replace(old, new, maxsplit)) + def rfind(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.rfind(sub, start, end) + def rindex(self, sub, start=0, end=_sys.maxsize): + return self.data.rindex(sub, start, end) + def rjust(self, width, *args): + return self.__class__(self.data.rjust(width, *args)) + def rpartition(self, sep): + return self.data.rpartition(sep) + def rstrip(self, chars=None): + return self.__class__(self.data.rstrip(chars)) + def split(self, sep=None, maxsplit=-1): + return self.data.split(sep, maxsplit) + def rsplit(self, sep=None, maxsplit=-1): + return self.data.rsplit(sep, maxsplit) + def splitlines(self, keepends=False): return self.data.splitlines(keepends) + def startswith(self, prefix, start=0, end=_sys.maxsize): + return self.data.startswith(prefix, start, end) + def strip(self, chars=None): return self.__class__(self.data.strip(chars)) + def swapcase(self): return self.__class__(self.data.swapcase()) + def title(self): return self.__class__(self.data.title()) + def translate(self, *args): + return self.__class__(self.data.translate(*args)) + def upper(self): return self.__class__(self.data.upper()) + def zfill(self, width): return self.__class__(self.data.zfill(width)) diff --git a/typing_extensions/test_data/python-3.5.1/collections/__main__.py b/typing_extensions/test_data/python-3.5.1/collections/__main__.py new file mode 100644 index 000000000..763e38e0c --- /dev/null +++ b/typing_extensions/test_data/python-3.5.1/collections/__main__.py @@ -0,0 +1,38 @@ +################################################################################ +### Simple tests +################################################################################ + +# verify that instances can be pickled +from collections import namedtuple +from pickle import loads, dumps +Point = namedtuple('Point', 'x, y', True) +p = Point(x=10, y=20) +assert p == loads(dumps(p)) + +# test and demonstrate ability to override methods +class Point(namedtuple('Point', 'x y')): + __slots__ = () + @property + def hypot(self): + return (self.x ** 2 + self.y ** 2) ** 0.5 + def __str__(self): + return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot) + +for p in Point(3, 4), Point(14, 5/7.): + print (p) + +class Point(namedtuple('Point', 'x y')): + 'Point class with optimized _make() and _replace() without error-checking' + __slots__ = () + _make = classmethod(tuple.__new__) + def _replace(self, _map=map, **kwds): + return self._make(_map(kwds.get, ('x', 'y'), self)) + +print(Point(11, 22)._replace(x=100)) + +Point3D = namedtuple('Point3D', Point._fields + ('z',)) +print(Point3D.__doc__) + +import doctest, collections +TestResults = namedtuple('TestResults', 'failed attempted') +print(TestResults(*doctest.testmod(collections))) diff --git a/typing_extensions/test_data/python-3.5.1/collections/abc.py b/typing_extensions/test_data/python-3.5.1/collections/abc.py new file mode 100644 index 000000000..891600d16 --- /dev/null +++ b/typing_extensions/test_data/python-3.5.1/collections/abc.py @@ -0,0 +1,2 @@ +from _collections_abc import * +from _collections_abc import __all__ diff --git a/typing_extensions/test_data/python-3.5.1/typing.py b/typing_extensions/test_data/python-3.5.1/typing.py new file mode 100644 index 000000000..1757f1382 --- /dev/null +++ b/typing_extensions/test_data/python-3.5.1/typing.py @@ -0,0 +1,1656 @@ +# TODO nits: +# Get rid of asserts that are the caller's fault. +# Docstrings (e.g. ABCs). + +import abc +from abc import abstractmethod, abstractproperty +import collections +import functools +import re as stdlib_re # Avoid confusion with the re we export. +import sys +import types +try: + import collections.abc as collections_abc +except ImportError: + import collections as collections_abc # Fallback for PY3.2. + + +# Please keep __all__ alphabetized within each category. +__all__ = [ + # Super-special typing primitives. + 'Any', + 'Callable', + 'Generic', + 'Optional', + 'TypeVar', + 'Union', + 'Tuple', + + # ABCs (from collections.abc). + 'AbstractSet', # collections.abc.Set. + 'ByteString', + 'Container', + 'Hashable', + 'ItemsView', + 'Iterable', + 'Iterator', + 'KeysView', + 'Mapping', + 'MappingView', + 'MutableMapping', + 'MutableSequence', + 'MutableSet', + 'Sequence', + 'Sized', + 'ValuesView', + + # Structural checks, a.k.a. protocols. + 'Reversible', + 'SupportsAbs', + 'SupportsFloat', + 'SupportsInt', + 'SupportsRound', + + # Concrete collection types. + 'Dict', + 'List', + 'Set', + 'NamedTuple', # Not really a type. + 'Generator', + + # One-off things. + 'AnyStr', + 'cast', + 'get_type_hints', + 'no_type_check', + 'no_type_check_decorator', + 'overload', + + # Submodules. + 'io', + 're', +] + + +def _qualname(x): + if sys.version_info[:2] >= (3, 3): + return x.__qualname__ + else: + # Fall back to just name. + return x.__name__ + + +class TypingMeta(type): + """Metaclass for every type defined below. + + This overrides __new__() to require an extra keyword parameter + '_root', which serves as a guard against naive subclassing of the + typing classes. Any legitimate class defined using a metaclass + derived from TypingMeta (including internal subclasses created by + e.g. Union[X, Y]) must pass _root=True. + + This also defines a dummy constructor (all the work is done in + __new__) and a nicer repr(). + """ + + _is_protocol = False + + def __new__(cls, name, bases, namespace, *, _root=False): + if not _root: + raise TypeError("Cannot subclass %s" % + (', '.join(map(_type_repr, bases)) or '()')) + return super().__new__(cls, name, bases, namespace) + + def __init__(self, *args, **kwds): + pass + + def _eval_type(self, globalns, localns): + """Override this in subclasses to interpret forward references. + + For example, Union['C'] is internally stored as + Union[_ForwardRef('C')], which should evaluate to _Union[C], + where C is an object found in globalns or localns (searching + localns first, of course). + """ + return self + + def _has_type_var(self): + return False + + def __repr__(self): + return '%s.%s' % (self.__module__, _qualname(self)) + + +class Final: + """Mix-in class to prevent instantiation.""" + + __slots__ = () + + def __new__(self, *args, **kwds): + raise TypeError("Cannot instantiate %r" % self.__class__) + + +class _ForwardRef(TypingMeta): + """Wrapper to hold a forward reference.""" + + def __new__(cls, arg): + if not isinstance(arg, str): + raise TypeError('ForwardRef must be a string -- got %r' % (arg,)) + try: + code = compile(arg, '', 'eval') + except SyntaxError: + raise SyntaxError('ForwardRef must be an expression -- got %r' % + (arg,)) + self = super().__new__(cls, arg, (), {}, _root=True) + self.__forward_arg__ = arg + self.__forward_code__ = code + self.__forward_evaluated__ = False + self.__forward_value__ = None + typing_globals = globals() + frame = sys._getframe(1) + while frame is not None and frame.f_globals is typing_globals: + frame = frame.f_back + assert frame is not None + self.__forward_frame__ = frame + return self + + def _eval_type(self, globalns, localns): + if not isinstance(localns, dict): + raise TypeError('ForwardRef localns must be a dict -- got %r' % + (localns,)) + if not isinstance(globalns, dict): + raise TypeError('ForwardRef globalns must be a dict -- got %r' % + (globalns,)) + if not self.__forward_evaluated__: + if globalns is None and localns is None: + globalns = localns = {} + elif globalns is None: + globalns = localns + elif localns is None: + localns = globalns + self.__forward_value__ = _type_check( + eval(self.__forward_code__, globalns, localns), + "Forward references must evaluate to types.") + self.__forward_evaluated__ = True + return self.__forward_value__ + + def __instancecheck__(self, obj): + raise TypeError("Forward references cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if not self.__forward_evaluated__: + globalns = self.__forward_frame__.f_globals + localns = self.__forward_frame__.f_locals + try: + self._eval_type(globalns, localns) + except NameError: + return False # Too early. + return issubclass(cls, self.__forward_value__) + + def __repr__(self): + return '_ForwardRef(%r)' % (self.__forward_arg__,) + + +class _TypeAlias: + """Internal helper class for defining generic variants of concrete types. + + Note that this is not a type; let's call it a pseudo-type. It can + be used in instance and subclass checks, e.g. isinstance(m, Match) + or issubclass(type(m), Match). However, it cannot be itself the + target of an issubclass() call; e.g. issubclass(Match, C) (for + some arbitrary class C) raises TypeError rather than returning + False. + """ + + __slots__ = ('name', 'type_var', 'impl_type', 'type_checker') + + def __new__(cls, *args, **kwds): + """Constructor. + + This only exists to give a better error message in case + someone tries to subclass a type alias (not a good idea). + """ + if (len(args) == 3 and + isinstance(args[0], str) and + isinstance(args[1], tuple)): + # Close enough. + raise TypeError("A type alias cannot be subclassed") + return object.__new__(cls) + + def __init__(self, name, type_var, impl_type, type_checker): + """Initializer. + + Args: + name: The name, e.g. 'Pattern'. + type_var: The type parameter, e.g. AnyStr, or the + specific type, e.g. str. + impl_type: The implementation type. + type_checker: Function that takes an impl_type instance. + and returns a value that should be a type_var instance. + """ + assert isinstance(name, str), repr(name) + assert isinstance(type_var, type), repr(type_var) + assert isinstance(impl_type, type), repr(impl_type) + assert not isinstance(impl_type, TypingMeta), repr(impl_type) + self.name = name + self.type_var = type_var + self.impl_type = impl_type + self.type_checker = type_checker + + def __repr__(self): + return "%s[%s]" % (self.name, _type_repr(self.type_var)) + + def __getitem__(self, parameter): + assert isinstance(parameter, type), repr(parameter) + if not isinstance(self.type_var, TypeVar): + raise TypeError("%s cannot be further parameterized." % self) + if self.type_var.__constraints__: + if not issubclass(parameter, Union[self.type_var.__constraints__]): + raise TypeError("%s is not a valid substitution for %s." % + (parameter, self.type_var)) + return self.__class__(self.name, parameter, + self.impl_type, self.type_checker) + + def __instancecheck__(self, obj): + raise TypeError("Type aliases cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if cls is Any: + return True + if isinstance(cls, _TypeAlias): + # Covariance. For now, we compare by name. + return (cls.name == self.name and + issubclass(cls.type_var, self.type_var)) + else: + # Note that this is too lenient, because the + # implementation type doesn't carry information about + # whether it is about bytes or str (for example). + return issubclass(cls, self.impl_type) + + +def _has_type_var(t): + return t is not None and isinstance(t, TypingMeta) and t._has_type_var() + + +def _eval_type(t, globalns, localns): + if isinstance(t, TypingMeta): + return t._eval_type(globalns, localns) + else: + return t + + +def _type_check(arg, msg): + """Check that the argument is a type, and return it. + + As a special case, accept None and return type(None) instead. + Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable. + + The msg argument is a human-readable error message, e.g. + + "Union[arg, ...]: arg should be a type." + + We append the repr() of the actual value (truncated to 100 chars). + """ + if arg is None: + return type(None) + if isinstance(arg, str): + arg = _ForwardRef(arg) + if not isinstance(arg, (type, _TypeAlias)): + raise TypeError(msg + " Got %.100r." % (arg,)) + return arg + + +def _type_repr(obj): + """Return the repr() of an object, special-casing types. + + If obj is a type, we return a shorter version than the default + type.__repr__, based on the module and qualified name, which is + typically enough to uniquely identify a type. For everything + else, we fall back on repr(obj). + """ + if isinstance(obj, type) and not isinstance(obj, TypingMeta): + if obj.__module__ == 'builtins': + return _qualname(obj) + else: + return '%s.%s' % (obj.__module__, _qualname(obj)) + else: + return repr(obj) + + +class AnyMeta(TypingMeta): + """Metaclass for Any.""" + + def __new__(cls, name, bases, namespace, _root=False): + self = super().__new__(cls, name, bases, namespace, _root=_root) + return self + + def __instancecheck__(self, obj): + raise TypeError("Any cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if not isinstance(cls, type): + return super().__subclasscheck__(cls) # To TypeError. + return True + + +class Any(Final, metaclass=AnyMeta, _root=True): + """Special type indicating an unconstrained type. + + - Any object is an instance of Any. + - Any class is a subclass of Any. + - As a special case, Any and object are subclasses of each other. + """ + + __slots__ = () + + +class TypeVar(TypingMeta, metaclass=TypingMeta, _root=True): + """Type variable. + + Usage:: + + T = TypeVar('T') # Can be anything + A = TypeVar('A', str, bytes) # Must be str or bytes + + Type variables exist primarily for the benefit of static type + checkers. They serve as the parameters for generic types as well + as for generic function definitions. See class Generic for more + information on generic types. Generic functions work as follows: + + def repeat(x: T, n: int) -> Sequence[T]: + '''Return a list containing n references to x.''' + return [x]*n + + def longest(x: A, y: A) -> A: + '''Return the longest of two strings.''' + return x if len(x) >= len(y) else y + + The latter example's signature is essentially the overloading + of (str, str) -> str and (bytes, bytes) -> bytes. Also note + that if the arguments are instances of some subclass of str, + the return type is still plain str. + + At runtime, isinstance(x, T) will raise TypeError. However, + issubclass(C, T) is true for any class C, and issubclass(str, A) + and issubclass(bytes, A) are true, and issubclass(int, A) is + false. + + Type variables may be marked covariant or contravariant by passing + covariant=True or contravariant=True. See PEP 484 for more + details. By default type variables are invariant. + + Type variables can be introspected. e.g.: + + T.__name__ == 'T' + T.__constraints__ == () + T.__covariant__ == False + T.__contravariant__ = False + A.__constraints__ == (str, bytes) + """ + + def __new__(cls, name, *constraints, bound=None, + covariant=False, contravariant=False): + self = super().__new__(cls, name, (Final,), {}, _root=True) + if covariant and contravariant: + raise ValueError("Bivariant type variables are not supported.") + self.__covariant__ = bool(covariant) + self.__contravariant__ = bool(contravariant) + if constraints and bound is not None: + raise TypeError("Constraints cannot be combined with bound=...") + if constraints and len(constraints) == 1: + raise TypeError("A single constraint is not allowed") + msg = "TypeVar(name, constraint, ...): constraints must be types." + self.__constraints__ = tuple(_type_check(t, msg) for t in constraints) + if bound: + self.__bound__ = _type_check(bound, "Bound must be a type.") + else: + self.__bound__ = None + return self + + def _has_type_var(self): + return True + + def __repr__(self): + if self.__covariant__: + prefix = '+' + elif self.__contravariant__: + prefix = '-' + else: + prefix = '~' + return prefix + self.__name__ + + def __instancecheck__(self, instance): + raise TypeError("Type variables cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + # TODO: Make this raise TypeError too? + if cls is self: + return True + if cls is Any: + return True + if self.__bound__ is not None: + return issubclass(cls, self.__bound__) + if self.__constraints__: + return any(issubclass(cls, c) for c in self.__constraints__) + return True + + +# Some unconstrained type variables. These are used by the container types. +T = TypeVar('T') # Any type. +KT = TypeVar('KT') # Key type. +VT = TypeVar('VT') # Value type. +T_co = TypeVar('T_co', covariant=True) # Any type covariant containers. +V_co = TypeVar('V_co', covariant=True) # Any type covariant containers. +VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers. +T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant. + +# A useful type variable with constraints. This represents string types. +# TODO: What about bytearray, memoryview? +AnyStr = TypeVar('AnyStr', bytes, str) + + +class UnionMeta(TypingMeta): + """Metaclass for Union.""" + + def __new__(cls, name, bases, namespace, parameters=None, _root=False): + if parameters is None: + return super().__new__(cls, name, bases, namespace, _root=_root) + if not isinstance(parameters, tuple): + raise TypeError("Expected parameters=") + # Flatten out Union[Union[...], ...] and type-check non-Union args. + params = [] + msg = "Union[arg, ...]: each arg must be a type." + for p in parameters: + if isinstance(p, UnionMeta): + params.extend(p.__union_params__) + else: + params.append(_type_check(p, msg)) + # Weed out strict duplicates, preserving the first of each occurrence. + all_params = set(params) + if len(all_params) < len(params): + new_params = [] + for t in params: + if t in all_params: + new_params.append(t) + all_params.remove(t) + params = new_params + assert not all_params, all_params + # Weed out subclasses. + # E.g. Union[int, Employee, Manager] == Union[int, Employee]. + # If Any or object is present it will be the sole survivor. + # If both Any and object are present, Any wins. + # Never discard type variables, except against Any. + # (In particular, Union[str, AnyStr] != AnyStr.) + all_params = set(params) + for t1 in params: + if t1 is Any: + return Any + if isinstance(t1, TypeVar): + continue + if isinstance(t1, _TypeAlias): + # _TypeAlias is not a real class. + continue + if any(issubclass(t1, t2) + for t2 in all_params - {t1} if not isinstance(t2, TypeVar)): + all_params.remove(t1) + # It's not a union if there's only one type left. + if len(all_params) == 1: + return all_params.pop() + # Create a new class with these params. + self = super().__new__(cls, name, bases, {}, _root=True) + self.__union_params__ = tuple(t for t in params if t in all_params) + self.__union_set_params__ = frozenset(self.__union_params__) + return self + + def _eval_type(self, globalns, localns): + p = tuple(_eval_type(t, globalns, localns) + for t in self.__union_params__) + if p == self.__union_params__: + return self + else: + return self.__class__(self.__name__, self.__bases__, {}, + p, _root=True) + + def _has_type_var(self): + if self.__union_params__: + for t in self.__union_params__: + if _has_type_var(t): + return True + return False + + def __repr__(self): + r = super().__repr__() + if self.__union_params__: + r += '[%s]' % (', '.join(_type_repr(t) + for t in self.__union_params__)) + return r + + def __getitem__(self, parameters): + if self.__union_params__ is not None: + raise TypeError( + "Cannot subscript an existing Union. Use Union[u, t] instead.") + if parameters == (): + raise TypeError("Cannot take a Union of no types.") + if not isinstance(parameters, tuple): + parameters = (parameters,) + return self.__class__(self.__name__, self.__bases__, + dict(self.__dict__), parameters, _root=True) + + def __eq__(self, other): + if not isinstance(other, UnionMeta): + return NotImplemented + return self.__union_set_params__ == other.__union_set_params__ + + def __hash__(self): + return hash(self.__union_set_params__) + + def __instancecheck__(self, obj): + raise TypeError("Unions cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if cls is Any: + return True + if self.__union_params__ is None: + return isinstance(cls, UnionMeta) + elif isinstance(cls, UnionMeta): + if cls.__union_params__ is None: + return False + return all(issubclass(c, self) for c in (cls.__union_params__)) + elif isinstance(cls, TypeVar): + if cls in self.__union_params__: + return True + if cls.__constraints__: + return issubclass(Union[cls.__constraints__], self) + return False + else: + return any(issubclass(cls, t) for t in self.__union_params__) + + +class Union(Final, metaclass=UnionMeta, _root=True): + """Union type; Union[X, Y] means either X or Y. + + To define a union, use e.g. Union[int, str]. Details: + + - The arguments must be types and there must be at least one. + + - None as an argument is a special case and is replaced by + type(None). + + - Unions of unions are flattened, e.g.:: + + Union[Union[int, str], float] == Union[int, str, float] + + - Unions of a single argument vanish, e.g.:: + + Union[int] == int # The constructor actually returns int + + - Redundant arguments are skipped, e.g.:: + + Union[int, str, int] == Union[int, str] + + - When comparing unions, the argument order is ignored, e.g.:: + + Union[int, str] == Union[str, int] + + - When two arguments have a subclass relationship, the least + derived argument is kept, e.g.:: + + class Employee: pass + class Manager(Employee): pass + Union[int, Employee, Manager] == Union[int, Employee] + Union[Manager, int, Employee] == Union[int, Employee] + Union[Employee, Manager] == Employee + + - Corollary: if Any is present it is the sole survivor, e.g.:: + + Union[int, Any] == Any + + - Similar for object:: + + Union[int, object] == object + + - To cut a tie: Union[object, Any] == Union[Any, object] == Any. + + - You cannot subclass or instantiate a union. + + - You cannot write Union[X][Y] (what would it mean?). + + - You can use Optional[X] as a shorthand for Union[X, None]. + """ + + # Unsubscripted Union type has params set to None. + __union_params__ = None + __union_set_params__ = None + + +class OptionalMeta(TypingMeta): + """Metaclass for Optional.""" + + def __new__(cls, name, bases, namespace, _root=False): + return super().__new__(cls, name, bases, namespace, _root=_root) + + def __getitem__(self, arg): + arg = _type_check(arg, "Optional[t] requires a single type.") + return Union[arg, type(None)] + + +class Optional(Final, metaclass=OptionalMeta, _root=True): + """Optional type. + + Optional[X] is equivalent to Union[X, type(None)]. + """ + + __slots__ = () + + +class TupleMeta(TypingMeta): + """Metaclass for Tuple.""" + + def __new__(cls, name, bases, namespace, parameters=None, + use_ellipsis=False, _root=False): + self = super().__new__(cls, name, bases, namespace, _root=_root) + self.__tuple_params__ = parameters + self.__tuple_use_ellipsis__ = use_ellipsis + return self + + def _has_type_var(self): + if self.__tuple_params__: + for t in self.__tuple_params__: + if _has_type_var(t): + return True + return False + + def _eval_type(self, globalns, localns): + tp = self.__tuple_params__ + if tp is None: + return self + p = tuple(_eval_type(t, globalns, localns) for t in tp) + if p == self.__tuple_params__: + return self + else: + return self.__class__(self.__name__, self.__bases__, {}, + p, _root=True) + + def __repr__(self): + r = super().__repr__() + if self.__tuple_params__ is not None: + params = [_type_repr(p) for p in self.__tuple_params__] + if self.__tuple_use_ellipsis__: + params.append('...') + r += '[%s]' % ( + ', '.join(params)) + return r + + def __getitem__(self, parameters): + if self.__tuple_params__ is not None: + raise TypeError("Cannot re-parameterize %r" % (self,)) + if not isinstance(parameters, tuple): + parameters = (parameters,) + if len(parameters) == 2 and parameters[1] == Ellipsis: + parameters = parameters[:1] + use_ellipsis = True + msg = "Tuple[t, ...]: t must be a type." + else: + use_ellipsis = False + msg = "Tuple[t0, t1, ...]: each t must be a type." + parameters = tuple(_type_check(p, msg) for p in parameters) + return self.__class__(self.__name__, self.__bases__, + dict(self.__dict__), parameters, + use_ellipsis=use_ellipsis, _root=True) + + def __eq__(self, other): + if not isinstance(other, TupleMeta): + return NotImplemented + return self.__tuple_params__ == other.__tuple_params__ + + def __hash__(self): + return hash(self.__tuple_params__) + + def __instancecheck__(self, obj): + raise TypeError("Tuples cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if cls is Any: + return True + if not isinstance(cls, type): + return super().__subclasscheck__(cls) # To TypeError. + if issubclass(cls, tuple): + return True # Special case. + if not isinstance(cls, TupleMeta): + return super().__subclasscheck__(cls) # False. + if self.__tuple_params__ is None: + return True + if cls.__tuple_params__ is None: + return False # ??? + if cls.__tuple_use_ellipsis__ != self.__tuple_use_ellipsis__: + return False + # Covariance. + return (len(self.__tuple_params__) == len(cls.__tuple_params__) and + all(issubclass(x, p) + for x, p in zip(cls.__tuple_params__, + self.__tuple_params__))) + + +class Tuple(Final, metaclass=TupleMeta, _root=True): + """Tuple type; Tuple[X, Y] is the cross-product type of X and Y. + + Example: Tuple[T1, T2] is a tuple of two elements corresponding + to type variables T1 and T2. Tuple[int, float, str] is a tuple + of an int, a float and a string. + + To specify a variable-length tuple of homogeneous type, use Sequence[T]. + """ + + __slots__ = () + + +class CallableMeta(TypingMeta): + """Metaclass for Callable.""" + + def __new__(cls, name, bases, namespace, _root=False, + args=None, result=None): + if args is None and result is None: + pass # Must be 'class Callable'. + else: + if args is not Ellipsis: + if not isinstance(args, list): + raise TypeError("Callable[args, result]: " + "args must be a list." + " Got %.100r." % (args,)) + msg = "Callable[[arg, ...], result]: each arg must be a type." + args = tuple(_type_check(arg, msg) for arg in args) + msg = "Callable[args, result]: result must be a type." + result = _type_check(result, msg) + self = super().__new__(cls, name, bases, namespace, _root=_root) + self.__args__ = args + self.__result__ = result + return self + + def _has_type_var(self): + if self.__args__: + for t in self.__args__: + if _has_type_var(t): + return True + return _has_type_var(self.__result__) + + def _eval_type(self, globalns, localns): + if self.__args__ is None and self.__result__ is None: + return self + if self.__args__ is Ellipsis: + args = self.__args__ + else: + args = [_eval_type(t, globalns, localns) for t in self.__args__] + result = _eval_type(self.__result__, globalns, localns) + if args == self.__args__ and result == self.__result__: + return self + else: + return self.__class__(self.__name__, self.__bases__, {}, + args=args, result=result, _root=True) + + def __repr__(self): + r = super().__repr__() + if self.__args__ is not None or self.__result__ is not None: + if self.__args__ is Ellipsis: + args_r = '...' + else: + args_r = '[%s]' % ', '.join(_type_repr(t) + for t in self.__args__) + r += '[%s, %s]' % (args_r, _type_repr(self.__result__)) + return r + + def __getitem__(self, parameters): + if self.__args__ is not None or self.__result__ is not None: + raise TypeError("This Callable type is already parameterized.") + if not isinstance(parameters, tuple) or len(parameters) != 2: + raise TypeError( + "Callable must be used as Callable[[arg, ...], result].") + args, result = parameters + return self.__class__(self.__name__, self.__bases__, + dict(self.__dict__), _root=True, + args=args, result=result) + + def __eq__(self, other): + if not isinstance(other, CallableMeta): + return NotImplemented + return (self.__args__ == other.__args__ and + self.__result__ == other.__result__) + + def __hash__(self): + return hash(self.__args__) ^ hash(self.__result__) + + def __instancecheck__(self, obj): + # For unparametrized Callable we allow this, because + # typing.Callable should be equivalent to + # collections.abc.Callable. + if self.__args__ is None and self.__result__ is None: + return isinstance(obj, collections_abc.Callable) + else: + raise TypeError("Callable[] cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if cls is Any: + return True + if not isinstance(cls, CallableMeta): + return super().__subclasscheck__(cls) + if self.__args__ is None and self.__result__ is None: + return True + # We're not doing covariance or contravariance -- this is *invariance*. + return self == cls + + +class Callable(Final, metaclass=CallableMeta, _root=True): + """Callable type; Callable[[int], str] is a function of (int) -> str. + + The subscription syntax must always be used with exactly two + values: the argument list and the return type. The argument list + must be a list of types; the return type must be a single type. + + There is no syntax to indicate optional or keyword arguments, + such function types are rarely used as callback types. + """ + + __slots__ = () + + +def _gorg(a): + """Return the farthest origin of a generic class.""" + assert isinstance(a, GenericMeta) + while a.__origin__ is not None: + a = a.__origin__ + return a + + +def _geqv(a, b): + """Return whether two generic classes are equivalent. + + The intention is to consider generic class X and any of its + parameterized forms (X[T], X[int], etc.) as equivalent. + + However, X is not equivalent to a subclass of X. + + The relation is reflexive, symmetric and transitive. + """ + assert isinstance(a, GenericMeta) and isinstance(b, GenericMeta) + # Reduce each to its origin. + return _gorg(a) is _gorg(b) + + +class GenericMeta(TypingMeta, abc.ABCMeta): + """Metaclass for generic types.""" + + # TODO: Constrain more how Generic is used; only a few + # standard patterns should be allowed. + + # TODO: Use a more precise rule than matching __name__ to decide + # whether two classes are the same. Also, save the formal + # parameters. (These things are related! A solution lies in + # using origin.) + + __extra__ = None + + def __new__(cls, name, bases, namespace, + parameters=None, origin=None, extra=None): + if parameters is None: + # Extract parameters from direct base classes. Only + # direct bases are considered and only those that are + # themselves generic, and parameterized with type + # variables. Don't use bases like Any, Union, Tuple, + # Callable or type variables. + params = None + for base in bases: + if isinstance(base, TypingMeta): + if not isinstance(base, GenericMeta): + raise TypeError( + "You cannot inherit from magic class %s" % + repr(base)) + if base.__parameters__ is None: + continue # The base is unparameterized. + for bp in base.__parameters__: + if _has_type_var(bp) and not isinstance(bp, TypeVar): + raise TypeError( + "Cannot inherit from a generic class " + "parameterized with " + "non-type-variable %s" % bp) + if params is None: + params = [] + if bp not in params: + params.append(bp) + if params is not None: + parameters = tuple(params) + self = super().__new__(cls, name, bases, namespace, _root=True) + self.__parameters__ = parameters + if extra is not None: + self.__extra__ = extra + # Else __extra__ is inherited, eventually from the + # (meta-)class default above. + self.__origin__ = origin + return self + + def _has_type_var(self): + if self.__parameters__: + for t in self.__parameters__: + if _has_type_var(t): + return True + return False + + def __repr__(self): + r = super().__repr__() + if self.__parameters__ is not None: + r += '[%s]' % ( + ', '.join(_type_repr(p) for p in self.__parameters__)) + return r + + def __eq__(self, other): + if not isinstance(other, GenericMeta): + return NotImplemented + return (_geqv(self, other) and + self.__parameters__ == other.__parameters__) + + def __hash__(self): + return hash((self.__name__, self.__parameters__)) + + def __getitem__(self, params): + if not isinstance(params, tuple): + params = (params,) + if not params: + raise TypeError("Cannot have empty parameter list") + msg = "Parameters to generic types must be types." + params = tuple(_type_check(p, msg) for p in params) + if self.__parameters__ is None: + for p in params: + if not isinstance(p, TypeVar): + raise TypeError("Initial parameters must be " + "type variables; got %s" % p) + if len(set(params)) != len(params): + raise TypeError( + "All type variables in Generic[...] must be distinct.") + else: + if len(params) != len(self.__parameters__): + raise TypeError("Cannot change parameter count from %d to %d" % + (len(self.__parameters__), len(params))) + for new, old in zip(params, self.__parameters__): + if isinstance(old, TypeVar): + if not old.__constraints__: + # Substituting for an unconstrained TypeVar is OK. + continue + if issubclass(new, Union[old.__constraints__]): + # Specializing a constrained type variable is OK. + continue + if not issubclass(new, old): + raise TypeError( + "Cannot substitute %s for %s in %s" % + (_type_repr(new), _type_repr(old), self)) + + return self.__class__(self.__name__, (self,) + self.__bases__, + dict(self.__dict__), + parameters=params, + origin=self, + extra=self.__extra__) + + def __instancecheck__(self, instance): + # Since we extend ABC.__subclasscheck__ and + # ABC.__instancecheck__ inlines the cache checking done by the + # latter, we must extend __instancecheck__ too. For simplicity + # we just skip the cache check -- instance checks for generic + # classes are supposed to be rare anyways. + return self.__subclasscheck__(instance.__class__) + + def __subclasscheck__(self, cls): + if cls is Any: + return True + if isinstance(cls, GenericMeta): + # For a class C(Generic[T]) where T is co-variant, + # C[X] is a subclass of C[Y] iff X is a subclass of Y. + origin = self.__origin__ + if origin is not None and origin is cls.__origin__: + assert len(self.__parameters__) == len(origin.__parameters__) + assert len(cls.__parameters__) == len(origin.__parameters__) + for p_self, p_cls, p_origin in zip(self.__parameters__, + cls.__parameters__, + origin.__parameters__): + if isinstance(p_origin, TypeVar): + if p_origin.__covariant__: + # Covariant -- p_cls must be a subclass of p_self. + if not issubclass(p_cls, p_self): + break + elif p_origin.__contravariant__: + # Contravariant. I think it's the opposite. :-) + if not issubclass(p_self, p_cls): + break + else: + # Invariant -- p_cls and p_self must equal. + if p_self != p_cls: + break + else: + # If the origin's parameter is not a typevar, + # insist on invariance. + if p_self != p_cls: + break + else: + return True + # If we break out of the loop, the superclass gets a chance. + if super().__subclasscheck__(cls): + return True + if self.__extra__ is None or isinstance(cls, GenericMeta): + return False + return issubclass(cls, self.__extra__) + + +class Generic(metaclass=GenericMeta): + """Abstract base class for generic types. + + A generic type is typically declared by inheriting from an + instantiation of this class with one or more type variables. + For example, a generic mapping type might be defined as:: + + class Mapping(Generic[KT, VT]): + def __getitem__(self, key: KT) -> VT: + ... + # Etc. + + This class can then be used as follows:: + + def lookup_name(mapping: Mapping, key: KT, default: VT) -> VT: + try: + return mapping[key] + except KeyError: + return default + + For clarity the type variables may be redefined, e.g.:: + + X = TypeVar('X') + Y = TypeVar('Y') + def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y: + # Same body as above. + """ + + __slots__ = () + + def __new__(cls, *args, **kwds): + next_in_mro = object + # Look for the last occurrence of Generic or Generic[...]. + for i, c in enumerate(cls.__mro__[:-1]): + if isinstance(c, GenericMeta) and _gorg(c) is Generic: + next_in_mro = cls.__mro__[i+1] + return next_in_mro.__new__(_gorg(cls)) + + +def cast(typ, val): + """Cast a value to a type. + + This returns the value unchanged. To the type checker this + signals that the return value has the designated type, but at + runtime we intentionally don't check anything (we want this + to be as fast as possible). + """ + return val + + +def _get_defaults(func): + """Internal helper to extract the default arguments, by name.""" + code = func.__code__ + pos_count = code.co_argcount + kw_count = code.co_kwonlyargcount + arg_names = code.co_varnames + kwarg_names = arg_names[pos_count:pos_count + kw_count] + arg_names = arg_names[:pos_count] + defaults = func.__defaults__ or () + kwdefaults = func.__kwdefaults__ + res = dict(kwdefaults) if kwdefaults else {} + pos_offset = pos_count - len(defaults) + for name, value in zip(arg_names[pos_offset:], defaults): + assert name not in res + res[name] = value + return res + + +def get_type_hints(obj, globalns=None, localns=None): + """Return type hints for a function or method object. + + This is often the same as obj.__annotations__, but it handles + forward references encoded as string literals, and if necessary + adds Optional[t] if a default value equal to None is set. + + BEWARE -- the behavior of globalns and localns is counterintuitive + (unless you are familiar with how eval() and exec() work). The + search order is locals first, then globals. + + - If no dict arguments are passed, an attempt is made to use the + globals from obj, and these are also used as the locals. If the + object does not appear to have globals, an exception is raised. + + - If one dict argument is passed, it is used for both globals and + locals. + + - If two dict arguments are passed, they specify globals and + locals, respectively. + """ + if getattr(obj, '__no_type_check__', None): + return {} + if globalns is None: + globalns = getattr(obj, '__globals__', {}) + if localns is None: + localns = globalns + elif localns is None: + localns = globalns + defaults = _get_defaults(obj) + hints = dict(obj.__annotations__) + for name, value in hints.items(): + if isinstance(value, str): + value = _ForwardRef(value) + value = _eval_type(value, globalns, localns) + if name in defaults and defaults[name] is None: + value = Optional[value] + hints[name] = value + return hints + + +# TODO: Also support this as a class decorator. +def no_type_check(arg): + """Decorator to indicate that annotations are not type hints. + + The argument must be a class or function; if it is a class, it + applies recursively to all methods defined in that class (but not + to methods defined in its superclasses or subclasses). + + This mutates the function(s) in place. + """ + if isinstance(arg, type): + for obj in arg.__dict__.values(): + if isinstance(obj, types.FunctionType): + obj.__no_type_check__ = True + else: + arg.__no_type_check__ = True + return arg + + +def no_type_check_decorator(decorator): + """Decorator to give another decorator the @no_type_check effect. + + This wraps the decorator with something that wraps the decorated + function in @no_type_check. + """ + + @functools.wraps(decorator) + def wrapped_decorator(*args, **kwds): + func = decorator(*args, **kwds) + func = no_type_check(func) + return func + + return wrapped_decorator + + +def overload(func): + raise RuntimeError("Overloading is only supported in library stubs") + + +class _ProtocolMeta(GenericMeta): + """Internal metaclass for _Protocol. + + This exists so _Protocol classes can be generic without deriving + from Generic. + """ + + def __instancecheck__(self, obj): + raise TypeError("Protocols cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if not self._is_protocol: + # No structural checks since this isn't a protocol. + return NotImplemented + + if self is _Protocol: + # Every class is a subclass of the empty protocol. + return True + + # Find all attributes defined in the protocol. + attrs = self._get_protocol_attrs() + + for attr in attrs: + if not any(attr in d.__dict__ for d in cls.__mro__): + return False + return True + + def _get_protocol_attrs(self): + # Get all Protocol base classes. + protocol_bases = [] + for c in self.__mro__: + if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol': + protocol_bases.append(c) + + # Get attributes included in protocol. + attrs = set() + for base in protocol_bases: + for attr in base.__dict__.keys(): + # Include attributes not defined in any non-protocol bases. + for c in self.__mro__: + if (c is not base and attr in c.__dict__ and + not getattr(c, '_is_protocol', False)): + break + else: + if (not attr.startswith('_abc_') and + attr != '__abstractmethods__' and + attr != '_is_protocol' and + attr != '__dict__' and + attr != '__slots__' and + attr != '_get_protocol_attrs' and + attr != '__parameters__' and + attr != '__origin__' and + attr != '__module__'): + attrs.add(attr) + + return attrs + + +class _Protocol(metaclass=_ProtocolMeta): + """Internal base class for protocol classes. + + This implements a simple-minded structural isinstance check + (similar but more general than the one-offs in collections.abc + such as Hashable). + """ + + __slots__ = () + + _is_protocol = True + + +# Various ABCs mimicking those in collections.abc. +# A few are simply re-exported for completeness. + +Hashable = collections_abc.Hashable # Not generic. + + +class Iterable(Generic[T_co], extra=collections_abc.Iterable): + __slots__ = () + + +class Iterator(Iterable[T_co], extra=collections_abc.Iterator): + __slots__ = () + + +class SupportsInt(_Protocol): + __slots__ = () + + @abstractmethod + def __int__(self) -> int: + pass + + +class SupportsFloat(_Protocol): + __slots__ = () + + @abstractmethod + def __float__(self) -> float: + pass + + +class SupportsComplex(_Protocol): + __slots__ = () + + @abstractmethod + def __complex__(self) -> complex: + pass + + +class SupportsBytes(_Protocol): + __slots__ = () + + @abstractmethod + def __bytes__(self) -> bytes: + pass + + +class SupportsAbs(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __abs__(self) -> T_co: + pass + + +class SupportsRound(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __round__(self, ndigits: int = 0) -> T_co: + pass + + +class Reversible(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __reversed__(self) -> 'Iterator[T_co]': + pass + + +Sized = collections_abc.Sized # Not generic. + + +class Container(Generic[T_co], extra=collections_abc.Container): + __slots__ = () + + +# Callable was defined earlier. + + +class AbstractSet(Sized, Iterable[T_co], Container[T_co], + extra=collections_abc.Set): + pass + + +class MutableSet(AbstractSet[T], extra=collections_abc.MutableSet): + pass + + +# NOTE: Only the value type is covariant. +class Mapping(Sized, Iterable[KT], Container[KT], Generic[VT_co], + extra=collections_abc.Mapping): + pass + + +class MutableMapping(Mapping[KT, VT], extra=collections_abc.MutableMapping): + pass + + +class Sequence(Sized, Iterable[T_co], Container[T_co], + extra=collections_abc.Sequence): + pass + + +class MutableSequence(Sequence[T], extra=collections_abc.MutableSequence): + pass + + +class ByteString(Sequence[int], extra=collections_abc.ByteString): + pass + + +ByteString.register(type(memoryview(b''))) + + +class List(list, MutableSequence[T]): + + def __new__(cls, *args, **kwds): + if _geqv(cls, List): + raise TypeError("Type List cannot be instantiated; " + "use list() instead") + return list.__new__(cls, *args, **kwds) + + +class Set(set, MutableSet[T]): + + def __new__(cls, *args, **kwds): + if _geqv(cls, Set): + raise TypeError("Type Set cannot be instantiated; " + "use set() instead") + return set.__new__(cls, *args, **kwds) + + +class _FrozenSetMeta(GenericMeta): + """This metaclass ensures set is not a subclass of FrozenSet. + + Without this metaclass, set would be considered a subclass of + FrozenSet, because FrozenSet.__extra__ is collections.abc.Set, and + set is a subclass of that. + """ + + def __subclasscheck__(self, cls): + if issubclass(cls, Set): + return False + return super().__subclasscheck__(cls) + + +class FrozenSet(frozenset, AbstractSet[T_co], metaclass=_FrozenSetMeta): + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, FrozenSet): + raise TypeError("Type FrozenSet cannot be instantiated; " + "use frozenset() instead") + return frozenset.__new__(cls, *args, **kwds) + + +class MappingView(Sized, Iterable[T_co], extra=collections_abc.MappingView): + pass + + +class KeysView(MappingView[KT], AbstractSet[KT], + extra=collections_abc.KeysView): + pass + + +# TODO: Enable Set[Tuple[KT, VT_co]] instead of Generic[KT, VT_co]. +class ItemsView(MappingView, Generic[KT, VT_co], + extra=collections_abc.ItemsView): + pass + + +class ValuesView(MappingView[VT_co], extra=collections_abc.ValuesView): + pass + + +class Dict(dict, MutableMapping[KT, VT]): + + def __new__(cls, *args, **kwds): + if _geqv(cls, Dict): + raise TypeError("Type Dict cannot be instantiated; " + "use dict() instead") + return dict.__new__(cls, *args, **kwds) + + +# Determine what base class to use for Generator. +if hasattr(collections_abc, 'Generator'): + # Sufficiently recent versions of 3.5 have a Generator ABC. + _G_base = collections_abc.Generator +else: + # Fall back on the exact type. + _G_base = types.GeneratorType + + +class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co], + extra=_G_base): + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Generator): + raise TypeError("Type Generator cannot be instantiated; " + "create a subclass instead") + return super().__new__(cls, *args, **kwds) + + +def NamedTuple(typename, fields): + """Typed version of namedtuple. + + Usage:: + + Employee = typing.NamedTuple('Employee', [('name', str), 'id', int)]) + + This is equivalent to:: + + Employee = collections.namedtuple('Employee', ['name', 'id']) + + The resulting class has one extra attribute: _field_types, + giving a dict mapping field names to types. (The field names + are in the _fields attribute, which is part of the namedtuple + API.) + """ + fields = [(n, t) for n, t in fields] + cls = collections.namedtuple(typename, [n for n, t in fields]) + cls._field_types = dict(fields) + # Set the module to the caller's module (otherwise it'd be 'typing'). + try: + cls.__module__ = sys._getframe(1).f_globals.get('__name__', '__main__') + except (AttributeError, ValueError): + pass + return cls + + +class IO(Generic[AnyStr]): + """Generic base class for TextIO and BinaryIO. + + This is an abstract, generic version of the return of open(). + + NOTE: This does not distinguish between the different possible + classes (text vs. binary, read vs. write vs. read/write, + append-only, unbuffered). The TextIO and BinaryIO subclasses + below capture the distinctions between text vs. binary, which is + pervasive in the interface; however we currently do not offer a + way to track the other distinctions in the type system. + """ + + __slots__ = () + + @abstractproperty + def mode(self) -> str: + pass + + @abstractproperty + def name(self) -> str: + pass + + @abstractmethod + def close(self) -> None: + pass + + @abstractmethod + def closed(self) -> bool: + pass + + @abstractmethod + def fileno(self) -> int: + pass + + @abstractmethod + def flush(self) -> None: + pass + + @abstractmethod + def isatty(self) -> bool: + pass + + @abstractmethod + def read(self, n: int = -1) -> AnyStr: + pass + + @abstractmethod + def readable(self) -> bool: + pass + + @abstractmethod + def readline(self, limit: int = -1) -> AnyStr: + pass + + @abstractmethod + def readlines(self, hint: int = -1) -> List[AnyStr]: + pass + + @abstractmethod + def seek(self, offset: int, whence: int = 0) -> int: + pass + + @abstractmethod + def seekable(self) -> bool: + pass + + @abstractmethod + def tell(self) -> int: + pass + + @abstractmethod + def truncate(self, size: int = None) -> int: + pass + + @abstractmethod + def writable(self) -> bool: + pass + + @abstractmethod + def write(self, s: AnyStr) -> int: + pass + + @abstractmethod + def writelines(self, lines: List[AnyStr]) -> None: + pass + + @abstractmethod + def __enter__(self) -> 'IO[AnyStr]': + pass + + @abstractmethod + def __exit__(self, type, value, traceback) -> None: + pass + + +class BinaryIO(IO[bytes]): + """Typed version of the return of open() in binary mode.""" + + __slots__ = () + + @abstractmethod + def write(self, s: Union[bytes, bytearray]) -> int: + pass + + @abstractmethod + def __enter__(self) -> 'BinaryIO': + pass + + +class TextIO(IO[str]): + """Typed version of the return of open() in text mode.""" + + __slots__ = () + + @abstractproperty + def buffer(self) -> BinaryIO: + pass + + @abstractproperty + def encoding(self) -> str: + pass + + @abstractproperty + def errors(self) -> str: + pass + + @abstractproperty + def line_buffering(self) -> bool: + pass + + @abstractproperty + def newlines(self) -> Any: + pass + + @abstractmethod + def __enter__(self) -> 'TextIO': + pass + + +class io: + """Wrapper namespace for IO generic classes.""" + + __all__ = ['IO', 'TextIO', 'BinaryIO'] + IO = IO + TextIO = TextIO + BinaryIO = BinaryIO + +io.__name__ = __name__ + '.io' +sys.modules[io.__name__] = io + + +Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')), + lambda p: p.pattern) +Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')), + lambda m: m.re.pattern) + + +class re: + """Wrapper namespace for re type aliases.""" + + __all__ = ['Pattern', 'Match'] + Pattern = Pattern + Match = Match + +re.__name__ = __name__ + '.re' +sys.modules[re.__name__] = re diff --git a/typing_extensions/test_data/python-3.5.2/_collections_abc.py b/typing_extensions/test_data/python-3.5.2/_collections_abc.py new file mode 100644 index 000000000..fc9c9f1cc --- /dev/null +++ b/typing_extensions/test_data/python-3.5.2/_collections_abc.py @@ -0,0 +1,939 @@ +# Copyright 2007 Google, Inc. All Rights Reserved. +# Licensed to PSF under a Contributor Agreement. + +"""Abstract Base Classes (ABCs) for collections, according to PEP 3119. + +Unit tests are in test_collections. +""" + +from abc import ABCMeta, abstractmethod +import sys + +__all__ = ["Awaitable", "Coroutine", "AsyncIterable", "AsyncIterator", + "Hashable", "Iterable", "Iterator", "Generator", + "Sized", "Container", "Callable", + "Set", "MutableSet", + "Mapping", "MutableMapping", + "MappingView", "KeysView", "ItemsView", "ValuesView", + "Sequence", "MutableSequence", + "ByteString", + ] + +# This module has been renamed from collections.abc to _collections_abc to +# speed up interpreter startup. Some of the types such as MutableMapping are +# required early but collections module imports a lot of other modules. +# See issue #19218 +__name__ = "collections.abc" + +# Private list of types that we want to register with the various ABCs +# so that they will pass tests like: +# it = iter(somebytearray) +# assert isinstance(it, Iterable) +# Note: in other implementations, these types many not be distinct +# and they make have their own implementation specific types that +# are not included on this list. +bytes_iterator = type(iter(b'')) +bytearray_iterator = type(iter(bytearray())) +#callable_iterator = ??? +dict_keyiterator = type(iter({}.keys())) +dict_valueiterator = type(iter({}.values())) +dict_itemiterator = type(iter({}.items())) +list_iterator = type(iter([])) +list_reverseiterator = type(iter(reversed([]))) +range_iterator = type(iter(range(0))) +set_iterator = type(iter(set())) +str_iterator = type(iter("")) +tuple_iterator = type(iter(())) +zip_iterator = type(iter(zip())) +## views ## +dict_keys = type({}.keys()) +dict_values = type({}.values()) +dict_items = type({}.items()) +## misc ## +mappingproxy = type(type.__dict__) +generator = type((lambda: (yield))()) +## coroutine ## +async def _coro(): pass +_coro = _coro() +coroutine = type(_coro) +_coro.close() # Prevent ResourceWarning +del _coro + + +### ONE-TRICK PONIES ### + +class Hashable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __hash__(self): + return 0 + + @classmethod + def __subclasshook__(cls, C): + if cls is Hashable: + for B in C.__mro__: + if "__hash__" in B.__dict__: + if B.__dict__["__hash__"]: + return True + break + return NotImplemented + + +class Awaitable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __await__(self): + yield + + @classmethod + def __subclasshook__(cls, C): + if cls is Awaitable: + for B in C.__mro__: + if "__await__" in B.__dict__: + if B.__dict__["__await__"]: + return True + break + return NotImplemented + + +class Coroutine(Awaitable): + + __slots__ = () + + @abstractmethod + def send(self, value): + """Send a value into the coroutine. + Return next yielded value or raise StopIteration. + """ + raise StopIteration + + @abstractmethod + def throw(self, typ, val=None, tb=None): + """Raise an exception in the coroutine. + Return next yielded value or raise StopIteration. + """ + if val is None: + if tb is None: + raise typ + val = typ() + if tb is not None: + val = val.with_traceback(tb) + raise val + + def close(self): + """Raise GeneratorExit inside coroutine. + """ + try: + self.throw(GeneratorExit) + except (GeneratorExit, StopIteration): + pass + else: + raise RuntimeError("coroutine ignored GeneratorExit") + + @classmethod + def __subclasshook__(cls, C): + if cls is Coroutine: + mro = C.__mro__ + for method in ('__await__', 'send', 'throw', 'close'): + for base in mro: + if method in base.__dict__: + break + else: + return NotImplemented + return True + return NotImplemented + + +Coroutine.register(coroutine) + + +class AsyncIterable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __aiter__(self): + return AsyncIterator() + + @classmethod + def __subclasshook__(cls, C): + if cls is AsyncIterable: + if any("__aiter__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class AsyncIterator(AsyncIterable): + + __slots__ = () + + @abstractmethod + async def __anext__(self): + """Return the next item or raise StopAsyncIteration when exhausted.""" + raise StopAsyncIteration + + def __aiter__(self): + return self + + @classmethod + def __subclasshook__(cls, C): + if cls is AsyncIterator: + if (any("__anext__" in B.__dict__ for B in C.__mro__) and + any("__aiter__" in B.__dict__ for B in C.__mro__)): + return True + return NotImplemented + + +class Iterable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __iter__(self): + while False: + yield None + + @classmethod + def __subclasshook__(cls, C): + if cls is Iterable: + if any("__iter__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class Iterator(Iterable): + + __slots__ = () + + @abstractmethod + def __next__(self): + 'Return the next item from the iterator. When exhausted, raise StopIteration' + raise StopIteration + + def __iter__(self): + return self + + @classmethod + def __subclasshook__(cls, C): + if cls is Iterator: + if (any("__next__" in B.__dict__ for B in C.__mro__) and + any("__iter__" in B.__dict__ for B in C.__mro__)): + return True + return NotImplemented + +Iterator.register(bytes_iterator) +Iterator.register(bytearray_iterator) +#Iterator.register(callable_iterator) +Iterator.register(dict_keyiterator) +Iterator.register(dict_valueiterator) +Iterator.register(dict_itemiterator) +Iterator.register(list_iterator) +Iterator.register(list_reverseiterator) +Iterator.register(range_iterator) +Iterator.register(set_iterator) +Iterator.register(str_iterator) +Iterator.register(tuple_iterator) +Iterator.register(zip_iterator) + + +class Generator(Iterator): + + __slots__ = () + + def __next__(self): + """Return the next item from the generator. + When exhausted, raise StopIteration. + """ + return self.send(None) + + @abstractmethod + def send(self, value): + """Send a value into the generator. + Return next yielded value or raise StopIteration. + """ + raise StopIteration + + @abstractmethod + def throw(self, typ, val=None, tb=None): + """Raise an exception in the generator. + Return next yielded value or raise StopIteration. + """ + if val is None: + if tb is None: + raise typ + val = typ() + if tb is not None: + val = val.with_traceback(tb) + raise val + + def close(self): + """Raise GeneratorExit inside generator. + """ + try: + self.throw(GeneratorExit) + except (GeneratorExit, StopIteration): + pass + else: + raise RuntimeError("generator ignored GeneratorExit") + + @classmethod + def __subclasshook__(cls, C): + if cls is Generator: + mro = C.__mro__ + for method in ('__iter__', '__next__', 'send', 'throw', 'close'): + for base in mro: + if method in base.__dict__: + break + else: + return NotImplemented + return True + return NotImplemented + + +Generator.register(generator) + + +class Sized(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __len__(self): + return 0 + + @classmethod + def __subclasshook__(cls, C): + if cls is Sized: + if any("__len__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class Container(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __contains__(self, x): + return False + + @classmethod + def __subclasshook__(cls, C): + if cls is Container: + if any("__contains__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class Callable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __call__(self, *args, **kwds): + return False + + @classmethod + def __subclasshook__(cls, C): + if cls is Callable: + if any("__call__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +### SETS ### + + +class Set(Sized, Iterable, Container): + + """A set is a finite, iterable container. + + This class provides concrete generic implementations of all + methods except for __contains__, __iter__ and __len__. + + To override the comparisons (presumably for speed, as the + semantics are fixed), redefine __le__ and __ge__, + then the other operations will automatically follow suit. + """ + + __slots__ = () + + def __le__(self, other): + if not isinstance(other, Set): + return NotImplemented + if len(self) > len(other): + return False + for elem in self: + if elem not in other: + return False + return True + + def __lt__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) < len(other) and self.__le__(other) + + def __gt__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) > len(other) and self.__ge__(other) + + def __ge__(self, other): + if not isinstance(other, Set): + return NotImplemented + if len(self) < len(other): + return False + for elem in other: + if elem not in self: + return False + return True + + def __eq__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) == len(other) and self.__le__(other) + + @classmethod + def _from_iterable(cls, it): + '''Construct an instance of the class from any iterable input. + + Must override this method if the class constructor signature + does not accept an iterable for an input. + ''' + return cls(it) + + def __and__(self, other): + if not isinstance(other, Iterable): + return NotImplemented + return self._from_iterable(value for value in other if value in self) + + __rand__ = __and__ + + def isdisjoint(self, other): + 'Return True if two sets have a null intersection.' + for value in other: + if value in self: + return False + return True + + def __or__(self, other): + if not isinstance(other, Iterable): + return NotImplemented + chain = (e for s in (self, other) for e in s) + return self._from_iterable(chain) + + __ror__ = __or__ + + def __sub__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return self._from_iterable(value for value in self + if value not in other) + + def __rsub__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return self._from_iterable(value for value in other + if value not in self) + + def __xor__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return (self - other) | (other - self) + + __rxor__ = __xor__ + + def _hash(self): + """Compute the hash value of a set. + + Note that we don't define __hash__: not all sets are hashable. + But if you define a hashable set type, its __hash__ should + call this function. + + This must be compatible __eq__. + + All sets ought to compare equal if they contain the same + elements, regardless of how they are implemented, and + regardless of the order of the elements; so there's not much + freedom for __eq__ or __hash__. We match the algorithm used + by the built-in frozenset type. + """ + MAX = sys.maxsize + MASK = 2 * MAX + 1 + n = len(self) + h = 1927868237 * (n + 1) + h &= MASK + for x in self: + hx = hash(x) + h ^= (hx ^ (hx << 16) ^ 89869747) * 3644798167 + h &= MASK + h = h * 69069 + 907133923 + h &= MASK + if h > MAX: + h -= MASK + 1 + if h == -1: + h = 590923713 + return h + +Set.register(frozenset) + + +class MutableSet(Set): + """A mutable set is a finite, iterable container. + + This class provides concrete generic implementations of all + methods except for __contains__, __iter__, __len__, + add(), and discard(). + + To override the comparisons (presumably for speed, as the + semantics are fixed), all you have to do is redefine __le__ and + then the other operations will automatically follow suit. + """ + + __slots__ = () + + @abstractmethod + def add(self, value): + """Add an element.""" + raise NotImplementedError + + @abstractmethod + def discard(self, value): + """Remove an element. Do not raise an exception if absent.""" + raise NotImplementedError + + def remove(self, value): + """Remove an element. If not a member, raise a KeyError.""" + if value not in self: + raise KeyError(value) + self.discard(value) + + def pop(self): + """Return the popped value. Raise KeyError if empty.""" + it = iter(self) + try: + value = next(it) + except StopIteration: + raise KeyError + self.discard(value) + return value + + def clear(self): + """This is slow (creates N new iterators!) but effective.""" + try: + while True: + self.pop() + except KeyError: + pass + + def __ior__(self, it): + for value in it: + self.add(value) + return self + + def __iand__(self, it): + for value in (self - it): + self.discard(value) + return self + + def __ixor__(self, it): + if it is self: + self.clear() + else: + if not isinstance(it, Set): + it = self._from_iterable(it) + for value in it: + if value in self: + self.discard(value) + else: + self.add(value) + return self + + def __isub__(self, it): + if it is self: + self.clear() + else: + for value in it: + self.discard(value) + return self + +MutableSet.register(set) + + +### MAPPINGS ### + + +class Mapping(Sized, Iterable, Container): + + __slots__ = () + + """A Mapping is a generic container for associating key/value + pairs. + + This class provides concrete generic implementations of all + methods except for __getitem__, __iter__, and __len__. + + """ + + @abstractmethod + def __getitem__(self, key): + raise KeyError + + def get(self, key, default=None): + 'D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.' + try: + return self[key] + except KeyError: + return default + + def __contains__(self, key): + try: + self[key] + except KeyError: + return False + else: + return True + + def keys(self): + "D.keys() -> a set-like object providing a view on D's keys" + return KeysView(self) + + def items(self): + "D.items() -> a set-like object providing a view on D's items" + return ItemsView(self) + + def values(self): + "D.values() -> an object providing a view on D's values" + return ValuesView(self) + + def __eq__(self, other): + if not isinstance(other, Mapping): + return NotImplemented + return dict(self.items()) == dict(other.items()) + +Mapping.register(mappingproxy) + + +class MappingView(Sized): + + __slots__ = '_mapping', + + def __init__(self, mapping): + self._mapping = mapping + + def __len__(self): + return len(self._mapping) + + def __repr__(self): + return '{0.__class__.__name__}({0._mapping!r})'.format(self) + + +class KeysView(MappingView, Set): + + __slots__ = () + + @classmethod + def _from_iterable(self, it): + return set(it) + + def __contains__(self, key): + return key in self._mapping + + def __iter__(self): + yield from self._mapping + +KeysView.register(dict_keys) + + +class ItemsView(MappingView, Set): + + __slots__ = () + + @classmethod + def _from_iterable(self, it): + return set(it) + + def __contains__(self, item): + key, value = item + try: + v = self._mapping[key] + except KeyError: + return False + else: + return v == value + + def __iter__(self): + for key in self._mapping: + yield (key, self._mapping[key]) + +ItemsView.register(dict_items) + + +class ValuesView(MappingView): + + __slots__ = () + + def __contains__(self, value): + for key in self._mapping: + if value == self._mapping[key]: + return True + return False + + def __iter__(self): + for key in self._mapping: + yield self._mapping[key] + +ValuesView.register(dict_values) + + +class MutableMapping(Mapping): + + __slots__ = () + + """A MutableMapping is a generic container for associating + key/value pairs. + + This class provides concrete generic implementations of all + methods except for __getitem__, __setitem__, __delitem__, + __iter__, and __len__. + + """ + + @abstractmethod + def __setitem__(self, key, value): + raise KeyError + + @abstractmethod + def __delitem__(self, key): + raise KeyError + + __marker = object() + + def pop(self, key, default=__marker): + '''D.pop(k[,d]) -> v, remove specified key and return the corresponding value. + If key is not found, d is returned if given, otherwise KeyError is raised. + ''' + try: + value = self[key] + except KeyError: + if default is self.__marker: + raise + return default + else: + del self[key] + return value + + def popitem(self): + '''D.popitem() -> (k, v), remove and return some (key, value) pair + as a 2-tuple; but raise KeyError if D is empty. + ''' + try: + key = next(iter(self)) + except StopIteration: + raise KeyError + value = self[key] + del self[key] + return key, value + + def clear(self): + 'D.clear() -> None. Remove all items from D.' + try: + while True: + self.popitem() + except KeyError: + pass + + def update(*args, **kwds): + ''' D.update([E, ]**F) -> None. Update D from mapping/iterable E and F. + If E present and has a .keys() method, does: for k in E: D[k] = E[k] + If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v + In either case, this is followed by: for k, v in F.items(): D[k] = v + ''' + if not args: + raise TypeError("descriptor 'update' of 'MutableMapping' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('update expected at most 1 arguments, got %d' % + len(args)) + if args: + other = args[0] + if isinstance(other, Mapping): + for key in other: + self[key] = other[key] + elif hasattr(other, "keys"): + for key in other.keys(): + self[key] = other[key] + else: + for key, value in other: + self[key] = value + for key, value in kwds.items(): + self[key] = value + + def setdefault(self, key, default=None): + 'D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D' + try: + return self[key] + except KeyError: + self[key] = default + return default + +MutableMapping.register(dict) + + +### SEQUENCES ### + + +class Sequence(Sized, Iterable, Container): + + """All the operations on a read-only sequence. + + Concrete subclasses must override __new__ or __init__, + __getitem__, and __len__. + """ + + __slots__ = () + + @abstractmethod + def __getitem__(self, index): + raise IndexError + + def __iter__(self): + i = 0 + try: + while True: + v = self[i] + yield v + i += 1 + except IndexError: + return + + def __contains__(self, value): + for v in self: + if v == value: + return True + return False + + def __reversed__(self): + for i in reversed(range(len(self))): + yield self[i] + + def index(self, value, start=0, stop=None): + '''S.index(value, [start, [stop]]) -> integer -- return first index of value. + Raises ValueError if the value is not present. + ''' + if start is not None and start < 0: + start = max(len(self) + start, 0) + if stop is not None and stop < 0: + stop += len(self) + + i = start + while stop is None or i < stop: + try: + if self[i] == value: + return i + except IndexError: + break + i += 1 + raise ValueError + + def count(self, value): + 'S.count(value) -> integer -- return number of occurrences of value' + return sum(1 for v in self if v == value) + +Sequence.register(tuple) +Sequence.register(str) +Sequence.register(range) +Sequence.register(memoryview) + + +class ByteString(Sequence): + + """This unifies bytes and bytearray. + + XXX Should add all their methods. + """ + + __slots__ = () + +ByteString.register(bytes) +ByteString.register(bytearray) + + +class MutableSequence(Sequence): + + __slots__ = () + + """All the operations on a read-write sequence. + + Concrete subclasses must provide __new__ or __init__, + __getitem__, __setitem__, __delitem__, __len__, and insert(). + + """ + + @abstractmethod + def __setitem__(self, index, value): + raise IndexError + + @abstractmethod + def __delitem__(self, index): + raise IndexError + + @abstractmethod + def insert(self, index, value): + 'S.insert(index, value) -- insert value before index' + raise IndexError + + def append(self, value): + 'S.append(value) -- append value to the end of the sequence' + self.insert(len(self), value) + + def clear(self): + 'S.clear() -> None -- remove all items from S' + try: + while True: + self.pop() + except IndexError: + pass + + def reverse(self): + 'S.reverse() -- reverse *IN PLACE*' + n = len(self) + for i in range(n//2): + self[i], self[n-i-1] = self[n-i-1], self[i] + + def extend(self, values): + 'S.extend(iterable) -- extend sequence by appending elements from the iterable' + for v in values: + self.append(v) + + def pop(self, index=-1): + '''S.pop([index]) -> item -- remove and return item at index (default last). + Raise IndexError if list is empty or index is out of range. + ''' + v = self[index] + del self[index] + return v + + def remove(self, value): + '''S.remove(value) -- remove first occurrence of value. + Raise ValueError if the value is not present. + ''' + del self[self.index(value)] + + def __iadd__(self, values): + self.extend(values) + return self + +MutableSequence.register(list) +MutableSequence.register(bytearray) # Multiply inheriting, see ByteString diff --git a/typing_extensions/test_data/python-3.5.2/abc.py b/typing_extensions/test_data/python-3.5.2/abc.py new file mode 100644 index 000000000..1cbf96a61 --- /dev/null +++ b/typing_extensions/test_data/python-3.5.2/abc.py @@ -0,0 +1,248 @@ +# Copyright 2007 Google, Inc. All Rights Reserved. +# Licensed to PSF under a Contributor Agreement. + +"""Abstract Base Classes (ABCs) according to PEP 3119.""" + +from _weakrefset import WeakSet + + +def abstractmethod(funcobj): + """A decorator indicating abstract methods. + + Requires that the metaclass is ABCMeta or derived from it. A + class that has a metaclass derived from ABCMeta cannot be + instantiated unless all of its abstract methods are overridden. + The abstract methods can be called using any of the normal + 'super' call mechanisms. + + Usage: + + class C(metaclass=ABCMeta): + @abstractmethod + def my_abstract_method(self, ...): + ... + """ + funcobj.__isabstractmethod__ = True + return funcobj + + +class abstractclassmethod(classmethod): + """ + A decorator indicating abstract classmethods. + + Similar to abstractmethod. + + Usage: + + class C(metaclass=ABCMeta): + @abstractclassmethod + def my_abstract_classmethod(cls, ...): + ... + + 'abstractclassmethod' is deprecated. Use 'classmethod' with + 'abstractmethod' instead. + """ + + __isabstractmethod__ = True + + def __init__(self, callable): + callable.__isabstractmethod__ = True + super().__init__(callable) + + +class abstractstaticmethod(staticmethod): + """ + A decorator indicating abstract staticmethods. + + Similar to abstractmethod. + + Usage: + + class C(metaclass=ABCMeta): + @abstractstaticmethod + def my_abstract_staticmethod(...): + ... + + 'abstractstaticmethod' is deprecated. Use 'staticmethod' with + 'abstractmethod' instead. + """ + + __isabstractmethod__ = True + + def __init__(self, callable): + callable.__isabstractmethod__ = True + super().__init__(callable) + + +class abstractproperty(property): + """ + A decorator indicating abstract properties. + + Requires that the metaclass is ABCMeta or derived from it. A + class that has a metaclass derived from ABCMeta cannot be + instantiated unless all of its abstract properties are overridden. + The abstract properties can be called using any of the normal + 'super' call mechanisms. + + Usage: + + class C(metaclass=ABCMeta): + @abstractproperty + def my_abstract_property(self): + ... + + This defines a read-only property; you can also define a read-write + abstract property using the 'long' form of property declaration: + + class C(metaclass=ABCMeta): + def getx(self): ... + def setx(self, value): ... + x = abstractproperty(getx, setx) + + 'abstractproperty' is deprecated. Use 'property' with 'abstractmethod' + instead. + """ + + __isabstractmethod__ = True + + +class ABCMeta(type): + + """Metaclass for defining Abstract Base Classes (ABCs). + + Use this metaclass to create an ABC. An ABC can be subclassed + directly, and then acts as a mix-in class. You can also register + unrelated concrete classes (even built-in classes) and unrelated + ABCs as 'virtual subclasses' -- these and their descendants will + be considered subclasses of the registering ABC by the built-in + issubclass() function, but the registering ABC won't show up in + their MRO (Method Resolution Order) nor will method + implementations defined by the registering ABC be callable (not + even via super()). + + """ + + # A global counter that is incremented each time a class is + # registered as a virtual subclass of anything. It forces the + # negative cache to be cleared before its next use. + # Note: this counter is private. Use `abc.get_cache_token()` for + # external code. + _abc_invalidation_counter = 0 + + def __new__(mcls, name, bases, namespace): + cls = super().__new__(mcls, name, bases, namespace) + # Compute set of abstract method names + abstracts = {name + for name, value in namespace.items() + if getattr(value, "__isabstractmethod__", False)} + for base in bases: + for name in getattr(base, "__abstractmethods__", set()): + value = getattr(cls, name, None) + if getattr(value, "__isabstractmethod__", False): + abstracts.add(name) + cls.__abstractmethods__ = frozenset(abstracts) + # Set up inheritance registry + cls._abc_registry = WeakSet() + cls._abc_cache = WeakSet() + cls._abc_negative_cache = WeakSet() + cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter + return cls + + def register(cls, subclass): + """Register a virtual subclass of an ABC. + + Returns the subclass, to allow usage as a class decorator. + """ + if not isinstance(subclass, type): + raise TypeError("Can only register classes") + if issubclass(subclass, cls): + return subclass # Already a subclass + # Subtle: test for cycles *after* testing for "already a subclass"; + # this means we allow X.register(X) and interpret it as a no-op. + if issubclass(cls, subclass): + # This would create a cycle, which is bad for the algorithm below + raise RuntimeError("Refusing to create an inheritance cycle") + cls._abc_registry.add(subclass) + ABCMeta._abc_invalidation_counter += 1 # Invalidate negative cache + return subclass + + def _dump_registry(cls, file=None): + """Debug helper to print the ABC registry.""" + print("Class: %s.%s" % (cls.__module__, cls.__qualname__), file=file) + print("Inv.counter: %s" % ABCMeta._abc_invalidation_counter, file=file) + for name in sorted(cls.__dict__.keys()): + if name.startswith("_abc_"): + value = getattr(cls, name) + print("%s: %r" % (name, value), file=file) + + def __instancecheck__(cls, instance): + """Override for isinstance(instance, cls).""" + # Inline the cache checking + subclass = instance.__class__ + if subclass in cls._abc_cache: + return True + subtype = type(instance) + if subtype is subclass: + if (cls._abc_negative_cache_version == + ABCMeta._abc_invalidation_counter and + subclass in cls._abc_negative_cache): + return False + # Fall back to the subclass check. + return cls.__subclasscheck__(subclass) + return any(cls.__subclasscheck__(c) for c in {subclass, subtype}) + + def __subclasscheck__(cls, subclass): + """Override for issubclass(subclass, cls).""" + # Check cache + if subclass in cls._abc_cache: + return True + # Check negative cache; may have to invalidate + if cls._abc_negative_cache_version < ABCMeta._abc_invalidation_counter: + # Invalidate the negative cache + cls._abc_negative_cache = WeakSet() + cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter + elif subclass in cls._abc_negative_cache: + return False + # Check the subclass hook + ok = cls.__subclasshook__(subclass) + if ok is not NotImplemented: + assert isinstance(ok, bool) + if ok: + cls._abc_cache.add(subclass) + else: + cls._abc_negative_cache.add(subclass) + return ok + # Check if it's a direct subclass + if cls in getattr(subclass, '__mro__', ()): + cls._abc_cache.add(subclass) + return True + # Check if it's a subclass of a registered class (recursive) + for rcls in cls._abc_registry: + if issubclass(subclass, rcls): + cls._abc_cache.add(subclass) + return True + # Check if it's a subclass of a subclass (recursive) + for scls in cls.__subclasses__(): + if issubclass(subclass, scls): + cls._abc_cache.add(subclass) + return True + # No dice; update negative cache + cls._abc_negative_cache.add(subclass) + return False + + +class ABC(metaclass=ABCMeta): + """Helper class that provides a standard way to create an ABC using + inheritance. + """ + pass + + +def get_cache_token(): + """Returns the current ABC cache token. + + The token is an opaque object (supporting equality testing) identifying the + current version of the ABC cache for virtual subclasses. The token changes + with every call to ``register()`` on any ABC. + """ + return ABCMeta._abc_invalidation_counter diff --git a/typing_extensions/test_data/python-3.5.2/collections/__init__.py b/typing_extensions/test_data/python-3.5.2/collections/__init__.py new file mode 100644 index 000000000..ebe8ee7a8 --- /dev/null +++ b/typing_extensions/test_data/python-3.5.2/collections/__init__.py @@ -0,0 +1,1239 @@ +'''This module implements specialized container datatypes providing +alternatives to Python's general purpose built-in containers, dict, +list, set, and tuple. + +* namedtuple factory function for creating tuple subclasses with named fields +* deque list-like container with fast appends and pops on either end +* ChainMap dict-like class for creating a single view of multiple mappings +* Counter dict subclass for counting hashable objects +* OrderedDict dict subclass that remembers the order entries were added +* defaultdict dict subclass that calls a factory function to supply missing values +* UserDict wrapper around dictionary objects for easier dict subclassing +* UserList wrapper around list objects for easier list subclassing +* UserString wrapper around string objects for easier string subclassing + +''' + +__all__ = ['deque', 'defaultdict', 'namedtuple', 'UserDict', 'UserList', + 'UserString', 'Counter', 'OrderedDict', 'ChainMap'] + +# For backwards compatibility, continue to make the collections ABCs +# available through the collections module. +from _collections_abc import * +import _collections_abc +__all__ += _collections_abc.__all__ + +from operator import itemgetter as _itemgetter, eq as _eq +from keyword import iskeyword as _iskeyword +import sys as _sys +import heapq as _heapq +from _weakref import proxy as _proxy +from itertools import repeat as _repeat, chain as _chain, starmap as _starmap +from reprlib import recursive_repr as _recursive_repr + +try: + from _collections import deque +except ImportError: + pass +else: + MutableSequence.register(deque) + +try: + from _collections import defaultdict +except ImportError: + pass + + +################################################################################ +### OrderedDict +################################################################################ + +class _OrderedDictKeysView(KeysView): + + def __reversed__(self): + yield from reversed(self._mapping) + +class _OrderedDictItemsView(ItemsView): + + def __reversed__(self): + for key in reversed(self._mapping): + yield (key, self._mapping[key]) + +class _OrderedDictValuesView(ValuesView): + + def __reversed__(self): + for key in reversed(self._mapping): + yield self._mapping[key] + +class _Link(object): + __slots__ = 'prev', 'next', 'key', '__weakref__' + +class OrderedDict(dict): + 'Dictionary that remembers insertion order' + # An inherited dict maps keys to values. + # The inherited dict provides __getitem__, __len__, __contains__, and get. + # The remaining methods are order-aware. + # Big-O running times for all methods are the same as regular dictionaries. + + # The internal self.__map dict maps keys to links in a doubly linked list. + # The circular doubly linked list starts and ends with a sentinel element. + # The sentinel element never gets deleted (this simplifies the algorithm). + # The sentinel is in self.__hardroot with a weakref proxy in self.__root. + # The prev links are weakref proxies (to prevent circular references). + # Individual links are kept alive by the hard reference in self.__map. + # Those hard references disappear when a key is deleted from an OrderedDict. + + def __init__(*args, **kwds): + '''Initialize an ordered dictionary. The signature is the same as + regular dictionaries, but keyword arguments are not recommended because + their insertion order is arbitrary. + + ''' + if not args: + raise TypeError("descriptor '__init__' of 'OrderedDict' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + try: + self.__root + except AttributeError: + self.__hardroot = _Link() + self.__root = root = _proxy(self.__hardroot) + root.prev = root.next = root + self.__map = {} + self.__update(*args, **kwds) + + def __setitem__(self, key, value, + dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link): + 'od.__setitem__(i, y) <==> od[i]=y' + # Setting a new item creates a new link at the end of the linked list, + # and the inherited dictionary is updated with the new key/value pair. + if key not in self: + self.__map[key] = link = Link() + root = self.__root + last = root.prev + link.prev, link.next, link.key = last, root, key + last.next = link + root.prev = proxy(link) + dict_setitem(self, key, value) + + def __delitem__(self, key, dict_delitem=dict.__delitem__): + 'od.__delitem__(y) <==> del od[y]' + # Deleting an existing item uses self.__map to find the link which gets + # removed by updating the links in the predecessor and successor nodes. + dict_delitem(self, key) + link = self.__map.pop(key) + link_prev = link.prev + link_next = link.next + link_prev.next = link_next + link_next.prev = link_prev + link.prev = None + link.next = None + + def __iter__(self): + 'od.__iter__() <==> iter(od)' + # Traverse the linked list in order. + root = self.__root + curr = root.next + while curr is not root: + yield curr.key + curr = curr.next + + def __reversed__(self): + 'od.__reversed__() <==> reversed(od)' + # Traverse the linked list in reverse order. + root = self.__root + curr = root.prev + while curr is not root: + yield curr.key + curr = curr.prev + + def clear(self): + 'od.clear() -> None. Remove all items from od.' + root = self.__root + root.prev = root.next = root + self.__map.clear() + dict.clear(self) + + def popitem(self, last=True): + '''od.popitem() -> (k, v), return and remove a (key, value) pair. + Pairs are returned in LIFO order if last is true or FIFO order if false. + + ''' + if not self: + raise KeyError('dictionary is empty') + root = self.__root + if last: + link = root.prev + link_prev = link.prev + link_prev.next = root + root.prev = link_prev + else: + link = root.next + link_next = link.next + root.next = link_next + link_next.prev = root + key = link.key + del self.__map[key] + value = dict.pop(self, key) + return key, value + + def move_to_end(self, key, last=True): + '''Move an existing element to the end (or beginning if last==False). + + Raises KeyError if the element does not exist. + When last=True, acts like a fast version of self[key]=self.pop(key). + + ''' + link = self.__map[key] + link_prev = link.prev + link_next = link.next + link_prev.next = link_next + link_next.prev = link_prev + root = self.__root + if last: + last = root.prev + link.prev = last + link.next = root + last.next = root.prev = link + else: + first = root.next + link.prev = root + link.next = first + root.next = first.prev = link + + def __sizeof__(self): + sizeof = _sys.getsizeof + n = len(self) + 1 # number of links including root + size = sizeof(self.__dict__) # instance dictionary + size += sizeof(self.__map) * 2 # internal dict and inherited dict + size += sizeof(self.__hardroot) * n # link objects + size += sizeof(self.__root) * n # proxy objects + return size + + update = __update = MutableMapping.update + + def keys(self): + "D.keys() -> a set-like object providing a view on D's keys" + return _OrderedDictKeysView(self) + + def items(self): + "D.items() -> a set-like object providing a view on D's items" + return _OrderedDictItemsView(self) + + def values(self): + "D.values() -> an object providing a view on D's values" + return _OrderedDictValuesView(self) + + __ne__ = MutableMapping.__ne__ + + __marker = object() + + def pop(self, key, default=__marker): + '''od.pop(k[,d]) -> v, remove specified key and return the corresponding + value. If key is not found, d is returned if given, otherwise KeyError + is raised. + + ''' + if key in self: + result = self[key] + del self[key] + return result + if default is self.__marker: + raise KeyError(key) + return default + + def setdefault(self, key, default=None): + 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od' + if key in self: + return self[key] + self[key] = default + return default + + @_recursive_repr() + def __repr__(self): + 'od.__repr__() <==> repr(od)' + if not self: + return '%s()' % (self.__class__.__name__,) + return '%s(%r)' % (self.__class__.__name__, list(self.items())) + + def __reduce__(self): + 'Return state information for pickling' + inst_dict = vars(self).copy() + for k in vars(OrderedDict()): + inst_dict.pop(k, None) + return self.__class__, (), inst_dict or None, None, iter(self.items()) + + def copy(self): + 'od.copy() -> a shallow copy of od' + return self.__class__(self) + + @classmethod + def fromkeys(cls, iterable, value=None): + '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S. + If not specified, the value defaults to None. + + ''' + self = cls() + for key in iterable: + self[key] = value + return self + + def __eq__(self, other): + '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive + while comparison to a regular mapping is order-insensitive. + + ''' + if isinstance(other, OrderedDict): + return dict.__eq__(self, other) and all(map(_eq, self, other)) + return dict.__eq__(self, other) + + +try: + from _collections import OrderedDict +except ImportError: + # Leave the pure Python version in place. + pass + + +################################################################################ +### namedtuple +################################################################################ + +_class_template = """\ +from builtins import property as _property, tuple as _tuple +from operator import itemgetter as _itemgetter +from collections import OrderedDict + +class {typename}(tuple): + '{typename}({arg_list})' + + __slots__ = () + + _fields = {field_names!r} + + def __new__(_cls, {arg_list}): + 'Create new instance of {typename}({arg_list})' + return _tuple.__new__(_cls, ({arg_list})) + + @classmethod + def _make(cls, iterable, new=tuple.__new__, len=len): + 'Make a new {typename} object from a sequence or iterable' + result = new(cls, iterable) + if len(result) != {num_fields:d}: + raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result)) + return result + + def _replace(_self, **kwds): + 'Return a new {typename} object replacing specified fields with new values' + result = _self._make(map(kwds.pop, {field_names!r}, _self)) + if kwds: + raise ValueError('Got unexpected field names: %r' % list(kwds)) + return result + + def __repr__(self): + 'Return a nicely formatted representation string' + return self.__class__.__name__ + '({repr_fmt})' % self + + def _asdict(self): + 'Return a new OrderedDict which maps field names to their values.' + return OrderedDict(zip(self._fields, self)) + + def __getnewargs__(self): + 'Return self as a plain tuple. Used by copy and pickle.' + return tuple(self) + +{field_defs} +""" + +_repr_template = '{name}=%r' + +_field_template = '''\ + {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}') +''' + +def namedtuple(typename, field_names, verbose=False, rename=False): + """Returns a new subclass of tuple with named fields. + + >>> Point = namedtuple('Point', ['x', 'y']) + >>> Point.__doc__ # docstring for the new class + 'Point(x, y)' + >>> p = Point(11, y=22) # instantiate with positional args or keywords + >>> p[0] + p[1] # indexable like a plain tuple + 33 + >>> x, y = p # unpack like a regular tuple + >>> x, y + (11, 22) + >>> p.x + p.y # fields also accessible by name + 33 + >>> d = p._asdict() # convert to a dictionary + >>> d['x'] + 11 + >>> Point(**d) # convert from a dictionary + Point(x=11, y=22) + >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields + Point(x=100, y=22) + + """ + + # Validate the field names. At the user's option, either generate an error + # message or automatically replace the field name with a valid name. + if isinstance(field_names, str): + field_names = field_names.replace(',', ' ').split() + field_names = list(map(str, field_names)) + typename = str(typename) + if rename: + seen = set() + for index, name in enumerate(field_names): + if (not name.isidentifier() + or _iskeyword(name) + or name.startswith('_') + or name in seen): + field_names[index] = '_%d' % index + seen.add(name) + for name in [typename] + field_names: + if type(name) != str: + raise TypeError('Type names and field names must be strings') + if not name.isidentifier(): + raise ValueError('Type names and field names must be valid ' + 'identifiers: %r' % name) + if _iskeyword(name): + raise ValueError('Type names and field names cannot be a ' + 'keyword: %r' % name) + seen = set() + for name in field_names: + if name.startswith('_') and not rename: + raise ValueError('Field names cannot start with an underscore: ' + '%r' % name) + if name in seen: + raise ValueError('Encountered duplicate field name: %r' % name) + seen.add(name) + + # Fill-in the class template + class_definition = _class_template.format( + typename = typename, + field_names = tuple(field_names), + num_fields = len(field_names), + arg_list = repr(tuple(field_names)).replace("'", "")[1:-1], + repr_fmt = ', '.join(_repr_template.format(name=name) + for name in field_names), + field_defs = '\n'.join(_field_template.format(index=index, name=name) + for index, name in enumerate(field_names)) + ) + + # Execute the template string in a temporary namespace and support + # tracing utilities by setting a value for frame.f_globals['__name__'] + namespace = dict(__name__='namedtuple_%s' % typename) + exec(class_definition, namespace) + result = namespace[typename] + result._source = class_definition + if verbose: + print(result._source) + + # For pickling to work, the __module__ variable needs to be set to the frame + # where the named tuple is created. Bypass this step in environments where + # sys._getframe is not defined (Jython for example) or sys._getframe is not + # defined for arguments greater than 0 (IronPython). + try: + result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__') + except (AttributeError, ValueError): + pass + + return result + + +######################################################################## +### Counter +######################################################################## + +def _count_elements(mapping, iterable): + 'Tally elements from the iterable.' + mapping_get = mapping.get + for elem in iterable: + mapping[elem] = mapping_get(elem, 0) + 1 + +try: # Load C helper function if available + from _collections import _count_elements +except ImportError: + pass + +class Counter(dict): + '''Dict subclass for counting hashable items. Sometimes called a bag + or multiset. Elements are stored as dictionary keys and their counts + are stored as dictionary values. + + >>> c = Counter('abcdeabcdabcaba') # count elements from a string + + >>> c.most_common(3) # three most common elements + [('a', 5), ('b', 4), ('c', 3)] + >>> sorted(c) # list all unique elements + ['a', 'b', 'c', 'd', 'e'] + >>> ''.join(sorted(c.elements())) # list elements with repetitions + 'aaaaabbbbcccdde' + >>> sum(c.values()) # total of all counts + 15 + + >>> c['a'] # count of letter 'a' + 5 + >>> for elem in 'shazam': # update counts from an iterable + ... c[elem] += 1 # by adding 1 to each element's count + >>> c['a'] # now there are seven 'a' + 7 + >>> del c['b'] # remove all 'b' + >>> c['b'] # now there are zero 'b' + 0 + + >>> d = Counter('simsalabim') # make another counter + >>> c.update(d) # add in the second counter + >>> c['a'] # now there are nine 'a' + 9 + + >>> c.clear() # empty the counter + >>> c + Counter() + + Note: If a count is set to zero or reduced to zero, it will remain + in the counter until the entry is deleted or the counter is cleared: + + >>> c = Counter('aaabbc') + >>> c['b'] -= 2 # reduce the count of 'b' by two + >>> c.most_common() # 'b' is still in, but its count is zero + [('a', 3), ('c', 1), ('b', 0)] + + ''' + # References: + # http://en.wikipedia.org/wiki/Multiset + # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html + # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm + # http://code.activestate.com/recipes/259174/ + # Knuth, TAOCP Vol. II section 4.6.3 + + def __init__(*args, **kwds): + '''Create a new, empty Counter object. And if given, count elements + from an input iterable. Or, initialize the count from another mapping + of elements to their counts. + + >>> c = Counter() # a new, empty counter + >>> c = Counter('gallahad') # a new counter from an iterable + >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping + >>> c = Counter(a=4, b=2) # a new counter from keyword args + + ''' + if not args: + raise TypeError("descriptor '__init__' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + super(Counter, self).__init__() + self.update(*args, **kwds) + + def __missing__(self, key): + 'The count of elements not in the Counter is zero.' + # Needed so that self[missing_item] does not raise KeyError + return 0 + + def most_common(self, n=None): + '''List the n most common elements and their counts from the most + common to the least. If n is None, then list all element counts. + + >>> Counter('abcdeabcdabcaba').most_common(3) + [('a', 5), ('b', 4), ('c', 3)] + + ''' + # Emulate Bag.sortedByCount from Smalltalk + if n is None: + return sorted(self.items(), key=_itemgetter(1), reverse=True) + return _heapq.nlargest(n, self.items(), key=_itemgetter(1)) + + def elements(self): + '''Iterator over elements repeating each as many times as its count. + + >>> c = Counter('ABCABC') + >>> sorted(c.elements()) + ['A', 'A', 'B', 'B', 'C', 'C'] + + # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1 + >>> prime_factors = Counter({2: 2, 3: 3, 17: 1}) + >>> product = 1 + >>> for factor in prime_factors.elements(): # loop over factors + ... product *= factor # and multiply them + >>> product + 1836 + + Note, if an element's count has been set to zero or is a negative + number, elements() will ignore it. + + ''' + # Emulate Bag.do from Smalltalk and Multiset.begin from C++. + return _chain.from_iterable(_starmap(_repeat, self.items())) + + # Override dict methods where necessary + + @classmethod + def fromkeys(cls, iterable, v=None): + # There is no equivalent method for counters because setting v=1 + # means that no element can have a count greater than one. + raise NotImplementedError( + 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') + + def update(*args, **kwds): + '''Like dict.update() but add counts instead of replacing them. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.update('witch') # add elements from another iterable + >>> d = Counter('watch') + >>> c.update(d) # add elements from another counter + >>> c['h'] # four 'h' in which, witch, and watch + 4 + + ''' + # The regular dict.update() operation makes no sense here because the + # replace behavior results in the some of original untouched counts + # being mixed-in with all of the other counts for a mismash that + # doesn't have a straight-forward interpretation in most counting + # contexts. Instead, we implement straight-addition. Both the inputs + # and outputs are allowed to contain zero and negative counts. + + if not args: + raise TypeError("descriptor 'update' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + iterable = args[0] if args else None + if iterable is not None: + if isinstance(iterable, Mapping): + if self: + self_get = self.get + for elem, count in iterable.items(): + self[elem] = count + self_get(elem, 0) + else: + super(Counter, self).update(iterable) # fast path when counter is empty + else: + _count_elements(self, iterable) + if kwds: + self.update(kwds) + + def subtract(*args, **kwds): + '''Like dict.update() but subtracts counts instead of replacing them. + Counts can be reduced below zero. Both the inputs and outputs are + allowed to contain zero and negative counts. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.subtract('witch') # subtract elements from another iterable + >>> c.subtract(Counter('watch')) # subtract elements from another counter + >>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch + 0 + >>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch + -1 + + ''' + if not args: + raise TypeError("descriptor 'subtract' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + iterable = args[0] if args else None + if iterable is not None: + self_get = self.get + if isinstance(iterable, Mapping): + for elem, count in iterable.items(): + self[elem] = self_get(elem, 0) - count + else: + for elem in iterable: + self[elem] = self_get(elem, 0) - 1 + if kwds: + self.subtract(kwds) + + def copy(self): + 'Return a shallow copy.' + return self.__class__(self) + + def __reduce__(self): + return self.__class__, (dict(self),) + + def __delitem__(self, elem): + 'Like dict.__delitem__() but does not raise KeyError for missing values.' + if elem in self: + super().__delitem__(elem) + + def __repr__(self): + if not self: + return '%s()' % self.__class__.__name__ + try: + items = ', '.join(map('%r: %r'.__mod__, self.most_common())) + return '%s({%s})' % (self.__class__.__name__, items) + except TypeError: + # handle case where values are not orderable + return '{0}({1!r})'.format(self.__class__.__name__, dict(self)) + + # Multiset-style mathematical operations discussed in: + # Knuth TAOCP Volume II section 4.6.3 exercise 19 + # and at http://en.wikipedia.org/wiki/Multiset + # + # Outputs guaranteed to only include positive counts. + # + # To strip negative and zero counts, add-in an empty counter: + # c += Counter() + + def __add__(self, other): + '''Add counts from two counters. + + >>> Counter('abbb') + Counter('bcc') + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count + other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __sub__(self, other): + ''' Subtract count, but keep only results with positive counts. + + >>> Counter('abbbc') - Counter('bccd') + Counter({'b': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count - other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count < 0: + result[elem] = 0 - count + return result + + def __or__(self, other): + '''Union is the maximum of value in either of the input counters. + + >>> Counter('abbb') | Counter('bcc') + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = other_count if count < other_count else count + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __and__(self, other): + ''' Intersection is the minimum of corresponding counts. + + >>> Counter('abbb') & Counter('bcc') + Counter({'b': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = count if count < other_count else other_count + if newcount > 0: + result[elem] = newcount + return result + + def __pos__(self): + 'Adds an empty counter, effectively stripping negative and zero counts' + result = Counter() + for elem, count in self.items(): + if count > 0: + result[elem] = count + return result + + def __neg__(self): + '''Subtracts from an empty counter. Strips positive and zero counts, + and flips the sign on negative counts. + + ''' + result = Counter() + for elem, count in self.items(): + if count < 0: + result[elem] = 0 - count + return result + + def _keep_positive(self): + '''Internal method to strip elements with a negative or zero count''' + nonpositive = [elem for elem, count in self.items() if not count > 0] + for elem in nonpositive: + del self[elem] + return self + + def __iadd__(self, other): + '''Inplace add from another counter, keeping only positive counts. + + >>> c = Counter('abbb') + >>> c += Counter('bcc') + >>> c + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + for elem, count in other.items(): + self[elem] += count + return self._keep_positive() + + def __isub__(self, other): + '''Inplace subtract counter, but keep only results with positive counts. + + >>> c = Counter('abbbc') + >>> c -= Counter('bccd') + >>> c + Counter({'b': 2, 'a': 1}) + + ''' + for elem, count in other.items(): + self[elem] -= count + return self._keep_positive() + + def __ior__(self, other): + '''Inplace union is the maximum of value from either counter. + + >>> c = Counter('abbb') + >>> c |= Counter('bcc') + >>> c + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + for elem, other_count in other.items(): + count = self[elem] + if other_count > count: + self[elem] = other_count + return self._keep_positive() + + def __iand__(self, other): + '''Inplace intersection is the minimum of corresponding counts. + + >>> c = Counter('abbb') + >>> c &= Counter('bcc') + >>> c + Counter({'b': 1}) + + ''' + for elem, count in self.items(): + other_count = other[elem] + if other_count < count: + self[elem] = other_count + return self._keep_positive() + + +######################################################################## +### ChainMap (helper for configparser and string.Template) +######################################################################## + +class ChainMap(MutableMapping): + ''' A ChainMap groups multiple dicts (or other mappings) together + to create a single, updateable view. + + The underlying mappings are stored in a list. That list is public and can + be accessed or updated using the *maps* attribute. There is no other + state. + + Lookups search the underlying mappings successively until a key is found. + In contrast, writes, updates, and deletions only operate on the first + mapping. + + ''' + + def __init__(self, *maps): + '''Initialize a ChainMap by setting *maps* to the given mappings. + If no mappings are provided, a single empty dictionary is used. + + ''' + self.maps = list(maps) or [{}] # always at least one map + + def __missing__(self, key): + raise KeyError(key) + + def __getitem__(self, key): + for mapping in self.maps: + try: + return mapping[key] # can't use 'key in mapping' with defaultdict + except KeyError: + pass + return self.__missing__(key) # support subclasses that define __missing__ + + def get(self, key, default=None): + return self[key] if key in self else default + + def __len__(self): + return len(set().union(*self.maps)) # reuses stored hash values if possible + + def __iter__(self): + return iter(set().union(*self.maps)) + + def __contains__(self, key): + return any(key in m for m in self.maps) + + def __bool__(self): + return any(self.maps) + + @_recursive_repr() + def __repr__(self): + return '{0.__class__.__name__}({1})'.format( + self, ', '.join(map(repr, self.maps))) + + @classmethod + def fromkeys(cls, iterable, *args): + 'Create a ChainMap with a single dict created from the iterable.' + return cls(dict.fromkeys(iterable, *args)) + + def copy(self): + 'New ChainMap or subclass with a new copy of maps[0] and refs to maps[1:]' + return self.__class__(self.maps[0].copy(), *self.maps[1:]) + + __copy__ = copy + + def new_child(self, m=None): # like Django's Context.push() + '''New ChainMap with a new map followed by all previous maps. + If no map is provided, an empty dict is used. + ''' + if m is None: + m = {} + return self.__class__(m, *self.maps) + + @property + def parents(self): # like Django's Context.pop() + 'New ChainMap from maps[1:].' + return self.__class__(*self.maps[1:]) + + def __setitem__(self, key, value): + self.maps[0][key] = value + + def __delitem__(self, key): + try: + del self.maps[0][key] + except KeyError: + raise KeyError('Key not found in the first mapping: {!r}'.format(key)) + + def popitem(self): + 'Remove and return an item pair from maps[0]. Raise KeyError is maps[0] is empty.' + try: + return self.maps[0].popitem() + except KeyError: + raise KeyError('No keys found in the first mapping.') + + def pop(self, key, *args): + 'Remove *key* from maps[0] and return its value. Raise KeyError if *key* not in maps[0].' + try: + return self.maps[0].pop(key, *args) + except KeyError: + raise KeyError('Key not found in the first mapping: {!r}'.format(key)) + + def clear(self): + 'Clear maps[0], leaving maps[1:] intact.' + self.maps[0].clear() + + +################################################################################ +### UserDict +################################################################################ + +class UserDict(MutableMapping): + + # Start by filling-out the abstract methods + def __init__(*args, **kwargs): + if not args: + raise TypeError("descriptor '__init__' of 'UserDict' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + if args: + dict = args[0] + elif 'dict' in kwargs: + dict = kwargs.pop('dict') + import warnings + warnings.warn("Passing 'dict' as keyword argument is deprecated", + PendingDeprecationWarning, stacklevel=2) + else: + dict = None + self.data = {} + if dict is not None: + self.update(dict) + if len(kwargs): + self.update(kwargs) + def __len__(self): return len(self.data) + def __getitem__(self, key): + if key in self.data: + return self.data[key] + if hasattr(self.__class__, "__missing__"): + return self.__class__.__missing__(self, key) + raise KeyError(key) + def __setitem__(self, key, item): self.data[key] = item + def __delitem__(self, key): del self.data[key] + def __iter__(self): + return iter(self.data) + + # Modify __contains__ to work correctly when __missing__ is present + def __contains__(self, key): + return key in self.data + + # Now, add the methods in dicts but not in MutableMapping + def __repr__(self): return repr(self.data) + def copy(self): + if self.__class__ is UserDict: + return UserDict(self.data.copy()) + import copy + data = self.data + try: + self.data = {} + c = copy.copy(self) + finally: + self.data = data + c.update(self) + return c + @classmethod + def fromkeys(cls, iterable, value=None): + d = cls() + for key in iterable: + d[key] = value + return d + + + +################################################################################ +### UserList +################################################################################ + +class UserList(MutableSequence): + """A more or less complete user-defined wrapper around list objects.""" + def __init__(self, initlist=None): + self.data = [] + if initlist is not None: + # XXX should this accept an arbitrary sequence? + if type(initlist) == type(self.data): + self.data[:] = initlist + elif isinstance(initlist, UserList): + self.data[:] = initlist.data[:] + else: + self.data = list(initlist) + def __repr__(self): return repr(self.data) + def __lt__(self, other): return self.data < self.__cast(other) + def __le__(self, other): return self.data <= self.__cast(other) + def __eq__(self, other): return self.data == self.__cast(other) + def __gt__(self, other): return self.data > self.__cast(other) + def __ge__(self, other): return self.data >= self.__cast(other) + def __cast(self, other): + return other.data if isinstance(other, UserList) else other + def __contains__(self, item): return item in self.data + def __len__(self): return len(self.data) + def __getitem__(self, i): return self.data[i] + def __setitem__(self, i, item): self.data[i] = item + def __delitem__(self, i): del self.data[i] + def __add__(self, other): + if isinstance(other, UserList): + return self.__class__(self.data + other.data) + elif isinstance(other, type(self.data)): + return self.__class__(self.data + other) + return self.__class__(self.data + list(other)) + def __radd__(self, other): + if isinstance(other, UserList): + return self.__class__(other.data + self.data) + elif isinstance(other, type(self.data)): + return self.__class__(other + self.data) + return self.__class__(list(other) + self.data) + def __iadd__(self, other): + if isinstance(other, UserList): + self.data += other.data + elif isinstance(other, type(self.data)): + self.data += other + else: + self.data += list(other) + return self + def __mul__(self, n): + return self.__class__(self.data*n) + __rmul__ = __mul__ + def __imul__(self, n): + self.data *= n + return self + def append(self, item): self.data.append(item) + def insert(self, i, item): self.data.insert(i, item) + def pop(self, i=-1): return self.data.pop(i) + def remove(self, item): self.data.remove(item) + def clear(self): self.data.clear() + def copy(self): return self.__class__(self) + def count(self, item): return self.data.count(item) + def index(self, item, *args): return self.data.index(item, *args) + def reverse(self): self.data.reverse() + def sort(self, *args, **kwds): self.data.sort(*args, **kwds) + def extend(self, other): + if isinstance(other, UserList): + self.data.extend(other.data) + else: + self.data.extend(other) + + + +################################################################################ +### UserString +################################################################################ + +class UserString(Sequence): + def __init__(self, seq): + if isinstance(seq, str): + self.data = seq + elif isinstance(seq, UserString): + self.data = seq.data[:] + else: + self.data = str(seq) + def __str__(self): return str(self.data) + def __repr__(self): return repr(self.data) + def __int__(self): return int(self.data) + def __float__(self): return float(self.data) + def __complex__(self): return complex(self.data) + def __hash__(self): return hash(self.data) + def __getnewargs__(self): + return (self.data[:],) + + def __eq__(self, string): + if isinstance(string, UserString): + return self.data == string.data + return self.data == string + def __lt__(self, string): + if isinstance(string, UserString): + return self.data < string.data + return self.data < string + def __le__(self, string): + if isinstance(string, UserString): + return self.data <= string.data + return self.data <= string + def __gt__(self, string): + if isinstance(string, UserString): + return self.data > string.data + return self.data > string + def __ge__(self, string): + if isinstance(string, UserString): + return self.data >= string.data + return self.data >= string + + def __contains__(self, char): + if isinstance(char, UserString): + char = char.data + return char in self.data + + def __len__(self): return len(self.data) + def __getitem__(self, index): return self.__class__(self.data[index]) + def __add__(self, other): + if isinstance(other, UserString): + return self.__class__(self.data + other.data) + elif isinstance(other, str): + return self.__class__(self.data + other) + return self.__class__(self.data + str(other)) + def __radd__(self, other): + if isinstance(other, str): + return self.__class__(other + self.data) + return self.__class__(str(other) + self.data) + def __mul__(self, n): + return self.__class__(self.data*n) + __rmul__ = __mul__ + def __mod__(self, args): + return self.__class__(self.data % args) + def __rmod__(self, format): + return self.__class__(format % args) + + # the following methods are defined in alphabetical order: + def capitalize(self): return self.__class__(self.data.capitalize()) + def casefold(self): + return self.__class__(self.data.casefold()) + def center(self, width, *args): + return self.__class__(self.data.center(width, *args)) + def count(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.count(sub, start, end) + def encode(self, encoding=None, errors=None): # XXX improve this? + if encoding: + if errors: + return self.__class__(self.data.encode(encoding, errors)) + return self.__class__(self.data.encode(encoding)) + return self.__class__(self.data.encode()) + def endswith(self, suffix, start=0, end=_sys.maxsize): + return self.data.endswith(suffix, start, end) + def expandtabs(self, tabsize=8): + return self.__class__(self.data.expandtabs(tabsize)) + def find(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.find(sub, start, end) + def format(self, *args, **kwds): + return self.data.format(*args, **kwds) + def format_map(self, mapping): + return self.data.format_map(mapping) + def index(self, sub, start=0, end=_sys.maxsize): + return self.data.index(sub, start, end) + def isalpha(self): return self.data.isalpha() + def isalnum(self): return self.data.isalnum() + def isdecimal(self): return self.data.isdecimal() + def isdigit(self): return self.data.isdigit() + def isidentifier(self): return self.data.isidentifier() + def islower(self): return self.data.islower() + def isnumeric(self): return self.data.isnumeric() + def isprintable(self): return self.data.isprintable() + def isspace(self): return self.data.isspace() + def istitle(self): return self.data.istitle() + def isupper(self): return self.data.isupper() + def join(self, seq): return self.data.join(seq) + def ljust(self, width, *args): + return self.__class__(self.data.ljust(width, *args)) + def lower(self): return self.__class__(self.data.lower()) + def lstrip(self, chars=None): return self.__class__(self.data.lstrip(chars)) + maketrans = str.maketrans + def partition(self, sep): + return self.data.partition(sep) + def replace(self, old, new, maxsplit=-1): + if isinstance(old, UserString): + old = old.data + if isinstance(new, UserString): + new = new.data + return self.__class__(self.data.replace(old, new, maxsplit)) + def rfind(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.rfind(sub, start, end) + def rindex(self, sub, start=0, end=_sys.maxsize): + return self.data.rindex(sub, start, end) + def rjust(self, width, *args): + return self.__class__(self.data.rjust(width, *args)) + def rpartition(self, sep): + return self.data.rpartition(sep) + def rstrip(self, chars=None): + return self.__class__(self.data.rstrip(chars)) + def split(self, sep=None, maxsplit=-1): + return self.data.split(sep, maxsplit) + def rsplit(self, sep=None, maxsplit=-1): + return self.data.rsplit(sep, maxsplit) + def splitlines(self, keepends=False): return self.data.splitlines(keepends) + def startswith(self, prefix, start=0, end=_sys.maxsize): + return self.data.startswith(prefix, start, end) + def strip(self, chars=None): return self.__class__(self.data.strip(chars)) + def swapcase(self): return self.__class__(self.data.swapcase()) + def title(self): return self.__class__(self.data.title()) + def translate(self, *args): + return self.__class__(self.data.translate(*args)) + def upper(self): return self.__class__(self.data.upper()) + def zfill(self, width): return self.__class__(self.data.zfill(width)) diff --git a/typing_extensions/test_data/python-3.5.2/collections/__main__.py b/typing_extensions/test_data/python-3.5.2/collections/__main__.py new file mode 100644 index 000000000..763e38e0c --- /dev/null +++ b/typing_extensions/test_data/python-3.5.2/collections/__main__.py @@ -0,0 +1,38 @@ +################################################################################ +### Simple tests +################################################################################ + +# verify that instances can be pickled +from collections import namedtuple +from pickle import loads, dumps +Point = namedtuple('Point', 'x, y', True) +p = Point(x=10, y=20) +assert p == loads(dumps(p)) + +# test and demonstrate ability to override methods +class Point(namedtuple('Point', 'x y')): + __slots__ = () + @property + def hypot(self): + return (self.x ** 2 + self.y ** 2) ** 0.5 + def __str__(self): + return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot) + +for p in Point(3, 4), Point(14, 5/7.): + print (p) + +class Point(namedtuple('Point', 'x y')): + 'Point class with optimized _make() and _replace() without error-checking' + __slots__ = () + _make = classmethod(tuple.__new__) + def _replace(self, _map=map, **kwds): + return self._make(_map(kwds.get, ('x', 'y'), self)) + +print(Point(11, 22)._replace(x=100)) + +Point3D = namedtuple('Point3D', Point._fields + ('z',)) +print(Point3D.__doc__) + +import doctest, collections +TestResults = namedtuple('TestResults', 'failed attempted') +print(TestResults(*doctest.testmod(collections))) diff --git a/typing_extensions/test_data/python-3.5.2/collections/abc.py b/typing_extensions/test_data/python-3.5.2/collections/abc.py new file mode 100644 index 000000000..891600d16 --- /dev/null +++ b/typing_extensions/test_data/python-3.5.2/collections/abc.py @@ -0,0 +1,2 @@ +from _collections_abc import * +from _collections_abc import __all__ diff --git a/typing_extensions/test_data/python-3.5.2/typing.py b/typing_extensions/test_data/python-3.5.2/typing.py new file mode 100644 index 000000000..4cac66cd1 --- /dev/null +++ b/typing_extensions/test_data/python-3.5.2/typing.py @@ -0,0 +1,1843 @@ +import abc +from abc import abstractmethod, abstractproperty +import collections +import contextlib +import functools +import re as stdlib_re # Avoid confusion with the re we export. +import sys +import types +try: + import collections.abc as collections_abc +except ImportError: + import collections as collections_abc # Fallback for PY3.2. + + +# Please keep __all__ alphabetized within each category. +__all__ = [ + # Super-special typing primitives. + 'Any', + 'Callable', + 'Generic', + 'Optional', + 'Tuple', + 'Type', + 'TypeVar', + 'Union', + + # ABCs (from collections.abc). + 'AbstractSet', # collections.abc.Set. + 'Awaitable', + 'AsyncIterator', + 'AsyncIterable', + 'ByteString', + 'Container', + 'Hashable', + 'ItemsView', + 'Iterable', + 'Iterator', + 'KeysView', + 'Mapping', + 'MappingView', + 'MutableMapping', + 'MutableSequence', + 'MutableSet', + 'Sequence', + 'Sized', + 'ValuesView', + + # Structural checks, a.k.a. protocols. + 'Reversible', + 'SupportsAbs', + 'SupportsFloat', + 'SupportsInt', + 'SupportsRound', + + # Concrete collection types. + 'Dict', + 'DefaultDict', + 'List', + 'Set', + 'NamedTuple', # Not really a type. + 'Generator', + + # One-off things. + 'AnyStr', + 'cast', + 'get_type_hints', + 'NewType', + 'no_type_check', + 'no_type_check_decorator', + 'overload', + 'Text', + 'TYPE_CHECKING', +] + +# The pseudo-submodules 're' and 'io' are part of the public +# namespace, but excluded from __all__ because they might stomp on +# legitimate imports of those modules. + + +def _qualname(x): + if sys.version_info[:2] >= (3, 3): + return x.__qualname__ + else: + # Fall back to just name. + return x.__name__ + + +class TypingMeta(type): + """Metaclass for every type defined below. + + This overrides __new__() to require an extra keyword parameter + '_root', which serves as a guard against naive subclassing of the + typing classes. Any legitimate class defined using a metaclass + derived from TypingMeta (including internal subclasses created by + e.g. Union[X, Y]) must pass _root=True. + + This also defines a dummy constructor (all the work is done in + __new__) and a nicer repr(). + """ + + _is_protocol = False + + def __new__(cls, name, bases, namespace, *, _root=False): + if not _root: + raise TypeError("Cannot subclass %s" % + (', '.join(map(_type_repr, bases)) or '()')) + return super().__new__(cls, name, bases, namespace) + + def __init__(self, *args, **kwds): + pass + + def _eval_type(self, globalns, localns): + """Override this in subclasses to interpret forward references. + + For example, Union['C'] is internally stored as + Union[_ForwardRef('C')], which should evaluate to _Union[C], + where C is an object found in globalns or localns (searching + localns first, of course). + """ + return self + + def _get_type_vars(self, tvars): + pass + + def __repr__(self): + return '%s.%s' % (self.__module__, _qualname(self)) + + +class Final: + """Mix-in class to prevent instantiation.""" + + __slots__ = () + + def __new__(self, *args, **kwds): + raise TypeError("Cannot instantiate %r" % self.__class__) + + +class _ForwardRef(TypingMeta): + """Wrapper to hold a forward reference.""" + + def __new__(cls, arg): + if not isinstance(arg, str): + raise TypeError('ForwardRef must be a string -- got %r' % (arg,)) + try: + code = compile(arg, '', 'eval') + except SyntaxError: + raise SyntaxError('ForwardRef must be an expression -- got %r' % + (arg,)) + self = super().__new__(cls, arg, (), {}, _root=True) + self.__forward_arg__ = arg + self.__forward_code__ = code + self.__forward_evaluated__ = False + self.__forward_value__ = None + typing_globals = globals() + frame = sys._getframe(1) + while frame is not None and frame.f_globals is typing_globals: + frame = frame.f_back + assert frame is not None + self.__forward_frame__ = frame + return self + + def _eval_type(self, globalns, localns): + if not isinstance(localns, dict): + raise TypeError('ForwardRef localns must be a dict -- got %r' % + (localns,)) + if not isinstance(globalns, dict): + raise TypeError('ForwardRef globalns must be a dict -- got %r' % + (globalns,)) + if not self.__forward_evaluated__: + if globalns is None and localns is None: + globalns = localns = {} + elif globalns is None: + globalns = localns + elif localns is None: + localns = globalns + self.__forward_value__ = _type_check( + eval(self.__forward_code__, globalns, localns), + "Forward references must evaluate to types.") + self.__forward_evaluated__ = True + return self.__forward_value__ + + def __instancecheck__(self, obj): + raise TypeError("Forward references cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if not self.__forward_evaluated__: + globalns = self.__forward_frame__.f_globals + localns = self.__forward_frame__.f_locals + try: + self._eval_type(globalns, localns) + except NameError: + return False # Too early. + return issubclass(cls, self.__forward_value__) + + def __repr__(self): + return '_ForwardRef(%r)' % (self.__forward_arg__,) + + +class _TypeAlias: + """Internal helper class for defining generic variants of concrete types. + + Note that this is not a type; let's call it a pseudo-type. It can + be used in instance and subclass checks, e.g. isinstance(m, Match) + or issubclass(type(m), Match). However, it cannot be itself the + target of an issubclass() call; e.g. issubclass(Match, C) (for + some arbitrary class C) raises TypeError rather than returning + False. + """ + + __slots__ = ('name', 'type_var', 'impl_type', 'type_checker') + + def __new__(cls, *args, **kwds): + """Constructor. + + This only exists to give a better error message in case + someone tries to subclass a type alias (not a good idea). + """ + if (len(args) == 3 and + isinstance(args[0], str) and + isinstance(args[1], tuple)): + # Close enough. + raise TypeError("A type alias cannot be subclassed") + return object.__new__(cls) + + def __init__(self, name, type_var, impl_type, type_checker): + """Initializer. + + Args: + name: The name, e.g. 'Pattern'. + type_var: The type parameter, e.g. AnyStr, or the + specific type, e.g. str. + impl_type: The implementation type. + type_checker: Function that takes an impl_type instance. + and returns a value that should be a type_var instance. + """ + assert isinstance(name, str), repr(name) + assert isinstance(type_var, type), repr(type_var) + assert isinstance(impl_type, type), repr(impl_type) + assert not isinstance(impl_type, TypingMeta), repr(impl_type) + self.name = name + self.type_var = type_var + self.impl_type = impl_type + self.type_checker = type_checker + + def __repr__(self): + return "%s[%s]" % (self.name, _type_repr(self.type_var)) + + def __getitem__(self, parameter): + assert isinstance(parameter, type), repr(parameter) + if not isinstance(self.type_var, TypeVar): + raise TypeError("%s cannot be further parameterized." % self) + if self.type_var.__constraints__: + if not issubclass(parameter, Union[self.type_var.__constraints__]): + raise TypeError("%s is not a valid substitution for %s." % + (parameter, self.type_var)) + return self.__class__(self.name, parameter, + self.impl_type, self.type_checker) + + def __instancecheck__(self, obj): + raise TypeError("Type aliases cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if cls is Any: + return True + if isinstance(cls, _TypeAlias): + # Covariance. For now, we compare by name. + return (cls.name == self.name and + issubclass(cls.type_var, self.type_var)) + else: + # Note that this is too lenient, because the + # implementation type doesn't carry information about + # whether it is about bytes or str (for example). + return issubclass(cls, self.impl_type) + + +def _get_type_vars(types, tvars): + for t in types: + if isinstance(t, TypingMeta): + t._get_type_vars(tvars) + + +def _type_vars(types): + tvars = [] + _get_type_vars(types, tvars) + return tuple(tvars) + + +def _eval_type(t, globalns, localns): + if isinstance(t, TypingMeta): + return t._eval_type(globalns, localns) + else: + return t + + +def _type_check(arg, msg): + """Check that the argument is a type, and return it. + + As a special case, accept None and return type(None) instead. + Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable. + + The msg argument is a human-readable error message, e.g. + + "Union[arg, ...]: arg should be a type." + + We append the repr() of the actual value (truncated to 100 chars). + """ + if arg is None: + return type(None) + if isinstance(arg, str): + arg = _ForwardRef(arg) + if not isinstance(arg, (type, _TypeAlias)) and not callable(arg): + raise TypeError(msg + " Got %.100r." % (arg,)) + return arg + + +def _type_repr(obj): + """Return the repr() of an object, special-casing types. + + If obj is a type, we return a shorter version than the default + type.__repr__, based on the module and qualified name, which is + typically enough to uniquely identify a type. For everything + else, we fall back on repr(obj). + """ + if isinstance(obj, type) and not isinstance(obj, TypingMeta): + if obj.__module__ == 'builtins': + return _qualname(obj) + else: + return '%s.%s' % (obj.__module__, _qualname(obj)) + else: + return repr(obj) + + +class AnyMeta(TypingMeta): + """Metaclass for Any.""" + + def __new__(cls, name, bases, namespace, _root=False): + self = super().__new__(cls, name, bases, namespace, _root=_root) + return self + + def __instancecheck__(self, obj): + raise TypeError("Any cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if not isinstance(cls, type): + return super().__subclasscheck__(cls) # To TypeError. + return True + + +class Any(Final, metaclass=AnyMeta, _root=True): + """Special type indicating an unconstrained type. + + - Any object is an instance of Any. + - Any class is a subclass of Any. + - As a special case, Any and object are subclasses of each other. + """ + + __slots__ = () + + +class TypeVar(TypingMeta, metaclass=TypingMeta, _root=True): + """Type variable. + + Usage:: + + T = TypeVar('T') # Can be anything + A = TypeVar('A', str, bytes) # Must be str or bytes + + Type variables exist primarily for the benefit of static type + checkers. They serve as the parameters for generic types as well + as for generic function definitions. See class Generic for more + information on generic types. Generic functions work as follows: + + def repeat(x: T, n: int) -> Sequence[T]: + '''Return a list containing n references to x.''' + return [x]*n + + def longest(x: A, y: A) -> A: + '''Return the longest of two strings.''' + return x if len(x) >= len(y) else y + + The latter example's signature is essentially the overloading + of (str, str) -> str and (bytes, bytes) -> bytes. Also note + that if the arguments are instances of some subclass of str, + the return type is still plain str. + + At runtime, isinstance(x, T) will raise TypeError. However, + issubclass(C, T) is true for any class C, and issubclass(str, A) + and issubclass(bytes, A) are true, and issubclass(int, A) is + false. (TODO: Why is this needed? This may change. See #136.) + + Type variables may be marked covariant or contravariant by passing + covariant=True or contravariant=True. See PEP 484 for more + details. By default type variables are invariant. + + Type variables can be introspected. e.g.: + + T.__name__ == 'T' + T.__constraints__ == () + T.__covariant__ == False + T.__contravariant__ = False + A.__constraints__ == (str, bytes) + """ + + def __new__(cls, name, *constraints, bound=None, + covariant=False, contravariant=False): + self = super().__new__(cls, name, (Final,), {}, _root=True) + if covariant and contravariant: + raise ValueError("Bivariant type variables are not supported.") + self.__covariant__ = bool(covariant) + self.__contravariant__ = bool(contravariant) + if constraints and bound is not None: + raise TypeError("Constraints cannot be combined with bound=...") + if constraints and len(constraints) == 1: + raise TypeError("A single constraint is not allowed") + msg = "TypeVar(name, constraint, ...): constraints must be types." + self.__constraints__ = tuple(_type_check(t, msg) for t in constraints) + if bound: + self.__bound__ = _type_check(bound, "Bound must be a type.") + else: + self.__bound__ = None + return self + + def _get_type_vars(self, tvars): + if self not in tvars: + tvars.append(self) + + def __repr__(self): + if self.__covariant__: + prefix = '+' + elif self.__contravariant__: + prefix = '-' + else: + prefix = '~' + return prefix + self.__name__ + + def __instancecheck__(self, instance): + raise TypeError("Type variables cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + # TODO: Make this raise TypeError too? + if cls is self: + return True + if cls is Any: + return True + if self.__bound__ is not None: + return issubclass(cls, self.__bound__) + if self.__constraints__: + return any(issubclass(cls, c) for c in self.__constraints__) + return True + + +# Some unconstrained type variables. These are used by the container types. +# (These are not for export.) +T = TypeVar('T') # Any type. +KT = TypeVar('KT') # Key type. +VT = TypeVar('VT') # Value type. +T_co = TypeVar('T_co', covariant=True) # Any type covariant containers. +V_co = TypeVar('V_co', covariant=True) # Any type covariant containers. +VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers. +T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant. + +# A useful type variable with constraints. This represents string types. +# (This one *is* for export!) +AnyStr = TypeVar('AnyStr', bytes, str) + + +class UnionMeta(TypingMeta): + """Metaclass for Union.""" + + def __new__(cls, name, bases, namespace, parameters=None, _root=False): + if parameters is None: + return super().__new__(cls, name, bases, namespace, _root=_root) + if not isinstance(parameters, tuple): + raise TypeError("Expected parameters=") + # Flatten out Union[Union[...], ...] and type-check non-Union args. + params = [] + msg = "Union[arg, ...]: each arg must be a type." + for p in parameters: + if isinstance(p, UnionMeta): + params.extend(p.__union_params__) + else: + params.append(_type_check(p, msg)) + # Weed out strict duplicates, preserving the first of each occurrence. + all_params = set(params) + if len(all_params) < len(params): + new_params = [] + for t in params: + if t in all_params: + new_params.append(t) + all_params.remove(t) + params = new_params + assert not all_params, all_params + # Weed out subclasses. + # E.g. Union[int, Employee, Manager] == Union[int, Employee]. + # If Any or object is present it will be the sole survivor. + # If both Any and object are present, Any wins. + # Never discard type variables, except against Any. + # (In particular, Union[str, AnyStr] != AnyStr.) + all_params = set(params) + for t1 in params: + if t1 is Any: + return Any + if isinstance(t1, TypeVar): + continue + if isinstance(t1, _TypeAlias): + # _TypeAlias is not a real class. + continue + if not isinstance(t1, type): + assert callable(t1) # A callable might sneak through. + continue + if any(isinstance(t2, type) and issubclass(t1, t2) + for t2 in all_params - {t1} if not isinstance(t2, TypeVar)): + all_params.remove(t1) + # It's not a union if there's only one type left. + if len(all_params) == 1: + return all_params.pop() + # Create a new class with these params. + self = super().__new__(cls, name, bases, {}, _root=True) + self.__union_params__ = tuple(t for t in params if t in all_params) + self.__union_set_params__ = frozenset(self.__union_params__) + return self + + def _eval_type(self, globalns, localns): + p = tuple(_eval_type(t, globalns, localns) + for t in self.__union_params__) + if p == self.__union_params__: + return self + else: + return self.__class__(self.__name__, self.__bases__, {}, + p, _root=True) + + def _get_type_vars(self, tvars): + if self.__union_params__: + _get_type_vars(self.__union_params__, tvars) + + def __repr__(self): + r = super().__repr__() + if self.__union_params__: + r += '[%s]' % (', '.join(_type_repr(t) + for t in self.__union_params__)) + return r + + def __getitem__(self, parameters): + if self.__union_params__ is not None: + raise TypeError( + "Cannot subscript an existing Union. Use Union[u, t] instead.") + if parameters == (): + raise TypeError("Cannot take a Union of no types.") + if not isinstance(parameters, tuple): + parameters = (parameters,) + return self.__class__(self.__name__, self.__bases__, + dict(self.__dict__), parameters, _root=True) + + def __eq__(self, other): + if not isinstance(other, UnionMeta): + return NotImplemented + return self.__union_set_params__ == other.__union_set_params__ + + def __hash__(self): + return hash(self.__union_set_params__) + + def __instancecheck__(self, obj): + raise TypeError("Unions cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if cls is Any: + return True + if self.__union_params__ is None: + return isinstance(cls, UnionMeta) + elif isinstance(cls, UnionMeta): + if cls.__union_params__ is None: + return False + return all(issubclass(c, self) for c in (cls.__union_params__)) + elif isinstance(cls, TypeVar): + if cls in self.__union_params__: + return True + if cls.__constraints__: + return issubclass(Union[cls.__constraints__], self) + return False + else: + return any(issubclass(cls, t) for t in self.__union_params__) + + +class Union(Final, metaclass=UnionMeta, _root=True): + """Union type; Union[X, Y] means either X or Y. + + To define a union, use e.g. Union[int, str]. Details: + + - The arguments must be types and there must be at least one. + + - None as an argument is a special case and is replaced by + type(None). + + - Unions of unions are flattened, e.g.:: + + Union[Union[int, str], float] == Union[int, str, float] + + - Unions of a single argument vanish, e.g.:: + + Union[int] == int # The constructor actually returns int + + - Redundant arguments are skipped, e.g.:: + + Union[int, str, int] == Union[int, str] + + - When comparing unions, the argument order is ignored, e.g.:: + + Union[int, str] == Union[str, int] + + - When two arguments have a subclass relationship, the least + derived argument is kept, e.g.:: + + class Employee: pass + class Manager(Employee): pass + Union[int, Employee, Manager] == Union[int, Employee] + Union[Manager, int, Employee] == Union[int, Employee] + Union[Employee, Manager] == Employee + + - Corollary: if Any is present it is the sole survivor, e.g.:: + + Union[int, Any] == Any + + - Similar for object:: + + Union[int, object] == object + + - To cut a tie: Union[object, Any] == Union[Any, object] == Any. + + - You cannot subclass or instantiate a union. + + - You cannot write Union[X][Y] (what would it mean?). + + - You can use Optional[X] as a shorthand for Union[X, None]. + """ + + # Unsubscripted Union type has params set to None. + __union_params__ = None + __union_set_params__ = None + + +class OptionalMeta(TypingMeta): + """Metaclass for Optional.""" + + def __new__(cls, name, bases, namespace, _root=False): + return super().__new__(cls, name, bases, namespace, _root=_root) + + def __getitem__(self, arg): + arg = _type_check(arg, "Optional[t] requires a single type.") + return Union[arg, type(None)] + + +class Optional(Final, metaclass=OptionalMeta, _root=True): + """Optional type. + + Optional[X] is equivalent to Union[X, type(None)]. + """ + + __slots__ = () + + +class TupleMeta(TypingMeta): + """Metaclass for Tuple.""" + + def __new__(cls, name, bases, namespace, parameters=None, + use_ellipsis=False, _root=False): + self = super().__new__(cls, name, bases, namespace, _root=_root) + self.__tuple_params__ = parameters + self.__tuple_use_ellipsis__ = use_ellipsis + return self + + def _get_type_vars(self, tvars): + if self.__tuple_params__: + _get_type_vars(self.__tuple_params__, tvars) + + def _eval_type(self, globalns, localns): + tp = self.__tuple_params__ + if tp is None: + return self + p = tuple(_eval_type(t, globalns, localns) for t in tp) + if p == self.__tuple_params__: + return self + else: + return self.__class__(self.__name__, self.__bases__, {}, + p, _root=True) + + def __repr__(self): + r = super().__repr__() + if self.__tuple_params__ is not None: + params = [_type_repr(p) for p in self.__tuple_params__] + if self.__tuple_use_ellipsis__: + params.append('...') + if not params: + params.append('()') + r += '[%s]' % ( + ', '.join(params)) + return r + + def __getitem__(self, parameters): + if self.__tuple_params__ is not None: + raise TypeError("Cannot re-parameterize %r" % (self,)) + if not isinstance(parameters, tuple): + parameters = (parameters,) + if len(parameters) == 2 and parameters[1] == Ellipsis: + parameters = parameters[:1] + use_ellipsis = True + msg = "Tuple[t, ...]: t must be a type." + else: + use_ellipsis = False + msg = "Tuple[t0, t1, ...]: each t must be a type." + parameters = tuple(_type_check(p, msg) for p in parameters) + return self.__class__(self.__name__, self.__bases__, + dict(self.__dict__), parameters, + use_ellipsis=use_ellipsis, _root=True) + + def __eq__(self, other): + if not isinstance(other, TupleMeta): + return NotImplemented + return (self.__tuple_params__ == other.__tuple_params__ and + self.__tuple_use_ellipsis__ == other.__tuple_use_ellipsis__) + + def __hash__(self): + return hash(self.__tuple_params__) + + def __instancecheck__(self, obj): + raise TypeError("Tuples cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if cls is Any: + return True + if not isinstance(cls, type): + return super().__subclasscheck__(cls) # To TypeError. + if issubclass(cls, tuple): + return True # Special case. + if not isinstance(cls, TupleMeta): + return super().__subclasscheck__(cls) # False. + if self.__tuple_params__ is None: + return True + if cls.__tuple_params__ is None: + return False # ??? + if cls.__tuple_use_ellipsis__ != self.__tuple_use_ellipsis__: + return False + # Covariance. + return (len(self.__tuple_params__) == len(cls.__tuple_params__) and + all(issubclass(x, p) + for x, p in zip(cls.__tuple_params__, + self.__tuple_params__))) + + +class Tuple(Final, metaclass=TupleMeta, _root=True): + """Tuple type; Tuple[X, Y] is the cross-product type of X and Y. + + Example: Tuple[T1, T2] is a tuple of two elements corresponding + to type variables T1 and T2. Tuple[int, float, str] is a tuple + of an int, a float and a string. + + To specify a variable-length tuple of homogeneous type, use Sequence[T]. + """ + + __slots__ = () + + +class CallableMeta(TypingMeta): + """Metaclass for Callable.""" + + def __new__(cls, name, bases, namespace, _root=False, + args=None, result=None): + if args is None and result is None: + pass # Must be 'class Callable'. + else: + if args is not Ellipsis: + if not isinstance(args, list): + raise TypeError("Callable[args, result]: " + "args must be a list." + " Got %.100r." % (args,)) + msg = "Callable[[arg, ...], result]: each arg must be a type." + args = tuple(_type_check(arg, msg) for arg in args) + msg = "Callable[args, result]: result must be a type." + result = _type_check(result, msg) + self = super().__new__(cls, name, bases, namespace, _root=_root) + self.__args__ = args + self.__result__ = result + return self + + def _get_type_vars(self, tvars): + if self.__args__: + _get_type_vars(self.__args__, tvars) + + def _eval_type(self, globalns, localns): + if self.__args__ is None and self.__result__ is None: + return self + if self.__args__ is Ellipsis: + args = self.__args__ + else: + args = [_eval_type(t, globalns, localns) for t in self.__args__] + result = _eval_type(self.__result__, globalns, localns) + if args == self.__args__ and result == self.__result__: + return self + else: + return self.__class__(self.__name__, self.__bases__, {}, + args=args, result=result, _root=True) + + def __repr__(self): + r = super().__repr__() + if self.__args__ is not None or self.__result__ is not None: + if self.__args__ is Ellipsis: + args_r = '...' + else: + args_r = '[%s]' % ', '.join(_type_repr(t) + for t in self.__args__) + r += '[%s, %s]' % (args_r, _type_repr(self.__result__)) + return r + + def __getitem__(self, parameters): + if self.__args__ is not None or self.__result__ is not None: + raise TypeError("This Callable type is already parameterized.") + if not isinstance(parameters, tuple) or len(parameters) != 2: + raise TypeError( + "Callable must be used as Callable[[arg, ...], result].") + args, result = parameters + return self.__class__(self.__name__, self.__bases__, + dict(self.__dict__), _root=True, + args=args, result=result) + + def __eq__(self, other): + if not isinstance(other, CallableMeta): + return NotImplemented + return (self.__args__ == other.__args__ and + self.__result__ == other.__result__) + + def __hash__(self): + return hash(self.__args__) ^ hash(self.__result__) + + def __instancecheck__(self, obj): + # For unparametrized Callable we allow this, because + # typing.Callable should be equivalent to + # collections.abc.Callable. + if self.__args__ is None and self.__result__ is None: + return isinstance(obj, collections_abc.Callable) + else: + raise TypeError("Callable[] cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if cls is Any: + return True + if not isinstance(cls, CallableMeta): + return super().__subclasscheck__(cls) + if self.__args__ is None and self.__result__ is None: + return True + # We're not doing covariance or contravariance -- this is *invariance*. + return self == cls + + +class Callable(Final, metaclass=CallableMeta, _root=True): + """Callable type; Callable[[int], str] is a function of (int) -> str. + + The subscription syntax must always be used with exactly two + values: the argument list and the return type. The argument list + must be a list of types; the return type must be a single type. + + There is no syntax to indicate optional or keyword arguments, + such function types are rarely used as callback types. + """ + + __slots__ = () + + +def _gorg(a): + """Return the farthest origin of a generic class.""" + assert isinstance(a, GenericMeta) + while a.__origin__ is not None: + a = a.__origin__ + return a + + +def _geqv(a, b): + """Return whether two generic classes are equivalent. + + The intention is to consider generic class X and any of its + parameterized forms (X[T], X[int], etc.) as equivalent. + + However, X is not equivalent to a subclass of X. + + The relation is reflexive, symmetric and transitive. + """ + assert isinstance(a, GenericMeta) and isinstance(b, GenericMeta) + # Reduce each to its origin. + return _gorg(a) is _gorg(b) + + +def _next_in_mro(cls): + """Helper for Generic.__new__. + + Returns the class after the last occurrence of Generic or + Generic[...] in cls.__mro__. + """ + next_in_mro = object + # Look for the last occurrence of Generic or Generic[...]. + for i, c in enumerate(cls.__mro__[:-1]): + if isinstance(c, GenericMeta) and _gorg(c) is Generic: + next_in_mro = cls.__mro__[i+1] + return next_in_mro + + +class GenericMeta(TypingMeta, abc.ABCMeta): + """Metaclass for generic types.""" + + def __new__(cls, name, bases, namespace, + tvars=None, args=None, origin=None, extra=None): + self = super().__new__(cls, name, bases, namespace, _root=True) + + if tvars is not None: + # Called from __getitem__() below. + assert origin is not None + assert all(isinstance(t, TypeVar) for t in tvars), tvars + else: + # Called from class statement. + assert tvars is None, tvars + assert args is None, args + assert origin is None, origin + + # Get the full set of tvars from the bases. + tvars = _type_vars(bases) + # Look for Generic[T1, ..., Tn]. + # If found, tvars must be a subset of it. + # If not found, tvars is it. + # Also check for and reject plain Generic, + # and reject multiple Generic[...]. + gvars = None + for base in bases: + if base is Generic: + raise TypeError("Cannot inherit from plain Generic") + if (isinstance(base, GenericMeta) and + base.__origin__ is Generic): + if gvars is not None: + raise TypeError( + "Cannot inherit from Generic[...] multiple types.") + gvars = base.__parameters__ + if gvars is None: + gvars = tvars + else: + tvarset = set(tvars) + gvarset = set(gvars) + if not tvarset <= gvarset: + raise TypeError( + "Some type variables (%s) " + "are not listed in Generic[%s]" % + (", ".join(str(t) for t in tvars if t not in gvarset), + ", ".join(str(g) for g in gvars))) + tvars = gvars + + self.__parameters__ = tvars + self.__args__ = args + self.__origin__ = origin + self.__extra__ = extra + # Speed hack (https://github.com/python/typing/issues/196). + self.__next_in_mro__ = _next_in_mro(self) + return self + + def _get_type_vars(self, tvars): + if self.__origin__ and self.__parameters__: + _get_type_vars(self.__parameters__, tvars) + + def __repr__(self): + if self.__origin__ is not None: + r = repr(self.__origin__) + else: + r = super().__repr__() + if self.__args__: + r += '[%s]' % ( + ', '.join(_type_repr(p) for p in self.__args__)) + if self.__parameters__: + r += '<%s>' % ( + ', '.join(_type_repr(p) for p in self.__parameters__)) + return r + + def __eq__(self, other): + if not isinstance(other, GenericMeta): + return NotImplemented + if self.__origin__ is not None: + return (self.__origin__ is other.__origin__ and + self.__args__ == other.__args__ and + self.__parameters__ == other.__parameters__) + else: + return self is other + + def __hash__(self): + return hash((self.__name__, self.__parameters__)) + + def __getitem__(self, params): + if not isinstance(params, tuple): + params = (params,) + if not params: + raise TypeError( + "Parameter list to %s[...] cannot be empty" % _qualname(self)) + msg = "Parameters to generic types must be types." + params = tuple(_type_check(p, msg) for p in params) + if self is Generic: + # Generic can only be subscripted with unique type variables. + if not all(isinstance(p, TypeVar) for p in params): + raise TypeError( + "Parameters to Generic[...] must all be type variables") + if len(set(params)) != len(params): + raise TypeError( + "Parameters to Generic[...] must all be unique") + tvars = params + args = None + elif self is _Protocol: + # _Protocol is internal, don't check anything. + tvars = params + args = None + elif self.__origin__ in (Generic, _Protocol): + # Can't subscript Generic[...] or _Protocol[...]. + raise TypeError("Cannot subscript already-subscripted %s" % + repr(self)) + else: + # Subscripting a regular Generic subclass. + if not self.__parameters__: + raise TypeError("%s is not a generic class" % repr(self)) + alen = len(params) + elen = len(self.__parameters__) + if alen != elen: + raise TypeError( + "Too %s parameters for %s; actual %s, expected %s" % + ("many" if alen > elen else "few", repr(self), alen, elen)) + tvars = _type_vars(params) + args = params + return self.__class__(self.__name__, + (self,) + self.__bases__, + dict(self.__dict__), + tvars=tvars, + args=args, + origin=self, + extra=self.__extra__) + + def __instancecheck__(self, instance): + # Since we extend ABC.__subclasscheck__ and + # ABC.__instancecheck__ inlines the cache checking done by the + # latter, we must extend __instancecheck__ too. For simplicity + # we just skip the cache check -- instance checks for generic + # classes are supposed to be rare anyways. + return self.__subclasscheck__(instance.__class__) + + def __subclasscheck__(self, cls): + if cls is Any: + return True + if isinstance(cls, GenericMeta): + # For a class C(Generic[T]) where T is co-variant, + # C[X] is a subclass of C[Y] iff X is a subclass of Y. + origin = self.__origin__ + if origin is not None and origin is cls.__origin__: + assert len(self.__args__) == len(origin.__parameters__) + assert len(cls.__args__) == len(origin.__parameters__) + for p_self, p_cls, p_origin in zip(self.__args__, + cls.__args__, + origin.__parameters__): + if isinstance(p_origin, TypeVar): + if p_origin.__covariant__: + # Covariant -- p_cls must be a subclass of p_self. + if not issubclass(p_cls, p_self): + break + elif p_origin.__contravariant__: + # Contravariant. I think it's the opposite. :-) + if not issubclass(p_self, p_cls): + break + else: + # Invariant -- p_cls and p_self must equal. + if p_self != p_cls: + break + else: + # If the origin's parameter is not a typevar, + # insist on invariance. + if p_self != p_cls: + break + else: + return True + # If we break out of the loop, the superclass gets a chance. + if super().__subclasscheck__(cls): + return True + if self.__extra__ is None or isinstance(cls, GenericMeta): + return False + return issubclass(cls, self.__extra__) + + +# Prevent checks for Generic to crash when defining Generic. +Generic = None + + +class Generic(metaclass=GenericMeta): + """Abstract base class for generic types. + + A generic type is typically declared by inheriting from an + instantiation of this class with one or more type variables. + For example, a generic mapping type might be defined as:: + + class Mapping(Generic[KT, VT]): + def __getitem__(self, key: KT) -> VT: + ... + # Etc. + + This class can then be used as follows:: + + def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT: + try: + return mapping[key] + except KeyError: + return default + """ + + __slots__ = () + + def __new__(cls, *args, **kwds): + if cls.__origin__ is None: + return cls.__next_in_mro__.__new__(cls) + else: + origin = _gorg(cls) + obj = cls.__next_in_mro__.__new__(origin) + obj.__init__(*args, **kwds) + return obj + + +def cast(typ, val): + """Cast a value to a type. + + This returns the value unchanged. To the type checker this + signals that the return value has the designated type, but at + runtime we intentionally don't check anything (we want this + to be as fast as possible). + """ + return val + + +def _get_defaults(func): + """Internal helper to extract the default arguments, by name.""" + code = func.__code__ + pos_count = code.co_argcount + arg_names = code.co_varnames + arg_names = arg_names[:pos_count] + defaults = func.__defaults__ or () + kwdefaults = func.__kwdefaults__ + res = dict(kwdefaults) if kwdefaults else {} + pos_offset = pos_count - len(defaults) + for name, value in zip(arg_names[pos_offset:], defaults): + assert name not in res + res[name] = value + return res + + +def get_type_hints(obj, globalns=None, localns=None): + """Return type hints for a function or method object. + + This is often the same as obj.__annotations__, but it handles + forward references encoded as string literals, and if necessary + adds Optional[t] if a default value equal to None is set. + + BEWARE -- the behavior of globalns and localns is counterintuitive + (unless you are familiar with how eval() and exec() work). The + search order is locals first, then globals. + + - If no dict arguments are passed, an attempt is made to use the + globals from obj, and these are also used as the locals. If the + object does not appear to have globals, an exception is raised. + + - If one dict argument is passed, it is used for both globals and + locals. + + - If two dict arguments are passed, they specify globals and + locals, respectively. + """ + if getattr(obj, '__no_type_check__', None): + return {} + if globalns is None: + globalns = getattr(obj, '__globals__', {}) + if localns is None: + localns = globalns + elif localns is None: + localns = globalns + defaults = _get_defaults(obj) + hints = dict(obj.__annotations__) + for name, value in hints.items(): + if isinstance(value, str): + value = _ForwardRef(value) + value = _eval_type(value, globalns, localns) + if name in defaults and defaults[name] is None: + value = Optional[value] + hints[name] = value + return hints + + +def no_type_check(arg): + """Decorator to indicate that annotations are not type hints. + + The argument must be a class or function; if it is a class, it + applies recursively to all methods defined in that class (but not + to methods defined in its superclasses or subclasses). + + This mutates the function(s) in place. + """ + if isinstance(arg, type): + for obj in arg.__dict__.values(): + if isinstance(obj, types.FunctionType): + obj.__no_type_check__ = True + else: + arg.__no_type_check__ = True + return arg + + +def no_type_check_decorator(decorator): + """Decorator to give another decorator the @no_type_check effect. + + This wraps the decorator with something that wraps the decorated + function in @no_type_check. + """ + + @functools.wraps(decorator) + def wrapped_decorator(*args, **kwds): + func = decorator(*args, **kwds) + func = no_type_check(func) + return func + + return wrapped_decorator + + +def _overload_dummy(*args, **kwds): + """Helper for @overload to raise when called.""" + raise NotImplementedError( + "You should not call an overloaded function. " + "A series of @overload-decorated functions " + "outside a stub module should always be followed " + "by an implementation that is not @overload-ed.") + + +def overload(func): + """Decorator for overloaded functions/methods. + + In a stub file, place two or more stub definitions for the same + function in a row, each decorated with @overload. For example: + + @overload + def utf8(value: None) -> None: ... + @overload + def utf8(value: bytes) -> bytes: ... + @overload + def utf8(value: str) -> bytes: ... + + In a non-stub file (i.e. a regular .py file), do the same but + follow it with an implementation. The implementation should *not* + be decorated with @overload. For example: + + @overload + def utf8(value: None) -> None: ... + @overload + def utf8(value: bytes) -> bytes: ... + @overload + def utf8(value: str) -> bytes: ... + def utf8(value): + # implementation goes here + """ + return _overload_dummy + + +class _ProtocolMeta(GenericMeta): + """Internal metaclass for _Protocol. + + This exists so _Protocol classes can be generic without deriving + from Generic. + """ + + def __instancecheck__(self, obj): + raise TypeError("Protocols cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if not self._is_protocol: + # No structural checks since this isn't a protocol. + return NotImplemented + + if self is _Protocol: + # Every class is a subclass of the empty protocol. + return True + + # Find all attributes defined in the protocol. + attrs = self._get_protocol_attrs() + + for attr in attrs: + if not any(attr in d.__dict__ for d in cls.__mro__): + return False + return True + + def _get_protocol_attrs(self): + # Get all Protocol base classes. + protocol_bases = [] + for c in self.__mro__: + if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol': + protocol_bases.append(c) + + # Get attributes included in protocol. + attrs = set() + for base in protocol_bases: + for attr in base.__dict__.keys(): + # Include attributes not defined in any non-protocol bases. + for c in self.__mro__: + if (c is not base and attr in c.__dict__ and + not getattr(c, '_is_protocol', False)): + break + else: + if (not attr.startswith('_abc_') and + attr != '__abstractmethods__' and + attr != '_is_protocol' and + attr != '__dict__' and + attr != '__args__' and + attr != '__slots__' and + attr != '_get_protocol_attrs' and + attr != '__next_in_mro__' and + attr != '__parameters__' and + attr != '__origin__' and + attr != '__extra__' and + attr != '__module__'): + attrs.add(attr) + + return attrs + + +class _Protocol(metaclass=_ProtocolMeta): + """Internal base class for protocol classes. + + This implements a simple-minded structural isinstance check + (similar but more general than the one-offs in collections.abc + such as Hashable). + """ + + __slots__ = () + + _is_protocol = True + + +# Various ABCs mimicking those in collections.abc. +# A few are simply re-exported for completeness. + +Hashable = collections_abc.Hashable # Not generic. + + +if hasattr(collections_abc, 'Awaitable'): + class Awaitable(Generic[T_co], extra=collections_abc.Awaitable): + __slots__ = () +else: + Awaitable = None + + +if hasattr(collections_abc, 'AsyncIterable'): + + class AsyncIterable(Generic[T_co], extra=collections_abc.AsyncIterable): + __slots__ = () + + class AsyncIterator(AsyncIterable[T_co], + extra=collections_abc.AsyncIterator): + __slots__ = () + +else: + AsyncIterable = None + AsyncIterator = None + + +class Iterable(Generic[T_co], extra=collections_abc.Iterable): + __slots__ = () + + +class Iterator(Iterable[T_co], extra=collections_abc.Iterator): + __slots__ = () + + +class SupportsInt(_Protocol): + __slots__ = () + + @abstractmethod + def __int__(self) -> int: + pass + + +class SupportsFloat(_Protocol): + __slots__ = () + + @abstractmethod + def __float__(self) -> float: + pass + + +class SupportsComplex(_Protocol): + __slots__ = () + + @abstractmethod + def __complex__(self) -> complex: + pass + + +class SupportsBytes(_Protocol): + __slots__ = () + + @abstractmethod + def __bytes__(self) -> bytes: + pass + + +class SupportsAbs(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __abs__(self) -> T_co: + pass + + +class SupportsRound(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __round__(self, ndigits: int = 0) -> T_co: + pass + + +if hasattr(collections_abc, 'Reversible'): + class Reversible(Iterable[T_co], extra=collections_abc.Reversible): + __slots__ = () +else: + class Reversible(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __reversed__(self) -> 'Iterator[T_co]': + pass + + +Sized = collections_abc.Sized # Not generic. + + +class Container(Generic[T_co], extra=collections_abc.Container): + __slots__ = () + + +# Callable was defined earlier. + + +class AbstractSet(Sized, Iterable[T_co], Container[T_co], + extra=collections_abc.Set): + pass + + +class MutableSet(AbstractSet[T], extra=collections_abc.MutableSet): + pass + + +# NOTE: Only the value type is covariant. +class Mapping(Sized, Iterable[KT], Container[KT], Generic[KT, VT_co], + extra=collections_abc.Mapping): + pass + + +class MutableMapping(Mapping[KT, VT], extra=collections_abc.MutableMapping): + pass + +if hasattr(collections_abc, 'Reversible'): + class Sequence(Sized, Reversible[T_co], Container[T_co], + extra=collections_abc.Sequence): + pass +else: + class Sequence(Sized, Iterable[T_co], Container[T_co], + extra=collections_abc.Sequence): + pass + + +class MutableSequence(Sequence[T], extra=collections_abc.MutableSequence): + pass + + +class ByteString(Sequence[int], extra=collections_abc.ByteString): + pass + + +ByteString.register(type(memoryview(b''))) + + +class List(list, MutableSequence[T], extra=list): + + def __new__(cls, *args, **kwds): + if _geqv(cls, List): + raise TypeError("Type List cannot be instantiated; " + "use list() instead") + return list.__new__(cls, *args, **kwds) + + +class Set(set, MutableSet[T], extra=set): + + def __new__(cls, *args, **kwds): + if _geqv(cls, Set): + raise TypeError("Type Set cannot be instantiated; " + "use set() instead") + return set.__new__(cls, *args, **kwds) + + +class _FrozenSetMeta(GenericMeta): + """This metaclass ensures set is not a subclass of FrozenSet. + + Without this metaclass, set would be considered a subclass of + FrozenSet, because FrozenSet.__extra__ is collections.abc.Set, and + set is a subclass of that. + """ + + def __subclasscheck__(self, cls): + if issubclass(cls, Set): + return False + return super().__subclasscheck__(cls) + + +class FrozenSet(frozenset, AbstractSet[T_co], metaclass=_FrozenSetMeta, + extra=frozenset): + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, FrozenSet): + raise TypeError("Type FrozenSet cannot be instantiated; " + "use frozenset() instead") + return frozenset.__new__(cls, *args, **kwds) + + +class MappingView(Sized, Iterable[T_co], extra=collections_abc.MappingView): + pass + + +class KeysView(MappingView[KT], AbstractSet[KT], + extra=collections_abc.KeysView): + pass + + +class ItemsView(MappingView[Tuple[KT, VT_co]], + AbstractSet[Tuple[KT, VT_co]], + Generic[KT, VT_co], + extra=collections_abc.ItemsView): + pass + + +class ValuesView(MappingView[VT_co], extra=collections_abc.ValuesView): + pass + + +if hasattr(contextlib, 'AbstractContextManager'): + class ContextManager(Generic[T_co], extra=contextlib.AbstractContextManager): + __slots__ = () + __all__.append('ContextManager') + + +class Dict(dict, MutableMapping[KT, VT], extra=dict): + + def __new__(cls, *args, **kwds): + if _geqv(cls, Dict): + raise TypeError("Type Dict cannot be instantiated; " + "use dict() instead") + return dict.__new__(cls, *args, **kwds) + +class DefaultDict(collections.defaultdict, MutableMapping[KT, VT], + extra=collections.defaultdict): + + def __new__(cls, *args, **kwds): + if _geqv(cls, DefaultDict): + raise TypeError("Type DefaultDict cannot be instantiated; " + "use collections.defaultdict() instead") + return collections.defaultdict.__new__(cls, *args, **kwds) + +# Determine what base class to use for Generator. +if hasattr(collections_abc, 'Generator'): + # Sufficiently recent versions of 3.5 have a Generator ABC. + _G_base = collections_abc.Generator +else: + # Fall back on the exact type. + _G_base = types.GeneratorType + + +class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co], + extra=_G_base): + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Generator): + raise TypeError("Type Generator cannot be instantiated; " + "create a subclass instead") + return super().__new__(cls, *args, **kwds) + + +# Internal type variable used for Type[]. +CT = TypeVar('CT', covariant=True, bound=type) + + +# This is not a real generic class. Don't use outside annotations. +class Type(type, Generic[CT], extra=type): + """A special construct usable to annotate class objects. + + For example, suppose we have the following classes:: + + class User: ... # Abstract base for User classes + class BasicUser(User): ... + class ProUser(User): ... + class TeamUser(User): ... + + And a function that takes a class argument that's a subclass of + User and returns an instance of the corresponding class:: + + U = TypeVar('U', bound=User) + def new_user(user_class: Type[U]) -> U: + user = user_class() + # (Here we could write the user object to a database) + return user + + joe = new_user(BasicUser) + + At this point the type checker knows that joe has type BasicUser. + """ + + +def NamedTuple(typename, fields): + """Typed version of namedtuple. + + Usage:: + + Employee = typing.NamedTuple('Employee', [('name', str), 'id', int)]) + + This is equivalent to:: + + Employee = collections.namedtuple('Employee', ['name', 'id']) + + The resulting class has one extra attribute: _field_types, + giving a dict mapping field names to types. (The field names + are in the _fields attribute, which is part of the namedtuple + API.) + """ + fields = [(n, t) for n, t in fields] + cls = collections.namedtuple(typename, [n for n, t in fields]) + cls._field_types = dict(fields) + # Set the module to the caller's module (otherwise it'd be 'typing'). + try: + cls.__module__ = sys._getframe(1).f_globals.get('__name__', '__main__') + except (AttributeError, ValueError): + pass + return cls + + +def NewType(name, tp): + """NewType creates simple unique types with almost zero + runtime overhead. NewType(name, tp) is considered a subtype of tp + by static type checkers. At runtime, NewType(name, tp) returns + a dummy function that simply returns its argument. Usage:: + + UserId = NewType('UserId', int) + + def name_by_id(user_id: UserId) -> str: + ... + + UserId('user') # Fails type check + + name_by_id(42) # Fails type check + name_by_id(UserId(42)) # OK + + num = UserId(5) + 1 # type: int + """ + + def new_type(x): + return x + + new_type.__name__ = name + new_type.__supertype__ = tp + return new_type + + +# Python-version-specific alias (Python 2: unicode; Python 3: str) +Text = str + + +# Constant that's True when type checking, but False here. +TYPE_CHECKING = False + + +class IO(Generic[AnyStr]): + """Generic base class for TextIO and BinaryIO. + + This is an abstract, generic version of the return of open(). + + NOTE: This does not distinguish between the different possible + classes (text vs. binary, read vs. write vs. read/write, + append-only, unbuffered). The TextIO and BinaryIO subclasses + below capture the distinctions between text vs. binary, which is + pervasive in the interface; however we currently do not offer a + way to track the other distinctions in the type system. + """ + + __slots__ = () + + @abstractproperty + def mode(self) -> str: + pass + + @abstractproperty + def name(self) -> str: + pass + + @abstractmethod + def close(self) -> None: + pass + + @abstractmethod + def closed(self) -> bool: + pass + + @abstractmethod + def fileno(self) -> int: + pass + + @abstractmethod + def flush(self) -> None: + pass + + @abstractmethod + def isatty(self) -> bool: + pass + + @abstractmethod + def read(self, n: int = -1) -> AnyStr: + pass + + @abstractmethod + def readable(self) -> bool: + pass + + @abstractmethod + def readline(self, limit: int = -1) -> AnyStr: + pass + + @abstractmethod + def readlines(self, hint: int = -1) -> List[AnyStr]: + pass + + @abstractmethod + def seek(self, offset: int, whence: int = 0) -> int: + pass + + @abstractmethod + def seekable(self) -> bool: + pass + + @abstractmethod + def tell(self) -> int: + pass + + @abstractmethod + def truncate(self, size: int = None) -> int: + pass + + @abstractmethod + def writable(self) -> bool: + pass + + @abstractmethod + def write(self, s: AnyStr) -> int: + pass + + @abstractmethod + def writelines(self, lines: List[AnyStr]) -> None: + pass + + @abstractmethod + def __enter__(self) -> 'IO[AnyStr]': + pass + + @abstractmethod + def __exit__(self, type, value, traceback) -> None: + pass + + +class BinaryIO(IO[bytes]): + """Typed version of the return of open() in binary mode.""" + + __slots__ = () + + @abstractmethod + def write(self, s: Union[bytes, bytearray]) -> int: + pass + + @abstractmethod + def __enter__(self) -> 'BinaryIO': + pass + + +class TextIO(IO[str]): + """Typed version of the return of open() in text mode.""" + + __slots__ = () + + @abstractproperty + def buffer(self) -> BinaryIO: + pass + + @abstractproperty + def encoding(self) -> str: + pass + + @abstractproperty + def errors(self) -> str: + pass + + @abstractproperty + def line_buffering(self) -> bool: + pass + + @abstractproperty + def newlines(self) -> Any: + pass + + @abstractmethod + def __enter__(self) -> 'TextIO': + pass + + +class io: + """Wrapper namespace for IO generic classes.""" + + __all__ = ['IO', 'TextIO', 'BinaryIO'] + IO = IO + TextIO = TextIO + BinaryIO = BinaryIO + +io.__name__ = __name__ + '.io' +sys.modules[io.__name__] = io + + +Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')), + lambda p: p.pattern) +Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')), + lambda m: m.re.pattern) + + +class re: + """Wrapper namespace for re type aliases.""" + + __all__ = ['Pattern', 'Match'] + Pattern = Pattern + Match = Match + +re.__name__ = __name__ + '.re' +sys.modules[re.__name__] = re diff --git a/typing_extensions/test_data/python-3.5.3/_collections_abc.py b/typing_extensions/test_data/python-3.5.3/_collections_abc.py new file mode 100644 index 000000000..8bebd69bc --- /dev/null +++ b/typing_extensions/test_data/python-3.5.3/_collections_abc.py @@ -0,0 +1,941 @@ +# Copyright 2007 Google, Inc. All Rights Reserved. +# Licensed to PSF under a Contributor Agreement. + +"""Abstract Base Classes (ABCs) for collections, according to PEP 3119. + +Unit tests are in test_collections. +""" + +from abc import ABCMeta, abstractmethod +import sys + +__all__ = ["Awaitable", "Coroutine", "AsyncIterable", "AsyncIterator", + "Hashable", "Iterable", "Iterator", "Generator", + "Sized", "Container", "Callable", + "Set", "MutableSet", + "Mapping", "MutableMapping", + "MappingView", "KeysView", "ItemsView", "ValuesView", + "Sequence", "MutableSequence", + "ByteString", + ] + +# This module has been renamed from collections.abc to _collections_abc to +# speed up interpreter startup. Some of the types such as MutableMapping are +# required early but collections module imports a lot of other modules. +# See issue #19218 +__name__ = "collections.abc" + +# Private list of types that we want to register with the various ABCs +# so that they will pass tests like: +# it = iter(somebytearray) +# assert isinstance(it, Iterable) +# Note: in other implementations, these types might not be distinct +# and they may have their own implementation specific types that +# are not included on this list. +bytes_iterator = type(iter(b'')) +bytearray_iterator = type(iter(bytearray())) +#callable_iterator = ??? +dict_keyiterator = type(iter({}.keys())) +dict_valueiterator = type(iter({}.values())) +dict_itemiterator = type(iter({}.items())) +list_iterator = type(iter([])) +list_reverseiterator = type(iter(reversed([]))) +range_iterator = type(iter(range(0))) +longrange_iterator = type(iter(range(1 << 1000))) +set_iterator = type(iter(set())) +str_iterator = type(iter("")) +tuple_iterator = type(iter(())) +zip_iterator = type(iter(zip())) +## views ## +dict_keys = type({}.keys()) +dict_values = type({}.values()) +dict_items = type({}.items()) +## misc ## +mappingproxy = type(type.__dict__) +generator = type((lambda: (yield))()) +## coroutine ## +async def _coro(): pass +_coro = _coro() +coroutine = type(_coro) +_coro.close() # Prevent ResourceWarning +del _coro + + +### ONE-TRICK PONIES ### + +class Hashable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __hash__(self): + return 0 + + @classmethod + def __subclasshook__(cls, C): + if cls is Hashable: + for B in C.__mro__: + if "__hash__" in B.__dict__: + if B.__dict__["__hash__"]: + return True + break + return NotImplemented + + +class Awaitable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __await__(self): + yield + + @classmethod + def __subclasshook__(cls, C): + if cls is Awaitable: + for B in C.__mro__: + if "__await__" in B.__dict__: + if B.__dict__["__await__"]: + return True + break + return NotImplemented + + +class Coroutine(Awaitable): + + __slots__ = () + + @abstractmethod + def send(self, value): + """Send a value into the coroutine. + Return next yielded value or raise StopIteration. + """ + raise StopIteration + + @abstractmethod + def throw(self, typ, val=None, tb=None): + """Raise an exception in the coroutine. + Return next yielded value or raise StopIteration. + """ + if val is None: + if tb is None: + raise typ + val = typ() + if tb is not None: + val = val.with_traceback(tb) + raise val + + def close(self): + """Raise GeneratorExit inside coroutine. + """ + try: + self.throw(GeneratorExit) + except (GeneratorExit, StopIteration): + pass + else: + raise RuntimeError("coroutine ignored GeneratorExit") + + @classmethod + def __subclasshook__(cls, C): + if cls is Coroutine: + mro = C.__mro__ + for method in ('__await__', 'send', 'throw', 'close'): + for base in mro: + if method in base.__dict__: + break + else: + return NotImplemented + return True + return NotImplemented + + +Coroutine.register(coroutine) + + +class AsyncIterable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __aiter__(self): + return AsyncIterator() + + @classmethod + def __subclasshook__(cls, C): + if cls is AsyncIterable: + if any("__aiter__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class AsyncIterator(AsyncIterable): + + __slots__ = () + + @abstractmethod + async def __anext__(self): + """Return the next item or raise StopAsyncIteration when exhausted.""" + raise StopAsyncIteration + + def __aiter__(self): + return self + + @classmethod + def __subclasshook__(cls, C): + if cls is AsyncIterator: + if (any("__anext__" in B.__dict__ for B in C.__mro__) and + any("__aiter__" in B.__dict__ for B in C.__mro__)): + return True + return NotImplemented + + +class Iterable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __iter__(self): + while False: + yield None + + @classmethod + def __subclasshook__(cls, C): + if cls is Iterable: + if any("__iter__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class Iterator(Iterable): + + __slots__ = () + + @abstractmethod + def __next__(self): + 'Return the next item from the iterator. When exhausted, raise StopIteration' + raise StopIteration + + def __iter__(self): + return self + + @classmethod + def __subclasshook__(cls, C): + if cls is Iterator: + if (any("__next__" in B.__dict__ for B in C.__mro__) and + any("__iter__" in B.__dict__ for B in C.__mro__)): + return True + return NotImplemented + +Iterator.register(bytes_iterator) +Iterator.register(bytearray_iterator) +#Iterator.register(callable_iterator) +Iterator.register(dict_keyiterator) +Iterator.register(dict_valueiterator) +Iterator.register(dict_itemiterator) +Iterator.register(list_iterator) +Iterator.register(list_reverseiterator) +Iterator.register(range_iterator) +Iterator.register(longrange_iterator) +Iterator.register(set_iterator) +Iterator.register(str_iterator) +Iterator.register(tuple_iterator) +Iterator.register(zip_iterator) + + +class Generator(Iterator): + + __slots__ = () + + def __next__(self): + """Return the next item from the generator. + When exhausted, raise StopIteration. + """ + return self.send(None) + + @abstractmethod + def send(self, value): + """Send a value into the generator. + Return next yielded value or raise StopIteration. + """ + raise StopIteration + + @abstractmethod + def throw(self, typ, val=None, tb=None): + """Raise an exception in the generator. + Return next yielded value or raise StopIteration. + """ + if val is None: + if tb is None: + raise typ + val = typ() + if tb is not None: + val = val.with_traceback(tb) + raise val + + def close(self): + """Raise GeneratorExit inside generator. + """ + try: + self.throw(GeneratorExit) + except (GeneratorExit, StopIteration): + pass + else: + raise RuntimeError("generator ignored GeneratorExit") + + @classmethod + def __subclasshook__(cls, C): + if cls is Generator: + mro = C.__mro__ + for method in ('__iter__', '__next__', 'send', 'throw', 'close'): + for base in mro: + if method in base.__dict__: + break + else: + return NotImplemented + return True + return NotImplemented + + +Generator.register(generator) + + +class Sized(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __len__(self): + return 0 + + @classmethod + def __subclasshook__(cls, C): + if cls is Sized: + if any("__len__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class Container(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __contains__(self, x): + return False + + @classmethod + def __subclasshook__(cls, C): + if cls is Container: + if any("__contains__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +class Callable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __call__(self, *args, **kwds): + return False + + @classmethod + def __subclasshook__(cls, C): + if cls is Callable: + if any("__call__" in B.__dict__ for B in C.__mro__): + return True + return NotImplemented + + +### SETS ### + + +class Set(Sized, Iterable, Container): + + """A set is a finite, iterable container. + + This class provides concrete generic implementations of all + methods except for __contains__, __iter__ and __len__. + + To override the comparisons (presumably for speed, as the + semantics are fixed), redefine __le__ and __ge__, + then the other operations will automatically follow suit. + """ + + __slots__ = () + + def __le__(self, other): + if not isinstance(other, Set): + return NotImplemented + if len(self) > len(other): + return False + for elem in self: + if elem not in other: + return False + return True + + def __lt__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) < len(other) and self.__le__(other) + + def __gt__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) > len(other) and self.__ge__(other) + + def __ge__(self, other): + if not isinstance(other, Set): + return NotImplemented + if len(self) < len(other): + return False + for elem in other: + if elem not in self: + return False + return True + + def __eq__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) == len(other) and self.__le__(other) + + @classmethod + def _from_iterable(cls, it): + '''Construct an instance of the class from any iterable input. + + Must override this method if the class constructor signature + does not accept an iterable for an input. + ''' + return cls(it) + + def __and__(self, other): + if not isinstance(other, Iterable): + return NotImplemented + return self._from_iterable(value for value in other if value in self) + + __rand__ = __and__ + + def isdisjoint(self, other): + 'Return True if two sets have a null intersection.' + for value in other: + if value in self: + return False + return True + + def __or__(self, other): + if not isinstance(other, Iterable): + return NotImplemented + chain = (e for s in (self, other) for e in s) + return self._from_iterable(chain) + + __ror__ = __or__ + + def __sub__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return self._from_iterable(value for value in self + if value not in other) + + def __rsub__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return self._from_iterable(value for value in other + if value not in self) + + def __xor__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return (self - other) | (other - self) + + __rxor__ = __xor__ + + def _hash(self): + """Compute the hash value of a set. + + Note that we don't define __hash__: not all sets are hashable. + But if you define a hashable set type, its __hash__ should + call this function. + + This must be compatible __eq__. + + All sets ought to compare equal if they contain the same + elements, regardless of how they are implemented, and + regardless of the order of the elements; so there's not much + freedom for __eq__ or __hash__. We match the algorithm used + by the built-in frozenset type. + """ + MAX = sys.maxsize + MASK = 2 * MAX + 1 + n = len(self) + h = 1927868237 * (n + 1) + h &= MASK + for x in self: + hx = hash(x) + h ^= (hx ^ (hx << 16) ^ 89869747) * 3644798167 + h &= MASK + h = h * 69069 + 907133923 + h &= MASK + if h > MAX: + h -= MASK + 1 + if h == -1: + h = 590923713 + return h + +Set.register(frozenset) + + +class MutableSet(Set): + """A mutable set is a finite, iterable container. + + This class provides concrete generic implementations of all + methods except for __contains__, __iter__, __len__, + add(), and discard(). + + To override the comparisons (presumably for speed, as the + semantics are fixed), all you have to do is redefine __le__ and + then the other operations will automatically follow suit. + """ + + __slots__ = () + + @abstractmethod + def add(self, value): + """Add an element.""" + raise NotImplementedError + + @abstractmethod + def discard(self, value): + """Remove an element. Do not raise an exception if absent.""" + raise NotImplementedError + + def remove(self, value): + """Remove an element. If not a member, raise a KeyError.""" + if value not in self: + raise KeyError(value) + self.discard(value) + + def pop(self): + """Return the popped value. Raise KeyError if empty.""" + it = iter(self) + try: + value = next(it) + except StopIteration: + raise KeyError + self.discard(value) + return value + + def clear(self): + """This is slow (creates N new iterators!) but effective.""" + try: + while True: + self.pop() + except KeyError: + pass + + def __ior__(self, it): + for value in it: + self.add(value) + return self + + def __iand__(self, it): + for value in (self - it): + self.discard(value) + return self + + def __ixor__(self, it): + if it is self: + self.clear() + else: + if not isinstance(it, Set): + it = self._from_iterable(it) + for value in it: + if value in self: + self.discard(value) + else: + self.add(value) + return self + + def __isub__(self, it): + if it is self: + self.clear() + else: + for value in it: + self.discard(value) + return self + +MutableSet.register(set) + + +### MAPPINGS ### + + +class Mapping(Sized, Iterable, Container): + + __slots__ = () + + """A Mapping is a generic container for associating key/value + pairs. + + This class provides concrete generic implementations of all + methods except for __getitem__, __iter__, and __len__. + + """ + + @abstractmethod + def __getitem__(self, key): + raise KeyError + + def get(self, key, default=None): + 'D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.' + try: + return self[key] + except KeyError: + return default + + def __contains__(self, key): + try: + self[key] + except KeyError: + return False + else: + return True + + def keys(self): + "D.keys() -> a set-like object providing a view on D's keys" + return KeysView(self) + + def items(self): + "D.items() -> a set-like object providing a view on D's items" + return ItemsView(self) + + def values(self): + "D.values() -> an object providing a view on D's values" + return ValuesView(self) + + def __eq__(self, other): + if not isinstance(other, Mapping): + return NotImplemented + return dict(self.items()) == dict(other.items()) + +Mapping.register(mappingproxy) + + +class MappingView(Sized): + + __slots__ = '_mapping', + + def __init__(self, mapping): + self._mapping = mapping + + def __len__(self): + return len(self._mapping) + + def __repr__(self): + return '{0.__class__.__name__}({0._mapping!r})'.format(self) + + +class KeysView(MappingView, Set): + + __slots__ = () + + @classmethod + def _from_iterable(self, it): + return set(it) + + def __contains__(self, key): + return key in self._mapping + + def __iter__(self): + yield from self._mapping + +KeysView.register(dict_keys) + + +class ItemsView(MappingView, Set): + + __slots__ = () + + @classmethod + def _from_iterable(self, it): + return set(it) + + def __contains__(self, item): + key, value = item + try: + v = self._mapping[key] + except KeyError: + return False + else: + return v == value + + def __iter__(self): + for key in self._mapping: + yield (key, self._mapping[key]) + +ItemsView.register(dict_items) + + +class ValuesView(MappingView): + + __slots__ = () + + def __contains__(self, value): + for key in self._mapping: + if value == self._mapping[key]: + return True + return False + + def __iter__(self): + for key in self._mapping: + yield self._mapping[key] + +ValuesView.register(dict_values) + + +class MutableMapping(Mapping): + + __slots__ = () + + """A MutableMapping is a generic container for associating + key/value pairs. + + This class provides concrete generic implementations of all + methods except for __getitem__, __setitem__, __delitem__, + __iter__, and __len__. + + """ + + @abstractmethod + def __setitem__(self, key, value): + raise KeyError + + @abstractmethod + def __delitem__(self, key): + raise KeyError + + __marker = object() + + def pop(self, key, default=__marker): + '''D.pop(k[,d]) -> v, remove specified key and return the corresponding value. + If key is not found, d is returned if given, otherwise KeyError is raised. + ''' + try: + value = self[key] + except KeyError: + if default is self.__marker: + raise + return default + else: + del self[key] + return value + + def popitem(self): + '''D.popitem() -> (k, v), remove and return some (key, value) pair + as a 2-tuple; but raise KeyError if D is empty. + ''' + try: + key = next(iter(self)) + except StopIteration: + raise KeyError + value = self[key] + del self[key] + return key, value + + def clear(self): + 'D.clear() -> None. Remove all items from D.' + try: + while True: + self.popitem() + except KeyError: + pass + + def update(*args, **kwds): + ''' D.update([E, ]**F) -> None. Update D from mapping/iterable E and F. + If E present and has a .keys() method, does: for k in E: D[k] = E[k] + If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v + In either case, this is followed by: for k, v in F.items(): D[k] = v + ''' + if not args: + raise TypeError("descriptor 'update' of 'MutableMapping' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('update expected at most 1 arguments, got %d' % + len(args)) + if args: + other = args[0] + if isinstance(other, Mapping): + for key in other: + self[key] = other[key] + elif hasattr(other, "keys"): + for key in other.keys(): + self[key] = other[key] + else: + for key, value in other: + self[key] = value + for key, value in kwds.items(): + self[key] = value + + def setdefault(self, key, default=None): + 'D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D' + try: + return self[key] + except KeyError: + self[key] = default + return default + +MutableMapping.register(dict) + + +### SEQUENCES ### + + +class Sequence(Sized, Iterable, Container): + + """All the operations on a read-only sequence. + + Concrete subclasses must override __new__ or __init__, + __getitem__, and __len__. + """ + + __slots__ = () + + @abstractmethod + def __getitem__(self, index): + raise IndexError + + def __iter__(self): + i = 0 + try: + while True: + v = self[i] + yield v + i += 1 + except IndexError: + return + + def __contains__(self, value): + for v in self: + if v == value: + return True + return False + + def __reversed__(self): + for i in reversed(range(len(self))): + yield self[i] + + def index(self, value, start=0, stop=None): + '''S.index(value, [start, [stop]]) -> integer -- return first index of value. + Raises ValueError if the value is not present. + ''' + if start is not None and start < 0: + start = max(len(self) + start, 0) + if stop is not None and stop < 0: + stop += len(self) + + i = start + while stop is None or i < stop: + try: + if self[i] == value: + return i + except IndexError: + break + i += 1 + raise ValueError + + def count(self, value): + 'S.count(value) -> integer -- return number of occurrences of value' + return sum(1 for v in self if v == value) + +Sequence.register(tuple) +Sequence.register(str) +Sequence.register(range) +Sequence.register(memoryview) + + +class ByteString(Sequence): + + """This unifies bytes and bytearray. + + XXX Should add all their methods. + """ + + __slots__ = () + +ByteString.register(bytes) +ByteString.register(bytearray) + + +class MutableSequence(Sequence): + + __slots__ = () + + """All the operations on a read-write sequence. + + Concrete subclasses must provide __new__ or __init__, + __getitem__, __setitem__, __delitem__, __len__, and insert(). + + """ + + @abstractmethod + def __setitem__(self, index, value): + raise IndexError + + @abstractmethod + def __delitem__(self, index): + raise IndexError + + @abstractmethod + def insert(self, index, value): + 'S.insert(index, value) -- insert value before index' + raise IndexError + + def append(self, value): + 'S.append(value) -- append value to the end of the sequence' + self.insert(len(self), value) + + def clear(self): + 'S.clear() -> None -- remove all items from S' + try: + while True: + self.pop() + except IndexError: + pass + + def reverse(self): + 'S.reverse() -- reverse *IN PLACE*' + n = len(self) + for i in range(n//2): + self[i], self[n-i-1] = self[n-i-1], self[i] + + def extend(self, values): + 'S.extend(iterable) -- extend sequence by appending elements from the iterable' + for v in values: + self.append(v) + + def pop(self, index=-1): + '''S.pop([index]) -> item -- remove and return item at index (default last). + Raise IndexError if list is empty or index is out of range. + ''' + v = self[index] + del self[index] + return v + + def remove(self, value): + '''S.remove(value) -- remove first occurrence of value. + Raise ValueError if the value is not present. + ''' + del self[self.index(value)] + + def __iadd__(self, values): + self.extend(values) + return self + +MutableSequence.register(list) +MutableSequence.register(bytearray) # Multiply inheriting, see ByteString diff --git a/typing_extensions/test_data/python-3.5.3/abc.py b/typing_extensions/test_data/python-3.5.3/abc.py new file mode 100644 index 000000000..1cbf96a61 --- /dev/null +++ b/typing_extensions/test_data/python-3.5.3/abc.py @@ -0,0 +1,248 @@ +# Copyright 2007 Google, Inc. All Rights Reserved. +# Licensed to PSF under a Contributor Agreement. + +"""Abstract Base Classes (ABCs) according to PEP 3119.""" + +from _weakrefset import WeakSet + + +def abstractmethod(funcobj): + """A decorator indicating abstract methods. + + Requires that the metaclass is ABCMeta or derived from it. A + class that has a metaclass derived from ABCMeta cannot be + instantiated unless all of its abstract methods are overridden. + The abstract methods can be called using any of the normal + 'super' call mechanisms. + + Usage: + + class C(metaclass=ABCMeta): + @abstractmethod + def my_abstract_method(self, ...): + ... + """ + funcobj.__isabstractmethod__ = True + return funcobj + + +class abstractclassmethod(classmethod): + """ + A decorator indicating abstract classmethods. + + Similar to abstractmethod. + + Usage: + + class C(metaclass=ABCMeta): + @abstractclassmethod + def my_abstract_classmethod(cls, ...): + ... + + 'abstractclassmethod' is deprecated. Use 'classmethod' with + 'abstractmethod' instead. + """ + + __isabstractmethod__ = True + + def __init__(self, callable): + callable.__isabstractmethod__ = True + super().__init__(callable) + + +class abstractstaticmethod(staticmethod): + """ + A decorator indicating abstract staticmethods. + + Similar to abstractmethod. + + Usage: + + class C(metaclass=ABCMeta): + @abstractstaticmethod + def my_abstract_staticmethod(...): + ... + + 'abstractstaticmethod' is deprecated. Use 'staticmethod' with + 'abstractmethod' instead. + """ + + __isabstractmethod__ = True + + def __init__(self, callable): + callable.__isabstractmethod__ = True + super().__init__(callable) + + +class abstractproperty(property): + """ + A decorator indicating abstract properties. + + Requires that the metaclass is ABCMeta or derived from it. A + class that has a metaclass derived from ABCMeta cannot be + instantiated unless all of its abstract properties are overridden. + The abstract properties can be called using any of the normal + 'super' call mechanisms. + + Usage: + + class C(metaclass=ABCMeta): + @abstractproperty + def my_abstract_property(self): + ... + + This defines a read-only property; you can also define a read-write + abstract property using the 'long' form of property declaration: + + class C(metaclass=ABCMeta): + def getx(self): ... + def setx(self, value): ... + x = abstractproperty(getx, setx) + + 'abstractproperty' is deprecated. Use 'property' with 'abstractmethod' + instead. + """ + + __isabstractmethod__ = True + + +class ABCMeta(type): + + """Metaclass for defining Abstract Base Classes (ABCs). + + Use this metaclass to create an ABC. An ABC can be subclassed + directly, and then acts as a mix-in class. You can also register + unrelated concrete classes (even built-in classes) and unrelated + ABCs as 'virtual subclasses' -- these and their descendants will + be considered subclasses of the registering ABC by the built-in + issubclass() function, but the registering ABC won't show up in + their MRO (Method Resolution Order) nor will method + implementations defined by the registering ABC be callable (not + even via super()). + + """ + + # A global counter that is incremented each time a class is + # registered as a virtual subclass of anything. It forces the + # negative cache to be cleared before its next use. + # Note: this counter is private. Use `abc.get_cache_token()` for + # external code. + _abc_invalidation_counter = 0 + + def __new__(mcls, name, bases, namespace): + cls = super().__new__(mcls, name, bases, namespace) + # Compute set of abstract method names + abstracts = {name + for name, value in namespace.items() + if getattr(value, "__isabstractmethod__", False)} + for base in bases: + for name in getattr(base, "__abstractmethods__", set()): + value = getattr(cls, name, None) + if getattr(value, "__isabstractmethod__", False): + abstracts.add(name) + cls.__abstractmethods__ = frozenset(abstracts) + # Set up inheritance registry + cls._abc_registry = WeakSet() + cls._abc_cache = WeakSet() + cls._abc_negative_cache = WeakSet() + cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter + return cls + + def register(cls, subclass): + """Register a virtual subclass of an ABC. + + Returns the subclass, to allow usage as a class decorator. + """ + if not isinstance(subclass, type): + raise TypeError("Can only register classes") + if issubclass(subclass, cls): + return subclass # Already a subclass + # Subtle: test for cycles *after* testing for "already a subclass"; + # this means we allow X.register(X) and interpret it as a no-op. + if issubclass(cls, subclass): + # This would create a cycle, which is bad for the algorithm below + raise RuntimeError("Refusing to create an inheritance cycle") + cls._abc_registry.add(subclass) + ABCMeta._abc_invalidation_counter += 1 # Invalidate negative cache + return subclass + + def _dump_registry(cls, file=None): + """Debug helper to print the ABC registry.""" + print("Class: %s.%s" % (cls.__module__, cls.__qualname__), file=file) + print("Inv.counter: %s" % ABCMeta._abc_invalidation_counter, file=file) + for name in sorted(cls.__dict__.keys()): + if name.startswith("_abc_"): + value = getattr(cls, name) + print("%s: %r" % (name, value), file=file) + + def __instancecheck__(cls, instance): + """Override for isinstance(instance, cls).""" + # Inline the cache checking + subclass = instance.__class__ + if subclass in cls._abc_cache: + return True + subtype = type(instance) + if subtype is subclass: + if (cls._abc_negative_cache_version == + ABCMeta._abc_invalidation_counter and + subclass in cls._abc_negative_cache): + return False + # Fall back to the subclass check. + return cls.__subclasscheck__(subclass) + return any(cls.__subclasscheck__(c) for c in {subclass, subtype}) + + def __subclasscheck__(cls, subclass): + """Override for issubclass(subclass, cls).""" + # Check cache + if subclass in cls._abc_cache: + return True + # Check negative cache; may have to invalidate + if cls._abc_negative_cache_version < ABCMeta._abc_invalidation_counter: + # Invalidate the negative cache + cls._abc_negative_cache = WeakSet() + cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter + elif subclass in cls._abc_negative_cache: + return False + # Check the subclass hook + ok = cls.__subclasshook__(subclass) + if ok is not NotImplemented: + assert isinstance(ok, bool) + if ok: + cls._abc_cache.add(subclass) + else: + cls._abc_negative_cache.add(subclass) + return ok + # Check if it's a direct subclass + if cls in getattr(subclass, '__mro__', ()): + cls._abc_cache.add(subclass) + return True + # Check if it's a subclass of a registered class (recursive) + for rcls in cls._abc_registry: + if issubclass(subclass, rcls): + cls._abc_cache.add(subclass) + return True + # Check if it's a subclass of a subclass (recursive) + for scls in cls.__subclasses__(): + if issubclass(subclass, scls): + cls._abc_cache.add(subclass) + return True + # No dice; update negative cache + cls._abc_negative_cache.add(subclass) + return False + + +class ABC(metaclass=ABCMeta): + """Helper class that provides a standard way to create an ABC using + inheritance. + """ + pass + + +def get_cache_token(): + """Returns the current ABC cache token. + + The token is an opaque object (supporting equality testing) identifying the + current version of the ABC cache for virtual subclasses. The token changes + with every call to ``register()`` on any ABC. + """ + return ABCMeta._abc_invalidation_counter diff --git a/typing_extensions/test_data/python-3.5.3/collections/__init__.py b/typing_extensions/test_data/python-3.5.3/collections/__init__.py new file mode 100644 index 000000000..bea811db7 --- /dev/null +++ b/typing_extensions/test_data/python-3.5.3/collections/__init__.py @@ -0,0 +1,1242 @@ +'''This module implements specialized container datatypes providing +alternatives to Python's general purpose built-in containers, dict, +list, set, and tuple. + +* namedtuple factory function for creating tuple subclasses with named fields +* deque list-like container with fast appends and pops on either end +* ChainMap dict-like class for creating a single view of multiple mappings +* Counter dict subclass for counting hashable objects +* OrderedDict dict subclass that remembers the order entries were added +* defaultdict dict subclass that calls a factory function to supply missing values +* UserDict wrapper around dictionary objects for easier dict subclassing +* UserList wrapper around list objects for easier list subclassing +* UserString wrapper around string objects for easier string subclassing + +''' + +__all__ = ['deque', 'defaultdict', 'namedtuple', 'UserDict', 'UserList', + 'UserString', 'Counter', 'OrderedDict', 'ChainMap'] + +# For backwards compatibility, continue to make the collections ABCs +# available through the collections module. +from _collections_abc import * +import _collections_abc +__all__ += _collections_abc.__all__ + +from operator import itemgetter as _itemgetter, eq as _eq +from keyword import iskeyword as _iskeyword +import sys as _sys +import heapq as _heapq +from _weakref import proxy as _proxy +from itertools import repeat as _repeat, chain as _chain, starmap as _starmap +from reprlib import recursive_repr as _recursive_repr + +try: + from _collections import deque +except ImportError: + pass +else: + MutableSequence.register(deque) + +try: + from _collections import defaultdict +except ImportError: + pass + + +################################################################################ +### OrderedDict +################################################################################ + +class _OrderedDictKeysView(KeysView): + + def __reversed__(self): + yield from reversed(self._mapping) + +class _OrderedDictItemsView(ItemsView): + + def __reversed__(self): + for key in reversed(self._mapping): + yield (key, self._mapping[key]) + +class _OrderedDictValuesView(ValuesView): + + def __reversed__(self): + for key in reversed(self._mapping): + yield self._mapping[key] + +class _Link(object): + __slots__ = 'prev', 'next', 'key', '__weakref__' + +class OrderedDict(dict): + 'Dictionary that remembers insertion order' + # An inherited dict maps keys to values. + # The inherited dict provides __getitem__, __len__, __contains__, and get. + # The remaining methods are order-aware. + # Big-O running times for all methods are the same as regular dictionaries. + + # The internal self.__map dict maps keys to links in a doubly linked list. + # The circular doubly linked list starts and ends with a sentinel element. + # The sentinel element never gets deleted (this simplifies the algorithm). + # The sentinel is in self.__hardroot with a weakref proxy in self.__root. + # The prev links are weakref proxies (to prevent circular references). + # Individual links are kept alive by the hard reference in self.__map. + # Those hard references disappear when a key is deleted from an OrderedDict. + + def __init__(*args, **kwds): + '''Initialize an ordered dictionary. The signature is the same as + regular dictionaries, but keyword arguments are not recommended because + their insertion order is arbitrary. + + ''' + if not args: + raise TypeError("descriptor '__init__' of 'OrderedDict' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + try: + self.__root + except AttributeError: + self.__hardroot = _Link() + self.__root = root = _proxy(self.__hardroot) + root.prev = root.next = root + self.__map = {} + self.__update(*args, **kwds) + + def __setitem__(self, key, value, + dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link): + 'od.__setitem__(i, y) <==> od[i]=y' + # Setting a new item creates a new link at the end of the linked list, + # and the inherited dictionary is updated with the new key/value pair. + if key not in self: + self.__map[key] = link = Link() + root = self.__root + last = root.prev + link.prev, link.next, link.key = last, root, key + last.next = link + root.prev = proxy(link) + dict_setitem(self, key, value) + + def __delitem__(self, key, dict_delitem=dict.__delitem__): + 'od.__delitem__(y) <==> del od[y]' + # Deleting an existing item uses self.__map to find the link which gets + # removed by updating the links in the predecessor and successor nodes. + dict_delitem(self, key) + link = self.__map.pop(key) + link_prev = link.prev + link_next = link.next + link_prev.next = link_next + link_next.prev = link_prev + link.prev = None + link.next = None + + def __iter__(self): + 'od.__iter__() <==> iter(od)' + # Traverse the linked list in order. + root = self.__root + curr = root.next + while curr is not root: + yield curr.key + curr = curr.next + + def __reversed__(self): + 'od.__reversed__() <==> reversed(od)' + # Traverse the linked list in reverse order. + root = self.__root + curr = root.prev + while curr is not root: + yield curr.key + curr = curr.prev + + def clear(self): + 'od.clear() -> None. Remove all items from od.' + root = self.__root + root.prev = root.next = root + self.__map.clear() + dict.clear(self) + + def popitem(self, last=True): + '''od.popitem() -> (k, v), return and remove a (key, value) pair. + Pairs are returned in LIFO order if last is true or FIFO order if false. + + ''' + if not self: + raise KeyError('dictionary is empty') + root = self.__root + if last: + link = root.prev + link_prev = link.prev + link_prev.next = root + root.prev = link_prev + else: + link = root.next + link_next = link.next + root.next = link_next + link_next.prev = root + key = link.key + del self.__map[key] + value = dict.pop(self, key) + return key, value + + def move_to_end(self, key, last=True): + '''Move an existing element to the end (or beginning if last==False). + + Raises KeyError if the element does not exist. + When last=True, acts like a fast version of self[key]=self.pop(key). + + ''' + link = self.__map[key] + link_prev = link.prev + link_next = link.next + soft_link = link_next.prev + link_prev.next = link_next + link_next.prev = link_prev + root = self.__root + if last: + last = root.prev + link.prev = last + link.next = root + root.prev = soft_link + last.next = link + else: + first = root.next + link.prev = root + link.next = first + first.prev = soft_link + root.next = link + + def __sizeof__(self): + sizeof = _sys.getsizeof + n = len(self) + 1 # number of links including root + size = sizeof(self.__dict__) # instance dictionary + size += sizeof(self.__map) * 2 # internal dict and inherited dict + size += sizeof(self.__hardroot) * n # link objects + size += sizeof(self.__root) * n # proxy objects + return size + + update = __update = MutableMapping.update + + def keys(self): + "D.keys() -> a set-like object providing a view on D's keys" + return _OrderedDictKeysView(self) + + def items(self): + "D.items() -> a set-like object providing a view on D's items" + return _OrderedDictItemsView(self) + + def values(self): + "D.values() -> an object providing a view on D's values" + return _OrderedDictValuesView(self) + + __ne__ = MutableMapping.__ne__ + + __marker = object() + + def pop(self, key, default=__marker): + '''od.pop(k[,d]) -> v, remove specified key and return the corresponding + value. If key is not found, d is returned if given, otherwise KeyError + is raised. + + ''' + if key in self: + result = self[key] + del self[key] + return result + if default is self.__marker: + raise KeyError(key) + return default + + def setdefault(self, key, default=None): + 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od' + if key in self: + return self[key] + self[key] = default + return default + + @_recursive_repr() + def __repr__(self): + 'od.__repr__() <==> repr(od)' + if not self: + return '%s()' % (self.__class__.__name__,) + return '%s(%r)' % (self.__class__.__name__, list(self.items())) + + def __reduce__(self): + 'Return state information for pickling' + inst_dict = vars(self).copy() + for k in vars(OrderedDict()): + inst_dict.pop(k, None) + return self.__class__, (), inst_dict or None, None, iter(self.items()) + + def copy(self): + 'od.copy() -> a shallow copy of od' + return self.__class__(self) + + @classmethod + def fromkeys(cls, iterable, value=None): + '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S. + If not specified, the value defaults to None. + + ''' + self = cls() + for key in iterable: + self[key] = value + return self + + def __eq__(self, other): + '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive + while comparison to a regular mapping is order-insensitive. + + ''' + if isinstance(other, OrderedDict): + return dict.__eq__(self, other) and all(map(_eq, self, other)) + return dict.__eq__(self, other) + + +try: + from _collections import OrderedDict +except ImportError: + # Leave the pure Python version in place. + pass + + +################################################################################ +### namedtuple +################################################################################ + +_class_template = """\ +from builtins import property as _property, tuple as _tuple +from operator import itemgetter as _itemgetter +from collections import OrderedDict + +class {typename}(tuple): + '{typename}({arg_list})' + + __slots__ = () + + _fields = {field_names!r} + + def __new__(_cls, {arg_list}): + 'Create new instance of {typename}({arg_list})' + return _tuple.__new__(_cls, ({arg_list})) + + @classmethod + def _make(cls, iterable, new=tuple.__new__, len=len): + 'Make a new {typename} object from a sequence or iterable' + result = new(cls, iterable) + if len(result) != {num_fields:d}: + raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result)) + return result + + def _replace(_self, **kwds): + 'Return a new {typename} object replacing specified fields with new values' + result = _self._make(map(kwds.pop, {field_names!r}, _self)) + if kwds: + raise ValueError('Got unexpected field names: %r' % list(kwds)) + return result + + def __repr__(self): + 'Return a nicely formatted representation string' + return self.__class__.__name__ + '({repr_fmt})' % self + + def _asdict(self): + 'Return a new OrderedDict which maps field names to their values.' + return OrderedDict(zip(self._fields, self)) + + def __getnewargs__(self): + 'Return self as a plain tuple. Used by copy and pickle.' + return tuple(self) + +{field_defs} +""" + +_repr_template = '{name}=%r' + +_field_template = '''\ + {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}') +''' + +def namedtuple(typename, field_names, verbose=False, rename=False): + """Returns a new subclass of tuple with named fields. + + >>> Point = namedtuple('Point', ['x', 'y']) + >>> Point.__doc__ # docstring for the new class + 'Point(x, y)' + >>> p = Point(11, y=22) # instantiate with positional args or keywords + >>> p[0] + p[1] # indexable like a plain tuple + 33 + >>> x, y = p # unpack like a regular tuple + >>> x, y + (11, 22) + >>> p.x + p.y # fields also accessible by name + 33 + >>> d = p._asdict() # convert to a dictionary + >>> d['x'] + 11 + >>> Point(**d) # convert from a dictionary + Point(x=11, y=22) + >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields + Point(x=100, y=22) + + """ + + # Validate the field names. At the user's option, either generate an error + # message or automatically replace the field name with a valid name. + if isinstance(field_names, str): + field_names = field_names.replace(',', ' ').split() + field_names = list(map(str, field_names)) + typename = str(typename) + if rename: + seen = set() + for index, name in enumerate(field_names): + if (not name.isidentifier() + or _iskeyword(name) + or name.startswith('_') + or name in seen): + field_names[index] = '_%d' % index + seen.add(name) + for name in [typename] + field_names: + if type(name) != str: + raise TypeError('Type names and field names must be strings') + if not name.isidentifier(): + raise ValueError('Type names and field names must be valid ' + 'identifiers: %r' % name) + if _iskeyword(name): + raise ValueError('Type names and field names cannot be a ' + 'keyword: %r' % name) + seen = set() + for name in field_names: + if name.startswith('_') and not rename: + raise ValueError('Field names cannot start with an underscore: ' + '%r' % name) + if name in seen: + raise ValueError('Encountered duplicate field name: %r' % name) + seen.add(name) + + # Fill-in the class template + class_definition = _class_template.format( + typename = typename, + field_names = tuple(field_names), + num_fields = len(field_names), + arg_list = repr(tuple(field_names)).replace("'", "")[1:-1], + repr_fmt = ', '.join(_repr_template.format(name=name) + for name in field_names), + field_defs = '\n'.join(_field_template.format(index=index, name=name) + for index, name in enumerate(field_names)) + ) + + # Execute the template string in a temporary namespace and support + # tracing utilities by setting a value for frame.f_globals['__name__'] + namespace = dict(__name__='namedtuple_%s' % typename) + exec(class_definition, namespace) + result = namespace[typename] + result._source = class_definition + if verbose: + print(result._source) + + # For pickling to work, the __module__ variable needs to be set to the frame + # where the named tuple is created. Bypass this step in environments where + # sys._getframe is not defined (Jython for example) or sys._getframe is not + # defined for arguments greater than 0 (IronPython). + try: + result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__') + except (AttributeError, ValueError): + pass + + return result + + +######################################################################## +### Counter +######################################################################## + +def _count_elements(mapping, iterable): + 'Tally elements from the iterable.' + mapping_get = mapping.get + for elem in iterable: + mapping[elem] = mapping_get(elem, 0) + 1 + +try: # Load C helper function if available + from _collections import _count_elements +except ImportError: + pass + +class Counter(dict): + '''Dict subclass for counting hashable items. Sometimes called a bag + or multiset. Elements are stored as dictionary keys and their counts + are stored as dictionary values. + + >>> c = Counter('abcdeabcdabcaba') # count elements from a string + + >>> c.most_common(3) # three most common elements + [('a', 5), ('b', 4), ('c', 3)] + >>> sorted(c) # list all unique elements + ['a', 'b', 'c', 'd', 'e'] + >>> ''.join(sorted(c.elements())) # list elements with repetitions + 'aaaaabbbbcccdde' + >>> sum(c.values()) # total of all counts + 15 + + >>> c['a'] # count of letter 'a' + 5 + >>> for elem in 'shazam': # update counts from an iterable + ... c[elem] += 1 # by adding 1 to each element's count + >>> c['a'] # now there are seven 'a' + 7 + >>> del c['b'] # remove all 'b' + >>> c['b'] # now there are zero 'b' + 0 + + >>> d = Counter('simsalabim') # make another counter + >>> c.update(d) # add in the second counter + >>> c['a'] # now there are nine 'a' + 9 + + >>> c.clear() # empty the counter + >>> c + Counter() + + Note: If a count is set to zero or reduced to zero, it will remain + in the counter until the entry is deleted or the counter is cleared: + + >>> c = Counter('aaabbc') + >>> c['b'] -= 2 # reduce the count of 'b' by two + >>> c.most_common() # 'b' is still in, but its count is zero + [('a', 3), ('c', 1), ('b', 0)] + + ''' + # References: + # http://en.wikipedia.org/wiki/Multiset + # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html + # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm + # http://code.activestate.com/recipes/259174/ + # Knuth, TAOCP Vol. II section 4.6.3 + + def __init__(*args, **kwds): + '''Create a new, empty Counter object. And if given, count elements + from an input iterable. Or, initialize the count from another mapping + of elements to their counts. + + >>> c = Counter() # a new, empty counter + >>> c = Counter('gallahad') # a new counter from an iterable + >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping + >>> c = Counter(a=4, b=2) # a new counter from keyword args + + ''' + if not args: + raise TypeError("descriptor '__init__' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + super(Counter, self).__init__() + self.update(*args, **kwds) + + def __missing__(self, key): + 'The count of elements not in the Counter is zero.' + # Needed so that self[missing_item] does not raise KeyError + return 0 + + def most_common(self, n=None): + '''List the n most common elements and their counts from the most + common to the least. If n is None, then list all element counts. + + >>> Counter('abcdeabcdabcaba').most_common(3) + [('a', 5), ('b', 4), ('c', 3)] + + ''' + # Emulate Bag.sortedByCount from Smalltalk + if n is None: + return sorted(self.items(), key=_itemgetter(1), reverse=True) + return _heapq.nlargest(n, self.items(), key=_itemgetter(1)) + + def elements(self): + '''Iterator over elements repeating each as many times as its count. + + >>> c = Counter('ABCABC') + >>> sorted(c.elements()) + ['A', 'A', 'B', 'B', 'C', 'C'] + + # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1 + >>> prime_factors = Counter({2: 2, 3: 3, 17: 1}) + >>> product = 1 + >>> for factor in prime_factors.elements(): # loop over factors + ... product *= factor # and multiply them + >>> product + 1836 + + Note, if an element's count has been set to zero or is a negative + number, elements() will ignore it. + + ''' + # Emulate Bag.do from Smalltalk and Multiset.begin from C++. + return _chain.from_iterable(_starmap(_repeat, self.items())) + + # Override dict methods where necessary + + @classmethod + def fromkeys(cls, iterable, v=None): + # There is no equivalent method for counters because setting v=1 + # means that no element can have a count greater than one. + raise NotImplementedError( + 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') + + def update(*args, **kwds): + '''Like dict.update() but add counts instead of replacing them. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.update('witch') # add elements from another iterable + >>> d = Counter('watch') + >>> c.update(d) # add elements from another counter + >>> c['h'] # four 'h' in which, witch, and watch + 4 + + ''' + # The regular dict.update() operation makes no sense here because the + # replace behavior results in the some of original untouched counts + # being mixed-in with all of the other counts for a mismash that + # doesn't have a straight-forward interpretation in most counting + # contexts. Instead, we implement straight-addition. Both the inputs + # and outputs are allowed to contain zero and negative counts. + + if not args: + raise TypeError("descriptor 'update' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + iterable = args[0] if args else None + if iterable is not None: + if isinstance(iterable, Mapping): + if self: + self_get = self.get + for elem, count in iterable.items(): + self[elem] = count + self_get(elem, 0) + else: + super(Counter, self).update(iterable) # fast path when counter is empty + else: + _count_elements(self, iterable) + if kwds: + self.update(kwds) + + def subtract(*args, **kwds): + '''Like dict.update() but subtracts counts instead of replacing them. + Counts can be reduced below zero. Both the inputs and outputs are + allowed to contain zero and negative counts. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.subtract('witch') # subtract elements from another iterable + >>> c.subtract(Counter('watch')) # subtract elements from another counter + >>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch + 0 + >>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch + -1 + + ''' + if not args: + raise TypeError("descriptor 'subtract' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + iterable = args[0] if args else None + if iterable is not None: + self_get = self.get + if isinstance(iterable, Mapping): + for elem, count in iterable.items(): + self[elem] = self_get(elem, 0) - count + else: + for elem in iterable: + self[elem] = self_get(elem, 0) - 1 + if kwds: + self.subtract(kwds) + + def copy(self): + 'Return a shallow copy.' + return self.__class__(self) + + def __reduce__(self): + return self.__class__, (dict(self),) + + def __delitem__(self, elem): + 'Like dict.__delitem__() but does not raise KeyError for missing values.' + if elem in self: + super().__delitem__(elem) + + def __repr__(self): + if not self: + return '%s()' % self.__class__.__name__ + try: + items = ', '.join(map('%r: %r'.__mod__, self.most_common())) + return '%s({%s})' % (self.__class__.__name__, items) + except TypeError: + # handle case where values are not orderable + return '{0}({1!r})'.format(self.__class__.__name__, dict(self)) + + # Multiset-style mathematical operations discussed in: + # Knuth TAOCP Volume II section 4.6.3 exercise 19 + # and at http://en.wikipedia.org/wiki/Multiset + # + # Outputs guaranteed to only include positive counts. + # + # To strip negative and zero counts, add-in an empty counter: + # c += Counter() + + def __add__(self, other): + '''Add counts from two counters. + + >>> Counter('abbb') + Counter('bcc') + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count + other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __sub__(self, other): + ''' Subtract count, but keep only results with positive counts. + + >>> Counter('abbbc') - Counter('bccd') + Counter({'b': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count - other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count < 0: + result[elem] = 0 - count + return result + + def __or__(self, other): + '''Union is the maximum of value in either of the input counters. + + >>> Counter('abbb') | Counter('bcc') + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = other_count if count < other_count else count + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __and__(self, other): + ''' Intersection is the minimum of corresponding counts. + + >>> Counter('abbb') & Counter('bcc') + Counter({'b': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = count if count < other_count else other_count + if newcount > 0: + result[elem] = newcount + return result + + def __pos__(self): + 'Adds an empty counter, effectively stripping negative and zero counts' + result = Counter() + for elem, count in self.items(): + if count > 0: + result[elem] = count + return result + + def __neg__(self): + '''Subtracts from an empty counter. Strips positive and zero counts, + and flips the sign on negative counts. + + ''' + result = Counter() + for elem, count in self.items(): + if count < 0: + result[elem] = 0 - count + return result + + def _keep_positive(self): + '''Internal method to strip elements with a negative or zero count''' + nonpositive = [elem for elem, count in self.items() if not count > 0] + for elem in nonpositive: + del self[elem] + return self + + def __iadd__(self, other): + '''Inplace add from another counter, keeping only positive counts. + + >>> c = Counter('abbb') + >>> c += Counter('bcc') + >>> c + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + for elem, count in other.items(): + self[elem] += count + return self._keep_positive() + + def __isub__(self, other): + '''Inplace subtract counter, but keep only results with positive counts. + + >>> c = Counter('abbbc') + >>> c -= Counter('bccd') + >>> c + Counter({'b': 2, 'a': 1}) + + ''' + for elem, count in other.items(): + self[elem] -= count + return self._keep_positive() + + def __ior__(self, other): + '''Inplace union is the maximum of value from either counter. + + >>> c = Counter('abbb') + >>> c |= Counter('bcc') + >>> c + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + for elem, other_count in other.items(): + count = self[elem] + if other_count > count: + self[elem] = other_count + return self._keep_positive() + + def __iand__(self, other): + '''Inplace intersection is the minimum of corresponding counts. + + >>> c = Counter('abbb') + >>> c &= Counter('bcc') + >>> c + Counter({'b': 1}) + + ''' + for elem, count in self.items(): + other_count = other[elem] + if other_count < count: + self[elem] = other_count + return self._keep_positive() + + +######################################################################## +### ChainMap (helper for configparser and string.Template) +######################################################################## + +class ChainMap(MutableMapping): + ''' A ChainMap groups multiple dicts (or other mappings) together + to create a single, updateable view. + + The underlying mappings are stored in a list. That list is public and can + be accessed or updated using the *maps* attribute. There is no other + state. + + Lookups search the underlying mappings successively until a key is found. + In contrast, writes, updates, and deletions only operate on the first + mapping. + + ''' + + def __init__(self, *maps): + '''Initialize a ChainMap by setting *maps* to the given mappings. + If no mappings are provided, a single empty dictionary is used. + + ''' + self.maps = list(maps) or [{}] # always at least one map + + def __missing__(self, key): + raise KeyError(key) + + def __getitem__(self, key): + for mapping in self.maps: + try: + return mapping[key] # can't use 'key in mapping' with defaultdict + except KeyError: + pass + return self.__missing__(key) # support subclasses that define __missing__ + + def get(self, key, default=None): + return self[key] if key in self else default + + def __len__(self): + return len(set().union(*self.maps)) # reuses stored hash values if possible + + def __iter__(self): + return iter(set().union(*self.maps)) + + def __contains__(self, key): + return any(key in m for m in self.maps) + + def __bool__(self): + return any(self.maps) + + @_recursive_repr() + def __repr__(self): + return '{0.__class__.__name__}({1})'.format( + self, ', '.join(map(repr, self.maps))) + + @classmethod + def fromkeys(cls, iterable, *args): + 'Create a ChainMap with a single dict created from the iterable.' + return cls(dict.fromkeys(iterable, *args)) + + def copy(self): + 'New ChainMap or subclass with a new copy of maps[0] and refs to maps[1:]' + return self.__class__(self.maps[0].copy(), *self.maps[1:]) + + __copy__ = copy + + def new_child(self, m=None): # like Django's Context.push() + '''New ChainMap with a new map followed by all previous maps. + If no map is provided, an empty dict is used. + ''' + if m is None: + m = {} + return self.__class__(m, *self.maps) + + @property + def parents(self): # like Django's Context.pop() + 'New ChainMap from maps[1:].' + return self.__class__(*self.maps[1:]) + + def __setitem__(self, key, value): + self.maps[0][key] = value + + def __delitem__(self, key): + try: + del self.maps[0][key] + except KeyError: + raise KeyError('Key not found in the first mapping: {!r}'.format(key)) + + def popitem(self): + 'Remove and return an item pair from maps[0]. Raise KeyError is maps[0] is empty.' + try: + return self.maps[0].popitem() + except KeyError: + raise KeyError('No keys found in the first mapping.') + + def pop(self, key, *args): + 'Remove *key* from maps[0] and return its value. Raise KeyError if *key* not in maps[0].' + try: + return self.maps[0].pop(key, *args) + except KeyError: + raise KeyError('Key not found in the first mapping: {!r}'.format(key)) + + def clear(self): + 'Clear maps[0], leaving maps[1:] intact.' + self.maps[0].clear() + + +################################################################################ +### UserDict +################################################################################ + +class UserDict(MutableMapping): + + # Start by filling-out the abstract methods + def __init__(*args, **kwargs): + if not args: + raise TypeError("descriptor '__init__' of 'UserDict' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + if args: + dict = args[0] + elif 'dict' in kwargs: + dict = kwargs.pop('dict') + import warnings + warnings.warn("Passing 'dict' as keyword argument is deprecated", + PendingDeprecationWarning, stacklevel=2) + else: + dict = None + self.data = {} + if dict is not None: + self.update(dict) + if len(kwargs): + self.update(kwargs) + def __len__(self): return len(self.data) + def __getitem__(self, key): + if key in self.data: + return self.data[key] + if hasattr(self.__class__, "__missing__"): + return self.__class__.__missing__(self, key) + raise KeyError(key) + def __setitem__(self, key, item): self.data[key] = item + def __delitem__(self, key): del self.data[key] + def __iter__(self): + return iter(self.data) + + # Modify __contains__ to work correctly when __missing__ is present + def __contains__(self, key): + return key in self.data + + # Now, add the methods in dicts but not in MutableMapping + def __repr__(self): return repr(self.data) + def copy(self): + if self.__class__ is UserDict: + return UserDict(self.data.copy()) + import copy + data = self.data + try: + self.data = {} + c = copy.copy(self) + finally: + self.data = data + c.update(self) + return c + @classmethod + def fromkeys(cls, iterable, value=None): + d = cls() + for key in iterable: + d[key] = value + return d + + + +################################################################################ +### UserList +################################################################################ + +class UserList(MutableSequence): + """A more or less complete user-defined wrapper around list objects.""" + def __init__(self, initlist=None): + self.data = [] + if initlist is not None: + # XXX should this accept an arbitrary sequence? + if type(initlist) == type(self.data): + self.data[:] = initlist + elif isinstance(initlist, UserList): + self.data[:] = initlist.data[:] + else: + self.data = list(initlist) + def __repr__(self): return repr(self.data) + def __lt__(self, other): return self.data < self.__cast(other) + def __le__(self, other): return self.data <= self.__cast(other) + def __eq__(self, other): return self.data == self.__cast(other) + def __gt__(self, other): return self.data > self.__cast(other) + def __ge__(self, other): return self.data >= self.__cast(other) + def __cast(self, other): + return other.data if isinstance(other, UserList) else other + def __contains__(self, item): return item in self.data + def __len__(self): return len(self.data) + def __getitem__(self, i): return self.data[i] + def __setitem__(self, i, item): self.data[i] = item + def __delitem__(self, i): del self.data[i] + def __add__(self, other): + if isinstance(other, UserList): + return self.__class__(self.data + other.data) + elif isinstance(other, type(self.data)): + return self.__class__(self.data + other) + return self.__class__(self.data + list(other)) + def __radd__(self, other): + if isinstance(other, UserList): + return self.__class__(other.data + self.data) + elif isinstance(other, type(self.data)): + return self.__class__(other + self.data) + return self.__class__(list(other) + self.data) + def __iadd__(self, other): + if isinstance(other, UserList): + self.data += other.data + elif isinstance(other, type(self.data)): + self.data += other + else: + self.data += list(other) + return self + def __mul__(self, n): + return self.__class__(self.data*n) + __rmul__ = __mul__ + def __imul__(self, n): + self.data *= n + return self + def append(self, item): self.data.append(item) + def insert(self, i, item): self.data.insert(i, item) + def pop(self, i=-1): return self.data.pop(i) + def remove(self, item): self.data.remove(item) + def clear(self): self.data.clear() + def copy(self): return self.__class__(self) + def count(self, item): return self.data.count(item) + def index(self, item, *args): return self.data.index(item, *args) + def reverse(self): self.data.reverse() + def sort(self, *args, **kwds): self.data.sort(*args, **kwds) + def extend(self, other): + if isinstance(other, UserList): + self.data.extend(other.data) + else: + self.data.extend(other) + + + +################################################################################ +### UserString +################################################################################ + +class UserString(Sequence): + def __init__(self, seq): + if isinstance(seq, str): + self.data = seq + elif isinstance(seq, UserString): + self.data = seq.data[:] + else: + self.data = str(seq) + def __str__(self): return str(self.data) + def __repr__(self): return repr(self.data) + def __int__(self): return int(self.data) + def __float__(self): return float(self.data) + def __complex__(self): return complex(self.data) + def __hash__(self): return hash(self.data) + def __getnewargs__(self): + return (self.data[:],) + + def __eq__(self, string): + if isinstance(string, UserString): + return self.data == string.data + return self.data == string + def __lt__(self, string): + if isinstance(string, UserString): + return self.data < string.data + return self.data < string + def __le__(self, string): + if isinstance(string, UserString): + return self.data <= string.data + return self.data <= string + def __gt__(self, string): + if isinstance(string, UserString): + return self.data > string.data + return self.data > string + def __ge__(self, string): + if isinstance(string, UserString): + return self.data >= string.data + return self.data >= string + + def __contains__(self, char): + if isinstance(char, UserString): + char = char.data + return char in self.data + + def __len__(self): return len(self.data) + def __getitem__(self, index): return self.__class__(self.data[index]) + def __add__(self, other): + if isinstance(other, UserString): + return self.__class__(self.data + other.data) + elif isinstance(other, str): + return self.__class__(self.data + other) + return self.__class__(self.data + str(other)) + def __radd__(self, other): + if isinstance(other, str): + return self.__class__(other + self.data) + return self.__class__(str(other) + self.data) + def __mul__(self, n): + return self.__class__(self.data*n) + __rmul__ = __mul__ + def __mod__(self, args): + return self.__class__(self.data % args) + def __rmod__(self, format): + return self.__class__(format % args) + + # the following methods are defined in alphabetical order: + def capitalize(self): return self.__class__(self.data.capitalize()) + def casefold(self): + return self.__class__(self.data.casefold()) + def center(self, width, *args): + return self.__class__(self.data.center(width, *args)) + def count(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.count(sub, start, end) + def encode(self, encoding=None, errors=None): # XXX improve this? + if encoding: + if errors: + return self.__class__(self.data.encode(encoding, errors)) + return self.__class__(self.data.encode(encoding)) + return self.__class__(self.data.encode()) + def endswith(self, suffix, start=0, end=_sys.maxsize): + return self.data.endswith(suffix, start, end) + def expandtabs(self, tabsize=8): + return self.__class__(self.data.expandtabs(tabsize)) + def find(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.find(sub, start, end) + def format(self, *args, **kwds): + return self.data.format(*args, **kwds) + def format_map(self, mapping): + return self.data.format_map(mapping) + def index(self, sub, start=0, end=_sys.maxsize): + return self.data.index(sub, start, end) + def isalpha(self): return self.data.isalpha() + def isalnum(self): return self.data.isalnum() + def isdecimal(self): return self.data.isdecimal() + def isdigit(self): return self.data.isdigit() + def isidentifier(self): return self.data.isidentifier() + def islower(self): return self.data.islower() + def isnumeric(self): return self.data.isnumeric() + def isprintable(self): return self.data.isprintable() + def isspace(self): return self.data.isspace() + def istitle(self): return self.data.istitle() + def isupper(self): return self.data.isupper() + def join(self, seq): return self.data.join(seq) + def ljust(self, width, *args): + return self.__class__(self.data.ljust(width, *args)) + def lower(self): return self.__class__(self.data.lower()) + def lstrip(self, chars=None): return self.__class__(self.data.lstrip(chars)) + maketrans = str.maketrans + def partition(self, sep): + return self.data.partition(sep) + def replace(self, old, new, maxsplit=-1): + if isinstance(old, UserString): + old = old.data + if isinstance(new, UserString): + new = new.data + return self.__class__(self.data.replace(old, new, maxsplit)) + def rfind(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.rfind(sub, start, end) + def rindex(self, sub, start=0, end=_sys.maxsize): + return self.data.rindex(sub, start, end) + def rjust(self, width, *args): + return self.__class__(self.data.rjust(width, *args)) + def rpartition(self, sep): + return self.data.rpartition(sep) + def rstrip(self, chars=None): + return self.__class__(self.data.rstrip(chars)) + def split(self, sep=None, maxsplit=-1): + return self.data.split(sep, maxsplit) + def rsplit(self, sep=None, maxsplit=-1): + return self.data.rsplit(sep, maxsplit) + def splitlines(self, keepends=False): return self.data.splitlines(keepends) + def startswith(self, prefix, start=0, end=_sys.maxsize): + return self.data.startswith(prefix, start, end) + def strip(self, chars=None): return self.__class__(self.data.strip(chars)) + def swapcase(self): return self.__class__(self.data.swapcase()) + def title(self): return self.__class__(self.data.title()) + def translate(self, *args): + return self.__class__(self.data.translate(*args)) + def upper(self): return self.__class__(self.data.upper()) + def zfill(self, width): return self.__class__(self.data.zfill(width)) diff --git a/typing_extensions/test_data/python-3.5.3/collections/__main__.py b/typing_extensions/test_data/python-3.5.3/collections/__main__.py new file mode 100644 index 000000000..763e38e0c --- /dev/null +++ b/typing_extensions/test_data/python-3.5.3/collections/__main__.py @@ -0,0 +1,38 @@ +################################################################################ +### Simple tests +################################################################################ + +# verify that instances can be pickled +from collections import namedtuple +from pickle import loads, dumps +Point = namedtuple('Point', 'x, y', True) +p = Point(x=10, y=20) +assert p == loads(dumps(p)) + +# test and demonstrate ability to override methods +class Point(namedtuple('Point', 'x y')): + __slots__ = () + @property + def hypot(self): + return (self.x ** 2 + self.y ** 2) ** 0.5 + def __str__(self): + return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot) + +for p in Point(3, 4), Point(14, 5/7.): + print (p) + +class Point(namedtuple('Point', 'x y')): + 'Point class with optimized _make() and _replace() without error-checking' + __slots__ = () + _make = classmethod(tuple.__new__) + def _replace(self, _map=map, **kwds): + return self._make(_map(kwds.get, ('x', 'y'), self)) + +print(Point(11, 22)._replace(x=100)) + +Point3D = namedtuple('Point3D', Point._fields + ('z',)) +print(Point3D.__doc__) + +import doctest, collections +TestResults = namedtuple('TestResults', 'failed attempted') +print(TestResults(*doctest.testmod(collections))) diff --git a/typing_extensions/test_data/python-3.5.3/collections/abc.py b/typing_extensions/test_data/python-3.5.3/collections/abc.py new file mode 100644 index 000000000..891600d16 --- /dev/null +++ b/typing_extensions/test_data/python-3.5.3/collections/abc.py @@ -0,0 +1,2 @@ +from _collections_abc import * +from _collections_abc import __all__ diff --git a/typing_extensions/test_data/python-3.5.3/typing.py b/typing_extensions/test_data/python-3.5.3/typing.py new file mode 100644 index 000000000..34845b747 --- /dev/null +++ b/typing_extensions/test_data/python-3.5.3/typing.py @@ -0,0 +1,2160 @@ +import abc +from abc import abstractmethod, abstractproperty +import collections +import contextlib +import functools +import re as stdlib_re # Avoid confusion with the re we export. +import sys +import types +try: + import collections.abc as collections_abc +except ImportError: + import collections as collections_abc # Fallback for PY3.2. + + +# Please keep __all__ alphabetized within each category. +__all__ = [ + # Super-special typing primitives. + 'Any', + 'Callable', + 'ClassVar', + 'Generic', + 'Optional', + 'Tuple', + 'Type', + 'TypeVar', + 'Union', + + # ABCs (from collections.abc). + 'AbstractSet', # collections.abc.Set. + 'ByteString', + 'Container', + 'Hashable', + 'ItemsView', + 'Iterable', + 'Iterator', + 'KeysView', + 'Mapping', + 'MappingView', + 'MutableMapping', + 'MutableSequence', + 'MutableSet', + 'Sequence', + 'Sized', + 'ValuesView', + # The following are added depending on presence + # of their non-generic counterparts in stdlib: + # Awaitable, + # AsyncIterator, + # AsyncIterable, + # Coroutine, + # Collection, + # ContextManager + + # Structural checks, a.k.a. protocols. + 'Reversible', + 'SupportsAbs', + 'SupportsFloat', + 'SupportsInt', + 'SupportsRound', + + # Concrete collection types. + 'Dict', + 'DefaultDict', + 'List', + 'Set', + 'FrozenSet', + 'NamedTuple', # Not really a type. + 'Generator', + + # One-off things. + 'AnyStr', + 'cast', + 'get_type_hints', + 'NewType', + 'no_type_check', + 'no_type_check_decorator', + 'overload', + 'Text', + 'TYPE_CHECKING', +] + +# The pseudo-submodules 're' and 'io' are part of the public +# namespace, but excluded from __all__ because they might stomp on +# legitimate imports of those modules. + + +def _qualname(x): + if sys.version_info[:2] >= (3, 3): + return x.__qualname__ + else: + # Fall back to just name. + return x.__name__ + + +def _trim_name(nm): + if nm.startswith('_') and nm not in ('_TypeAlias', + '_ForwardRef', '_TypingBase', '_FinalTypingBase'): + nm = nm[1:] + return nm + + +class TypingMeta(type): + """Metaclass for most types defined in typing module + (not a part of public API). + + This overrides __new__() to require an extra keyword parameter + '_root', which serves as a guard against naive subclassing of the + typing classes. Any legitimate class defined using a metaclass + derived from TypingMeta must pass _root=True. + + This also defines a dummy constructor (all the work for most typing + constructs is done in __new__) and a nicer repr(). + """ + + _is_protocol = False + + def __new__(cls, name, bases, namespace, *, _root=False): + if not _root: + raise TypeError("Cannot subclass %s" % + (', '.join(map(_type_repr, bases)) or '()')) + return super().__new__(cls, name, bases, namespace) + + def __init__(self, *args, **kwds): + pass + + def _eval_type(self, globalns, localns): + """Override this in subclasses to interpret forward references. + + For example, List['C'] is internally stored as + List[_ForwardRef('C')], which should evaluate to List[C], + where C is an object found in globalns or localns (searching + localns first, of course). + """ + return self + + def _get_type_vars(self, tvars): + pass + + def __repr__(self): + qname = _trim_name(_qualname(self)) + return '%s.%s' % (self.__module__, qname) + + +class _TypingBase(metaclass=TypingMeta, _root=True): + """Internal indicator of special typing constructs.""" + + __slots__ = () + + def __init__(self, *args, **kwds): + pass + + def __new__(cls, *args, **kwds): + """Constructor. + + This only exists to give a better error message in case + someone tries to subclass a special typing object (not a good idea). + """ + if (len(args) == 3 and + isinstance(args[0], str) and + isinstance(args[1], tuple)): + # Close enough. + raise TypeError("Cannot subclass %r" % cls) + return super().__new__(cls) + + # Things that are not classes also need these. + def _eval_type(self, globalns, localns): + return self + + def _get_type_vars(self, tvars): + pass + + def __repr__(self): + cls = type(self) + qname = _trim_name(_qualname(cls)) + return '%s.%s' % (cls.__module__, qname) + + def __call__(self, *args, **kwds): + raise TypeError("Cannot instantiate %r" % type(self)) + + +class _FinalTypingBase(_TypingBase, _root=True): + """Internal mix-in class to prevent instantiation. + + Prevents instantiation unless _root=True is given in class call. + It is used to create pseudo-singleton instances Any, Union, Optional, etc. + """ + + __slots__ = () + + def __new__(cls, *args, _root=False, **kwds): + self = super().__new__(cls, *args, **kwds) + if _root is True: + return self + raise TypeError("Cannot instantiate %r" % cls) + + def __reduce__(self): + return _trim_name(type(self).__name__) + + +class _ForwardRef(_TypingBase, _root=True): + """Internal wrapper to hold a forward reference.""" + + __slots__ = ('__forward_arg__', '__forward_code__', + '__forward_evaluated__', '__forward_value__') + + def __init__(self, arg): + super().__init__(arg) + if not isinstance(arg, str): + raise TypeError('Forward reference must be a string -- got %r' % (arg,)) + try: + code = compile(arg, '', 'eval') + except SyntaxError: + raise SyntaxError('Forward reference must be an expression -- got %r' % + (arg,)) + self.__forward_arg__ = arg + self.__forward_code__ = code + self.__forward_evaluated__ = False + self.__forward_value__ = None + + def _eval_type(self, globalns, localns): + if not self.__forward_evaluated__ or localns is not globalns: + if globalns is None and localns is None: + globalns = localns = {} + elif globalns is None: + globalns = localns + elif localns is None: + localns = globalns + self.__forward_value__ = _type_check( + eval(self.__forward_code__, globalns, localns), + "Forward references must evaluate to types.") + self.__forward_evaluated__ = True + return self.__forward_value__ + + def __eq__(self, other): + if not isinstance(other, _ForwardRef): + return NotImplemented + return (self.__forward_arg__ == other.__forward_arg__ and + self.__forward_value__ == other.__forward_value__) + + def __hash__(self): + return hash((self.__forward_arg__, self.__forward_value__)) + + def __instancecheck__(self, obj): + raise TypeError("Forward references cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Forward references cannot be used with issubclass().") + + def __repr__(self): + return '_ForwardRef(%r)' % (self.__forward_arg__,) + + +class _TypeAlias(_TypingBase, _root=True): + """Internal helper class for defining generic variants of concrete types. + + Note that this is not a type; let's call it a pseudo-type. It cannot + be used in instance and subclass checks in parameterized form, i.e. + ``isinstance(42, Match[str])`` raises ``TypeError`` instead of returning + ``False``. + """ + + __slots__ = ('name', 'type_var', 'impl_type', 'type_checker') + + def __init__(self, name, type_var, impl_type, type_checker): + """Initializer. + + Args: + name: The name, e.g. 'Pattern'. + type_var: The type parameter, e.g. AnyStr, or the + specific type, e.g. str. + impl_type: The implementation type. + type_checker: Function that takes an impl_type instance. + and returns a value that should be a type_var instance. + """ + assert isinstance(name, str), repr(name) + assert isinstance(impl_type, type), repr(impl_type) + assert not isinstance(impl_type, TypingMeta), repr(impl_type) + assert isinstance(type_var, (type, _TypingBase)), repr(type_var) + self.name = name + self.type_var = type_var + self.impl_type = impl_type + self.type_checker = type_checker + + def __repr__(self): + return "%s[%s]" % (self.name, _type_repr(self.type_var)) + + def __getitem__(self, parameter): + if not isinstance(self.type_var, TypeVar): + raise TypeError("%s cannot be further parameterized." % self) + if self.type_var.__constraints__ and isinstance(parameter, type): + if not issubclass(parameter, self.type_var.__constraints__): + raise TypeError("%s is not a valid substitution for %s." % + (parameter, self.type_var)) + if isinstance(parameter, TypeVar) and parameter is not self.type_var: + raise TypeError("%s cannot be re-parameterized." % self) + return self.__class__(self.name, parameter, + self.impl_type, self.type_checker) + + def __eq__(self, other): + if not isinstance(other, _TypeAlias): + return NotImplemented + return self.name == other.name and self.type_var == other.type_var + + def __hash__(self): + return hash((self.name, self.type_var)) + + def __instancecheck__(self, obj): + if not isinstance(self.type_var, TypeVar): + raise TypeError("Parameterized type aliases cannot be used " + "with isinstance().") + return isinstance(obj, self.impl_type) + + def __subclasscheck__(self, cls): + if not isinstance(self.type_var, TypeVar): + raise TypeError("Parameterized type aliases cannot be used " + "with issubclass().") + return issubclass(cls, self.impl_type) + + +def _get_type_vars(types, tvars): + for t in types: + if isinstance(t, TypingMeta) or isinstance(t, _TypingBase): + t._get_type_vars(tvars) + + +def _type_vars(types): + tvars = [] + _get_type_vars(types, tvars) + return tuple(tvars) + + +def _eval_type(t, globalns, localns): + if isinstance(t, TypingMeta) or isinstance(t, _TypingBase): + return t._eval_type(globalns, localns) + return t + + +def _type_check(arg, msg): + """Check that the argument is a type, and return it (internal helper). + + As a special case, accept None and return type(None) instead. + Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable. + + The msg argument is a human-readable error message, e.g. + + "Union[arg, ...]: arg should be a type." + + We append the repr() of the actual value (truncated to 100 chars). + """ + if arg is None: + return type(None) + if isinstance(arg, str): + arg = _ForwardRef(arg) + if (isinstance(arg, _TypingBase) and type(arg).__name__ == '_ClassVar' or + not isinstance(arg, (type, _TypingBase)) and not callable(arg)): + raise TypeError(msg + " Got %.100r." % (arg,)) + # Bare Union etc. are not valid as type arguments + if (type(arg).__name__ in ('_Union', '_Optional') + and not getattr(arg, '__origin__', None) + or isinstance(arg, TypingMeta) and _gorg(arg) in (Generic, _Protocol)): + raise TypeError("Plain %s is not valid as type argument" % arg) + return arg + + +def _type_repr(obj): + """Return the repr() of an object, special-casing types (internal helper). + + If obj is a type, we return a shorter version than the default + type.__repr__, based on the module and qualified name, which is + typically enough to uniquely identify a type. For everything + else, we fall back on repr(obj). + """ + if isinstance(obj, type) and not isinstance(obj, TypingMeta): + if obj.__module__ == 'builtins': + return _qualname(obj) + return '%s.%s' % (obj.__module__, _qualname(obj)) + if obj is ...: + return('...') + if isinstance(obj, types.FunctionType): + return obj.__name__ + return repr(obj) + + +class _Any(_FinalTypingBase, _root=True): + """Special type indicating an unconstrained type. + + - Any is compatible with every type. + - Any assumed to have all methods. + - All values assumed to be instances of Any. + + Note that all the above statements are true from the point of view of + static type checkers. At runtime, Any should not be used with instance + or class checks. + """ + + __slots__ = () + + def __instancecheck__(self, obj): + raise TypeError("Any cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Any cannot be used with issubclass().") + + +Any = _Any(_root=True) + + +class TypeVar(_TypingBase, _root=True): + """Type variable. + + Usage:: + + T = TypeVar('T') # Can be anything + A = TypeVar('A', str, bytes) # Must be str or bytes + + Type variables exist primarily for the benefit of static type + checkers. They serve as the parameters for generic types as well + as for generic function definitions. See class Generic for more + information on generic types. Generic functions work as follows: + + def repeat(x: T, n: int) -> List[T]: + '''Return a list containing n references to x.''' + return [x]*n + + def longest(x: A, y: A) -> A: + '''Return the longest of two strings.''' + return x if len(x) >= len(y) else y + + The latter example's signature is essentially the overloading + of (str, str) -> str and (bytes, bytes) -> bytes. Also note + that if the arguments are instances of some subclass of str, + the return type is still plain str. + + At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError. + + Type variables defined with covariant=True or contravariant=True + can be used do declare covariant or contravariant generic types. + See PEP 484 for more details. By default generic types are invariant + in all type variables. + + Type variables can be introspected. e.g.: + + T.__name__ == 'T' + T.__constraints__ == () + T.__covariant__ == False + T.__contravariant__ = False + A.__constraints__ == (str, bytes) + """ + + __slots__ = ('__name__', '__bound__', '__constraints__', + '__covariant__', '__contravariant__') + + def __init__(self, name, *constraints, bound=None, + covariant=False, contravariant=False): + super().__init__(name, *constraints, bound=bound, + covariant=covariant, contravariant=contravariant) + self.__name__ = name + if covariant and contravariant: + raise ValueError("Bivariant types are not supported.") + self.__covariant__ = bool(covariant) + self.__contravariant__ = bool(contravariant) + if constraints and bound is not None: + raise TypeError("Constraints cannot be combined with bound=...") + if constraints and len(constraints) == 1: + raise TypeError("A single constraint is not allowed") + msg = "TypeVar(name, constraint, ...): constraints must be types." + self.__constraints__ = tuple(_type_check(t, msg) for t in constraints) + if bound: + self.__bound__ = _type_check(bound, "Bound must be a type.") + else: + self.__bound__ = None + + def _get_type_vars(self, tvars): + if self not in tvars: + tvars.append(self) + + def __repr__(self): + if self.__covariant__: + prefix = '+' + elif self.__contravariant__: + prefix = '-' + else: + prefix = '~' + return prefix + self.__name__ + + def __instancecheck__(self, instance): + raise TypeError("Type variables cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Type variables cannot be used with issubclass().") + + +# Some unconstrained type variables. These are used by the container types. +# (These are not for export.) +T = TypeVar('T') # Any type. +KT = TypeVar('KT') # Key type. +VT = TypeVar('VT') # Value type. +T_co = TypeVar('T_co', covariant=True) # Any type covariant containers. +V_co = TypeVar('V_co', covariant=True) # Any type covariant containers. +VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers. +T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant. + +# A useful type variable with constraints. This represents string types. +# (This one *is* for export!) +AnyStr = TypeVar('AnyStr', bytes, str) + + +def _replace_arg(arg, tvars, args): + """An internal helper function: replace arg if it is a type variable + found in tvars with corresponding substitution from args or + with corresponding substitution sub-tree if arg is a generic type. + """ + + if tvars is None: + tvars = [] + if hasattr(arg, '_subs_tree'): + return arg._subs_tree(tvars, args) + if isinstance(arg, TypeVar): + for i, tvar in enumerate(tvars): + if arg == tvar: + return args[i] + return arg + + +def _subs_tree(cls, tvars=None, args=None): + """An internal helper function: calculate substitution tree + for generic cls after replacing its type parameters with + substitutions in tvars -> args (if any). + Repeat the same following __origin__'s. + + Return a list of arguments with all possible substitutions + performed. Arguments that are generic classes themselves are represented + as tuples (so that no new classes are created by this function). + For example: _subs_tree(List[Tuple[int, T]][str]) == [(Tuple, int, str)] + """ + + if cls.__origin__ is None: + return cls + # Make of chain of origins (i.e. cls -> cls.__origin__) + current = cls.__origin__ + orig_chain = [] + while current.__origin__ is not None: + orig_chain.append(current) + current = current.__origin__ + # Replace type variables in __args__ if asked ... + tree_args = [] + for arg in cls.__args__: + tree_args.append(_replace_arg(arg, tvars, args)) + # ... then continue replacing down the origin chain. + for ocls in orig_chain: + new_tree_args = [] + for i, arg in enumerate(ocls.__args__): + new_tree_args.append(_replace_arg(arg, ocls.__parameters__, tree_args)) + tree_args = new_tree_args + return tree_args + + +def _remove_dups_flatten(parameters): + """An internal helper for Union creation and substitution: flatten Union's + among parameters, then remove duplicates and strict subclasses. + """ + + # Flatten out Union[Union[...], ...]. + params = [] + for p in parameters: + if isinstance(p, _Union) and p.__origin__ is Union: + params.extend(p.__args__) + elif isinstance(p, tuple) and len(p) > 0 and p[0] is Union: + params.extend(p[1:]) + else: + params.append(p) + # Weed out strict duplicates, preserving the first of each occurrence. + all_params = set(params) + if len(all_params) < len(params): + new_params = [] + for t in params: + if t in all_params: + new_params.append(t) + all_params.remove(t) + params = new_params + assert not all_params, all_params + # Weed out subclasses. + # E.g. Union[int, Employee, Manager] == Union[int, Employee]. + # If object is present it will be sole survivor among proper classes. + # Never discard type variables. + # (In particular, Union[str, AnyStr] != AnyStr.) + all_params = set(params) + for t1 in params: + if not isinstance(t1, type): + continue + if any(isinstance(t2, type) and issubclass(t1, t2) + for t2 in all_params - {t1} + if not (isinstance(t2, GenericMeta) and + t2.__origin__ is not None)): + all_params.remove(t1) + return tuple(t for t in params if t in all_params) + + +def _check_generic(cls, parameters): + # Check correct count for parameters of a generic cls (internal helper). + if not cls.__parameters__: + raise TypeError("%s is not a generic class" % repr(cls)) + alen = len(parameters) + elen = len(cls.__parameters__) + if alen != elen: + raise TypeError("Too %s parameters for %s; actual %s, expected %s" % + ("many" if alen > elen else "few", repr(cls), alen, elen)) + + +_cleanups = [] + + +def _tp_cache(func): + """Internal wrapper caching __getitem__ of generic types with a fallback to + original function for non-hashable arguments. + """ + + cached = functools.lru_cache()(func) + _cleanups.append(cached.cache_clear) + @functools.wraps(func) + def inner(*args, **kwds): + try: + return cached(*args, **kwds) + except TypeError: + pass # All real errors (not unhashable args) are raised below. + return func(*args, **kwds) + return inner + + +class _Union(_FinalTypingBase, _root=True): + """Union type; Union[X, Y] means either X or Y. + + To define a union, use e.g. Union[int, str]. Details: + + - The arguments must be types and there must be at least one. + + - None as an argument is a special case and is replaced by + type(None). + + - Unions of unions are flattened, e.g.:: + + Union[Union[int, str], float] == Union[int, str, float] + + - Unions of a single argument vanish, e.g.:: + + Union[int] == int # The constructor actually returns int + + - Redundant arguments are skipped, e.g.:: + + Union[int, str, int] == Union[int, str] + + - When comparing unions, the argument order is ignored, e.g.:: + + Union[int, str] == Union[str, int] + + - When two arguments have a subclass relationship, the least + derived argument is kept, e.g.:: + + class Employee: pass + class Manager(Employee): pass + Union[int, Employee, Manager] == Union[int, Employee] + Union[Manager, int, Employee] == Union[int, Employee] + Union[Employee, Manager] == Employee + + - Similar for object:: + + Union[int, object] == object + + - You cannot subclass or instantiate a union. + + - You can use Optional[X] as a shorthand for Union[X, None]. + """ + + __slots__ = ('__parameters__', '__args__', '__origin__', '__tree_hash__') + + def __new__(cls, parameters=None, origin=None, *args, _root=False): + self = super().__new__(cls, parameters, origin, *args, _root=_root) + if origin is None: + self.__parameters__ = None + self.__args__ = None + self.__origin__ = None + self.__tree_hash__ = hash(frozenset(('Union',))) + return self + if not isinstance(parameters, tuple): + raise TypeError("Expected parameters=") + if origin is Union: + parameters = _remove_dups_flatten(parameters) + # It's not a union if there's only one type left. + if len(parameters) == 1: + return parameters[0] + self.__parameters__ = _type_vars(parameters) + self.__args__ = parameters + self.__origin__ = origin + # Pre-calculate the __hash__ on instantiation. + # This improves speed for complex substitutions. + subs_tree = self._subs_tree() + if isinstance(subs_tree, tuple): + self.__tree_hash__ = hash(frozenset(subs_tree)) + else: + self.__tree_hash__ = hash(subs_tree) + return self + + def _eval_type(self, globalns, localns): + if self.__args__ is None: + return self + ev_args = tuple(_eval_type(t, globalns, localns) for t in self.__args__) + ev_origin = _eval_type(self.__origin__, globalns, localns) + if ev_args == self.__args__ and ev_origin == self.__origin__: + # Everything is already evaluated. + return self + return self.__class__(ev_args, ev_origin, _root=True) + + def _get_type_vars(self, tvars): + if self.__origin__ and self.__parameters__: + _get_type_vars(self.__parameters__, tvars) + + def __repr__(self): + if self.__origin__ is None: + return super().__repr__() + tree = self._subs_tree() + if not isinstance(tree, tuple): + return repr(tree) + return tree[0]._tree_repr(tree) + + def _tree_repr(self, tree): + arg_list = [] + for arg in tree[1:]: + if not isinstance(arg, tuple): + arg_list.append(_type_repr(arg)) + else: + arg_list.append(arg[0]._tree_repr(arg)) + return super().__repr__() + '[%s]' % ', '.join(arg_list) + + @_tp_cache + def __getitem__(self, parameters): + if parameters == (): + raise TypeError("Cannot take a Union of no types.") + if not isinstance(parameters, tuple): + parameters = (parameters,) + if self.__origin__ is None: + msg = "Union[arg, ...]: each arg must be a type." + else: + msg = "Parameters to generic types must be types." + parameters = tuple(_type_check(p, msg) for p in parameters) + if self is not Union: + _check_generic(self, parameters) + return self.__class__(parameters, origin=self, _root=True) + + def _subs_tree(self, tvars=None, args=None): + if self is Union: + return Union # Nothing to substitute + tree_args = _subs_tree(self, tvars, args) + tree_args = _remove_dups_flatten(tree_args) + if len(tree_args) == 1: + return tree_args[0] # Union of a single type is that type + return (Union,) + tree_args + + def __eq__(self, other): + if not isinstance(other, _Union): + return self._subs_tree() == other + return self.__tree_hash__ == other.__tree_hash__ + + def __hash__(self): + return self.__tree_hash__ + + def __instancecheck__(self, obj): + raise TypeError("Unions cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Unions cannot be used with issubclass().") + + +Union = _Union(_root=True) + + +class _Optional(_FinalTypingBase, _root=True): + """Optional type. + + Optional[X] is equivalent to Union[X, None]. + """ + + __slots__ = () + + @_tp_cache + def __getitem__(self, arg): + arg = _type_check(arg, "Optional[t] requires a single type.") + return Union[arg, type(None)] + + +Optional = _Optional(_root=True) + + +def _gorg(a): + """Return the farthest origin of a generic class (internal helper).""" + assert isinstance(a, GenericMeta) + while a.__origin__ is not None: + a = a.__origin__ + return a + + +def _geqv(a, b): + """Return whether two generic classes are equivalent (internal helper). + + The intention is to consider generic class X and any of its + parameterized forms (X[T], X[int], etc.) as equivalent. + + However, X is not equivalent to a subclass of X. + + The relation is reflexive, symmetric and transitive. + """ + assert isinstance(a, GenericMeta) and isinstance(b, GenericMeta) + # Reduce each to its origin. + return _gorg(a) is _gorg(b) + + +def _next_in_mro(cls): + """Helper for Generic.__new__. + + Returns the class after the last occurrence of Generic or + Generic[...] in cls.__mro__. + """ + next_in_mro = object + # Look for the last occurrence of Generic or Generic[...]. + for i, c in enumerate(cls.__mro__[:-1]): + if isinstance(c, GenericMeta) and _gorg(c) is Generic: + next_in_mro = cls.__mro__[i+1] + return next_in_mro + + +def _valid_for_check(cls): + """An internal helper to prohibit isinstance([1], List[str]) etc.""" + if cls is Generic: + raise TypeError("Class %r cannot be used with class " + "or instance checks" % cls) + if (cls.__origin__ is not None and + sys._getframe(3).f_globals['__name__'] not in ['abc', 'functools']): + raise TypeError("Parameterized generics cannot be used with class " + "or instance checks") + + +def _make_subclasshook(cls): + """Construct a __subclasshook__ callable that incorporates + the associated __extra__ class in subclass checks performed + against cls. + """ + if isinstance(cls.__extra__, abc.ABCMeta): + # The logic mirrors that of ABCMeta.__subclasscheck__. + # Registered classes need not be checked here because + # cls and its extra share the same _abc_registry. + def __extrahook__(subclass): + _valid_for_check(cls) + res = cls.__extra__.__subclasshook__(subclass) + if res is not NotImplemented: + return res + if cls.__extra__ in subclass.__mro__: + return True + for scls in cls.__extra__.__subclasses__(): + if isinstance(scls, GenericMeta): + continue + if issubclass(subclass, scls): + return True + return NotImplemented + else: + # For non-ABC extras we'll just call issubclass(). + def __extrahook__(subclass): + _valid_for_check(cls) + if cls.__extra__ and issubclass(subclass, cls.__extra__): + return True + return NotImplemented + return __extrahook__ + + +def _no_slots_copy(dct): + """Internal helper: copy class __dict__ and clean slots class variables. + (They will be re-created if necessary by normal class machinery.) + """ + dict_copy = dict(dct) + if '__slots__' in dict_copy: + for slot in dict_copy['__slots__']: + dict_copy.pop(slot, None) + return dict_copy + + +class GenericMeta(TypingMeta, abc.ABCMeta): + """Metaclass for generic types.""" + + def __new__(cls, name, bases, namespace, + tvars=None, args=None, origin=None, extra=None, orig_bases=None): + if tvars is not None: + # Called from __getitem__() below. + assert origin is not None + assert all(isinstance(t, TypeVar) for t in tvars), tvars + else: + # Called from class statement. + assert tvars is None, tvars + assert args is None, args + assert origin is None, origin + + # Get the full set of tvars from the bases. + tvars = _type_vars(bases) + # Look for Generic[T1, ..., Tn]. + # If found, tvars must be a subset of it. + # If not found, tvars is it. + # Also check for and reject plain Generic, + # and reject multiple Generic[...]. + gvars = None + for base in bases: + if base is Generic: + raise TypeError("Cannot inherit from plain Generic") + if (isinstance(base, GenericMeta) and + base.__origin__ is Generic): + if gvars is not None: + raise TypeError( + "Cannot inherit from Generic[...] multiple types.") + gvars = base.__parameters__ + if gvars is None: + gvars = tvars + else: + tvarset = set(tvars) + gvarset = set(gvars) + if not tvarset <= gvarset: + raise TypeError( + "Some type variables (%s) " + "are not listed in Generic[%s]" % + (", ".join(str(t) for t in tvars if t not in gvarset), + ", ".join(str(g) for g in gvars))) + tvars = gvars + + initial_bases = bases + if extra is not None and type(extra) is abc.ABCMeta and extra not in bases: + bases = (extra,) + bases + bases = tuple(_gorg(b) if isinstance(b, GenericMeta) else b for b in bases) + + # remove bare Generic from bases if there are other generic bases + if any(isinstance(b, GenericMeta) and b is not Generic for b in bases): + bases = tuple(b for b in bases if b is not Generic) + self = super().__new__(cls, name, bases, namespace, _root=True) + + self.__parameters__ = tvars + # Be prepared that GenericMeta will be subclassed by TupleMeta + # and CallableMeta, those two allow ..., (), or [] in __args___. + self.__args__ = tuple(... if a is _TypingEllipsis else + () if a is _TypingEmpty else + a for a in args) if args else None + self.__origin__ = origin + self.__extra__ = extra + # Speed hack (https://github.com/python/typing/issues/196). + self.__next_in_mro__ = _next_in_mro(self) + # Preserve base classes on subclassing (__bases__ are type erased now). + if orig_bases is None: + self.__orig_bases__ = initial_bases + + # This allows unparameterized generic collections to be used + # with issubclass() and isinstance() in the same way as their + # collections.abc counterparts (e.g., isinstance([], Iterable)). + if ('__subclasshook__' not in namespace and extra # allow overriding + or hasattr(self.__subclasshook__, '__name__') and + self.__subclasshook__.__name__ == '__extrahook__'): + self.__subclasshook__ = _make_subclasshook(self) + if isinstance(extra, abc.ABCMeta): + self._abc_registry = extra._abc_registry + + if origin and hasattr(origin, '__qualname__'): # Fix for Python 3.2. + self.__qualname__ = origin.__qualname__ + self.__tree_hash__ = hash(self._subs_tree()) if origin else hash((self.__name__,)) + return self + + def _get_type_vars(self, tvars): + if self.__origin__ and self.__parameters__: + _get_type_vars(self.__parameters__, tvars) + + def _eval_type(self, globalns, localns): + ev_origin = (self.__origin__._eval_type(globalns, localns) + if self.__origin__ else None) + ev_args = tuple(_eval_type(a, globalns, localns) for a + in self.__args__) if self.__args__ else None + if ev_origin == self.__origin__ and ev_args == self.__args__: + return self + return self.__class__(self.__name__, + self.__bases__, + _no_slots_copy(self.__dict__), + tvars=_type_vars(ev_args) if ev_args else None, + args=ev_args, + origin=ev_origin, + extra=self.__extra__, + orig_bases=self.__orig_bases__) + + def __repr__(self): + if self.__origin__ is None: + return super().__repr__() + return self._tree_repr(self._subs_tree()) + + def _tree_repr(self, tree): + arg_list = [] + for arg in tree[1:]: + if arg == (): + arg_list.append('()') + elif not isinstance(arg, tuple): + arg_list.append(_type_repr(arg)) + else: + arg_list.append(arg[0]._tree_repr(arg)) + return super().__repr__() + '[%s]' % ', '.join(arg_list) + + def _subs_tree(self, tvars=None, args=None): + if self.__origin__ is None: + return self + tree_args = _subs_tree(self, tvars, args) + return (_gorg(self),) + tuple(tree_args) + + def __eq__(self, other): + if not isinstance(other, GenericMeta): + return NotImplemented + if self.__origin__ is None or other.__origin__ is None: + return self is other + return self.__tree_hash__ == other.__tree_hash__ + + def __hash__(self): + return self.__tree_hash__ + + @_tp_cache + def __getitem__(self, params): + if not isinstance(params, tuple): + params = (params,) + if not params and not _gorg(self) is Tuple: + raise TypeError( + "Parameter list to %s[...] cannot be empty" % _qualname(self)) + msg = "Parameters to generic types must be types." + params = tuple(_type_check(p, msg) for p in params) + if self is Generic: + # Generic can only be subscripted with unique type variables. + if not all(isinstance(p, TypeVar) for p in params): + raise TypeError( + "Parameters to Generic[...] must all be type variables") + if len(set(params)) != len(params): + raise TypeError( + "Parameters to Generic[...] must all be unique") + tvars = params + args = params + elif self in (Tuple, Callable): + tvars = _type_vars(params) + args = params + elif self is _Protocol: + # _Protocol is internal, don't check anything. + tvars = params + args = params + elif self.__origin__ in (Generic, _Protocol): + # Can't subscript Generic[...] or _Protocol[...]. + raise TypeError("Cannot subscript already-subscripted %s" % + repr(self)) + else: + # Subscripting a regular Generic subclass. + _check_generic(self, params) + tvars = _type_vars(params) + args = params + return self.__class__(self.__name__, + self.__bases__, + _no_slots_copy(self.__dict__), + tvars=tvars, + args=args, + origin=self, + extra=self.__extra__, + orig_bases=self.__orig_bases__) + + def __instancecheck__(self, instance): + # Since we extend ABC.__subclasscheck__ and + # ABC.__instancecheck__ inlines the cache checking done by the + # latter, we must extend __instancecheck__ too. For simplicity + # we just skip the cache check -- instance checks for generic + # classes are supposed to be rare anyways. + return issubclass(instance.__class__, self) + + def __copy__(self): + return self.__class__(self.__name__, self.__bases__, + _no_slots_copy(self.__dict__), + self.__parameters__, self.__args__, self.__origin__, + self.__extra__, self.__orig_bases__) + + +# Prevent checks for Generic to crash when defining Generic. +Generic = None + + +def _generic_new(base_cls, cls, *args, **kwds): + # Assure type is erased on instantiation, + # but attempt to store it in __orig_class__ + if cls.__origin__ is None: + return base_cls.__new__(cls) + else: + origin = _gorg(cls) + obj = base_cls.__new__(origin) + try: + obj.__orig_class__ = cls + except AttributeError: + pass + obj.__init__(*args, **kwds) + return obj + + +class Generic(metaclass=GenericMeta): + """Abstract base class for generic types. + + A generic type is typically declared by inheriting from + this class parameterized with one or more type variables. + For example, a generic mapping type might be defined as:: + + class Mapping(Generic[KT, VT]): + def __getitem__(self, key: KT) -> VT: + ... + # Etc. + + This class can then be used as follows:: + + def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT: + try: + return mapping[key] + except KeyError: + return default + """ + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Generic): + raise TypeError("Type Generic cannot be instantiated; " + "it can be used only as a base class") + return _generic_new(cls.__next_in_mro__, cls, *args, **kwds) + + +class _TypingEmpty: + """Internal placeholder for () or []. Used by TupleMeta and CallableMeta + to allow empty list/tuple in specific places, without allowing them + to sneak in where prohibited. + """ + + +class _TypingEllipsis: + """Internal placeholder for ... (ellipsis).""" + + +class TupleMeta(GenericMeta): + """Metaclass for Tuple (internal).""" + + @_tp_cache + def __getitem__(self, parameters): + if self.__origin__ is not None or not _geqv(self, Tuple): + # Normal generic rules apply if this is not the first subscription + # or a subscription of a subclass. + return super().__getitem__(parameters) + if parameters == (): + return super().__getitem__((_TypingEmpty,)) + if not isinstance(parameters, tuple): + parameters = (parameters,) + if len(parameters) == 2 and parameters[1] is ...: + msg = "Tuple[t, ...]: t must be a type." + p = _type_check(parameters[0], msg) + return super().__getitem__((p, _TypingEllipsis)) + msg = "Tuple[t0, t1, ...]: each t must be a type." + parameters = tuple(_type_check(p, msg) for p in parameters) + return super().__getitem__(parameters) + + def __instancecheck__(self, obj): + if self.__args__ == None: + return isinstance(obj, tuple) + raise TypeError("Parameterized Tuple cannot be used " + "with isinstance().") + + def __subclasscheck__(self, cls): + if self.__args__ == None: + return issubclass(cls, tuple) + raise TypeError("Parameterized Tuple cannot be used " + "with issubclass().") + + +class Tuple(tuple, extra=tuple, metaclass=TupleMeta): + """Tuple type; Tuple[X, Y] is the cross-product type of X and Y. + + Example: Tuple[T1, T2] is a tuple of two elements corresponding + to type variables T1 and T2. Tuple[int, float, str] is a tuple + of an int, a float and a string. + + To specify a variable-length tuple of homogeneous type, use Tuple[T, ...]. + """ + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Tuple): + raise TypeError("Type Tuple cannot be instantiated; " + "use tuple() instead") + return _generic_new(tuple, cls, *args, **kwds) + + +class CallableMeta(GenericMeta): + """Metaclass for Callable (internal).""" + + def __repr__(self): + if self.__origin__ is None: + return super().__repr__() + return self._tree_repr(self._subs_tree()) + + def _tree_repr(self, tree): + if _gorg(self) is not Callable: + return super()._tree_repr(tree) + # For actual Callable (not its subclass) we override + # super()._tree_repr() for nice formatting. + arg_list = [] + for arg in tree[1:]: + if not isinstance(arg, tuple): + arg_list.append(_type_repr(arg)) + else: + arg_list.append(arg[0]._tree_repr(arg)) + if arg_list[0] == '...': + return repr(tree[0]) + '[..., %s]' % arg_list[1] + return (repr(tree[0]) + + '[[%s], %s]' % (', '.join(arg_list[:-1]), arg_list[-1])) + + def __getitem__(self, parameters): + """A thin wrapper around __getitem_inner__ to provide the latter + with hashable arguments to improve speed. + """ + + if self.__origin__ is not None or not _geqv(self, Callable): + return super().__getitem__(parameters) + if not isinstance(parameters, tuple) or len(parameters) != 2: + raise TypeError("Callable must be used as " + "Callable[[arg, ...], result].") + args, result = parameters + if args is Ellipsis: + parameters = (Ellipsis, result) + else: + if not isinstance(args, list): + raise TypeError("Callable[args, result]: args must be a list." + " Got %.100r." % (args,)) + parameters = (tuple(args), result) + return self.__getitem_inner__(parameters) + + @_tp_cache + def __getitem_inner__(self, parameters): + args, result = parameters + msg = "Callable[args, result]: result must be a type." + result = _type_check(result, msg) + if args is Ellipsis: + return super().__getitem__((_TypingEllipsis, result)) + msg = "Callable[[arg, ...], result]: each arg must be a type." + args = tuple(_type_check(arg, msg) for arg in args) + parameters = args + (result,) + return super().__getitem__(parameters) + + +class Callable(extra=collections_abc.Callable, metaclass = CallableMeta): + """Callable type; Callable[[int], str] is a function of (int) -> str. + + The subscription syntax must always be used with exactly two + values: the argument list and the return type. The argument list + must be a list of types or ellipsis; the return type must be a single type. + + There is no syntax to indicate optional or keyword arguments, + such function types are rarely used as callback types. + """ + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Callable): + raise TypeError("Type Callable cannot be instantiated; " + "use a non-abstract subclass instead") + return _generic_new(cls.__next_in_mro__, cls, *args, **kwds) + + +class _ClassVar(_FinalTypingBase, _root=True): + """Special type construct to mark class variables. + + An annotation wrapped in ClassVar indicates that a given + attribute is intended to be used as a class variable and + should not be set on instances of that class. Usage:: + + class Starship: + stats: ClassVar[Dict[str, int]] = {} # class variable + damage: int = 10 # instance variable + + ClassVar accepts only types and cannot be further subscribed. + + Note that ClassVar is not a class itself, and should not + be used with isinstance() or issubclass(). + """ + + __slots__ = ('__type__',) + + def __init__(self, tp=None, **kwds): + self.__type__ = tp + + def __getitem__(self, item): + cls = type(self) + if self.__type__ is None: + return cls(_type_check(item, + '{} accepts only single type.'.format(cls.__name__[1:])), + _root=True) + raise TypeError('{} cannot be further subscripted' + .format(cls.__name__[1:])) + + def _eval_type(self, globalns, localns): + new_tp = _eval_type(self.__type__, globalns, localns) + if new_tp == self.__type__: + return self + return type(self)(new_tp, _root=True) + + def __repr__(self): + r = super().__repr__() + if self.__type__ is not None: + r += '[{}]'.format(_type_repr(self.__type__)) + return r + + def __hash__(self): + return hash((type(self).__name__, self.__type__)) + + def __eq__(self, other): + if not isinstance(other, _ClassVar): + return NotImplemented + if self.__type__ is not None: + return self.__type__ == other.__type__ + return self is other + + +ClassVar = _ClassVar(_root=True) + + +def cast(typ, val): + """Cast a value to a type. + + This returns the value unchanged. To the type checker this + signals that the return value has the designated type, but at + runtime we intentionally don't check anything (we want this + to be as fast as possible). + """ + return val + + +def _get_defaults(func): + """Internal helper to extract the default arguments, by name.""" + try: + code = func.__code__ + except AttributeError: + # Some built-in functions don't have __code__, __defaults__, etc. + return {} + pos_count = code.co_argcount + arg_names = code.co_varnames + arg_names = arg_names[:pos_count] + defaults = func.__defaults__ or () + kwdefaults = func.__kwdefaults__ + res = dict(kwdefaults) if kwdefaults else {} + pos_offset = pos_count - len(defaults) + for name, value in zip(arg_names[pos_offset:], defaults): + assert name not in res + res[name] = value + return res + + +def get_type_hints(obj, globalns=None, localns=None): + """Return type hints for an object. + + This is often the same as obj.__annotations__, but it handles + forward references encoded as string literals, and if necessary + adds Optional[t] if a default value equal to None is set. + + The argument may be a module, class, method, or function. The annotations + are returned as a dictionary. For classes, annotations include also + inherited members. + + TypeError is raised if the argument is not of a type that can contain + annotations, and an empty dictionary is returned if no annotations are + present. + + BEWARE -- the behavior of globalns and localns is counterintuitive + (unless you are familiar with how eval() and exec() work). The + search order is locals first, then globals. + + - If no dict arguments are passed, an attempt is made to use the + globals from obj, and these are also used as the locals. If the + object does not appear to have globals, an exception is raised. + + - If one dict argument is passed, it is used for both globals and + locals. + + - If two dict arguments are passed, they specify globals and + locals, respectively. + """ + + if getattr(obj, '__no_type_check__', None): + return {} + if globalns is None: + globalns = getattr(obj, '__globals__', {}) + if localns is None: + localns = globalns + elif localns is None: + localns = globalns + # Classes require a special treatment. + if isinstance(obj, type): + hints = {} + for base in reversed(obj.__mro__): + ann = base.__dict__.get('__annotations__', {}) + for name, value in ann.items(): + if value is None: + value = type(None) + if isinstance(value, str): + value = _ForwardRef(value) + value = _eval_type(value, globalns, localns) + hints[name] = value + return hints + hints = getattr(obj, '__annotations__', None) + if hints is None: + # Return empty annotations for something that _could_ have them. + if (isinstance(obj, types.FunctionType) or + isinstance(obj, types.BuiltinFunctionType) or + isinstance(obj, types.MethodType) or + isinstance(obj, types.ModuleType)): + return {} + else: + raise TypeError('{!r} is not a module, class, method, ' + 'or function.'.format(obj)) + defaults = _get_defaults(obj) + hints = dict(hints) + for name, value in hints.items(): + if value is None: + value = type(None) + if isinstance(value, str): + value = _ForwardRef(value) + value = _eval_type(value, globalns, localns) + if name in defaults and defaults[name] is None: + value = Optional[value] + hints[name] = value + return hints + + +def no_type_check(arg): + """Decorator to indicate that annotations are not type hints. + + The argument must be a class or function; if it is a class, it + applies recursively to all methods and classes defined in that class + (but not to methods defined in its superclasses or subclasses). + + This mutates the function(s) or class(es) in place. + """ + if isinstance(arg, type): + arg_attrs = arg.__dict__.copy() + for attr, val in arg.__dict__.items(): + if val in arg.__bases__: + arg_attrs.pop(attr) + for obj in arg_attrs.values(): + if isinstance(obj, types.FunctionType): + obj.__no_type_check__ = True + if isinstance(obj, type): + no_type_check(obj) + try: + arg.__no_type_check__ = True + except TypeError: # built-in classes + pass + return arg + + +def no_type_check_decorator(decorator): + """Decorator to give another decorator the @no_type_check effect. + + This wraps the decorator with something that wraps the decorated + function in @no_type_check. + """ + + @functools.wraps(decorator) + def wrapped_decorator(*args, **kwds): + func = decorator(*args, **kwds) + func = no_type_check(func) + return func + + return wrapped_decorator + + +def _overload_dummy(*args, **kwds): + """Helper for @overload to raise when called.""" + raise NotImplementedError( + "You should not call an overloaded function. " + "A series of @overload-decorated functions " + "outside a stub module should always be followed " + "by an implementation that is not @overload-ed.") + + +def overload(func): + """Decorator for overloaded functions/methods. + + In a stub file, place two or more stub definitions for the same + function in a row, each decorated with @overload. For example: + + @overload + def utf8(value: None) -> None: ... + @overload + def utf8(value: bytes) -> bytes: ... + @overload + def utf8(value: str) -> bytes: ... + + In a non-stub file (i.e. a regular .py file), do the same but + follow it with an implementation. The implementation should *not* + be decorated with @overload. For example: + + @overload + def utf8(value: None) -> None: ... + @overload + def utf8(value: bytes) -> bytes: ... + @overload + def utf8(value: str) -> bytes: ... + def utf8(value): + # implementation goes here + """ + return _overload_dummy + + +class _ProtocolMeta(GenericMeta): + """Internal metaclass for _Protocol. + + This exists so _Protocol classes can be generic without deriving + from Generic. + """ + + def __instancecheck__(self, obj): + if _Protocol not in self.__bases__: + return super().__instancecheck__(obj) + raise TypeError("Protocols cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if not self._is_protocol: + # No structural checks since this isn't a protocol. + return NotImplemented + + if self is _Protocol: + # Every class is a subclass of the empty protocol. + return True + + # Find all attributes defined in the protocol. + attrs = self._get_protocol_attrs() + + for attr in attrs: + if not any(attr in d.__dict__ for d in cls.__mro__): + return False + return True + + def _get_protocol_attrs(self): + # Get all Protocol base classes. + protocol_bases = [] + for c in self.__mro__: + if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol': + protocol_bases.append(c) + + # Get attributes included in protocol. + attrs = set() + for base in protocol_bases: + for attr in base.__dict__.keys(): + # Include attributes not defined in any non-protocol bases. + for c in self.__mro__: + if (c is not base and attr in c.__dict__ and + not getattr(c, '_is_protocol', False)): + break + else: + if (not attr.startswith('_abc_') and + attr != '__abstractmethods__' and + attr != '__annotations__' and + attr != '__weakref__' and + attr != '_is_protocol' and + attr != '__dict__' and + attr != '__args__' and + attr != '__slots__' and + attr != '_get_protocol_attrs' and + attr != '__next_in_mro__' and + attr != '__parameters__' and + attr != '__origin__' and + attr != '__orig_bases__' and + attr != '__extra__' and + attr != '__tree_hash__' and + attr != '__module__'): + attrs.add(attr) + + return attrs + + +class _Protocol(metaclass=_ProtocolMeta): + """Internal base class for protocol classes. + + This implements a simple-minded structural issubclass check + (similar but more general than the one-offs in collections.abc + such as Hashable). + """ + + __slots__ = () + + _is_protocol = True + + +# Various ABCs mimicking those in collections.abc. +# A few are simply re-exported for completeness. + +Hashable = collections_abc.Hashable # Not generic. + + +if hasattr(collections_abc, 'Awaitable'): + class Awaitable(Generic[T_co], extra=collections_abc.Awaitable): + __slots__ = () + + __all__.append('Awaitable') + + +if hasattr(collections_abc, 'Coroutine'): + class Coroutine(Awaitable[V_co], Generic[T_co, T_contra, V_co], + extra=collections_abc.Coroutine): + __slots__ = () + + __all__.append('Coroutine') + + +if hasattr(collections_abc, 'AsyncIterable'): + + class AsyncIterable(Generic[T_co], extra=collections_abc.AsyncIterable): + __slots__ = () + + class AsyncIterator(AsyncIterable[T_co], + extra=collections_abc.AsyncIterator): + __slots__ = () + + __all__.append('AsyncIterable') + __all__.append('AsyncIterator') + + +class Iterable(Generic[T_co], extra=collections_abc.Iterable): + __slots__ = () + + +class Iterator(Iterable[T_co], extra=collections_abc.Iterator): + __slots__ = () + + +class SupportsInt(_Protocol): + __slots__ = () + + @abstractmethod + def __int__(self) -> int: + pass + + +class SupportsFloat(_Protocol): + __slots__ = () + + @abstractmethod + def __float__(self) -> float: + pass + + +class SupportsComplex(_Protocol): + __slots__ = () + + @abstractmethod + def __complex__(self) -> complex: + pass + + +class SupportsBytes(_Protocol): + __slots__ = () + + @abstractmethod + def __bytes__(self) -> bytes: + pass + + +class SupportsAbs(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __abs__(self) -> T_co: + pass + + +class SupportsRound(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __round__(self, ndigits: int = 0) -> T_co: + pass + + +if hasattr(collections_abc, 'Reversible'): + class Reversible(Iterable[T_co], extra=collections_abc.Reversible): + __slots__ = () +else: + class Reversible(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __reversed__(self) -> 'Iterator[T_co]': + pass + + +Sized = collections_abc.Sized # Not generic. + + +class Container(Generic[T_co], extra=collections_abc.Container): + __slots__ = () + + +if hasattr(collections_abc, 'Collection'): + class Collection(Sized, Iterable[T_co], Container[T_co], + extra=collections_abc.Collection): + __slots__ = () + + __all__.append('Collection') + + +# Callable was defined earlier. + +if hasattr(collections_abc, 'Collection'): + class AbstractSet(Collection[T_co], + extra=collections_abc.Set): + __slots__ = () +else: + class AbstractSet(Sized, Iterable[T_co], Container[T_co], + extra=collections_abc.Set): + __slots__ = () + + +class MutableSet(AbstractSet[T], extra=collections_abc.MutableSet): + __slots__ = () + + +# NOTE: It is only covariant in the value type. +if hasattr(collections_abc, 'Collection'): + class Mapping(Collection[KT], Generic[KT, VT_co], + extra=collections_abc.Mapping): + __slots__ = () +else: + class Mapping(Sized, Iterable[KT], Container[KT], Generic[KT, VT_co], + extra=collections_abc.Mapping): + __slots__ = () + + +class MutableMapping(Mapping[KT, VT], extra=collections_abc.MutableMapping): + __slots__ = () + +if hasattr(collections_abc, 'Reversible'): + if hasattr(collections_abc, 'Collection'): + class Sequence(Reversible[T_co], Collection[T_co], + extra=collections_abc.Sequence): + __slots__ = () + else: + class Sequence(Sized, Reversible[T_co], Container[T_co], + extra=collections_abc.Sequence): + __slots__ = () +else: + class Sequence(Sized, Iterable[T_co], Container[T_co], + extra=collections_abc.Sequence): + __slots__ = () + + +class MutableSequence(Sequence[T], extra=collections_abc.MutableSequence): + __slots__ = () + + +class ByteString(Sequence[int], extra=collections_abc.ByteString): + __slots__ = () + + +class List(list, MutableSequence[T], extra=list): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, List): + raise TypeError("Type List cannot be instantiated; " + "use list() instead") + return _generic_new(list, cls, *args, **kwds) + + +class Set(set, MutableSet[T], extra=set): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Set): + raise TypeError("Type Set cannot be instantiated; " + "use set() instead") + return _generic_new(set, cls, *args, **kwds) + + +class FrozenSet(frozenset, AbstractSet[T_co], extra=frozenset): + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, FrozenSet): + raise TypeError("Type FrozenSet cannot be instantiated; " + "use frozenset() instead") + return _generic_new(frozenset, cls, *args, **kwds) + + +class MappingView(Sized, Iterable[T_co], extra=collections_abc.MappingView): + __slots__ = () + + +class KeysView(MappingView[KT], AbstractSet[KT], + extra=collections_abc.KeysView): + __slots__ = () + + +class ItemsView(MappingView[Tuple[KT, VT_co]], + AbstractSet[Tuple[KT, VT_co]], + Generic[KT, VT_co], + extra=collections_abc.ItemsView): + __slots__ = () + + +class ValuesView(MappingView[VT_co], extra=collections_abc.ValuesView): + __slots__ = () + + +if hasattr(contextlib, 'AbstractContextManager'): + class ContextManager(Generic[T_co], extra=contextlib.AbstractContextManager): + __slots__ = () + __all__.append('ContextManager') + + +class Dict(dict, MutableMapping[KT, VT], extra=dict): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Dict): + raise TypeError("Type Dict cannot be instantiated; " + "use dict() instead") + return _generic_new(dict, cls, *args, **kwds) + +class DefaultDict(collections.defaultdict, MutableMapping[KT, VT], + extra=collections.defaultdict): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, DefaultDict): + raise TypeError("Type DefaultDict cannot be instantiated; " + "use collections.defaultdict() instead") + return _generic_new(collections.defaultdict, cls, *args, **kwds) + +# Determine what base class to use for Generator. +if hasattr(collections_abc, 'Generator'): + # Sufficiently recent versions of 3.5 have a Generator ABC. + _G_base = collections_abc.Generator +else: + # Fall back on the exact type. + _G_base = types.GeneratorType + + +class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co], + extra=_G_base): + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Generator): + raise TypeError("Type Generator cannot be instantiated; " + "create a subclass instead") + return _generic_new(_G_base, cls, *args, **kwds) + + +# Internal type variable used for Type[]. +CT_co = TypeVar('CT_co', covariant=True, bound=type) + + +# This is not a real generic class. Don't use outside annotations. +class Type(Generic[CT_co], extra=type): + """A special construct usable to annotate class objects. + + For example, suppose we have the following classes:: + + class User: ... # Abstract base for User classes + class BasicUser(User): ... + class ProUser(User): ... + class TeamUser(User): ... + + And a function that takes a class argument that's a subclass of + User and returns an instance of the corresponding class:: + + U = TypeVar('U', bound=User) + def new_user(user_class: Type[U]) -> U: + user = user_class() + # (Here we could write the user object to a database) + return user + + joe = new_user(BasicUser) + + At this point the type checker knows that joe has type BasicUser. + """ + + __slots__ = () + + +def _make_nmtuple(name, types): + msg = "NamedTuple('Name', [(f0, t0), (f1, t1), ...]); each t must be a type" + types = [(n, _type_check(t, msg)) for n, t in types] + nm_tpl = collections.namedtuple(name, [n for n, t in types]) + nm_tpl._field_types = dict(types) + try: + nm_tpl.__module__ = sys._getframe(2).f_globals.get('__name__', '__main__') + except (AttributeError, ValueError): + pass + return nm_tpl + + +_PY36 = sys.version_info[:2] >= (3, 6) + + +class NamedTupleMeta(type): + + def __new__(cls, typename, bases, ns): + if ns.get('_root', False): + return super().__new__(cls, typename, bases, ns) + if not _PY36: + raise TypeError("Class syntax for NamedTuple is only supported" + " in Python 3.6+") + types = ns.get('__annotations__', {}) + return _make_nmtuple(typename, types.items()) + +class NamedTuple(metaclass=NamedTupleMeta): + """Typed version of namedtuple. + + Usage in Python versions >= 3.6:: + + class Employee(NamedTuple): + name: str + id: int + + This is equivalent to:: + + Employee = collections.namedtuple('Employee', ['name', 'id']) + + The resulting class has one extra attribute: _field_types, + giving a dict mapping field names to types. (The field names + are in the _fields attribute, which is part of the namedtuple + API.) Alternative equivalent keyword syntax is also accepted:: + + Employee = NamedTuple('Employee', name=str, id=int) + + In Python versions <= 3.5 use:: + + Employee = NamedTuple('Employee', [('name', str), ('id', int)]) + """ + _root = True + + def __new__(self, typename, fields=None, **kwargs): + if kwargs and not _PY36: + raise TypeError("Keyword syntax for NamedTuple is only supported" + " in Python 3.6+") + if fields is None: + fields = kwargs.items() + elif kwargs: + raise TypeError("Either list of fields or keywords" + " can be provided to NamedTuple, not both") + return _make_nmtuple(typename, fields) + + +def NewType(name, tp): + """NewType creates simple unique types with almost zero + runtime overhead. NewType(name, tp) is considered a subtype of tp + by static type checkers. At runtime, NewType(name, tp) returns + a dummy function that simply returns its argument. Usage:: + + UserId = NewType('UserId', int) + + def name_by_id(user_id: UserId) -> str: + ... + + UserId('user') # Fails type check + + name_by_id(42) # Fails type check + name_by_id(UserId(42)) # OK + + num = UserId(5) + 1 # type: int + """ + + def new_type(x): + return x + + new_type.__name__ = name + new_type.__supertype__ = tp + return new_type + + +# Python-version-specific alias (Python 2: unicode; Python 3: str) +Text = str + + +# Constant that's True when type checking, but False here. +TYPE_CHECKING = False + + +class IO(Generic[AnyStr]): + """Generic base class for TextIO and BinaryIO. + + This is an abstract, generic version of the return of open(). + + NOTE: This does not distinguish between the different possible + classes (text vs. binary, read vs. write vs. read/write, + append-only, unbuffered). The TextIO and BinaryIO subclasses + below capture the distinctions between text vs. binary, which is + pervasive in the interface; however we currently do not offer a + way to track the other distinctions in the type system. + """ + + __slots__ = () + + @abstractproperty + def mode(self) -> str: + pass + + @abstractproperty + def name(self) -> str: + pass + + @abstractmethod + def close(self) -> None: + pass + + @abstractmethod + def closed(self) -> bool: + pass + + @abstractmethod + def fileno(self) -> int: + pass + + @abstractmethod + def flush(self) -> None: + pass + + @abstractmethod + def isatty(self) -> bool: + pass + + @abstractmethod + def read(self, n: int = -1) -> AnyStr: + pass + + @abstractmethod + def readable(self) -> bool: + pass + + @abstractmethod + def readline(self, limit: int = -1) -> AnyStr: + pass + + @abstractmethod + def readlines(self, hint: int = -1) -> List[AnyStr]: + pass + + @abstractmethod + def seek(self, offset: int, whence: int = 0) -> int: + pass + + @abstractmethod + def seekable(self) -> bool: + pass + + @abstractmethod + def tell(self) -> int: + pass + + @abstractmethod + def truncate(self, size: int = None) -> int: + pass + + @abstractmethod + def writable(self) -> bool: + pass + + @abstractmethod + def write(self, s: AnyStr) -> int: + pass + + @abstractmethod + def writelines(self, lines: List[AnyStr]) -> None: + pass + + @abstractmethod + def __enter__(self) -> 'IO[AnyStr]': + pass + + @abstractmethod + def __exit__(self, type, value, traceback) -> None: + pass + + +class BinaryIO(IO[bytes]): + """Typed version of the return of open() in binary mode.""" + + __slots__ = () + + @abstractmethod + def write(self, s: Union[bytes, bytearray]) -> int: + pass + + @abstractmethod + def __enter__(self) -> 'BinaryIO': + pass + + +class TextIO(IO[str]): + """Typed version of the return of open() in text mode.""" + + __slots__ = () + + @abstractproperty + def buffer(self) -> BinaryIO: + pass + + @abstractproperty + def encoding(self) -> str: + pass + + @abstractproperty + def errors(self) -> Optional[str]: + pass + + @abstractproperty + def line_buffering(self) -> bool: + pass + + @abstractproperty + def newlines(self) -> Any: + pass + + @abstractmethod + def __enter__(self) -> 'TextIO': + pass + + +class io: + """Wrapper namespace for IO generic classes.""" + + __all__ = ['IO', 'TextIO', 'BinaryIO'] + IO = IO + TextIO = TextIO + BinaryIO = BinaryIO + +io.__name__ = __name__ + '.io' +sys.modules[io.__name__] = io + + +Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')), + lambda p: p.pattern) +Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')), + lambda m: m.re.pattern) + + +class re: + """Wrapper namespace for re type aliases.""" + + __all__ = ['Pattern', 'Match'] + Pattern = Pattern + Match = Match + +re.__name__ = __name__ + '.re' +sys.modules[re.__name__] = re diff --git a/typing_extensions/test_data/python-3.6.0/_collections_abc.py b/typing_extensions/test_data/python-3.6.0/_collections_abc.py new file mode 100644 index 000000000..b172f3f36 --- /dev/null +++ b/typing_extensions/test_data/python-3.6.0/_collections_abc.py @@ -0,0 +1,1007 @@ +# Copyright 2007 Google, Inc. All Rights Reserved. +# Licensed to PSF under a Contributor Agreement. + +"""Abstract Base Classes (ABCs) for collections, according to PEP 3119. + +Unit tests are in test_collections. +""" + +from abc import ABCMeta, abstractmethod +import sys + +__all__ = ["Awaitable", "Coroutine", + "AsyncIterable", "AsyncIterator", "AsyncGenerator", + "Hashable", "Iterable", "Iterator", "Generator", "Reversible", + "Sized", "Container", "Callable", "Collection", + "Set", "MutableSet", + "Mapping", "MutableMapping", + "MappingView", "KeysView", "ItemsView", "ValuesView", + "Sequence", "MutableSequence", + "ByteString", + ] + +# This module has been renamed from collections.abc to _collections_abc to +# speed up interpreter startup. Some of the types such as MutableMapping are +# required early but collections module imports a lot of other modules. +# See issue #19218 +__name__ = "collections.abc" + +# Private list of types that we want to register with the various ABCs +# so that they will pass tests like: +# it = iter(somebytearray) +# assert isinstance(it, Iterable) +# Note: in other implementations, these types might not be distinct +# and they may have their own implementation specific types that +# are not included on this list. +bytes_iterator = type(iter(b'')) +bytearray_iterator = type(iter(bytearray())) +#callable_iterator = ??? +dict_keyiterator = type(iter({}.keys())) +dict_valueiterator = type(iter({}.values())) +dict_itemiterator = type(iter({}.items())) +list_iterator = type(iter([])) +list_reverseiterator = type(iter(reversed([]))) +range_iterator = type(iter(range(0))) +longrange_iterator = type(iter(range(1 << 1000))) +set_iterator = type(iter(set())) +str_iterator = type(iter("")) +tuple_iterator = type(iter(())) +zip_iterator = type(iter(zip())) +## views ## +dict_keys = type({}.keys()) +dict_values = type({}.values()) +dict_items = type({}.items()) +## misc ## +mappingproxy = type(type.__dict__) +generator = type((lambda: (yield))()) +## coroutine ## +async def _coro(): pass +_coro = _coro() +coroutine = type(_coro) +_coro.close() # Prevent ResourceWarning +del _coro +## asynchronous generator ## +async def _ag(): yield +_ag = _ag() +async_generator = type(_ag) +del _ag + + +### ONE-TRICK PONIES ### + +def _check_methods(C, *methods): + mro = C.__mro__ + for method in methods: + for B in mro: + if method in B.__dict__: + if B.__dict__[method] is None: + return NotImplemented + break + else: + return NotImplemented + return True + +class Hashable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __hash__(self): + return 0 + + @classmethod + def __subclasshook__(cls, C): + if cls is Hashable: + return _check_methods(C, "__hash__") + return NotImplemented + + +class Awaitable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __await__(self): + yield + + @classmethod + def __subclasshook__(cls, C): + if cls is Awaitable: + return _check_methods(C, "__await__") + return NotImplemented + + +class Coroutine(Awaitable): + + __slots__ = () + + @abstractmethod + def send(self, value): + """Send a value into the coroutine. + Return next yielded value or raise StopIteration. + """ + raise StopIteration + + @abstractmethod + def throw(self, typ, val=None, tb=None): + """Raise an exception in the coroutine. + Return next yielded value or raise StopIteration. + """ + if val is None: + if tb is None: + raise typ + val = typ() + if tb is not None: + val = val.with_traceback(tb) + raise val + + def close(self): + """Raise GeneratorExit inside coroutine. + """ + try: + self.throw(GeneratorExit) + except (GeneratorExit, StopIteration): + pass + else: + raise RuntimeError("coroutine ignored GeneratorExit") + + @classmethod + def __subclasshook__(cls, C): + if cls is Coroutine: + return _check_methods(C, '__await__', 'send', 'throw', 'close') + return NotImplemented + + +Coroutine.register(coroutine) + + +class AsyncIterable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __aiter__(self): + return AsyncIterator() + + @classmethod + def __subclasshook__(cls, C): + if cls is AsyncIterable: + return _check_methods(C, "__aiter__") + return NotImplemented + + +class AsyncIterator(AsyncIterable): + + __slots__ = () + + @abstractmethod + async def __anext__(self): + """Return the next item or raise StopAsyncIteration when exhausted.""" + raise StopAsyncIteration + + def __aiter__(self): + return self + + @classmethod + def __subclasshook__(cls, C): + if cls is AsyncIterator: + return _check_methods(C, "__anext__", "__aiter__") + return NotImplemented + + +class AsyncGenerator(AsyncIterator): + + __slots__ = () + + async def __anext__(self): + """Return the next item from the asynchronous generator. + When exhausted, raise StopAsyncIteration. + """ + return await self.asend(None) + + @abstractmethod + async def asend(self, value): + """Send a value into the asynchronous generator. + Return next yielded value or raise StopAsyncIteration. + """ + raise StopAsyncIteration + + @abstractmethod + async def athrow(self, typ, val=None, tb=None): + """Raise an exception in the asynchronous generator. + Return next yielded value or raise StopAsyncIteration. + """ + if val is None: + if tb is None: + raise typ + val = typ() + if tb is not None: + val = val.with_traceback(tb) + raise val + + async def aclose(self): + """Raise GeneratorExit inside coroutine. + """ + try: + await self.athrow(GeneratorExit) + except (GeneratorExit, StopAsyncIteration): + pass + else: + raise RuntimeError("asynchronous generator ignored GeneratorExit") + + @classmethod + def __subclasshook__(cls, C): + if cls is AsyncGenerator: + return _check_methods(C, '__aiter__', '__anext__', + 'asend', 'athrow', 'aclose') + return NotImplemented + + +AsyncGenerator.register(async_generator) + + +class Iterable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __iter__(self): + while False: + yield None + + @classmethod + def __subclasshook__(cls, C): + if cls is Iterable: + return _check_methods(C, "__iter__") + return NotImplemented + + +class Iterator(Iterable): + + __slots__ = () + + @abstractmethod + def __next__(self): + 'Return the next item from the iterator. When exhausted, raise StopIteration' + raise StopIteration + + def __iter__(self): + return self + + @classmethod + def __subclasshook__(cls, C): + if cls is Iterator: + return _check_methods(C, '__iter__', '__next__') + return NotImplemented + +Iterator.register(bytes_iterator) +Iterator.register(bytearray_iterator) +#Iterator.register(callable_iterator) +Iterator.register(dict_keyiterator) +Iterator.register(dict_valueiterator) +Iterator.register(dict_itemiterator) +Iterator.register(list_iterator) +Iterator.register(list_reverseiterator) +Iterator.register(range_iterator) +Iterator.register(longrange_iterator) +Iterator.register(set_iterator) +Iterator.register(str_iterator) +Iterator.register(tuple_iterator) +Iterator.register(zip_iterator) + + +class Reversible(Iterable): + + __slots__ = () + + @abstractmethod + def __reversed__(self): + while False: + yield None + + @classmethod + def __subclasshook__(cls, C): + if cls is Reversible: + return _check_methods(C, "__reversed__", "__iter__") + return NotImplemented + + +class Generator(Iterator): + + __slots__ = () + + def __next__(self): + """Return the next item from the generator. + When exhausted, raise StopIteration. + """ + return self.send(None) + + @abstractmethod + def send(self, value): + """Send a value into the generator. + Return next yielded value or raise StopIteration. + """ + raise StopIteration + + @abstractmethod + def throw(self, typ, val=None, tb=None): + """Raise an exception in the generator. + Return next yielded value or raise StopIteration. + """ + if val is None: + if tb is None: + raise typ + val = typ() + if tb is not None: + val = val.with_traceback(tb) + raise val + + def close(self): + """Raise GeneratorExit inside generator. + """ + try: + self.throw(GeneratorExit) + except (GeneratorExit, StopIteration): + pass + else: + raise RuntimeError("generator ignored GeneratorExit") + + @classmethod + def __subclasshook__(cls, C): + if cls is Generator: + return _check_methods(C, '__iter__', '__next__', + 'send', 'throw', 'close') + return NotImplemented + +Generator.register(generator) + + +class Sized(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __len__(self): + return 0 + + @classmethod + def __subclasshook__(cls, C): + if cls is Sized: + return _check_methods(C, "__len__") + return NotImplemented + + +class Container(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __contains__(self, x): + return False + + @classmethod + def __subclasshook__(cls, C): + if cls is Container: + return _check_methods(C, "__contains__") + return NotImplemented + +class Collection(Sized, Iterable, Container): + + __slots__ = () + + @classmethod + def __subclasshook__(cls, C): + if cls is Collection: + return _check_methods(C, "__len__", "__iter__", "__contains__") + return NotImplemented + +class Callable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __call__(self, *args, **kwds): + return False + + @classmethod + def __subclasshook__(cls, C): + if cls is Callable: + return _check_methods(C, "__call__") + return NotImplemented + + +### SETS ### + + +class Set(Collection): + + """A set is a finite, iterable container. + + This class provides concrete generic implementations of all + methods except for __contains__, __iter__ and __len__. + + To override the comparisons (presumably for speed, as the + semantics are fixed), redefine __le__ and __ge__, + then the other operations will automatically follow suit. + """ + + __slots__ = () + + def __le__(self, other): + if not isinstance(other, Set): + return NotImplemented + if len(self) > len(other): + return False + for elem in self: + if elem not in other: + return False + return True + + def __lt__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) < len(other) and self.__le__(other) + + def __gt__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) > len(other) and self.__ge__(other) + + def __ge__(self, other): + if not isinstance(other, Set): + return NotImplemented + if len(self) < len(other): + return False + for elem in other: + if elem not in self: + return False + return True + + def __eq__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) == len(other) and self.__le__(other) + + @classmethod + def _from_iterable(cls, it): + '''Construct an instance of the class from any iterable input. + + Must override this method if the class constructor signature + does not accept an iterable for an input. + ''' + return cls(it) + + def __and__(self, other): + if not isinstance(other, Iterable): + return NotImplemented + return self._from_iterable(value for value in other if value in self) + + __rand__ = __and__ + + def isdisjoint(self, other): + 'Return True if two sets have a null intersection.' + for value in other: + if value in self: + return False + return True + + def __or__(self, other): + if not isinstance(other, Iterable): + return NotImplemented + chain = (e for s in (self, other) for e in s) + return self._from_iterable(chain) + + __ror__ = __or__ + + def __sub__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return self._from_iterable(value for value in self + if value not in other) + + def __rsub__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return self._from_iterable(value for value in other + if value not in self) + + def __xor__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return (self - other) | (other - self) + + __rxor__ = __xor__ + + def _hash(self): + """Compute the hash value of a set. + + Note that we don't define __hash__: not all sets are hashable. + But if you define a hashable set type, its __hash__ should + call this function. + + This must be compatible __eq__. + + All sets ought to compare equal if they contain the same + elements, regardless of how they are implemented, and + regardless of the order of the elements; so there's not much + freedom for __eq__ or __hash__. We match the algorithm used + by the built-in frozenset type. + """ + MAX = sys.maxsize + MASK = 2 * MAX + 1 + n = len(self) + h = 1927868237 * (n + 1) + h &= MASK + for x in self: + hx = hash(x) + h ^= (hx ^ (hx << 16) ^ 89869747) * 3644798167 + h &= MASK + h = h * 69069 + 907133923 + h &= MASK + if h > MAX: + h -= MASK + 1 + if h == -1: + h = 590923713 + return h + +Set.register(frozenset) + + +class MutableSet(Set): + """A mutable set is a finite, iterable container. + + This class provides concrete generic implementations of all + methods except for __contains__, __iter__, __len__, + add(), and discard(). + + To override the comparisons (presumably for speed, as the + semantics are fixed), all you have to do is redefine __le__ and + then the other operations will automatically follow suit. + """ + + __slots__ = () + + @abstractmethod + def add(self, value): + """Add an element.""" + raise NotImplementedError + + @abstractmethod + def discard(self, value): + """Remove an element. Do not raise an exception if absent.""" + raise NotImplementedError + + def remove(self, value): + """Remove an element. If not a member, raise a KeyError.""" + if value not in self: + raise KeyError(value) + self.discard(value) + + def pop(self): + """Return the popped value. Raise KeyError if empty.""" + it = iter(self) + try: + value = next(it) + except StopIteration: + raise KeyError + self.discard(value) + return value + + def clear(self): + """This is slow (creates N new iterators!) but effective.""" + try: + while True: + self.pop() + except KeyError: + pass + + def __ior__(self, it): + for value in it: + self.add(value) + return self + + def __iand__(self, it): + for value in (self - it): + self.discard(value) + return self + + def __ixor__(self, it): + if it is self: + self.clear() + else: + if not isinstance(it, Set): + it = self._from_iterable(it) + for value in it: + if value in self: + self.discard(value) + else: + self.add(value) + return self + + def __isub__(self, it): + if it is self: + self.clear() + else: + for value in it: + self.discard(value) + return self + +MutableSet.register(set) + + +### MAPPINGS ### + + +class Mapping(Collection): + + __slots__ = () + + """A Mapping is a generic container for associating key/value + pairs. + + This class provides concrete generic implementations of all + methods except for __getitem__, __iter__, and __len__. + + """ + + @abstractmethod + def __getitem__(self, key): + raise KeyError + + def get(self, key, default=None): + 'D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.' + try: + return self[key] + except KeyError: + return default + + def __contains__(self, key): + try: + self[key] + except KeyError: + return False + else: + return True + + def keys(self): + "D.keys() -> a set-like object providing a view on D's keys" + return KeysView(self) + + def items(self): + "D.items() -> a set-like object providing a view on D's items" + return ItemsView(self) + + def values(self): + "D.values() -> an object providing a view on D's values" + return ValuesView(self) + + def __eq__(self, other): + if not isinstance(other, Mapping): + return NotImplemented + return dict(self.items()) == dict(other.items()) + + __reversed__ = None + +Mapping.register(mappingproxy) + + +class MappingView(Sized): + + __slots__ = '_mapping', + + def __init__(self, mapping): + self._mapping = mapping + + def __len__(self): + return len(self._mapping) + + def __repr__(self): + return '{0.__class__.__name__}({0._mapping!r})'.format(self) + + +class KeysView(MappingView, Set): + + __slots__ = () + + @classmethod + def _from_iterable(self, it): + return set(it) + + def __contains__(self, key): + return key in self._mapping + + def __iter__(self): + yield from self._mapping + +KeysView.register(dict_keys) + + +class ItemsView(MappingView, Set): + + __slots__ = () + + @classmethod + def _from_iterable(self, it): + return set(it) + + def __contains__(self, item): + key, value = item + try: + v = self._mapping[key] + except KeyError: + return False + else: + return v is value or v == value + + def __iter__(self): + for key in self._mapping: + yield (key, self._mapping[key]) + +ItemsView.register(dict_items) + + +class ValuesView(MappingView): + + __slots__ = () + + def __contains__(self, value): + for key in self._mapping: + v = self._mapping[key] + if v is value or v == value: + return True + return False + + def __iter__(self): + for key in self._mapping: + yield self._mapping[key] + +ValuesView.register(dict_values) + + +class MutableMapping(Mapping): + + __slots__ = () + + """A MutableMapping is a generic container for associating + key/value pairs. + + This class provides concrete generic implementations of all + methods except for __getitem__, __setitem__, __delitem__, + __iter__, and __len__. + + """ + + @abstractmethod + def __setitem__(self, key, value): + raise KeyError + + @abstractmethod + def __delitem__(self, key): + raise KeyError + + __marker = object() + + def pop(self, key, default=__marker): + '''D.pop(k[,d]) -> v, remove specified key and return the corresponding value. + If key is not found, d is returned if given, otherwise KeyError is raised. + ''' + try: + value = self[key] + except KeyError: + if default is self.__marker: + raise + return default + else: + del self[key] + return value + + def popitem(self): + '''D.popitem() -> (k, v), remove and return some (key, value) pair + as a 2-tuple; but raise KeyError if D is empty. + ''' + try: + key = next(iter(self)) + except StopIteration: + raise KeyError + value = self[key] + del self[key] + return key, value + + def clear(self): + 'D.clear() -> None. Remove all items from D.' + try: + while True: + self.popitem() + except KeyError: + pass + + def update(*args, **kwds): + ''' D.update([E, ]**F) -> None. Update D from mapping/iterable E and F. + If E present and has a .keys() method, does: for k in E: D[k] = E[k] + If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v + In either case, this is followed by: for k, v in F.items(): D[k] = v + ''' + if not args: + raise TypeError("descriptor 'update' of 'MutableMapping' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('update expected at most 1 arguments, got %d' % + len(args)) + if args: + other = args[0] + if isinstance(other, Mapping): + for key in other: + self[key] = other[key] + elif hasattr(other, "keys"): + for key in other.keys(): + self[key] = other[key] + else: + for key, value in other: + self[key] = value + for key, value in kwds.items(): + self[key] = value + + def setdefault(self, key, default=None): + 'D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D' + try: + return self[key] + except KeyError: + self[key] = default + return default + +MutableMapping.register(dict) + + +### SEQUENCES ### + + +class Sequence(Reversible, Collection): + + """All the operations on a read-only sequence. + + Concrete subclasses must override __new__ or __init__, + __getitem__, and __len__. + """ + + __slots__ = () + + @abstractmethod + def __getitem__(self, index): + raise IndexError + + def __iter__(self): + i = 0 + try: + while True: + v = self[i] + yield v + i += 1 + except IndexError: + return + + def __contains__(self, value): + for v in self: + if v is value or v == value: + return True + return False + + def __reversed__(self): + for i in reversed(range(len(self))): + yield self[i] + + def index(self, value, start=0, stop=None): + '''S.index(value, [start, [stop]]) -> integer -- return first index of value. + Raises ValueError if the value is not present. + ''' + if start is not None and start < 0: + start = max(len(self) + start, 0) + if stop is not None and stop < 0: + stop += len(self) + + i = start + while stop is None or i < stop: + try: + if self[i] == value: + return i + except IndexError: + break + i += 1 + raise ValueError + + def count(self, value): + 'S.count(value) -> integer -- return number of occurrences of value' + return sum(1 for v in self if v == value) + +Sequence.register(tuple) +Sequence.register(str) +Sequence.register(range) +Sequence.register(memoryview) + + +class ByteString(Sequence): + + """This unifies bytes and bytearray. + + XXX Should add all their methods. + """ + + __slots__ = () + +ByteString.register(bytes) +ByteString.register(bytearray) + + +class MutableSequence(Sequence): + + __slots__ = () + + """All the operations on a read-write sequence. + + Concrete subclasses must provide __new__ or __init__, + __getitem__, __setitem__, __delitem__, __len__, and insert(). + + """ + + @abstractmethod + def __setitem__(self, index, value): + raise IndexError + + @abstractmethod + def __delitem__(self, index): + raise IndexError + + @abstractmethod + def insert(self, index, value): + 'S.insert(index, value) -- insert value before index' + raise IndexError + + def append(self, value): + 'S.append(value) -- append value to the end of the sequence' + self.insert(len(self), value) + + def clear(self): + 'S.clear() -> None -- remove all items from S' + try: + while True: + self.pop() + except IndexError: + pass + + def reverse(self): + 'S.reverse() -- reverse *IN PLACE*' + n = len(self) + for i in range(n//2): + self[i], self[n-i-1] = self[n-i-1], self[i] + + def extend(self, values): + 'S.extend(iterable) -- extend sequence by appending elements from the iterable' + for v in values: + self.append(v) + + def pop(self, index=-1): + '''S.pop([index]) -> item -- remove and return item at index (default last). + Raise IndexError if list is empty or index is out of range. + ''' + v = self[index] + del self[index] + return v + + def remove(self, value): + '''S.remove(value) -- remove first occurrence of value. + Raise ValueError if the value is not present. + ''' + del self[self.index(value)] + + def __iadd__(self, values): + self.extend(values) + return self + +MutableSequence.register(list) +MutableSequence.register(bytearray) # Multiply inheriting, see ByteString diff --git a/typing_extensions/test_data/python-3.6.0/abc.py b/typing_extensions/test_data/python-3.6.0/abc.py new file mode 100644 index 000000000..1cbf96a61 --- /dev/null +++ b/typing_extensions/test_data/python-3.6.0/abc.py @@ -0,0 +1,248 @@ +# Copyright 2007 Google, Inc. All Rights Reserved. +# Licensed to PSF under a Contributor Agreement. + +"""Abstract Base Classes (ABCs) according to PEP 3119.""" + +from _weakrefset import WeakSet + + +def abstractmethod(funcobj): + """A decorator indicating abstract methods. + + Requires that the metaclass is ABCMeta or derived from it. A + class that has a metaclass derived from ABCMeta cannot be + instantiated unless all of its abstract methods are overridden. + The abstract methods can be called using any of the normal + 'super' call mechanisms. + + Usage: + + class C(metaclass=ABCMeta): + @abstractmethod + def my_abstract_method(self, ...): + ... + """ + funcobj.__isabstractmethod__ = True + return funcobj + + +class abstractclassmethod(classmethod): + """ + A decorator indicating abstract classmethods. + + Similar to abstractmethod. + + Usage: + + class C(metaclass=ABCMeta): + @abstractclassmethod + def my_abstract_classmethod(cls, ...): + ... + + 'abstractclassmethod' is deprecated. Use 'classmethod' with + 'abstractmethod' instead. + """ + + __isabstractmethod__ = True + + def __init__(self, callable): + callable.__isabstractmethod__ = True + super().__init__(callable) + + +class abstractstaticmethod(staticmethod): + """ + A decorator indicating abstract staticmethods. + + Similar to abstractmethod. + + Usage: + + class C(metaclass=ABCMeta): + @abstractstaticmethod + def my_abstract_staticmethod(...): + ... + + 'abstractstaticmethod' is deprecated. Use 'staticmethod' with + 'abstractmethod' instead. + """ + + __isabstractmethod__ = True + + def __init__(self, callable): + callable.__isabstractmethod__ = True + super().__init__(callable) + + +class abstractproperty(property): + """ + A decorator indicating abstract properties. + + Requires that the metaclass is ABCMeta or derived from it. A + class that has a metaclass derived from ABCMeta cannot be + instantiated unless all of its abstract properties are overridden. + The abstract properties can be called using any of the normal + 'super' call mechanisms. + + Usage: + + class C(metaclass=ABCMeta): + @abstractproperty + def my_abstract_property(self): + ... + + This defines a read-only property; you can also define a read-write + abstract property using the 'long' form of property declaration: + + class C(metaclass=ABCMeta): + def getx(self): ... + def setx(self, value): ... + x = abstractproperty(getx, setx) + + 'abstractproperty' is deprecated. Use 'property' with 'abstractmethod' + instead. + """ + + __isabstractmethod__ = True + + +class ABCMeta(type): + + """Metaclass for defining Abstract Base Classes (ABCs). + + Use this metaclass to create an ABC. An ABC can be subclassed + directly, and then acts as a mix-in class. You can also register + unrelated concrete classes (even built-in classes) and unrelated + ABCs as 'virtual subclasses' -- these and their descendants will + be considered subclasses of the registering ABC by the built-in + issubclass() function, but the registering ABC won't show up in + their MRO (Method Resolution Order) nor will method + implementations defined by the registering ABC be callable (not + even via super()). + + """ + + # A global counter that is incremented each time a class is + # registered as a virtual subclass of anything. It forces the + # negative cache to be cleared before its next use. + # Note: this counter is private. Use `abc.get_cache_token()` for + # external code. + _abc_invalidation_counter = 0 + + def __new__(mcls, name, bases, namespace): + cls = super().__new__(mcls, name, bases, namespace) + # Compute set of abstract method names + abstracts = {name + for name, value in namespace.items() + if getattr(value, "__isabstractmethod__", False)} + for base in bases: + for name in getattr(base, "__abstractmethods__", set()): + value = getattr(cls, name, None) + if getattr(value, "__isabstractmethod__", False): + abstracts.add(name) + cls.__abstractmethods__ = frozenset(abstracts) + # Set up inheritance registry + cls._abc_registry = WeakSet() + cls._abc_cache = WeakSet() + cls._abc_negative_cache = WeakSet() + cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter + return cls + + def register(cls, subclass): + """Register a virtual subclass of an ABC. + + Returns the subclass, to allow usage as a class decorator. + """ + if not isinstance(subclass, type): + raise TypeError("Can only register classes") + if issubclass(subclass, cls): + return subclass # Already a subclass + # Subtle: test for cycles *after* testing for "already a subclass"; + # this means we allow X.register(X) and interpret it as a no-op. + if issubclass(cls, subclass): + # This would create a cycle, which is bad for the algorithm below + raise RuntimeError("Refusing to create an inheritance cycle") + cls._abc_registry.add(subclass) + ABCMeta._abc_invalidation_counter += 1 # Invalidate negative cache + return subclass + + def _dump_registry(cls, file=None): + """Debug helper to print the ABC registry.""" + print("Class: %s.%s" % (cls.__module__, cls.__qualname__), file=file) + print("Inv.counter: %s" % ABCMeta._abc_invalidation_counter, file=file) + for name in sorted(cls.__dict__.keys()): + if name.startswith("_abc_"): + value = getattr(cls, name) + print("%s: %r" % (name, value), file=file) + + def __instancecheck__(cls, instance): + """Override for isinstance(instance, cls).""" + # Inline the cache checking + subclass = instance.__class__ + if subclass in cls._abc_cache: + return True + subtype = type(instance) + if subtype is subclass: + if (cls._abc_negative_cache_version == + ABCMeta._abc_invalidation_counter and + subclass in cls._abc_negative_cache): + return False + # Fall back to the subclass check. + return cls.__subclasscheck__(subclass) + return any(cls.__subclasscheck__(c) for c in {subclass, subtype}) + + def __subclasscheck__(cls, subclass): + """Override for issubclass(subclass, cls).""" + # Check cache + if subclass in cls._abc_cache: + return True + # Check negative cache; may have to invalidate + if cls._abc_negative_cache_version < ABCMeta._abc_invalidation_counter: + # Invalidate the negative cache + cls._abc_negative_cache = WeakSet() + cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter + elif subclass in cls._abc_negative_cache: + return False + # Check the subclass hook + ok = cls.__subclasshook__(subclass) + if ok is not NotImplemented: + assert isinstance(ok, bool) + if ok: + cls._abc_cache.add(subclass) + else: + cls._abc_negative_cache.add(subclass) + return ok + # Check if it's a direct subclass + if cls in getattr(subclass, '__mro__', ()): + cls._abc_cache.add(subclass) + return True + # Check if it's a subclass of a registered class (recursive) + for rcls in cls._abc_registry: + if issubclass(subclass, rcls): + cls._abc_cache.add(subclass) + return True + # Check if it's a subclass of a subclass (recursive) + for scls in cls.__subclasses__(): + if issubclass(subclass, scls): + cls._abc_cache.add(subclass) + return True + # No dice; update negative cache + cls._abc_negative_cache.add(subclass) + return False + + +class ABC(metaclass=ABCMeta): + """Helper class that provides a standard way to create an ABC using + inheritance. + """ + pass + + +def get_cache_token(): + """Returns the current ABC cache token. + + The token is an opaque object (supporting equality testing) identifying the + current version of the ABC cache for virtual subclasses. The token changes + with every call to ``register()`` on any ABC. + """ + return ABCMeta._abc_invalidation_counter diff --git a/typing_extensions/test_data/python-3.6.0/collections/__init__.py b/typing_extensions/test_data/python-3.6.0/collections/__init__.py new file mode 100644 index 000000000..bcc429195 --- /dev/null +++ b/typing_extensions/test_data/python-3.6.0/collections/__init__.py @@ -0,0 +1,1243 @@ +'''This module implements specialized container datatypes providing +alternatives to Python's general purpose built-in containers, dict, +list, set, and tuple. + +* namedtuple factory function for creating tuple subclasses with named fields +* deque list-like container with fast appends and pops on either end +* ChainMap dict-like class for creating a single view of multiple mappings +* Counter dict subclass for counting hashable objects +* OrderedDict dict subclass that remembers the order entries were added +* defaultdict dict subclass that calls a factory function to supply missing values +* UserDict wrapper around dictionary objects for easier dict subclassing +* UserList wrapper around list objects for easier list subclassing +* UserString wrapper around string objects for easier string subclassing + +''' + +__all__ = ['deque', 'defaultdict', 'namedtuple', 'UserDict', 'UserList', + 'UserString', 'Counter', 'OrderedDict', 'ChainMap'] + +# For backwards compatibility, continue to make the collections ABCs +# available through the collections module. +from _collections_abc import * +import _collections_abc +__all__ += _collections_abc.__all__ + +from operator import itemgetter as _itemgetter, eq as _eq +from keyword import iskeyword as _iskeyword +import sys as _sys +import heapq as _heapq +from _weakref import proxy as _proxy +from itertools import repeat as _repeat, chain as _chain, starmap as _starmap +from reprlib import recursive_repr as _recursive_repr + +try: + from _collections import deque +except ImportError: + pass +else: + MutableSequence.register(deque) + +try: + from _collections import defaultdict +except ImportError: + pass + + +################################################################################ +### OrderedDict +################################################################################ + +class _OrderedDictKeysView(KeysView): + + def __reversed__(self): + yield from reversed(self._mapping) + +class _OrderedDictItemsView(ItemsView): + + def __reversed__(self): + for key in reversed(self._mapping): + yield (key, self._mapping[key]) + +class _OrderedDictValuesView(ValuesView): + + def __reversed__(self): + for key in reversed(self._mapping): + yield self._mapping[key] + +class _Link(object): + __slots__ = 'prev', 'next', 'key', '__weakref__' + +class OrderedDict(dict): + 'Dictionary that remembers insertion order' + # An inherited dict maps keys to values. + # The inherited dict provides __getitem__, __len__, __contains__, and get. + # The remaining methods are order-aware. + # Big-O running times for all methods are the same as regular dictionaries. + + # The internal self.__map dict maps keys to links in a doubly linked list. + # The circular doubly linked list starts and ends with a sentinel element. + # The sentinel element never gets deleted (this simplifies the algorithm). + # The sentinel is in self.__hardroot with a weakref proxy in self.__root. + # The prev links are weakref proxies (to prevent circular references). + # Individual links are kept alive by the hard reference in self.__map. + # Those hard references disappear when a key is deleted from an OrderedDict. + + def __init__(*args, **kwds): + '''Initialize an ordered dictionary. The signature is the same as + regular dictionaries, but keyword arguments are not recommended because + their insertion order is arbitrary. + + ''' + if not args: + raise TypeError("descriptor '__init__' of 'OrderedDict' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + try: + self.__root + except AttributeError: + self.__hardroot = _Link() + self.__root = root = _proxy(self.__hardroot) + root.prev = root.next = root + self.__map = {} + self.__update(*args, **kwds) + + def __setitem__(self, key, value, + dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link): + 'od.__setitem__(i, y) <==> od[i]=y' + # Setting a new item creates a new link at the end of the linked list, + # and the inherited dictionary is updated with the new key/value pair. + if key not in self: + self.__map[key] = link = Link() + root = self.__root + last = root.prev + link.prev, link.next, link.key = last, root, key + last.next = link + root.prev = proxy(link) + dict_setitem(self, key, value) + + def __delitem__(self, key, dict_delitem=dict.__delitem__): + 'od.__delitem__(y) <==> del od[y]' + # Deleting an existing item uses self.__map to find the link which gets + # removed by updating the links in the predecessor and successor nodes. + dict_delitem(self, key) + link = self.__map.pop(key) + link_prev = link.prev + link_next = link.next + link_prev.next = link_next + link_next.prev = link_prev + link.prev = None + link.next = None + + def __iter__(self): + 'od.__iter__() <==> iter(od)' + # Traverse the linked list in order. + root = self.__root + curr = root.next + while curr is not root: + yield curr.key + curr = curr.next + + def __reversed__(self): + 'od.__reversed__() <==> reversed(od)' + # Traverse the linked list in reverse order. + root = self.__root + curr = root.prev + while curr is not root: + yield curr.key + curr = curr.prev + + def clear(self): + 'od.clear() -> None. Remove all items from od.' + root = self.__root + root.prev = root.next = root + self.__map.clear() + dict.clear(self) + + def popitem(self, last=True): + '''od.popitem() -> (k, v), return and remove a (key, value) pair. + Pairs are returned in LIFO order if last is true or FIFO order if false. + + ''' + if not self: + raise KeyError('dictionary is empty') + root = self.__root + if last: + link = root.prev + link_prev = link.prev + link_prev.next = root + root.prev = link_prev + else: + link = root.next + link_next = link.next + root.next = link_next + link_next.prev = root + key = link.key + del self.__map[key] + value = dict.pop(self, key) + return key, value + + def move_to_end(self, key, last=True): + '''Move an existing element to the end (or beginning if last==False). + + Raises KeyError if the element does not exist. + When last=True, acts like a fast version of self[key]=self.pop(key). + + ''' + link = self.__map[key] + link_prev = link.prev + link_next = link.next + link_prev.next = link_next + link_next.prev = link_prev + root = self.__root + if last: + last = root.prev + link.prev = last + link.next = root + last.next = root.prev = link + else: + first = root.next + link.prev = root + link.next = first + root.next = first.prev = link + + def __sizeof__(self): + sizeof = _sys.getsizeof + n = len(self) + 1 # number of links including root + size = sizeof(self.__dict__) # instance dictionary + size += sizeof(self.__map) * 2 # internal dict and inherited dict + size += sizeof(self.__hardroot) * n # link objects + size += sizeof(self.__root) * n # proxy objects + return size + + update = __update = MutableMapping.update + + def keys(self): + "D.keys() -> a set-like object providing a view on D's keys" + return _OrderedDictKeysView(self) + + def items(self): + "D.items() -> a set-like object providing a view on D's items" + return _OrderedDictItemsView(self) + + def values(self): + "D.values() -> an object providing a view on D's values" + return _OrderedDictValuesView(self) + + __ne__ = MutableMapping.__ne__ + + __marker = object() + + def pop(self, key, default=__marker): + '''od.pop(k[,d]) -> v, remove specified key and return the corresponding + value. If key is not found, d is returned if given, otherwise KeyError + is raised. + + ''' + if key in self: + result = self[key] + del self[key] + return result + if default is self.__marker: + raise KeyError(key) + return default + + def setdefault(self, key, default=None): + 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od' + if key in self: + return self[key] + self[key] = default + return default + + @_recursive_repr() + def __repr__(self): + 'od.__repr__() <==> repr(od)' + if not self: + return '%s()' % (self.__class__.__name__,) + return '%s(%r)' % (self.__class__.__name__, list(self.items())) + + def __reduce__(self): + 'Return state information for pickling' + inst_dict = vars(self).copy() + for k in vars(OrderedDict()): + inst_dict.pop(k, None) + return self.__class__, (), inst_dict or None, None, iter(self.items()) + + def copy(self): + 'od.copy() -> a shallow copy of od' + return self.__class__(self) + + @classmethod + def fromkeys(cls, iterable, value=None): + '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S. + If not specified, the value defaults to None. + + ''' + self = cls() + for key in iterable: + self[key] = value + return self + + def __eq__(self, other): + '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive + while comparison to a regular mapping is order-insensitive. + + ''' + if isinstance(other, OrderedDict): + return dict.__eq__(self, other) and all(map(_eq, self, other)) + return dict.__eq__(self, other) + + +try: + from _collections import OrderedDict +except ImportError: + # Leave the pure Python version in place. + pass + + +################################################################################ +### namedtuple +################################################################################ + +_class_template = """\ +from builtins import property as _property, tuple as _tuple +from operator import itemgetter as _itemgetter +from collections import OrderedDict + +class {typename}(tuple): + '{typename}({arg_list})' + + __slots__ = () + + _fields = {field_names!r} + + def __new__(_cls, {arg_list}): + 'Create new instance of {typename}({arg_list})' + return _tuple.__new__(_cls, ({arg_list})) + + @classmethod + def _make(cls, iterable, new=tuple.__new__, len=len): + 'Make a new {typename} object from a sequence or iterable' + result = new(cls, iterable) + if len(result) != {num_fields:d}: + raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result)) + return result + + def _replace(_self, **kwds): + 'Return a new {typename} object replacing specified fields with new values' + result = _self._make(map(kwds.pop, {field_names!r}, _self)) + if kwds: + raise ValueError('Got unexpected field names: %r' % list(kwds)) + return result + + def __repr__(self): + 'Return a nicely formatted representation string' + return self.__class__.__name__ + '({repr_fmt})' % self + + def _asdict(self): + 'Return a new OrderedDict which maps field names to their values.' + return OrderedDict(zip(self._fields, self)) + + def __getnewargs__(self): + 'Return self as a plain tuple. Used by copy and pickle.' + return tuple(self) + +{field_defs} +""" + +_repr_template = '{name}=%r' + +_field_template = '''\ + {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}') +''' + +def namedtuple(typename, field_names, *, verbose=False, rename=False, module=None): + """Returns a new subclass of tuple with named fields. + + >>> Point = namedtuple('Point', ['x', 'y']) + >>> Point.__doc__ # docstring for the new class + 'Point(x, y)' + >>> p = Point(11, y=22) # instantiate with positional args or keywords + >>> p[0] + p[1] # indexable like a plain tuple + 33 + >>> x, y = p # unpack like a regular tuple + >>> x, y + (11, 22) + >>> p.x + p.y # fields also accessible by name + 33 + >>> d = p._asdict() # convert to a dictionary + >>> d['x'] + 11 + >>> Point(**d) # convert from a dictionary + Point(x=11, y=22) + >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields + Point(x=100, y=22) + + """ + + # Validate the field names. At the user's option, either generate an error + # message or automatically replace the field name with a valid name. + if isinstance(field_names, str): + field_names = field_names.replace(',', ' ').split() + field_names = list(map(str, field_names)) + typename = str(typename) + if rename: + seen = set() + for index, name in enumerate(field_names): + if (not name.isidentifier() + or _iskeyword(name) + or name.startswith('_') + or name in seen): + field_names[index] = '_%d' % index + seen.add(name) + for name in [typename] + field_names: + if type(name) is not str: + raise TypeError('Type names and field names must be strings') + if not name.isidentifier(): + raise ValueError('Type names and field names must be valid ' + 'identifiers: %r' % name) + if _iskeyword(name): + raise ValueError('Type names and field names cannot be a ' + 'keyword: %r' % name) + seen = set() + for name in field_names: + if name.startswith('_') and not rename: + raise ValueError('Field names cannot start with an underscore: ' + '%r' % name) + if name in seen: + raise ValueError('Encountered duplicate field name: %r' % name) + seen.add(name) + + # Fill-in the class template + class_definition = _class_template.format( + typename = typename, + field_names = tuple(field_names), + num_fields = len(field_names), + arg_list = repr(tuple(field_names)).replace("'", "")[1:-1], + repr_fmt = ', '.join(_repr_template.format(name=name) + for name in field_names), + field_defs = '\n'.join(_field_template.format(index=index, name=name) + for index, name in enumerate(field_names)) + ) + + # Execute the template string in a temporary namespace and support + # tracing utilities by setting a value for frame.f_globals['__name__'] + namespace = dict(__name__='namedtuple_%s' % typename) + exec(class_definition, namespace) + result = namespace[typename] + result._source = class_definition + if verbose: + print(result._source) + + # For pickling to work, the __module__ variable needs to be set to the frame + # where the named tuple is created. Bypass this step in environments where + # sys._getframe is not defined (Jython for example) or sys._getframe is not + # defined for arguments greater than 0 (IronPython), or where the user has + # specified a particular module. + if module is None: + try: + module = _sys._getframe(1).f_globals.get('__name__', '__main__') + except (AttributeError, ValueError): + pass + if module is not None: + result.__module__ = module + + return result + + +######################################################################## +### Counter +######################################################################## + +def _count_elements(mapping, iterable): + 'Tally elements from the iterable.' + mapping_get = mapping.get + for elem in iterable: + mapping[elem] = mapping_get(elem, 0) + 1 + +try: # Load C helper function if available + from _collections import _count_elements +except ImportError: + pass + +class Counter(dict): + '''Dict subclass for counting hashable items. Sometimes called a bag + or multiset. Elements are stored as dictionary keys and their counts + are stored as dictionary values. + + >>> c = Counter('abcdeabcdabcaba') # count elements from a string + + >>> c.most_common(3) # three most common elements + [('a', 5), ('b', 4), ('c', 3)] + >>> sorted(c) # list all unique elements + ['a', 'b', 'c', 'd', 'e'] + >>> ''.join(sorted(c.elements())) # list elements with repetitions + 'aaaaabbbbcccdde' + >>> sum(c.values()) # total of all counts + 15 + + >>> c['a'] # count of letter 'a' + 5 + >>> for elem in 'shazam': # update counts from an iterable + ... c[elem] += 1 # by adding 1 to each element's count + >>> c['a'] # now there are seven 'a' + 7 + >>> del c['b'] # remove all 'b' + >>> c['b'] # now there are zero 'b' + 0 + + >>> d = Counter('simsalabim') # make another counter + >>> c.update(d) # add in the second counter + >>> c['a'] # now there are nine 'a' + 9 + + >>> c.clear() # empty the counter + >>> c + Counter() + + Note: If a count is set to zero or reduced to zero, it will remain + in the counter until the entry is deleted or the counter is cleared: + + >>> c = Counter('aaabbc') + >>> c['b'] -= 2 # reduce the count of 'b' by two + >>> c.most_common() # 'b' is still in, but its count is zero + [('a', 3), ('c', 1), ('b', 0)] + + ''' + # References: + # http://en.wikipedia.org/wiki/Multiset + # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html + # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm + # http://code.activestate.com/recipes/259174/ + # Knuth, TAOCP Vol. II section 4.6.3 + + def __init__(*args, **kwds): + '''Create a new, empty Counter object. And if given, count elements + from an input iterable. Or, initialize the count from another mapping + of elements to their counts. + + >>> c = Counter() # a new, empty counter + >>> c = Counter('gallahad') # a new counter from an iterable + >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping + >>> c = Counter(a=4, b=2) # a new counter from keyword args + + ''' + if not args: + raise TypeError("descriptor '__init__' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + super(Counter, self).__init__() + self.update(*args, **kwds) + + def __missing__(self, key): + 'The count of elements not in the Counter is zero.' + # Needed so that self[missing_item] does not raise KeyError + return 0 + + def most_common(self, n=None): + '''List the n most common elements and their counts from the most + common to the least. If n is None, then list all element counts. + + >>> Counter('abcdeabcdabcaba').most_common(3) + [('a', 5), ('b', 4), ('c', 3)] + + ''' + # Emulate Bag.sortedByCount from Smalltalk + if n is None: + return sorted(self.items(), key=_itemgetter(1), reverse=True) + return _heapq.nlargest(n, self.items(), key=_itemgetter(1)) + + def elements(self): + '''Iterator over elements repeating each as many times as its count. + + >>> c = Counter('ABCABC') + >>> sorted(c.elements()) + ['A', 'A', 'B', 'B', 'C', 'C'] + + # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1 + >>> prime_factors = Counter({2: 2, 3: 3, 17: 1}) + >>> product = 1 + >>> for factor in prime_factors.elements(): # loop over factors + ... product *= factor # and multiply them + >>> product + 1836 + + Note, if an element's count has been set to zero or is a negative + number, elements() will ignore it. + + ''' + # Emulate Bag.do from Smalltalk and Multiset.begin from C++. + return _chain.from_iterable(_starmap(_repeat, self.items())) + + # Override dict methods where necessary + + @classmethod + def fromkeys(cls, iterable, v=None): + # There is no equivalent method for counters because setting v=1 + # means that no element can have a count greater than one. + raise NotImplementedError( + 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') + + def update(*args, **kwds): + '''Like dict.update() but add counts instead of replacing them. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.update('witch') # add elements from another iterable + >>> d = Counter('watch') + >>> c.update(d) # add elements from another counter + >>> c['h'] # four 'h' in which, witch, and watch + 4 + + ''' + # The regular dict.update() operation makes no sense here because the + # replace behavior results in the some of original untouched counts + # being mixed-in with all of the other counts for a mismash that + # doesn't have a straight-forward interpretation in most counting + # contexts. Instead, we implement straight-addition. Both the inputs + # and outputs are allowed to contain zero and negative counts. + + if not args: + raise TypeError("descriptor 'update' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + iterable = args[0] if args else None + if iterable is not None: + if isinstance(iterable, Mapping): + if self: + self_get = self.get + for elem, count in iterable.items(): + self[elem] = count + self_get(elem, 0) + else: + super(Counter, self).update(iterable) # fast path when counter is empty + else: + _count_elements(self, iterable) + if kwds: + self.update(kwds) + + def subtract(*args, **kwds): + '''Like dict.update() but subtracts counts instead of replacing them. + Counts can be reduced below zero. Both the inputs and outputs are + allowed to contain zero and negative counts. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.subtract('witch') # subtract elements from another iterable + >>> c.subtract(Counter('watch')) # subtract elements from another counter + >>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch + 0 + >>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch + -1 + + ''' + if not args: + raise TypeError("descriptor 'subtract' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + iterable = args[0] if args else None + if iterable is not None: + self_get = self.get + if isinstance(iterable, Mapping): + for elem, count in iterable.items(): + self[elem] = self_get(elem, 0) - count + else: + for elem in iterable: + self[elem] = self_get(elem, 0) - 1 + if kwds: + self.subtract(kwds) + + def copy(self): + 'Return a shallow copy.' + return self.__class__(self) + + def __reduce__(self): + return self.__class__, (dict(self),) + + def __delitem__(self, elem): + 'Like dict.__delitem__() but does not raise KeyError for missing values.' + if elem in self: + super().__delitem__(elem) + + def __repr__(self): + if not self: + return '%s()' % self.__class__.__name__ + try: + items = ', '.join(map('%r: %r'.__mod__, self.most_common())) + return '%s({%s})' % (self.__class__.__name__, items) + except TypeError: + # handle case where values are not orderable + return '{0}({1!r})'.format(self.__class__.__name__, dict(self)) + + # Multiset-style mathematical operations discussed in: + # Knuth TAOCP Volume II section 4.6.3 exercise 19 + # and at http://en.wikipedia.org/wiki/Multiset + # + # Outputs guaranteed to only include positive counts. + # + # To strip negative and zero counts, add-in an empty counter: + # c += Counter() + + def __add__(self, other): + '''Add counts from two counters. + + >>> Counter('abbb') + Counter('bcc') + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count + other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __sub__(self, other): + ''' Subtract count, but keep only results with positive counts. + + >>> Counter('abbbc') - Counter('bccd') + Counter({'b': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count - other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count < 0: + result[elem] = 0 - count + return result + + def __or__(self, other): + '''Union is the maximum of value in either of the input counters. + + >>> Counter('abbb') | Counter('bcc') + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = other_count if count < other_count else count + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __and__(self, other): + ''' Intersection is the minimum of corresponding counts. + + >>> Counter('abbb') & Counter('bcc') + Counter({'b': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = count if count < other_count else other_count + if newcount > 0: + result[elem] = newcount + return result + + def __pos__(self): + 'Adds an empty counter, effectively stripping negative and zero counts' + result = Counter() + for elem, count in self.items(): + if count > 0: + result[elem] = count + return result + + def __neg__(self): + '''Subtracts from an empty counter. Strips positive and zero counts, + and flips the sign on negative counts. + + ''' + result = Counter() + for elem, count in self.items(): + if count < 0: + result[elem] = 0 - count + return result + + def _keep_positive(self): + '''Internal method to strip elements with a negative or zero count''' + nonpositive = [elem for elem, count in self.items() if not count > 0] + for elem in nonpositive: + del self[elem] + return self + + def __iadd__(self, other): + '''Inplace add from another counter, keeping only positive counts. + + >>> c = Counter('abbb') + >>> c += Counter('bcc') + >>> c + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + for elem, count in other.items(): + self[elem] += count + return self._keep_positive() + + def __isub__(self, other): + '''Inplace subtract counter, but keep only results with positive counts. + + >>> c = Counter('abbbc') + >>> c -= Counter('bccd') + >>> c + Counter({'b': 2, 'a': 1}) + + ''' + for elem, count in other.items(): + self[elem] -= count + return self._keep_positive() + + def __ior__(self, other): + '''Inplace union is the maximum of value from either counter. + + >>> c = Counter('abbb') + >>> c |= Counter('bcc') + >>> c + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + for elem, other_count in other.items(): + count = self[elem] + if other_count > count: + self[elem] = other_count + return self._keep_positive() + + def __iand__(self, other): + '''Inplace intersection is the minimum of corresponding counts. + + >>> c = Counter('abbb') + >>> c &= Counter('bcc') + >>> c + Counter({'b': 1}) + + ''' + for elem, count in self.items(): + other_count = other[elem] + if other_count < count: + self[elem] = other_count + return self._keep_positive() + + +######################################################################## +### ChainMap +######################################################################## + +class ChainMap(MutableMapping): + ''' A ChainMap groups multiple dicts (or other mappings) together + to create a single, updateable view. + + The underlying mappings are stored in a list. That list is public and can + be accessed or updated using the *maps* attribute. There is no other + state. + + Lookups search the underlying mappings successively until a key is found. + In contrast, writes, updates, and deletions only operate on the first + mapping. + + ''' + + def __init__(self, *maps): + '''Initialize a ChainMap by setting *maps* to the given mappings. + If no mappings are provided, a single empty dictionary is used. + + ''' + self.maps = list(maps) or [{}] # always at least one map + + def __missing__(self, key): + raise KeyError(key) + + def __getitem__(self, key): + for mapping in self.maps: + try: + return mapping[key] # can't use 'key in mapping' with defaultdict + except KeyError: + pass + return self.__missing__(key) # support subclasses that define __missing__ + + def get(self, key, default=None): + return self[key] if key in self else default + + def __len__(self): + return len(set().union(*self.maps)) # reuses stored hash values if possible + + def __iter__(self): + return iter(set().union(*self.maps)) + + def __contains__(self, key): + return any(key in m for m in self.maps) + + def __bool__(self): + return any(self.maps) + + @_recursive_repr() + def __repr__(self): + return '{0.__class__.__name__}({1})'.format( + self, ', '.join(map(repr, self.maps))) + + @classmethod + def fromkeys(cls, iterable, *args): + 'Create a ChainMap with a single dict created from the iterable.' + return cls(dict.fromkeys(iterable, *args)) + + def copy(self): + 'New ChainMap or subclass with a new copy of maps[0] and refs to maps[1:]' + return self.__class__(self.maps[0].copy(), *self.maps[1:]) + + __copy__ = copy + + def new_child(self, m=None): # like Django's Context.push() + '''New ChainMap with a new map followed by all previous maps. + If no map is provided, an empty dict is used. + ''' + if m is None: + m = {} + return self.__class__(m, *self.maps) + + @property + def parents(self): # like Django's Context.pop() + 'New ChainMap from maps[1:].' + return self.__class__(*self.maps[1:]) + + def __setitem__(self, key, value): + self.maps[0][key] = value + + def __delitem__(self, key): + try: + del self.maps[0][key] + except KeyError: + raise KeyError('Key not found in the first mapping: {!r}'.format(key)) + + def popitem(self): + 'Remove and return an item pair from maps[0]. Raise KeyError is maps[0] is empty.' + try: + return self.maps[0].popitem() + except KeyError: + raise KeyError('No keys found in the first mapping.') + + def pop(self, key, *args): + 'Remove *key* from maps[0] and return its value. Raise KeyError if *key* not in maps[0].' + try: + return self.maps[0].pop(key, *args) + except KeyError: + raise KeyError('Key not found in the first mapping: {!r}'.format(key)) + + def clear(self): + 'Clear maps[0], leaving maps[1:] intact.' + self.maps[0].clear() + + +################################################################################ +### UserDict +################################################################################ + +class UserDict(MutableMapping): + + # Start by filling-out the abstract methods + def __init__(*args, **kwargs): + if not args: + raise TypeError("descriptor '__init__' of 'UserDict' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + if args: + dict = args[0] + elif 'dict' in kwargs: + dict = kwargs.pop('dict') + import warnings + warnings.warn("Passing 'dict' as keyword argument is deprecated", + DeprecationWarning, stacklevel=2) + else: + dict = None + self.data = {} + if dict is not None: + self.update(dict) + if len(kwargs): + self.update(kwargs) + def __len__(self): return len(self.data) + def __getitem__(self, key): + if key in self.data: + return self.data[key] + if hasattr(self.__class__, "__missing__"): + return self.__class__.__missing__(self, key) + raise KeyError(key) + def __setitem__(self, key, item): self.data[key] = item + def __delitem__(self, key): del self.data[key] + def __iter__(self): + return iter(self.data) + + # Modify __contains__ to work correctly when __missing__ is present + def __contains__(self, key): + return key in self.data + + # Now, add the methods in dicts but not in MutableMapping + def __repr__(self): return repr(self.data) + def copy(self): + if self.__class__ is UserDict: + return UserDict(self.data.copy()) + import copy + data = self.data + try: + self.data = {} + c = copy.copy(self) + finally: + self.data = data + c.update(self) + return c + @classmethod + def fromkeys(cls, iterable, value=None): + d = cls() + for key in iterable: + d[key] = value + return d + + + +################################################################################ +### UserList +################################################################################ + +class UserList(MutableSequence): + """A more or less complete user-defined wrapper around list objects.""" + def __init__(self, initlist=None): + self.data = [] + if initlist is not None: + # XXX should this accept an arbitrary sequence? + if type(initlist) == type(self.data): + self.data[:] = initlist + elif isinstance(initlist, UserList): + self.data[:] = initlist.data[:] + else: + self.data = list(initlist) + def __repr__(self): return repr(self.data) + def __lt__(self, other): return self.data < self.__cast(other) + def __le__(self, other): return self.data <= self.__cast(other) + def __eq__(self, other): return self.data == self.__cast(other) + def __gt__(self, other): return self.data > self.__cast(other) + def __ge__(self, other): return self.data >= self.__cast(other) + def __cast(self, other): + return other.data if isinstance(other, UserList) else other + def __contains__(self, item): return item in self.data + def __len__(self): return len(self.data) + def __getitem__(self, i): return self.data[i] + def __setitem__(self, i, item): self.data[i] = item + def __delitem__(self, i): del self.data[i] + def __add__(self, other): + if isinstance(other, UserList): + return self.__class__(self.data + other.data) + elif isinstance(other, type(self.data)): + return self.__class__(self.data + other) + return self.__class__(self.data + list(other)) + def __radd__(self, other): + if isinstance(other, UserList): + return self.__class__(other.data + self.data) + elif isinstance(other, type(self.data)): + return self.__class__(other + self.data) + return self.__class__(list(other) + self.data) + def __iadd__(self, other): + if isinstance(other, UserList): + self.data += other.data + elif isinstance(other, type(self.data)): + self.data += other + else: + self.data += list(other) + return self + def __mul__(self, n): + return self.__class__(self.data*n) + __rmul__ = __mul__ + def __imul__(self, n): + self.data *= n + return self + def append(self, item): self.data.append(item) + def insert(self, i, item): self.data.insert(i, item) + def pop(self, i=-1): return self.data.pop(i) + def remove(self, item): self.data.remove(item) + def clear(self): self.data.clear() + def copy(self): return self.__class__(self) + def count(self, item): return self.data.count(item) + def index(self, item, *args): return self.data.index(item, *args) + def reverse(self): self.data.reverse() + def sort(self, *args, **kwds): self.data.sort(*args, **kwds) + def extend(self, other): + if isinstance(other, UserList): + self.data.extend(other.data) + else: + self.data.extend(other) + + + +################################################################################ +### UserString +################################################################################ + +class UserString(Sequence): + def __init__(self, seq): + if isinstance(seq, str): + self.data = seq + elif isinstance(seq, UserString): + self.data = seq.data[:] + else: + self.data = str(seq) + def __str__(self): return str(self.data) + def __repr__(self): return repr(self.data) + def __int__(self): return int(self.data) + def __float__(self): return float(self.data) + def __complex__(self): return complex(self.data) + def __hash__(self): return hash(self.data) + def __getnewargs__(self): + return (self.data[:],) + + def __eq__(self, string): + if isinstance(string, UserString): + return self.data == string.data + return self.data == string + def __lt__(self, string): + if isinstance(string, UserString): + return self.data < string.data + return self.data < string + def __le__(self, string): + if isinstance(string, UserString): + return self.data <= string.data + return self.data <= string + def __gt__(self, string): + if isinstance(string, UserString): + return self.data > string.data + return self.data > string + def __ge__(self, string): + if isinstance(string, UserString): + return self.data >= string.data + return self.data >= string + + def __contains__(self, char): + if isinstance(char, UserString): + char = char.data + return char in self.data + + def __len__(self): return len(self.data) + def __getitem__(self, index): return self.__class__(self.data[index]) + def __add__(self, other): + if isinstance(other, UserString): + return self.__class__(self.data + other.data) + elif isinstance(other, str): + return self.__class__(self.data + other) + return self.__class__(self.data + str(other)) + def __radd__(self, other): + if isinstance(other, str): + return self.__class__(other + self.data) + return self.__class__(str(other) + self.data) + def __mul__(self, n): + return self.__class__(self.data*n) + __rmul__ = __mul__ + def __mod__(self, args): + return self.__class__(self.data % args) + def __rmod__(self, format): + return self.__class__(format % args) + + # the following methods are defined in alphabetical order: + def capitalize(self): return self.__class__(self.data.capitalize()) + def casefold(self): + return self.__class__(self.data.casefold()) + def center(self, width, *args): + return self.__class__(self.data.center(width, *args)) + def count(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.count(sub, start, end) + def encode(self, encoding=None, errors=None): # XXX improve this? + if encoding: + if errors: + return self.__class__(self.data.encode(encoding, errors)) + return self.__class__(self.data.encode(encoding)) + return self.__class__(self.data.encode()) + def endswith(self, suffix, start=0, end=_sys.maxsize): + return self.data.endswith(suffix, start, end) + def expandtabs(self, tabsize=8): + return self.__class__(self.data.expandtabs(tabsize)) + def find(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.find(sub, start, end) + def format(self, *args, **kwds): + return self.data.format(*args, **kwds) + def format_map(self, mapping): + return self.data.format_map(mapping) + def index(self, sub, start=0, end=_sys.maxsize): + return self.data.index(sub, start, end) + def isalpha(self): return self.data.isalpha() + def isalnum(self): return self.data.isalnum() + def isdecimal(self): return self.data.isdecimal() + def isdigit(self): return self.data.isdigit() + def isidentifier(self): return self.data.isidentifier() + def islower(self): return self.data.islower() + def isnumeric(self): return self.data.isnumeric() + def isprintable(self): return self.data.isprintable() + def isspace(self): return self.data.isspace() + def istitle(self): return self.data.istitle() + def isupper(self): return self.data.isupper() + def join(self, seq): return self.data.join(seq) + def ljust(self, width, *args): + return self.__class__(self.data.ljust(width, *args)) + def lower(self): return self.__class__(self.data.lower()) + def lstrip(self, chars=None): return self.__class__(self.data.lstrip(chars)) + maketrans = str.maketrans + def partition(self, sep): + return self.data.partition(sep) + def replace(self, old, new, maxsplit=-1): + if isinstance(old, UserString): + old = old.data + if isinstance(new, UserString): + new = new.data + return self.__class__(self.data.replace(old, new, maxsplit)) + def rfind(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.rfind(sub, start, end) + def rindex(self, sub, start=0, end=_sys.maxsize): + return self.data.rindex(sub, start, end) + def rjust(self, width, *args): + return self.__class__(self.data.rjust(width, *args)) + def rpartition(self, sep): + return self.data.rpartition(sep) + def rstrip(self, chars=None): + return self.__class__(self.data.rstrip(chars)) + def split(self, sep=None, maxsplit=-1): + return self.data.split(sep, maxsplit) + def rsplit(self, sep=None, maxsplit=-1): + return self.data.rsplit(sep, maxsplit) + def splitlines(self, keepends=False): return self.data.splitlines(keepends) + def startswith(self, prefix, start=0, end=_sys.maxsize): + return self.data.startswith(prefix, start, end) + def strip(self, chars=None): return self.__class__(self.data.strip(chars)) + def swapcase(self): return self.__class__(self.data.swapcase()) + def title(self): return self.__class__(self.data.title()) + def translate(self, *args): + return self.__class__(self.data.translate(*args)) + def upper(self): return self.__class__(self.data.upper()) + def zfill(self, width): return self.__class__(self.data.zfill(width)) diff --git a/typing_extensions/test_data/python-3.6.0/collections/abc.py b/typing_extensions/test_data/python-3.6.0/collections/abc.py new file mode 100644 index 000000000..891600d16 --- /dev/null +++ b/typing_extensions/test_data/python-3.6.0/collections/abc.py @@ -0,0 +1,2 @@ +from _collections_abc import * +from _collections_abc import __all__ diff --git a/typing_extensions/test_data/python-3.6.0/typing.py b/typing_extensions/test_data/python-3.6.0/typing.py new file mode 100644 index 000000000..34845b747 --- /dev/null +++ b/typing_extensions/test_data/python-3.6.0/typing.py @@ -0,0 +1,2160 @@ +import abc +from abc import abstractmethod, abstractproperty +import collections +import contextlib +import functools +import re as stdlib_re # Avoid confusion with the re we export. +import sys +import types +try: + import collections.abc as collections_abc +except ImportError: + import collections as collections_abc # Fallback for PY3.2. + + +# Please keep __all__ alphabetized within each category. +__all__ = [ + # Super-special typing primitives. + 'Any', + 'Callable', + 'ClassVar', + 'Generic', + 'Optional', + 'Tuple', + 'Type', + 'TypeVar', + 'Union', + + # ABCs (from collections.abc). + 'AbstractSet', # collections.abc.Set. + 'ByteString', + 'Container', + 'Hashable', + 'ItemsView', + 'Iterable', + 'Iterator', + 'KeysView', + 'Mapping', + 'MappingView', + 'MutableMapping', + 'MutableSequence', + 'MutableSet', + 'Sequence', + 'Sized', + 'ValuesView', + # The following are added depending on presence + # of their non-generic counterparts in stdlib: + # Awaitable, + # AsyncIterator, + # AsyncIterable, + # Coroutine, + # Collection, + # ContextManager + + # Structural checks, a.k.a. protocols. + 'Reversible', + 'SupportsAbs', + 'SupportsFloat', + 'SupportsInt', + 'SupportsRound', + + # Concrete collection types. + 'Dict', + 'DefaultDict', + 'List', + 'Set', + 'FrozenSet', + 'NamedTuple', # Not really a type. + 'Generator', + + # One-off things. + 'AnyStr', + 'cast', + 'get_type_hints', + 'NewType', + 'no_type_check', + 'no_type_check_decorator', + 'overload', + 'Text', + 'TYPE_CHECKING', +] + +# The pseudo-submodules 're' and 'io' are part of the public +# namespace, but excluded from __all__ because they might stomp on +# legitimate imports of those modules. + + +def _qualname(x): + if sys.version_info[:2] >= (3, 3): + return x.__qualname__ + else: + # Fall back to just name. + return x.__name__ + + +def _trim_name(nm): + if nm.startswith('_') and nm not in ('_TypeAlias', + '_ForwardRef', '_TypingBase', '_FinalTypingBase'): + nm = nm[1:] + return nm + + +class TypingMeta(type): + """Metaclass for most types defined in typing module + (not a part of public API). + + This overrides __new__() to require an extra keyword parameter + '_root', which serves as a guard against naive subclassing of the + typing classes. Any legitimate class defined using a metaclass + derived from TypingMeta must pass _root=True. + + This also defines a dummy constructor (all the work for most typing + constructs is done in __new__) and a nicer repr(). + """ + + _is_protocol = False + + def __new__(cls, name, bases, namespace, *, _root=False): + if not _root: + raise TypeError("Cannot subclass %s" % + (', '.join(map(_type_repr, bases)) or '()')) + return super().__new__(cls, name, bases, namespace) + + def __init__(self, *args, **kwds): + pass + + def _eval_type(self, globalns, localns): + """Override this in subclasses to interpret forward references. + + For example, List['C'] is internally stored as + List[_ForwardRef('C')], which should evaluate to List[C], + where C is an object found in globalns or localns (searching + localns first, of course). + """ + return self + + def _get_type_vars(self, tvars): + pass + + def __repr__(self): + qname = _trim_name(_qualname(self)) + return '%s.%s' % (self.__module__, qname) + + +class _TypingBase(metaclass=TypingMeta, _root=True): + """Internal indicator of special typing constructs.""" + + __slots__ = () + + def __init__(self, *args, **kwds): + pass + + def __new__(cls, *args, **kwds): + """Constructor. + + This only exists to give a better error message in case + someone tries to subclass a special typing object (not a good idea). + """ + if (len(args) == 3 and + isinstance(args[0], str) and + isinstance(args[1], tuple)): + # Close enough. + raise TypeError("Cannot subclass %r" % cls) + return super().__new__(cls) + + # Things that are not classes also need these. + def _eval_type(self, globalns, localns): + return self + + def _get_type_vars(self, tvars): + pass + + def __repr__(self): + cls = type(self) + qname = _trim_name(_qualname(cls)) + return '%s.%s' % (cls.__module__, qname) + + def __call__(self, *args, **kwds): + raise TypeError("Cannot instantiate %r" % type(self)) + + +class _FinalTypingBase(_TypingBase, _root=True): + """Internal mix-in class to prevent instantiation. + + Prevents instantiation unless _root=True is given in class call. + It is used to create pseudo-singleton instances Any, Union, Optional, etc. + """ + + __slots__ = () + + def __new__(cls, *args, _root=False, **kwds): + self = super().__new__(cls, *args, **kwds) + if _root is True: + return self + raise TypeError("Cannot instantiate %r" % cls) + + def __reduce__(self): + return _trim_name(type(self).__name__) + + +class _ForwardRef(_TypingBase, _root=True): + """Internal wrapper to hold a forward reference.""" + + __slots__ = ('__forward_arg__', '__forward_code__', + '__forward_evaluated__', '__forward_value__') + + def __init__(self, arg): + super().__init__(arg) + if not isinstance(arg, str): + raise TypeError('Forward reference must be a string -- got %r' % (arg,)) + try: + code = compile(arg, '', 'eval') + except SyntaxError: + raise SyntaxError('Forward reference must be an expression -- got %r' % + (arg,)) + self.__forward_arg__ = arg + self.__forward_code__ = code + self.__forward_evaluated__ = False + self.__forward_value__ = None + + def _eval_type(self, globalns, localns): + if not self.__forward_evaluated__ or localns is not globalns: + if globalns is None and localns is None: + globalns = localns = {} + elif globalns is None: + globalns = localns + elif localns is None: + localns = globalns + self.__forward_value__ = _type_check( + eval(self.__forward_code__, globalns, localns), + "Forward references must evaluate to types.") + self.__forward_evaluated__ = True + return self.__forward_value__ + + def __eq__(self, other): + if not isinstance(other, _ForwardRef): + return NotImplemented + return (self.__forward_arg__ == other.__forward_arg__ and + self.__forward_value__ == other.__forward_value__) + + def __hash__(self): + return hash((self.__forward_arg__, self.__forward_value__)) + + def __instancecheck__(self, obj): + raise TypeError("Forward references cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Forward references cannot be used with issubclass().") + + def __repr__(self): + return '_ForwardRef(%r)' % (self.__forward_arg__,) + + +class _TypeAlias(_TypingBase, _root=True): + """Internal helper class for defining generic variants of concrete types. + + Note that this is not a type; let's call it a pseudo-type. It cannot + be used in instance and subclass checks in parameterized form, i.e. + ``isinstance(42, Match[str])`` raises ``TypeError`` instead of returning + ``False``. + """ + + __slots__ = ('name', 'type_var', 'impl_type', 'type_checker') + + def __init__(self, name, type_var, impl_type, type_checker): + """Initializer. + + Args: + name: The name, e.g. 'Pattern'. + type_var: The type parameter, e.g. AnyStr, or the + specific type, e.g. str. + impl_type: The implementation type. + type_checker: Function that takes an impl_type instance. + and returns a value that should be a type_var instance. + """ + assert isinstance(name, str), repr(name) + assert isinstance(impl_type, type), repr(impl_type) + assert not isinstance(impl_type, TypingMeta), repr(impl_type) + assert isinstance(type_var, (type, _TypingBase)), repr(type_var) + self.name = name + self.type_var = type_var + self.impl_type = impl_type + self.type_checker = type_checker + + def __repr__(self): + return "%s[%s]" % (self.name, _type_repr(self.type_var)) + + def __getitem__(self, parameter): + if not isinstance(self.type_var, TypeVar): + raise TypeError("%s cannot be further parameterized." % self) + if self.type_var.__constraints__ and isinstance(parameter, type): + if not issubclass(parameter, self.type_var.__constraints__): + raise TypeError("%s is not a valid substitution for %s." % + (parameter, self.type_var)) + if isinstance(parameter, TypeVar) and parameter is not self.type_var: + raise TypeError("%s cannot be re-parameterized." % self) + return self.__class__(self.name, parameter, + self.impl_type, self.type_checker) + + def __eq__(self, other): + if not isinstance(other, _TypeAlias): + return NotImplemented + return self.name == other.name and self.type_var == other.type_var + + def __hash__(self): + return hash((self.name, self.type_var)) + + def __instancecheck__(self, obj): + if not isinstance(self.type_var, TypeVar): + raise TypeError("Parameterized type aliases cannot be used " + "with isinstance().") + return isinstance(obj, self.impl_type) + + def __subclasscheck__(self, cls): + if not isinstance(self.type_var, TypeVar): + raise TypeError("Parameterized type aliases cannot be used " + "with issubclass().") + return issubclass(cls, self.impl_type) + + +def _get_type_vars(types, tvars): + for t in types: + if isinstance(t, TypingMeta) or isinstance(t, _TypingBase): + t._get_type_vars(tvars) + + +def _type_vars(types): + tvars = [] + _get_type_vars(types, tvars) + return tuple(tvars) + + +def _eval_type(t, globalns, localns): + if isinstance(t, TypingMeta) or isinstance(t, _TypingBase): + return t._eval_type(globalns, localns) + return t + + +def _type_check(arg, msg): + """Check that the argument is a type, and return it (internal helper). + + As a special case, accept None and return type(None) instead. + Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable. + + The msg argument is a human-readable error message, e.g. + + "Union[arg, ...]: arg should be a type." + + We append the repr() of the actual value (truncated to 100 chars). + """ + if arg is None: + return type(None) + if isinstance(arg, str): + arg = _ForwardRef(arg) + if (isinstance(arg, _TypingBase) and type(arg).__name__ == '_ClassVar' or + not isinstance(arg, (type, _TypingBase)) and not callable(arg)): + raise TypeError(msg + " Got %.100r." % (arg,)) + # Bare Union etc. are not valid as type arguments + if (type(arg).__name__ in ('_Union', '_Optional') + and not getattr(arg, '__origin__', None) + or isinstance(arg, TypingMeta) and _gorg(arg) in (Generic, _Protocol)): + raise TypeError("Plain %s is not valid as type argument" % arg) + return arg + + +def _type_repr(obj): + """Return the repr() of an object, special-casing types (internal helper). + + If obj is a type, we return a shorter version than the default + type.__repr__, based on the module and qualified name, which is + typically enough to uniquely identify a type. For everything + else, we fall back on repr(obj). + """ + if isinstance(obj, type) and not isinstance(obj, TypingMeta): + if obj.__module__ == 'builtins': + return _qualname(obj) + return '%s.%s' % (obj.__module__, _qualname(obj)) + if obj is ...: + return('...') + if isinstance(obj, types.FunctionType): + return obj.__name__ + return repr(obj) + + +class _Any(_FinalTypingBase, _root=True): + """Special type indicating an unconstrained type. + + - Any is compatible with every type. + - Any assumed to have all methods. + - All values assumed to be instances of Any. + + Note that all the above statements are true from the point of view of + static type checkers. At runtime, Any should not be used with instance + or class checks. + """ + + __slots__ = () + + def __instancecheck__(self, obj): + raise TypeError("Any cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Any cannot be used with issubclass().") + + +Any = _Any(_root=True) + + +class TypeVar(_TypingBase, _root=True): + """Type variable. + + Usage:: + + T = TypeVar('T') # Can be anything + A = TypeVar('A', str, bytes) # Must be str or bytes + + Type variables exist primarily for the benefit of static type + checkers. They serve as the parameters for generic types as well + as for generic function definitions. See class Generic for more + information on generic types. Generic functions work as follows: + + def repeat(x: T, n: int) -> List[T]: + '''Return a list containing n references to x.''' + return [x]*n + + def longest(x: A, y: A) -> A: + '''Return the longest of two strings.''' + return x if len(x) >= len(y) else y + + The latter example's signature is essentially the overloading + of (str, str) -> str and (bytes, bytes) -> bytes. Also note + that if the arguments are instances of some subclass of str, + the return type is still plain str. + + At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError. + + Type variables defined with covariant=True or contravariant=True + can be used do declare covariant or contravariant generic types. + See PEP 484 for more details. By default generic types are invariant + in all type variables. + + Type variables can be introspected. e.g.: + + T.__name__ == 'T' + T.__constraints__ == () + T.__covariant__ == False + T.__contravariant__ = False + A.__constraints__ == (str, bytes) + """ + + __slots__ = ('__name__', '__bound__', '__constraints__', + '__covariant__', '__contravariant__') + + def __init__(self, name, *constraints, bound=None, + covariant=False, contravariant=False): + super().__init__(name, *constraints, bound=bound, + covariant=covariant, contravariant=contravariant) + self.__name__ = name + if covariant and contravariant: + raise ValueError("Bivariant types are not supported.") + self.__covariant__ = bool(covariant) + self.__contravariant__ = bool(contravariant) + if constraints and bound is not None: + raise TypeError("Constraints cannot be combined with bound=...") + if constraints and len(constraints) == 1: + raise TypeError("A single constraint is not allowed") + msg = "TypeVar(name, constraint, ...): constraints must be types." + self.__constraints__ = tuple(_type_check(t, msg) for t in constraints) + if bound: + self.__bound__ = _type_check(bound, "Bound must be a type.") + else: + self.__bound__ = None + + def _get_type_vars(self, tvars): + if self not in tvars: + tvars.append(self) + + def __repr__(self): + if self.__covariant__: + prefix = '+' + elif self.__contravariant__: + prefix = '-' + else: + prefix = '~' + return prefix + self.__name__ + + def __instancecheck__(self, instance): + raise TypeError("Type variables cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Type variables cannot be used with issubclass().") + + +# Some unconstrained type variables. These are used by the container types. +# (These are not for export.) +T = TypeVar('T') # Any type. +KT = TypeVar('KT') # Key type. +VT = TypeVar('VT') # Value type. +T_co = TypeVar('T_co', covariant=True) # Any type covariant containers. +V_co = TypeVar('V_co', covariant=True) # Any type covariant containers. +VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers. +T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant. + +# A useful type variable with constraints. This represents string types. +# (This one *is* for export!) +AnyStr = TypeVar('AnyStr', bytes, str) + + +def _replace_arg(arg, tvars, args): + """An internal helper function: replace arg if it is a type variable + found in tvars with corresponding substitution from args or + with corresponding substitution sub-tree if arg is a generic type. + """ + + if tvars is None: + tvars = [] + if hasattr(arg, '_subs_tree'): + return arg._subs_tree(tvars, args) + if isinstance(arg, TypeVar): + for i, tvar in enumerate(tvars): + if arg == tvar: + return args[i] + return arg + + +def _subs_tree(cls, tvars=None, args=None): + """An internal helper function: calculate substitution tree + for generic cls after replacing its type parameters with + substitutions in tvars -> args (if any). + Repeat the same following __origin__'s. + + Return a list of arguments with all possible substitutions + performed. Arguments that are generic classes themselves are represented + as tuples (so that no new classes are created by this function). + For example: _subs_tree(List[Tuple[int, T]][str]) == [(Tuple, int, str)] + """ + + if cls.__origin__ is None: + return cls + # Make of chain of origins (i.e. cls -> cls.__origin__) + current = cls.__origin__ + orig_chain = [] + while current.__origin__ is not None: + orig_chain.append(current) + current = current.__origin__ + # Replace type variables in __args__ if asked ... + tree_args = [] + for arg in cls.__args__: + tree_args.append(_replace_arg(arg, tvars, args)) + # ... then continue replacing down the origin chain. + for ocls in orig_chain: + new_tree_args = [] + for i, arg in enumerate(ocls.__args__): + new_tree_args.append(_replace_arg(arg, ocls.__parameters__, tree_args)) + tree_args = new_tree_args + return tree_args + + +def _remove_dups_flatten(parameters): + """An internal helper for Union creation and substitution: flatten Union's + among parameters, then remove duplicates and strict subclasses. + """ + + # Flatten out Union[Union[...], ...]. + params = [] + for p in parameters: + if isinstance(p, _Union) and p.__origin__ is Union: + params.extend(p.__args__) + elif isinstance(p, tuple) and len(p) > 0 and p[0] is Union: + params.extend(p[1:]) + else: + params.append(p) + # Weed out strict duplicates, preserving the first of each occurrence. + all_params = set(params) + if len(all_params) < len(params): + new_params = [] + for t in params: + if t in all_params: + new_params.append(t) + all_params.remove(t) + params = new_params + assert not all_params, all_params + # Weed out subclasses. + # E.g. Union[int, Employee, Manager] == Union[int, Employee]. + # If object is present it will be sole survivor among proper classes. + # Never discard type variables. + # (In particular, Union[str, AnyStr] != AnyStr.) + all_params = set(params) + for t1 in params: + if not isinstance(t1, type): + continue + if any(isinstance(t2, type) and issubclass(t1, t2) + for t2 in all_params - {t1} + if not (isinstance(t2, GenericMeta) and + t2.__origin__ is not None)): + all_params.remove(t1) + return tuple(t for t in params if t in all_params) + + +def _check_generic(cls, parameters): + # Check correct count for parameters of a generic cls (internal helper). + if not cls.__parameters__: + raise TypeError("%s is not a generic class" % repr(cls)) + alen = len(parameters) + elen = len(cls.__parameters__) + if alen != elen: + raise TypeError("Too %s parameters for %s; actual %s, expected %s" % + ("many" if alen > elen else "few", repr(cls), alen, elen)) + + +_cleanups = [] + + +def _tp_cache(func): + """Internal wrapper caching __getitem__ of generic types with a fallback to + original function for non-hashable arguments. + """ + + cached = functools.lru_cache()(func) + _cleanups.append(cached.cache_clear) + @functools.wraps(func) + def inner(*args, **kwds): + try: + return cached(*args, **kwds) + except TypeError: + pass # All real errors (not unhashable args) are raised below. + return func(*args, **kwds) + return inner + + +class _Union(_FinalTypingBase, _root=True): + """Union type; Union[X, Y] means either X or Y. + + To define a union, use e.g. Union[int, str]. Details: + + - The arguments must be types and there must be at least one. + + - None as an argument is a special case and is replaced by + type(None). + + - Unions of unions are flattened, e.g.:: + + Union[Union[int, str], float] == Union[int, str, float] + + - Unions of a single argument vanish, e.g.:: + + Union[int] == int # The constructor actually returns int + + - Redundant arguments are skipped, e.g.:: + + Union[int, str, int] == Union[int, str] + + - When comparing unions, the argument order is ignored, e.g.:: + + Union[int, str] == Union[str, int] + + - When two arguments have a subclass relationship, the least + derived argument is kept, e.g.:: + + class Employee: pass + class Manager(Employee): pass + Union[int, Employee, Manager] == Union[int, Employee] + Union[Manager, int, Employee] == Union[int, Employee] + Union[Employee, Manager] == Employee + + - Similar for object:: + + Union[int, object] == object + + - You cannot subclass or instantiate a union. + + - You can use Optional[X] as a shorthand for Union[X, None]. + """ + + __slots__ = ('__parameters__', '__args__', '__origin__', '__tree_hash__') + + def __new__(cls, parameters=None, origin=None, *args, _root=False): + self = super().__new__(cls, parameters, origin, *args, _root=_root) + if origin is None: + self.__parameters__ = None + self.__args__ = None + self.__origin__ = None + self.__tree_hash__ = hash(frozenset(('Union',))) + return self + if not isinstance(parameters, tuple): + raise TypeError("Expected parameters=") + if origin is Union: + parameters = _remove_dups_flatten(parameters) + # It's not a union if there's only one type left. + if len(parameters) == 1: + return parameters[0] + self.__parameters__ = _type_vars(parameters) + self.__args__ = parameters + self.__origin__ = origin + # Pre-calculate the __hash__ on instantiation. + # This improves speed for complex substitutions. + subs_tree = self._subs_tree() + if isinstance(subs_tree, tuple): + self.__tree_hash__ = hash(frozenset(subs_tree)) + else: + self.__tree_hash__ = hash(subs_tree) + return self + + def _eval_type(self, globalns, localns): + if self.__args__ is None: + return self + ev_args = tuple(_eval_type(t, globalns, localns) for t in self.__args__) + ev_origin = _eval_type(self.__origin__, globalns, localns) + if ev_args == self.__args__ and ev_origin == self.__origin__: + # Everything is already evaluated. + return self + return self.__class__(ev_args, ev_origin, _root=True) + + def _get_type_vars(self, tvars): + if self.__origin__ and self.__parameters__: + _get_type_vars(self.__parameters__, tvars) + + def __repr__(self): + if self.__origin__ is None: + return super().__repr__() + tree = self._subs_tree() + if not isinstance(tree, tuple): + return repr(tree) + return tree[0]._tree_repr(tree) + + def _tree_repr(self, tree): + arg_list = [] + for arg in tree[1:]: + if not isinstance(arg, tuple): + arg_list.append(_type_repr(arg)) + else: + arg_list.append(arg[0]._tree_repr(arg)) + return super().__repr__() + '[%s]' % ', '.join(arg_list) + + @_tp_cache + def __getitem__(self, parameters): + if parameters == (): + raise TypeError("Cannot take a Union of no types.") + if not isinstance(parameters, tuple): + parameters = (parameters,) + if self.__origin__ is None: + msg = "Union[arg, ...]: each arg must be a type." + else: + msg = "Parameters to generic types must be types." + parameters = tuple(_type_check(p, msg) for p in parameters) + if self is not Union: + _check_generic(self, parameters) + return self.__class__(parameters, origin=self, _root=True) + + def _subs_tree(self, tvars=None, args=None): + if self is Union: + return Union # Nothing to substitute + tree_args = _subs_tree(self, tvars, args) + tree_args = _remove_dups_flatten(tree_args) + if len(tree_args) == 1: + return tree_args[0] # Union of a single type is that type + return (Union,) + tree_args + + def __eq__(self, other): + if not isinstance(other, _Union): + return self._subs_tree() == other + return self.__tree_hash__ == other.__tree_hash__ + + def __hash__(self): + return self.__tree_hash__ + + def __instancecheck__(self, obj): + raise TypeError("Unions cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Unions cannot be used with issubclass().") + + +Union = _Union(_root=True) + + +class _Optional(_FinalTypingBase, _root=True): + """Optional type. + + Optional[X] is equivalent to Union[X, None]. + """ + + __slots__ = () + + @_tp_cache + def __getitem__(self, arg): + arg = _type_check(arg, "Optional[t] requires a single type.") + return Union[arg, type(None)] + + +Optional = _Optional(_root=True) + + +def _gorg(a): + """Return the farthest origin of a generic class (internal helper).""" + assert isinstance(a, GenericMeta) + while a.__origin__ is not None: + a = a.__origin__ + return a + + +def _geqv(a, b): + """Return whether two generic classes are equivalent (internal helper). + + The intention is to consider generic class X and any of its + parameterized forms (X[T], X[int], etc.) as equivalent. + + However, X is not equivalent to a subclass of X. + + The relation is reflexive, symmetric and transitive. + """ + assert isinstance(a, GenericMeta) and isinstance(b, GenericMeta) + # Reduce each to its origin. + return _gorg(a) is _gorg(b) + + +def _next_in_mro(cls): + """Helper for Generic.__new__. + + Returns the class after the last occurrence of Generic or + Generic[...] in cls.__mro__. + """ + next_in_mro = object + # Look for the last occurrence of Generic or Generic[...]. + for i, c in enumerate(cls.__mro__[:-1]): + if isinstance(c, GenericMeta) and _gorg(c) is Generic: + next_in_mro = cls.__mro__[i+1] + return next_in_mro + + +def _valid_for_check(cls): + """An internal helper to prohibit isinstance([1], List[str]) etc.""" + if cls is Generic: + raise TypeError("Class %r cannot be used with class " + "or instance checks" % cls) + if (cls.__origin__ is not None and + sys._getframe(3).f_globals['__name__'] not in ['abc', 'functools']): + raise TypeError("Parameterized generics cannot be used with class " + "or instance checks") + + +def _make_subclasshook(cls): + """Construct a __subclasshook__ callable that incorporates + the associated __extra__ class in subclass checks performed + against cls. + """ + if isinstance(cls.__extra__, abc.ABCMeta): + # The logic mirrors that of ABCMeta.__subclasscheck__. + # Registered classes need not be checked here because + # cls and its extra share the same _abc_registry. + def __extrahook__(subclass): + _valid_for_check(cls) + res = cls.__extra__.__subclasshook__(subclass) + if res is not NotImplemented: + return res + if cls.__extra__ in subclass.__mro__: + return True + for scls in cls.__extra__.__subclasses__(): + if isinstance(scls, GenericMeta): + continue + if issubclass(subclass, scls): + return True + return NotImplemented + else: + # For non-ABC extras we'll just call issubclass(). + def __extrahook__(subclass): + _valid_for_check(cls) + if cls.__extra__ and issubclass(subclass, cls.__extra__): + return True + return NotImplemented + return __extrahook__ + + +def _no_slots_copy(dct): + """Internal helper: copy class __dict__ and clean slots class variables. + (They will be re-created if necessary by normal class machinery.) + """ + dict_copy = dict(dct) + if '__slots__' in dict_copy: + for slot in dict_copy['__slots__']: + dict_copy.pop(slot, None) + return dict_copy + + +class GenericMeta(TypingMeta, abc.ABCMeta): + """Metaclass for generic types.""" + + def __new__(cls, name, bases, namespace, + tvars=None, args=None, origin=None, extra=None, orig_bases=None): + if tvars is not None: + # Called from __getitem__() below. + assert origin is not None + assert all(isinstance(t, TypeVar) for t in tvars), tvars + else: + # Called from class statement. + assert tvars is None, tvars + assert args is None, args + assert origin is None, origin + + # Get the full set of tvars from the bases. + tvars = _type_vars(bases) + # Look for Generic[T1, ..., Tn]. + # If found, tvars must be a subset of it. + # If not found, tvars is it. + # Also check for and reject plain Generic, + # and reject multiple Generic[...]. + gvars = None + for base in bases: + if base is Generic: + raise TypeError("Cannot inherit from plain Generic") + if (isinstance(base, GenericMeta) and + base.__origin__ is Generic): + if gvars is not None: + raise TypeError( + "Cannot inherit from Generic[...] multiple types.") + gvars = base.__parameters__ + if gvars is None: + gvars = tvars + else: + tvarset = set(tvars) + gvarset = set(gvars) + if not tvarset <= gvarset: + raise TypeError( + "Some type variables (%s) " + "are not listed in Generic[%s]" % + (", ".join(str(t) for t in tvars if t not in gvarset), + ", ".join(str(g) for g in gvars))) + tvars = gvars + + initial_bases = bases + if extra is not None and type(extra) is abc.ABCMeta and extra not in bases: + bases = (extra,) + bases + bases = tuple(_gorg(b) if isinstance(b, GenericMeta) else b for b in bases) + + # remove bare Generic from bases if there are other generic bases + if any(isinstance(b, GenericMeta) and b is not Generic for b in bases): + bases = tuple(b for b in bases if b is not Generic) + self = super().__new__(cls, name, bases, namespace, _root=True) + + self.__parameters__ = tvars + # Be prepared that GenericMeta will be subclassed by TupleMeta + # and CallableMeta, those two allow ..., (), or [] in __args___. + self.__args__ = tuple(... if a is _TypingEllipsis else + () if a is _TypingEmpty else + a for a in args) if args else None + self.__origin__ = origin + self.__extra__ = extra + # Speed hack (https://github.com/python/typing/issues/196). + self.__next_in_mro__ = _next_in_mro(self) + # Preserve base classes on subclassing (__bases__ are type erased now). + if orig_bases is None: + self.__orig_bases__ = initial_bases + + # This allows unparameterized generic collections to be used + # with issubclass() and isinstance() in the same way as their + # collections.abc counterparts (e.g., isinstance([], Iterable)). + if ('__subclasshook__' not in namespace and extra # allow overriding + or hasattr(self.__subclasshook__, '__name__') and + self.__subclasshook__.__name__ == '__extrahook__'): + self.__subclasshook__ = _make_subclasshook(self) + if isinstance(extra, abc.ABCMeta): + self._abc_registry = extra._abc_registry + + if origin and hasattr(origin, '__qualname__'): # Fix for Python 3.2. + self.__qualname__ = origin.__qualname__ + self.__tree_hash__ = hash(self._subs_tree()) if origin else hash((self.__name__,)) + return self + + def _get_type_vars(self, tvars): + if self.__origin__ and self.__parameters__: + _get_type_vars(self.__parameters__, tvars) + + def _eval_type(self, globalns, localns): + ev_origin = (self.__origin__._eval_type(globalns, localns) + if self.__origin__ else None) + ev_args = tuple(_eval_type(a, globalns, localns) for a + in self.__args__) if self.__args__ else None + if ev_origin == self.__origin__ and ev_args == self.__args__: + return self + return self.__class__(self.__name__, + self.__bases__, + _no_slots_copy(self.__dict__), + tvars=_type_vars(ev_args) if ev_args else None, + args=ev_args, + origin=ev_origin, + extra=self.__extra__, + orig_bases=self.__orig_bases__) + + def __repr__(self): + if self.__origin__ is None: + return super().__repr__() + return self._tree_repr(self._subs_tree()) + + def _tree_repr(self, tree): + arg_list = [] + for arg in tree[1:]: + if arg == (): + arg_list.append('()') + elif not isinstance(arg, tuple): + arg_list.append(_type_repr(arg)) + else: + arg_list.append(arg[0]._tree_repr(arg)) + return super().__repr__() + '[%s]' % ', '.join(arg_list) + + def _subs_tree(self, tvars=None, args=None): + if self.__origin__ is None: + return self + tree_args = _subs_tree(self, tvars, args) + return (_gorg(self),) + tuple(tree_args) + + def __eq__(self, other): + if not isinstance(other, GenericMeta): + return NotImplemented + if self.__origin__ is None or other.__origin__ is None: + return self is other + return self.__tree_hash__ == other.__tree_hash__ + + def __hash__(self): + return self.__tree_hash__ + + @_tp_cache + def __getitem__(self, params): + if not isinstance(params, tuple): + params = (params,) + if not params and not _gorg(self) is Tuple: + raise TypeError( + "Parameter list to %s[...] cannot be empty" % _qualname(self)) + msg = "Parameters to generic types must be types." + params = tuple(_type_check(p, msg) for p in params) + if self is Generic: + # Generic can only be subscripted with unique type variables. + if not all(isinstance(p, TypeVar) for p in params): + raise TypeError( + "Parameters to Generic[...] must all be type variables") + if len(set(params)) != len(params): + raise TypeError( + "Parameters to Generic[...] must all be unique") + tvars = params + args = params + elif self in (Tuple, Callable): + tvars = _type_vars(params) + args = params + elif self is _Protocol: + # _Protocol is internal, don't check anything. + tvars = params + args = params + elif self.__origin__ in (Generic, _Protocol): + # Can't subscript Generic[...] or _Protocol[...]. + raise TypeError("Cannot subscript already-subscripted %s" % + repr(self)) + else: + # Subscripting a regular Generic subclass. + _check_generic(self, params) + tvars = _type_vars(params) + args = params + return self.__class__(self.__name__, + self.__bases__, + _no_slots_copy(self.__dict__), + tvars=tvars, + args=args, + origin=self, + extra=self.__extra__, + orig_bases=self.__orig_bases__) + + def __instancecheck__(self, instance): + # Since we extend ABC.__subclasscheck__ and + # ABC.__instancecheck__ inlines the cache checking done by the + # latter, we must extend __instancecheck__ too. For simplicity + # we just skip the cache check -- instance checks for generic + # classes are supposed to be rare anyways. + return issubclass(instance.__class__, self) + + def __copy__(self): + return self.__class__(self.__name__, self.__bases__, + _no_slots_copy(self.__dict__), + self.__parameters__, self.__args__, self.__origin__, + self.__extra__, self.__orig_bases__) + + +# Prevent checks for Generic to crash when defining Generic. +Generic = None + + +def _generic_new(base_cls, cls, *args, **kwds): + # Assure type is erased on instantiation, + # but attempt to store it in __orig_class__ + if cls.__origin__ is None: + return base_cls.__new__(cls) + else: + origin = _gorg(cls) + obj = base_cls.__new__(origin) + try: + obj.__orig_class__ = cls + except AttributeError: + pass + obj.__init__(*args, **kwds) + return obj + + +class Generic(metaclass=GenericMeta): + """Abstract base class for generic types. + + A generic type is typically declared by inheriting from + this class parameterized with one or more type variables. + For example, a generic mapping type might be defined as:: + + class Mapping(Generic[KT, VT]): + def __getitem__(self, key: KT) -> VT: + ... + # Etc. + + This class can then be used as follows:: + + def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT: + try: + return mapping[key] + except KeyError: + return default + """ + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Generic): + raise TypeError("Type Generic cannot be instantiated; " + "it can be used only as a base class") + return _generic_new(cls.__next_in_mro__, cls, *args, **kwds) + + +class _TypingEmpty: + """Internal placeholder for () or []. Used by TupleMeta and CallableMeta + to allow empty list/tuple in specific places, without allowing them + to sneak in where prohibited. + """ + + +class _TypingEllipsis: + """Internal placeholder for ... (ellipsis).""" + + +class TupleMeta(GenericMeta): + """Metaclass for Tuple (internal).""" + + @_tp_cache + def __getitem__(self, parameters): + if self.__origin__ is not None or not _geqv(self, Tuple): + # Normal generic rules apply if this is not the first subscription + # or a subscription of a subclass. + return super().__getitem__(parameters) + if parameters == (): + return super().__getitem__((_TypingEmpty,)) + if not isinstance(parameters, tuple): + parameters = (parameters,) + if len(parameters) == 2 and parameters[1] is ...: + msg = "Tuple[t, ...]: t must be a type." + p = _type_check(parameters[0], msg) + return super().__getitem__((p, _TypingEllipsis)) + msg = "Tuple[t0, t1, ...]: each t must be a type." + parameters = tuple(_type_check(p, msg) for p in parameters) + return super().__getitem__(parameters) + + def __instancecheck__(self, obj): + if self.__args__ == None: + return isinstance(obj, tuple) + raise TypeError("Parameterized Tuple cannot be used " + "with isinstance().") + + def __subclasscheck__(self, cls): + if self.__args__ == None: + return issubclass(cls, tuple) + raise TypeError("Parameterized Tuple cannot be used " + "with issubclass().") + + +class Tuple(tuple, extra=tuple, metaclass=TupleMeta): + """Tuple type; Tuple[X, Y] is the cross-product type of X and Y. + + Example: Tuple[T1, T2] is a tuple of two elements corresponding + to type variables T1 and T2. Tuple[int, float, str] is a tuple + of an int, a float and a string. + + To specify a variable-length tuple of homogeneous type, use Tuple[T, ...]. + """ + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Tuple): + raise TypeError("Type Tuple cannot be instantiated; " + "use tuple() instead") + return _generic_new(tuple, cls, *args, **kwds) + + +class CallableMeta(GenericMeta): + """Metaclass for Callable (internal).""" + + def __repr__(self): + if self.__origin__ is None: + return super().__repr__() + return self._tree_repr(self._subs_tree()) + + def _tree_repr(self, tree): + if _gorg(self) is not Callable: + return super()._tree_repr(tree) + # For actual Callable (not its subclass) we override + # super()._tree_repr() for nice formatting. + arg_list = [] + for arg in tree[1:]: + if not isinstance(arg, tuple): + arg_list.append(_type_repr(arg)) + else: + arg_list.append(arg[0]._tree_repr(arg)) + if arg_list[0] == '...': + return repr(tree[0]) + '[..., %s]' % arg_list[1] + return (repr(tree[0]) + + '[[%s], %s]' % (', '.join(arg_list[:-1]), arg_list[-1])) + + def __getitem__(self, parameters): + """A thin wrapper around __getitem_inner__ to provide the latter + with hashable arguments to improve speed. + """ + + if self.__origin__ is not None or not _geqv(self, Callable): + return super().__getitem__(parameters) + if not isinstance(parameters, tuple) or len(parameters) != 2: + raise TypeError("Callable must be used as " + "Callable[[arg, ...], result].") + args, result = parameters + if args is Ellipsis: + parameters = (Ellipsis, result) + else: + if not isinstance(args, list): + raise TypeError("Callable[args, result]: args must be a list." + " Got %.100r." % (args,)) + parameters = (tuple(args), result) + return self.__getitem_inner__(parameters) + + @_tp_cache + def __getitem_inner__(self, parameters): + args, result = parameters + msg = "Callable[args, result]: result must be a type." + result = _type_check(result, msg) + if args is Ellipsis: + return super().__getitem__((_TypingEllipsis, result)) + msg = "Callable[[arg, ...], result]: each arg must be a type." + args = tuple(_type_check(arg, msg) for arg in args) + parameters = args + (result,) + return super().__getitem__(parameters) + + +class Callable(extra=collections_abc.Callable, metaclass = CallableMeta): + """Callable type; Callable[[int], str] is a function of (int) -> str. + + The subscription syntax must always be used with exactly two + values: the argument list and the return type. The argument list + must be a list of types or ellipsis; the return type must be a single type. + + There is no syntax to indicate optional or keyword arguments, + such function types are rarely used as callback types. + """ + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Callable): + raise TypeError("Type Callable cannot be instantiated; " + "use a non-abstract subclass instead") + return _generic_new(cls.__next_in_mro__, cls, *args, **kwds) + + +class _ClassVar(_FinalTypingBase, _root=True): + """Special type construct to mark class variables. + + An annotation wrapped in ClassVar indicates that a given + attribute is intended to be used as a class variable and + should not be set on instances of that class. Usage:: + + class Starship: + stats: ClassVar[Dict[str, int]] = {} # class variable + damage: int = 10 # instance variable + + ClassVar accepts only types and cannot be further subscribed. + + Note that ClassVar is not a class itself, and should not + be used with isinstance() or issubclass(). + """ + + __slots__ = ('__type__',) + + def __init__(self, tp=None, **kwds): + self.__type__ = tp + + def __getitem__(self, item): + cls = type(self) + if self.__type__ is None: + return cls(_type_check(item, + '{} accepts only single type.'.format(cls.__name__[1:])), + _root=True) + raise TypeError('{} cannot be further subscripted' + .format(cls.__name__[1:])) + + def _eval_type(self, globalns, localns): + new_tp = _eval_type(self.__type__, globalns, localns) + if new_tp == self.__type__: + return self + return type(self)(new_tp, _root=True) + + def __repr__(self): + r = super().__repr__() + if self.__type__ is not None: + r += '[{}]'.format(_type_repr(self.__type__)) + return r + + def __hash__(self): + return hash((type(self).__name__, self.__type__)) + + def __eq__(self, other): + if not isinstance(other, _ClassVar): + return NotImplemented + if self.__type__ is not None: + return self.__type__ == other.__type__ + return self is other + + +ClassVar = _ClassVar(_root=True) + + +def cast(typ, val): + """Cast a value to a type. + + This returns the value unchanged. To the type checker this + signals that the return value has the designated type, but at + runtime we intentionally don't check anything (we want this + to be as fast as possible). + """ + return val + + +def _get_defaults(func): + """Internal helper to extract the default arguments, by name.""" + try: + code = func.__code__ + except AttributeError: + # Some built-in functions don't have __code__, __defaults__, etc. + return {} + pos_count = code.co_argcount + arg_names = code.co_varnames + arg_names = arg_names[:pos_count] + defaults = func.__defaults__ or () + kwdefaults = func.__kwdefaults__ + res = dict(kwdefaults) if kwdefaults else {} + pos_offset = pos_count - len(defaults) + for name, value in zip(arg_names[pos_offset:], defaults): + assert name not in res + res[name] = value + return res + + +def get_type_hints(obj, globalns=None, localns=None): + """Return type hints for an object. + + This is often the same as obj.__annotations__, but it handles + forward references encoded as string literals, and if necessary + adds Optional[t] if a default value equal to None is set. + + The argument may be a module, class, method, or function. The annotations + are returned as a dictionary. For classes, annotations include also + inherited members. + + TypeError is raised if the argument is not of a type that can contain + annotations, and an empty dictionary is returned if no annotations are + present. + + BEWARE -- the behavior of globalns and localns is counterintuitive + (unless you are familiar with how eval() and exec() work). The + search order is locals first, then globals. + + - If no dict arguments are passed, an attempt is made to use the + globals from obj, and these are also used as the locals. If the + object does not appear to have globals, an exception is raised. + + - If one dict argument is passed, it is used for both globals and + locals. + + - If two dict arguments are passed, they specify globals and + locals, respectively. + """ + + if getattr(obj, '__no_type_check__', None): + return {} + if globalns is None: + globalns = getattr(obj, '__globals__', {}) + if localns is None: + localns = globalns + elif localns is None: + localns = globalns + # Classes require a special treatment. + if isinstance(obj, type): + hints = {} + for base in reversed(obj.__mro__): + ann = base.__dict__.get('__annotations__', {}) + for name, value in ann.items(): + if value is None: + value = type(None) + if isinstance(value, str): + value = _ForwardRef(value) + value = _eval_type(value, globalns, localns) + hints[name] = value + return hints + hints = getattr(obj, '__annotations__', None) + if hints is None: + # Return empty annotations for something that _could_ have them. + if (isinstance(obj, types.FunctionType) or + isinstance(obj, types.BuiltinFunctionType) or + isinstance(obj, types.MethodType) or + isinstance(obj, types.ModuleType)): + return {} + else: + raise TypeError('{!r} is not a module, class, method, ' + 'or function.'.format(obj)) + defaults = _get_defaults(obj) + hints = dict(hints) + for name, value in hints.items(): + if value is None: + value = type(None) + if isinstance(value, str): + value = _ForwardRef(value) + value = _eval_type(value, globalns, localns) + if name in defaults and defaults[name] is None: + value = Optional[value] + hints[name] = value + return hints + + +def no_type_check(arg): + """Decorator to indicate that annotations are not type hints. + + The argument must be a class or function; if it is a class, it + applies recursively to all methods and classes defined in that class + (but not to methods defined in its superclasses or subclasses). + + This mutates the function(s) or class(es) in place. + """ + if isinstance(arg, type): + arg_attrs = arg.__dict__.copy() + for attr, val in arg.__dict__.items(): + if val in arg.__bases__: + arg_attrs.pop(attr) + for obj in arg_attrs.values(): + if isinstance(obj, types.FunctionType): + obj.__no_type_check__ = True + if isinstance(obj, type): + no_type_check(obj) + try: + arg.__no_type_check__ = True + except TypeError: # built-in classes + pass + return arg + + +def no_type_check_decorator(decorator): + """Decorator to give another decorator the @no_type_check effect. + + This wraps the decorator with something that wraps the decorated + function in @no_type_check. + """ + + @functools.wraps(decorator) + def wrapped_decorator(*args, **kwds): + func = decorator(*args, **kwds) + func = no_type_check(func) + return func + + return wrapped_decorator + + +def _overload_dummy(*args, **kwds): + """Helper for @overload to raise when called.""" + raise NotImplementedError( + "You should not call an overloaded function. " + "A series of @overload-decorated functions " + "outside a stub module should always be followed " + "by an implementation that is not @overload-ed.") + + +def overload(func): + """Decorator for overloaded functions/methods. + + In a stub file, place two or more stub definitions for the same + function in a row, each decorated with @overload. For example: + + @overload + def utf8(value: None) -> None: ... + @overload + def utf8(value: bytes) -> bytes: ... + @overload + def utf8(value: str) -> bytes: ... + + In a non-stub file (i.e. a regular .py file), do the same but + follow it with an implementation. The implementation should *not* + be decorated with @overload. For example: + + @overload + def utf8(value: None) -> None: ... + @overload + def utf8(value: bytes) -> bytes: ... + @overload + def utf8(value: str) -> bytes: ... + def utf8(value): + # implementation goes here + """ + return _overload_dummy + + +class _ProtocolMeta(GenericMeta): + """Internal metaclass for _Protocol. + + This exists so _Protocol classes can be generic without deriving + from Generic. + """ + + def __instancecheck__(self, obj): + if _Protocol not in self.__bases__: + return super().__instancecheck__(obj) + raise TypeError("Protocols cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if not self._is_protocol: + # No structural checks since this isn't a protocol. + return NotImplemented + + if self is _Protocol: + # Every class is a subclass of the empty protocol. + return True + + # Find all attributes defined in the protocol. + attrs = self._get_protocol_attrs() + + for attr in attrs: + if not any(attr in d.__dict__ for d in cls.__mro__): + return False + return True + + def _get_protocol_attrs(self): + # Get all Protocol base classes. + protocol_bases = [] + for c in self.__mro__: + if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol': + protocol_bases.append(c) + + # Get attributes included in protocol. + attrs = set() + for base in protocol_bases: + for attr in base.__dict__.keys(): + # Include attributes not defined in any non-protocol bases. + for c in self.__mro__: + if (c is not base and attr in c.__dict__ and + not getattr(c, '_is_protocol', False)): + break + else: + if (not attr.startswith('_abc_') and + attr != '__abstractmethods__' and + attr != '__annotations__' and + attr != '__weakref__' and + attr != '_is_protocol' and + attr != '__dict__' and + attr != '__args__' and + attr != '__slots__' and + attr != '_get_protocol_attrs' and + attr != '__next_in_mro__' and + attr != '__parameters__' and + attr != '__origin__' and + attr != '__orig_bases__' and + attr != '__extra__' and + attr != '__tree_hash__' and + attr != '__module__'): + attrs.add(attr) + + return attrs + + +class _Protocol(metaclass=_ProtocolMeta): + """Internal base class for protocol classes. + + This implements a simple-minded structural issubclass check + (similar but more general than the one-offs in collections.abc + such as Hashable). + """ + + __slots__ = () + + _is_protocol = True + + +# Various ABCs mimicking those in collections.abc. +# A few are simply re-exported for completeness. + +Hashable = collections_abc.Hashable # Not generic. + + +if hasattr(collections_abc, 'Awaitable'): + class Awaitable(Generic[T_co], extra=collections_abc.Awaitable): + __slots__ = () + + __all__.append('Awaitable') + + +if hasattr(collections_abc, 'Coroutine'): + class Coroutine(Awaitable[V_co], Generic[T_co, T_contra, V_co], + extra=collections_abc.Coroutine): + __slots__ = () + + __all__.append('Coroutine') + + +if hasattr(collections_abc, 'AsyncIterable'): + + class AsyncIterable(Generic[T_co], extra=collections_abc.AsyncIterable): + __slots__ = () + + class AsyncIterator(AsyncIterable[T_co], + extra=collections_abc.AsyncIterator): + __slots__ = () + + __all__.append('AsyncIterable') + __all__.append('AsyncIterator') + + +class Iterable(Generic[T_co], extra=collections_abc.Iterable): + __slots__ = () + + +class Iterator(Iterable[T_co], extra=collections_abc.Iterator): + __slots__ = () + + +class SupportsInt(_Protocol): + __slots__ = () + + @abstractmethod + def __int__(self) -> int: + pass + + +class SupportsFloat(_Protocol): + __slots__ = () + + @abstractmethod + def __float__(self) -> float: + pass + + +class SupportsComplex(_Protocol): + __slots__ = () + + @abstractmethod + def __complex__(self) -> complex: + pass + + +class SupportsBytes(_Protocol): + __slots__ = () + + @abstractmethod + def __bytes__(self) -> bytes: + pass + + +class SupportsAbs(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __abs__(self) -> T_co: + pass + + +class SupportsRound(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __round__(self, ndigits: int = 0) -> T_co: + pass + + +if hasattr(collections_abc, 'Reversible'): + class Reversible(Iterable[T_co], extra=collections_abc.Reversible): + __slots__ = () +else: + class Reversible(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __reversed__(self) -> 'Iterator[T_co]': + pass + + +Sized = collections_abc.Sized # Not generic. + + +class Container(Generic[T_co], extra=collections_abc.Container): + __slots__ = () + + +if hasattr(collections_abc, 'Collection'): + class Collection(Sized, Iterable[T_co], Container[T_co], + extra=collections_abc.Collection): + __slots__ = () + + __all__.append('Collection') + + +# Callable was defined earlier. + +if hasattr(collections_abc, 'Collection'): + class AbstractSet(Collection[T_co], + extra=collections_abc.Set): + __slots__ = () +else: + class AbstractSet(Sized, Iterable[T_co], Container[T_co], + extra=collections_abc.Set): + __slots__ = () + + +class MutableSet(AbstractSet[T], extra=collections_abc.MutableSet): + __slots__ = () + + +# NOTE: It is only covariant in the value type. +if hasattr(collections_abc, 'Collection'): + class Mapping(Collection[KT], Generic[KT, VT_co], + extra=collections_abc.Mapping): + __slots__ = () +else: + class Mapping(Sized, Iterable[KT], Container[KT], Generic[KT, VT_co], + extra=collections_abc.Mapping): + __slots__ = () + + +class MutableMapping(Mapping[KT, VT], extra=collections_abc.MutableMapping): + __slots__ = () + +if hasattr(collections_abc, 'Reversible'): + if hasattr(collections_abc, 'Collection'): + class Sequence(Reversible[T_co], Collection[T_co], + extra=collections_abc.Sequence): + __slots__ = () + else: + class Sequence(Sized, Reversible[T_co], Container[T_co], + extra=collections_abc.Sequence): + __slots__ = () +else: + class Sequence(Sized, Iterable[T_co], Container[T_co], + extra=collections_abc.Sequence): + __slots__ = () + + +class MutableSequence(Sequence[T], extra=collections_abc.MutableSequence): + __slots__ = () + + +class ByteString(Sequence[int], extra=collections_abc.ByteString): + __slots__ = () + + +class List(list, MutableSequence[T], extra=list): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, List): + raise TypeError("Type List cannot be instantiated; " + "use list() instead") + return _generic_new(list, cls, *args, **kwds) + + +class Set(set, MutableSet[T], extra=set): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Set): + raise TypeError("Type Set cannot be instantiated; " + "use set() instead") + return _generic_new(set, cls, *args, **kwds) + + +class FrozenSet(frozenset, AbstractSet[T_co], extra=frozenset): + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, FrozenSet): + raise TypeError("Type FrozenSet cannot be instantiated; " + "use frozenset() instead") + return _generic_new(frozenset, cls, *args, **kwds) + + +class MappingView(Sized, Iterable[T_co], extra=collections_abc.MappingView): + __slots__ = () + + +class KeysView(MappingView[KT], AbstractSet[KT], + extra=collections_abc.KeysView): + __slots__ = () + + +class ItemsView(MappingView[Tuple[KT, VT_co]], + AbstractSet[Tuple[KT, VT_co]], + Generic[KT, VT_co], + extra=collections_abc.ItemsView): + __slots__ = () + + +class ValuesView(MappingView[VT_co], extra=collections_abc.ValuesView): + __slots__ = () + + +if hasattr(contextlib, 'AbstractContextManager'): + class ContextManager(Generic[T_co], extra=contextlib.AbstractContextManager): + __slots__ = () + __all__.append('ContextManager') + + +class Dict(dict, MutableMapping[KT, VT], extra=dict): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Dict): + raise TypeError("Type Dict cannot be instantiated; " + "use dict() instead") + return _generic_new(dict, cls, *args, **kwds) + +class DefaultDict(collections.defaultdict, MutableMapping[KT, VT], + extra=collections.defaultdict): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, DefaultDict): + raise TypeError("Type DefaultDict cannot be instantiated; " + "use collections.defaultdict() instead") + return _generic_new(collections.defaultdict, cls, *args, **kwds) + +# Determine what base class to use for Generator. +if hasattr(collections_abc, 'Generator'): + # Sufficiently recent versions of 3.5 have a Generator ABC. + _G_base = collections_abc.Generator +else: + # Fall back on the exact type. + _G_base = types.GeneratorType + + +class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co], + extra=_G_base): + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Generator): + raise TypeError("Type Generator cannot be instantiated; " + "create a subclass instead") + return _generic_new(_G_base, cls, *args, **kwds) + + +# Internal type variable used for Type[]. +CT_co = TypeVar('CT_co', covariant=True, bound=type) + + +# This is not a real generic class. Don't use outside annotations. +class Type(Generic[CT_co], extra=type): + """A special construct usable to annotate class objects. + + For example, suppose we have the following classes:: + + class User: ... # Abstract base for User classes + class BasicUser(User): ... + class ProUser(User): ... + class TeamUser(User): ... + + And a function that takes a class argument that's a subclass of + User and returns an instance of the corresponding class:: + + U = TypeVar('U', bound=User) + def new_user(user_class: Type[U]) -> U: + user = user_class() + # (Here we could write the user object to a database) + return user + + joe = new_user(BasicUser) + + At this point the type checker knows that joe has type BasicUser. + """ + + __slots__ = () + + +def _make_nmtuple(name, types): + msg = "NamedTuple('Name', [(f0, t0), (f1, t1), ...]); each t must be a type" + types = [(n, _type_check(t, msg)) for n, t in types] + nm_tpl = collections.namedtuple(name, [n for n, t in types]) + nm_tpl._field_types = dict(types) + try: + nm_tpl.__module__ = sys._getframe(2).f_globals.get('__name__', '__main__') + except (AttributeError, ValueError): + pass + return nm_tpl + + +_PY36 = sys.version_info[:2] >= (3, 6) + + +class NamedTupleMeta(type): + + def __new__(cls, typename, bases, ns): + if ns.get('_root', False): + return super().__new__(cls, typename, bases, ns) + if not _PY36: + raise TypeError("Class syntax for NamedTuple is only supported" + " in Python 3.6+") + types = ns.get('__annotations__', {}) + return _make_nmtuple(typename, types.items()) + +class NamedTuple(metaclass=NamedTupleMeta): + """Typed version of namedtuple. + + Usage in Python versions >= 3.6:: + + class Employee(NamedTuple): + name: str + id: int + + This is equivalent to:: + + Employee = collections.namedtuple('Employee', ['name', 'id']) + + The resulting class has one extra attribute: _field_types, + giving a dict mapping field names to types. (The field names + are in the _fields attribute, which is part of the namedtuple + API.) Alternative equivalent keyword syntax is also accepted:: + + Employee = NamedTuple('Employee', name=str, id=int) + + In Python versions <= 3.5 use:: + + Employee = NamedTuple('Employee', [('name', str), ('id', int)]) + """ + _root = True + + def __new__(self, typename, fields=None, **kwargs): + if kwargs and not _PY36: + raise TypeError("Keyword syntax for NamedTuple is only supported" + " in Python 3.6+") + if fields is None: + fields = kwargs.items() + elif kwargs: + raise TypeError("Either list of fields or keywords" + " can be provided to NamedTuple, not both") + return _make_nmtuple(typename, fields) + + +def NewType(name, tp): + """NewType creates simple unique types with almost zero + runtime overhead. NewType(name, tp) is considered a subtype of tp + by static type checkers. At runtime, NewType(name, tp) returns + a dummy function that simply returns its argument. Usage:: + + UserId = NewType('UserId', int) + + def name_by_id(user_id: UserId) -> str: + ... + + UserId('user') # Fails type check + + name_by_id(42) # Fails type check + name_by_id(UserId(42)) # OK + + num = UserId(5) + 1 # type: int + """ + + def new_type(x): + return x + + new_type.__name__ = name + new_type.__supertype__ = tp + return new_type + + +# Python-version-specific alias (Python 2: unicode; Python 3: str) +Text = str + + +# Constant that's True when type checking, but False here. +TYPE_CHECKING = False + + +class IO(Generic[AnyStr]): + """Generic base class for TextIO and BinaryIO. + + This is an abstract, generic version of the return of open(). + + NOTE: This does not distinguish between the different possible + classes (text vs. binary, read vs. write vs. read/write, + append-only, unbuffered). The TextIO and BinaryIO subclasses + below capture the distinctions between text vs. binary, which is + pervasive in the interface; however we currently do not offer a + way to track the other distinctions in the type system. + """ + + __slots__ = () + + @abstractproperty + def mode(self) -> str: + pass + + @abstractproperty + def name(self) -> str: + pass + + @abstractmethod + def close(self) -> None: + pass + + @abstractmethod + def closed(self) -> bool: + pass + + @abstractmethod + def fileno(self) -> int: + pass + + @abstractmethod + def flush(self) -> None: + pass + + @abstractmethod + def isatty(self) -> bool: + pass + + @abstractmethod + def read(self, n: int = -1) -> AnyStr: + pass + + @abstractmethod + def readable(self) -> bool: + pass + + @abstractmethod + def readline(self, limit: int = -1) -> AnyStr: + pass + + @abstractmethod + def readlines(self, hint: int = -1) -> List[AnyStr]: + pass + + @abstractmethod + def seek(self, offset: int, whence: int = 0) -> int: + pass + + @abstractmethod + def seekable(self) -> bool: + pass + + @abstractmethod + def tell(self) -> int: + pass + + @abstractmethod + def truncate(self, size: int = None) -> int: + pass + + @abstractmethod + def writable(self) -> bool: + pass + + @abstractmethod + def write(self, s: AnyStr) -> int: + pass + + @abstractmethod + def writelines(self, lines: List[AnyStr]) -> None: + pass + + @abstractmethod + def __enter__(self) -> 'IO[AnyStr]': + pass + + @abstractmethod + def __exit__(self, type, value, traceback) -> None: + pass + + +class BinaryIO(IO[bytes]): + """Typed version of the return of open() in binary mode.""" + + __slots__ = () + + @abstractmethod + def write(self, s: Union[bytes, bytearray]) -> int: + pass + + @abstractmethod + def __enter__(self) -> 'BinaryIO': + pass + + +class TextIO(IO[str]): + """Typed version of the return of open() in text mode.""" + + __slots__ = () + + @abstractproperty + def buffer(self) -> BinaryIO: + pass + + @abstractproperty + def encoding(self) -> str: + pass + + @abstractproperty + def errors(self) -> Optional[str]: + pass + + @abstractproperty + def line_buffering(self) -> bool: + pass + + @abstractproperty + def newlines(self) -> Any: + pass + + @abstractmethod + def __enter__(self) -> 'TextIO': + pass + + +class io: + """Wrapper namespace for IO generic classes.""" + + __all__ = ['IO', 'TextIO', 'BinaryIO'] + IO = IO + TextIO = TextIO + BinaryIO = BinaryIO + +io.__name__ = __name__ + '.io' +sys.modules[io.__name__] = io + + +Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')), + lambda p: p.pattern) +Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')), + lambda m: m.re.pattern) + + +class re: + """Wrapper namespace for re type aliases.""" + + __all__ = ['Pattern', 'Match'] + Pattern = Pattern + Match = Match + +re.__name__ = __name__ + '.re' +sys.modules[re.__name__] = re diff --git a/typing_extensions/test_data/python-3.6.1/_collections_abc.py b/typing_extensions/test_data/python-3.6.1/_collections_abc.py new file mode 100644 index 000000000..b172f3f36 --- /dev/null +++ b/typing_extensions/test_data/python-3.6.1/_collections_abc.py @@ -0,0 +1,1007 @@ +# Copyright 2007 Google, Inc. All Rights Reserved. +# Licensed to PSF under a Contributor Agreement. + +"""Abstract Base Classes (ABCs) for collections, according to PEP 3119. + +Unit tests are in test_collections. +""" + +from abc import ABCMeta, abstractmethod +import sys + +__all__ = ["Awaitable", "Coroutine", + "AsyncIterable", "AsyncIterator", "AsyncGenerator", + "Hashable", "Iterable", "Iterator", "Generator", "Reversible", + "Sized", "Container", "Callable", "Collection", + "Set", "MutableSet", + "Mapping", "MutableMapping", + "MappingView", "KeysView", "ItemsView", "ValuesView", + "Sequence", "MutableSequence", + "ByteString", + ] + +# This module has been renamed from collections.abc to _collections_abc to +# speed up interpreter startup. Some of the types such as MutableMapping are +# required early but collections module imports a lot of other modules. +# See issue #19218 +__name__ = "collections.abc" + +# Private list of types that we want to register with the various ABCs +# so that they will pass tests like: +# it = iter(somebytearray) +# assert isinstance(it, Iterable) +# Note: in other implementations, these types might not be distinct +# and they may have their own implementation specific types that +# are not included on this list. +bytes_iterator = type(iter(b'')) +bytearray_iterator = type(iter(bytearray())) +#callable_iterator = ??? +dict_keyiterator = type(iter({}.keys())) +dict_valueiterator = type(iter({}.values())) +dict_itemiterator = type(iter({}.items())) +list_iterator = type(iter([])) +list_reverseiterator = type(iter(reversed([]))) +range_iterator = type(iter(range(0))) +longrange_iterator = type(iter(range(1 << 1000))) +set_iterator = type(iter(set())) +str_iterator = type(iter("")) +tuple_iterator = type(iter(())) +zip_iterator = type(iter(zip())) +## views ## +dict_keys = type({}.keys()) +dict_values = type({}.values()) +dict_items = type({}.items()) +## misc ## +mappingproxy = type(type.__dict__) +generator = type((lambda: (yield))()) +## coroutine ## +async def _coro(): pass +_coro = _coro() +coroutine = type(_coro) +_coro.close() # Prevent ResourceWarning +del _coro +## asynchronous generator ## +async def _ag(): yield +_ag = _ag() +async_generator = type(_ag) +del _ag + + +### ONE-TRICK PONIES ### + +def _check_methods(C, *methods): + mro = C.__mro__ + for method in methods: + for B in mro: + if method in B.__dict__: + if B.__dict__[method] is None: + return NotImplemented + break + else: + return NotImplemented + return True + +class Hashable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __hash__(self): + return 0 + + @classmethod + def __subclasshook__(cls, C): + if cls is Hashable: + return _check_methods(C, "__hash__") + return NotImplemented + + +class Awaitable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __await__(self): + yield + + @classmethod + def __subclasshook__(cls, C): + if cls is Awaitable: + return _check_methods(C, "__await__") + return NotImplemented + + +class Coroutine(Awaitable): + + __slots__ = () + + @abstractmethod + def send(self, value): + """Send a value into the coroutine. + Return next yielded value or raise StopIteration. + """ + raise StopIteration + + @abstractmethod + def throw(self, typ, val=None, tb=None): + """Raise an exception in the coroutine. + Return next yielded value or raise StopIteration. + """ + if val is None: + if tb is None: + raise typ + val = typ() + if tb is not None: + val = val.with_traceback(tb) + raise val + + def close(self): + """Raise GeneratorExit inside coroutine. + """ + try: + self.throw(GeneratorExit) + except (GeneratorExit, StopIteration): + pass + else: + raise RuntimeError("coroutine ignored GeneratorExit") + + @classmethod + def __subclasshook__(cls, C): + if cls is Coroutine: + return _check_methods(C, '__await__', 'send', 'throw', 'close') + return NotImplemented + + +Coroutine.register(coroutine) + + +class AsyncIterable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __aiter__(self): + return AsyncIterator() + + @classmethod + def __subclasshook__(cls, C): + if cls is AsyncIterable: + return _check_methods(C, "__aiter__") + return NotImplemented + + +class AsyncIterator(AsyncIterable): + + __slots__ = () + + @abstractmethod + async def __anext__(self): + """Return the next item or raise StopAsyncIteration when exhausted.""" + raise StopAsyncIteration + + def __aiter__(self): + return self + + @classmethod + def __subclasshook__(cls, C): + if cls is AsyncIterator: + return _check_methods(C, "__anext__", "__aiter__") + return NotImplemented + + +class AsyncGenerator(AsyncIterator): + + __slots__ = () + + async def __anext__(self): + """Return the next item from the asynchronous generator. + When exhausted, raise StopAsyncIteration. + """ + return await self.asend(None) + + @abstractmethod + async def asend(self, value): + """Send a value into the asynchronous generator. + Return next yielded value or raise StopAsyncIteration. + """ + raise StopAsyncIteration + + @abstractmethod + async def athrow(self, typ, val=None, tb=None): + """Raise an exception in the asynchronous generator. + Return next yielded value or raise StopAsyncIteration. + """ + if val is None: + if tb is None: + raise typ + val = typ() + if tb is not None: + val = val.with_traceback(tb) + raise val + + async def aclose(self): + """Raise GeneratorExit inside coroutine. + """ + try: + await self.athrow(GeneratorExit) + except (GeneratorExit, StopAsyncIteration): + pass + else: + raise RuntimeError("asynchronous generator ignored GeneratorExit") + + @classmethod + def __subclasshook__(cls, C): + if cls is AsyncGenerator: + return _check_methods(C, '__aiter__', '__anext__', + 'asend', 'athrow', 'aclose') + return NotImplemented + + +AsyncGenerator.register(async_generator) + + +class Iterable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __iter__(self): + while False: + yield None + + @classmethod + def __subclasshook__(cls, C): + if cls is Iterable: + return _check_methods(C, "__iter__") + return NotImplemented + + +class Iterator(Iterable): + + __slots__ = () + + @abstractmethod + def __next__(self): + 'Return the next item from the iterator. When exhausted, raise StopIteration' + raise StopIteration + + def __iter__(self): + return self + + @classmethod + def __subclasshook__(cls, C): + if cls is Iterator: + return _check_methods(C, '__iter__', '__next__') + return NotImplemented + +Iterator.register(bytes_iterator) +Iterator.register(bytearray_iterator) +#Iterator.register(callable_iterator) +Iterator.register(dict_keyiterator) +Iterator.register(dict_valueiterator) +Iterator.register(dict_itemiterator) +Iterator.register(list_iterator) +Iterator.register(list_reverseiterator) +Iterator.register(range_iterator) +Iterator.register(longrange_iterator) +Iterator.register(set_iterator) +Iterator.register(str_iterator) +Iterator.register(tuple_iterator) +Iterator.register(zip_iterator) + + +class Reversible(Iterable): + + __slots__ = () + + @abstractmethod + def __reversed__(self): + while False: + yield None + + @classmethod + def __subclasshook__(cls, C): + if cls is Reversible: + return _check_methods(C, "__reversed__", "__iter__") + return NotImplemented + + +class Generator(Iterator): + + __slots__ = () + + def __next__(self): + """Return the next item from the generator. + When exhausted, raise StopIteration. + """ + return self.send(None) + + @abstractmethod + def send(self, value): + """Send a value into the generator. + Return next yielded value or raise StopIteration. + """ + raise StopIteration + + @abstractmethod + def throw(self, typ, val=None, tb=None): + """Raise an exception in the generator. + Return next yielded value or raise StopIteration. + """ + if val is None: + if tb is None: + raise typ + val = typ() + if tb is not None: + val = val.with_traceback(tb) + raise val + + def close(self): + """Raise GeneratorExit inside generator. + """ + try: + self.throw(GeneratorExit) + except (GeneratorExit, StopIteration): + pass + else: + raise RuntimeError("generator ignored GeneratorExit") + + @classmethod + def __subclasshook__(cls, C): + if cls is Generator: + return _check_methods(C, '__iter__', '__next__', + 'send', 'throw', 'close') + return NotImplemented + +Generator.register(generator) + + +class Sized(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __len__(self): + return 0 + + @classmethod + def __subclasshook__(cls, C): + if cls is Sized: + return _check_methods(C, "__len__") + return NotImplemented + + +class Container(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __contains__(self, x): + return False + + @classmethod + def __subclasshook__(cls, C): + if cls is Container: + return _check_methods(C, "__contains__") + return NotImplemented + +class Collection(Sized, Iterable, Container): + + __slots__ = () + + @classmethod + def __subclasshook__(cls, C): + if cls is Collection: + return _check_methods(C, "__len__", "__iter__", "__contains__") + return NotImplemented + +class Callable(metaclass=ABCMeta): + + __slots__ = () + + @abstractmethod + def __call__(self, *args, **kwds): + return False + + @classmethod + def __subclasshook__(cls, C): + if cls is Callable: + return _check_methods(C, "__call__") + return NotImplemented + + +### SETS ### + + +class Set(Collection): + + """A set is a finite, iterable container. + + This class provides concrete generic implementations of all + methods except for __contains__, __iter__ and __len__. + + To override the comparisons (presumably for speed, as the + semantics are fixed), redefine __le__ and __ge__, + then the other operations will automatically follow suit. + """ + + __slots__ = () + + def __le__(self, other): + if not isinstance(other, Set): + return NotImplemented + if len(self) > len(other): + return False + for elem in self: + if elem not in other: + return False + return True + + def __lt__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) < len(other) and self.__le__(other) + + def __gt__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) > len(other) and self.__ge__(other) + + def __ge__(self, other): + if not isinstance(other, Set): + return NotImplemented + if len(self) < len(other): + return False + for elem in other: + if elem not in self: + return False + return True + + def __eq__(self, other): + if not isinstance(other, Set): + return NotImplemented + return len(self) == len(other) and self.__le__(other) + + @classmethod + def _from_iterable(cls, it): + '''Construct an instance of the class from any iterable input. + + Must override this method if the class constructor signature + does not accept an iterable for an input. + ''' + return cls(it) + + def __and__(self, other): + if not isinstance(other, Iterable): + return NotImplemented + return self._from_iterable(value for value in other if value in self) + + __rand__ = __and__ + + def isdisjoint(self, other): + 'Return True if two sets have a null intersection.' + for value in other: + if value in self: + return False + return True + + def __or__(self, other): + if not isinstance(other, Iterable): + return NotImplemented + chain = (e for s in (self, other) for e in s) + return self._from_iterable(chain) + + __ror__ = __or__ + + def __sub__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return self._from_iterable(value for value in self + if value not in other) + + def __rsub__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return self._from_iterable(value for value in other + if value not in self) + + def __xor__(self, other): + if not isinstance(other, Set): + if not isinstance(other, Iterable): + return NotImplemented + other = self._from_iterable(other) + return (self - other) | (other - self) + + __rxor__ = __xor__ + + def _hash(self): + """Compute the hash value of a set. + + Note that we don't define __hash__: not all sets are hashable. + But if you define a hashable set type, its __hash__ should + call this function. + + This must be compatible __eq__. + + All sets ought to compare equal if they contain the same + elements, regardless of how they are implemented, and + regardless of the order of the elements; so there's not much + freedom for __eq__ or __hash__. We match the algorithm used + by the built-in frozenset type. + """ + MAX = sys.maxsize + MASK = 2 * MAX + 1 + n = len(self) + h = 1927868237 * (n + 1) + h &= MASK + for x in self: + hx = hash(x) + h ^= (hx ^ (hx << 16) ^ 89869747) * 3644798167 + h &= MASK + h = h * 69069 + 907133923 + h &= MASK + if h > MAX: + h -= MASK + 1 + if h == -1: + h = 590923713 + return h + +Set.register(frozenset) + + +class MutableSet(Set): + """A mutable set is a finite, iterable container. + + This class provides concrete generic implementations of all + methods except for __contains__, __iter__, __len__, + add(), and discard(). + + To override the comparisons (presumably for speed, as the + semantics are fixed), all you have to do is redefine __le__ and + then the other operations will automatically follow suit. + """ + + __slots__ = () + + @abstractmethod + def add(self, value): + """Add an element.""" + raise NotImplementedError + + @abstractmethod + def discard(self, value): + """Remove an element. Do not raise an exception if absent.""" + raise NotImplementedError + + def remove(self, value): + """Remove an element. If not a member, raise a KeyError.""" + if value not in self: + raise KeyError(value) + self.discard(value) + + def pop(self): + """Return the popped value. Raise KeyError if empty.""" + it = iter(self) + try: + value = next(it) + except StopIteration: + raise KeyError + self.discard(value) + return value + + def clear(self): + """This is slow (creates N new iterators!) but effective.""" + try: + while True: + self.pop() + except KeyError: + pass + + def __ior__(self, it): + for value in it: + self.add(value) + return self + + def __iand__(self, it): + for value in (self - it): + self.discard(value) + return self + + def __ixor__(self, it): + if it is self: + self.clear() + else: + if not isinstance(it, Set): + it = self._from_iterable(it) + for value in it: + if value in self: + self.discard(value) + else: + self.add(value) + return self + + def __isub__(self, it): + if it is self: + self.clear() + else: + for value in it: + self.discard(value) + return self + +MutableSet.register(set) + + +### MAPPINGS ### + + +class Mapping(Collection): + + __slots__ = () + + """A Mapping is a generic container for associating key/value + pairs. + + This class provides concrete generic implementations of all + methods except for __getitem__, __iter__, and __len__. + + """ + + @abstractmethod + def __getitem__(self, key): + raise KeyError + + def get(self, key, default=None): + 'D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.' + try: + return self[key] + except KeyError: + return default + + def __contains__(self, key): + try: + self[key] + except KeyError: + return False + else: + return True + + def keys(self): + "D.keys() -> a set-like object providing a view on D's keys" + return KeysView(self) + + def items(self): + "D.items() -> a set-like object providing a view on D's items" + return ItemsView(self) + + def values(self): + "D.values() -> an object providing a view on D's values" + return ValuesView(self) + + def __eq__(self, other): + if not isinstance(other, Mapping): + return NotImplemented + return dict(self.items()) == dict(other.items()) + + __reversed__ = None + +Mapping.register(mappingproxy) + + +class MappingView(Sized): + + __slots__ = '_mapping', + + def __init__(self, mapping): + self._mapping = mapping + + def __len__(self): + return len(self._mapping) + + def __repr__(self): + return '{0.__class__.__name__}({0._mapping!r})'.format(self) + + +class KeysView(MappingView, Set): + + __slots__ = () + + @classmethod + def _from_iterable(self, it): + return set(it) + + def __contains__(self, key): + return key in self._mapping + + def __iter__(self): + yield from self._mapping + +KeysView.register(dict_keys) + + +class ItemsView(MappingView, Set): + + __slots__ = () + + @classmethod + def _from_iterable(self, it): + return set(it) + + def __contains__(self, item): + key, value = item + try: + v = self._mapping[key] + except KeyError: + return False + else: + return v is value or v == value + + def __iter__(self): + for key in self._mapping: + yield (key, self._mapping[key]) + +ItemsView.register(dict_items) + + +class ValuesView(MappingView): + + __slots__ = () + + def __contains__(self, value): + for key in self._mapping: + v = self._mapping[key] + if v is value or v == value: + return True + return False + + def __iter__(self): + for key in self._mapping: + yield self._mapping[key] + +ValuesView.register(dict_values) + + +class MutableMapping(Mapping): + + __slots__ = () + + """A MutableMapping is a generic container for associating + key/value pairs. + + This class provides concrete generic implementations of all + methods except for __getitem__, __setitem__, __delitem__, + __iter__, and __len__. + + """ + + @abstractmethod + def __setitem__(self, key, value): + raise KeyError + + @abstractmethod + def __delitem__(self, key): + raise KeyError + + __marker = object() + + def pop(self, key, default=__marker): + '''D.pop(k[,d]) -> v, remove specified key and return the corresponding value. + If key is not found, d is returned if given, otherwise KeyError is raised. + ''' + try: + value = self[key] + except KeyError: + if default is self.__marker: + raise + return default + else: + del self[key] + return value + + def popitem(self): + '''D.popitem() -> (k, v), remove and return some (key, value) pair + as a 2-tuple; but raise KeyError if D is empty. + ''' + try: + key = next(iter(self)) + except StopIteration: + raise KeyError + value = self[key] + del self[key] + return key, value + + def clear(self): + 'D.clear() -> None. Remove all items from D.' + try: + while True: + self.popitem() + except KeyError: + pass + + def update(*args, **kwds): + ''' D.update([E, ]**F) -> None. Update D from mapping/iterable E and F. + If E present and has a .keys() method, does: for k in E: D[k] = E[k] + If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v + In either case, this is followed by: for k, v in F.items(): D[k] = v + ''' + if not args: + raise TypeError("descriptor 'update' of 'MutableMapping' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('update expected at most 1 arguments, got %d' % + len(args)) + if args: + other = args[0] + if isinstance(other, Mapping): + for key in other: + self[key] = other[key] + elif hasattr(other, "keys"): + for key in other.keys(): + self[key] = other[key] + else: + for key, value in other: + self[key] = value + for key, value in kwds.items(): + self[key] = value + + def setdefault(self, key, default=None): + 'D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D' + try: + return self[key] + except KeyError: + self[key] = default + return default + +MutableMapping.register(dict) + + +### SEQUENCES ### + + +class Sequence(Reversible, Collection): + + """All the operations on a read-only sequence. + + Concrete subclasses must override __new__ or __init__, + __getitem__, and __len__. + """ + + __slots__ = () + + @abstractmethod + def __getitem__(self, index): + raise IndexError + + def __iter__(self): + i = 0 + try: + while True: + v = self[i] + yield v + i += 1 + except IndexError: + return + + def __contains__(self, value): + for v in self: + if v is value or v == value: + return True + return False + + def __reversed__(self): + for i in reversed(range(len(self))): + yield self[i] + + def index(self, value, start=0, stop=None): + '''S.index(value, [start, [stop]]) -> integer -- return first index of value. + Raises ValueError if the value is not present. + ''' + if start is not None and start < 0: + start = max(len(self) + start, 0) + if stop is not None and stop < 0: + stop += len(self) + + i = start + while stop is None or i < stop: + try: + if self[i] == value: + return i + except IndexError: + break + i += 1 + raise ValueError + + def count(self, value): + 'S.count(value) -> integer -- return number of occurrences of value' + return sum(1 for v in self if v == value) + +Sequence.register(tuple) +Sequence.register(str) +Sequence.register(range) +Sequence.register(memoryview) + + +class ByteString(Sequence): + + """This unifies bytes and bytearray. + + XXX Should add all their methods. + """ + + __slots__ = () + +ByteString.register(bytes) +ByteString.register(bytearray) + + +class MutableSequence(Sequence): + + __slots__ = () + + """All the operations on a read-write sequence. + + Concrete subclasses must provide __new__ or __init__, + __getitem__, __setitem__, __delitem__, __len__, and insert(). + + """ + + @abstractmethod + def __setitem__(self, index, value): + raise IndexError + + @abstractmethod + def __delitem__(self, index): + raise IndexError + + @abstractmethod + def insert(self, index, value): + 'S.insert(index, value) -- insert value before index' + raise IndexError + + def append(self, value): + 'S.append(value) -- append value to the end of the sequence' + self.insert(len(self), value) + + def clear(self): + 'S.clear() -> None -- remove all items from S' + try: + while True: + self.pop() + except IndexError: + pass + + def reverse(self): + 'S.reverse() -- reverse *IN PLACE*' + n = len(self) + for i in range(n//2): + self[i], self[n-i-1] = self[n-i-1], self[i] + + def extend(self, values): + 'S.extend(iterable) -- extend sequence by appending elements from the iterable' + for v in values: + self.append(v) + + def pop(self, index=-1): + '''S.pop([index]) -> item -- remove and return item at index (default last). + Raise IndexError if list is empty or index is out of range. + ''' + v = self[index] + del self[index] + return v + + def remove(self, value): + '''S.remove(value) -- remove first occurrence of value. + Raise ValueError if the value is not present. + ''' + del self[self.index(value)] + + def __iadd__(self, values): + self.extend(values) + return self + +MutableSequence.register(list) +MutableSequence.register(bytearray) # Multiply inheriting, see ByteString diff --git a/typing_extensions/test_data/python-3.6.1/abc.py b/typing_extensions/test_data/python-3.6.1/abc.py new file mode 100644 index 000000000..1cbf96a61 --- /dev/null +++ b/typing_extensions/test_data/python-3.6.1/abc.py @@ -0,0 +1,248 @@ +# Copyright 2007 Google, Inc. All Rights Reserved. +# Licensed to PSF under a Contributor Agreement. + +"""Abstract Base Classes (ABCs) according to PEP 3119.""" + +from _weakrefset import WeakSet + + +def abstractmethod(funcobj): + """A decorator indicating abstract methods. + + Requires that the metaclass is ABCMeta or derived from it. A + class that has a metaclass derived from ABCMeta cannot be + instantiated unless all of its abstract methods are overridden. + The abstract methods can be called using any of the normal + 'super' call mechanisms. + + Usage: + + class C(metaclass=ABCMeta): + @abstractmethod + def my_abstract_method(self, ...): + ... + """ + funcobj.__isabstractmethod__ = True + return funcobj + + +class abstractclassmethod(classmethod): + """ + A decorator indicating abstract classmethods. + + Similar to abstractmethod. + + Usage: + + class C(metaclass=ABCMeta): + @abstractclassmethod + def my_abstract_classmethod(cls, ...): + ... + + 'abstractclassmethod' is deprecated. Use 'classmethod' with + 'abstractmethod' instead. + """ + + __isabstractmethod__ = True + + def __init__(self, callable): + callable.__isabstractmethod__ = True + super().__init__(callable) + + +class abstractstaticmethod(staticmethod): + """ + A decorator indicating abstract staticmethods. + + Similar to abstractmethod. + + Usage: + + class C(metaclass=ABCMeta): + @abstractstaticmethod + def my_abstract_staticmethod(...): + ... + + 'abstractstaticmethod' is deprecated. Use 'staticmethod' with + 'abstractmethod' instead. + """ + + __isabstractmethod__ = True + + def __init__(self, callable): + callable.__isabstractmethod__ = True + super().__init__(callable) + + +class abstractproperty(property): + """ + A decorator indicating abstract properties. + + Requires that the metaclass is ABCMeta or derived from it. A + class that has a metaclass derived from ABCMeta cannot be + instantiated unless all of its abstract properties are overridden. + The abstract properties can be called using any of the normal + 'super' call mechanisms. + + Usage: + + class C(metaclass=ABCMeta): + @abstractproperty + def my_abstract_property(self): + ... + + This defines a read-only property; you can also define a read-write + abstract property using the 'long' form of property declaration: + + class C(metaclass=ABCMeta): + def getx(self): ... + def setx(self, value): ... + x = abstractproperty(getx, setx) + + 'abstractproperty' is deprecated. Use 'property' with 'abstractmethod' + instead. + """ + + __isabstractmethod__ = True + + +class ABCMeta(type): + + """Metaclass for defining Abstract Base Classes (ABCs). + + Use this metaclass to create an ABC. An ABC can be subclassed + directly, and then acts as a mix-in class. You can also register + unrelated concrete classes (even built-in classes) and unrelated + ABCs as 'virtual subclasses' -- these and their descendants will + be considered subclasses of the registering ABC by the built-in + issubclass() function, but the registering ABC won't show up in + their MRO (Method Resolution Order) nor will method + implementations defined by the registering ABC be callable (not + even via super()). + + """ + + # A global counter that is incremented each time a class is + # registered as a virtual subclass of anything. It forces the + # negative cache to be cleared before its next use. + # Note: this counter is private. Use `abc.get_cache_token()` for + # external code. + _abc_invalidation_counter = 0 + + def __new__(mcls, name, bases, namespace): + cls = super().__new__(mcls, name, bases, namespace) + # Compute set of abstract method names + abstracts = {name + for name, value in namespace.items() + if getattr(value, "__isabstractmethod__", False)} + for base in bases: + for name in getattr(base, "__abstractmethods__", set()): + value = getattr(cls, name, None) + if getattr(value, "__isabstractmethod__", False): + abstracts.add(name) + cls.__abstractmethods__ = frozenset(abstracts) + # Set up inheritance registry + cls._abc_registry = WeakSet() + cls._abc_cache = WeakSet() + cls._abc_negative_cache = WeakSet() + cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter + return cls + + def register(cls, subclass): + """Register a virtual subclass of an ABC. + + Returns the subclass, to allow usage as a class decorator. + """ + if not isinstance(subclass, type): + raise TypeError("Can only register classes") + if issubclass(subclass, cls): + return subclass # Already a subclass + # Subtle: test for cycles *after* testing for "already a subclass"; + # this means we allow X.register(X) and interpret it as a no-op. + if issubclass(cls, subclass): + # This would create a cycle, which is bad for the algorithm below + raise RuntimeError("Refusing to create an inheritance cycle") + cls._abc_registry.add(subclass) + ABCMeta._abc_invalidation_counter += 1 # Invalidate negative cache + return subclass + + def _dump_registry(cls, file=None): + """Debug helper to print the ABC registry.""" + print("Class: %s.%s" % (cls.__module__, cls.__qualname__), file=file) + print("Inv.counter: %s" % ABCMeta._abc_invalidation_counter, file=file) + for name in sorted(cls.__dict__.keys()): + if name.startswith("_abc_"): + value = getattr(cls, name) + print("%s: %r" % (name, value), file=file) + + def __instancecheck__(cls, instance): + """Override for isinstance(instance, cls).""" + # Inline the cache checking + subclass = instance.__class__ + if subclass in cls._abc_cache: + return True + subtype = type(instance) + if subtype is subclass: + if (cls._abc_negative_cache_version == + ABCMeta._abc_invalidation_counter and + subclass in cls._abc_negative_cache): + return False + # Fall back to the subclass check. + return cls.__subclasscheck__(subclass) + return any(cls.__subclasscheck__(c) for c in {subclass, subtype}) + + def __subclasscheck__(cls, subclass): + """Override for issubclass(subclass, cls).""" + # Check cache + if subclass in cls._abc_cache: + return True + # Check negative cache; may have to invalidate + if cls._abc_negative_cache_version < ABCMeta._abc_invalidation_counter: + # Invalidate the negative cache + cls._abc_negative_cache = WeakSet() + cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter + elif subclass in cls._abc_negative_cache: + return False + # Check the subclass hook + ok = cls.__subclasshook__(subclass) + if ok is not NotImplemented: + assert isinstance(ok, bool) + if ok: + cls._abc_cache.add(subclass) + else: + cls._abc_negative_cache.add(subclass) + return ok + # Check if it's a direct subclass + if cls in getattr(subclass, '__mro__', ()): + cls._abc_cache.add(subclass) + return True + # Check if it's a subclass of a registered class (recursive) + for rcls in cls._abc_registry: + if issubclass(subclass, rcls): + cls._abc_cache.add(subclass) + return True + # Check if it's a subclass of a subclass (recursive) + for scls in cls.__subclasses__(): + if issubclass(subclass, scls): + cls._abc_cache.add(subclass) + return True + # No dice; update negative cache + cls._abc_negative_cache.add(subclass) + return False + + +class ABC(metaclass=ABCMeta): + """Helper class that provides a standard way to create an ABC using + inheritance. + """ + pass + + +def get_cache_token(): + """Returns the current ABC cache token. + + The token is an opaque object (supporting equality testing) identifying the + current version of the ABC cache for virtual subclasses. The token changes + with every call to ``register()`` on any ABC. + """ + return ABCMeta._abc_invalidation_counter diff --git a/typing_extensions/test_data/python-3.6.1/collections/__init__.py b/typing_extensions/test_data/python-3.6.1/collections/__init__.py new file mode 100644 index 000000000..85b4c3c19 --- /dev/null +++ b/typing_extensions/test_data/python-3.6.1/collections/__init__.py @@ -0,0 +1,1246 @@ +'''This module implements specialized container datatypes providing +alternatives to Python's general purpose built-in containers, dict, +list, set, and tuple. + +* namedtuple factory function for creating tuple subclasses with named fields +* deque list-like container with fast appends and pops on either end +* ChainMap dict-like class for creating a single view of multiple mappings +* Counter dict subclass for counting hashable objects +* OrderedDict dict subclass that remembers the order entries were added +* defaultdict dict subclass that calls a factory function to supply missing values +* UserDict wrapper around dictionary objects for easier dict subclassing +* UserList wrapper around list objects for easier list subclassing +* UserString wrapper around string objects for easier string subclassing + +''' + +__all__ = ['deque', 'defaultdict', 'namedtuple', 'UserDict', 'UserList', + 'UserString', 'Counter', 'OrderedDict', 'ChainMap'] + +# For backwards compatibility, continue to make the collections ABCs +# available through the collections module. +from _collections_abc import * +import _collections_abc +__all__ += _collections_abc.__all__ + +from operator import itemgetter as _itemgetter, eq as _eq +from keyword import iskeyword as _iskeyword +import sys as _sys +import heapq as _heapq +from _weakref import proxy as _proxy +from itertools import repeat as _repeat, chain as _chain, starmap as _starmap +from reprlib import recursive_repr as _recursive_repr + +try: + from _collections import deque +except ImportError: + pass +else: + MutableSequence.register(deque) + +try: + from _collections import defaultdict +except ImportError: + pass + + +################################################################################ +### OrderedDict +################################################################################ + +class _OrderedDictKeysView(KeysView): + + def __reversed__(self): + yield from reversed(self._mapping) + +class _OrderedDictItemsView(ItemsView): + + def __reversed__(self): + for key in reversed(self._mapping): + yield (key, self._mapping[key]) + +class _OrderedDictValuesView(ValuesView): + + def __reversed__(self): + for key in reversed(self._mapping): + yield self._mapping[key] + +class _Link(object): + __slots__ = 'prev', 'next', 'key', '__weakref__' + +class OrderedDict(dict): + 'Dictionary that remembers insertion order' + # An inherited dict maps keys to values. + # The inherited dict provides __getitem__, __len__, __contains__, and get. + # The remaining methods are order-aware. + # Big-O running times for all methods are the same as regular dictionaries. + + # The internal self.__map dict maps keys to links in a doubly linked list. + # The circular doubly linked list starts and ends with a sentinel element. + # The sentinel element never gets deleted (this simplifies the algorithm). + # The sentinel is in self.__hardroot with a weakref proxy in self.__root. + # The prev links are weakref proxies (to prevent circular references). + # Individual links are kept alive by the hard reference in self.__map. + # Those hard references disappear when a key is deleted from an OrderedDict. + + def __init__(*args, **kwds): + '''Initialize an ordered dictionary. The signature is the same as + regular dictionaries, but keyword arguments are not recommended because + their insertion order is arbitrary. + + ''' + if not args: + raise TypeError("descriptor '__init__' of 'OrderedDict' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + try: + self.__root + except AttributeError: + self.__hardroot = _Link() + self.__root = root = _proxy(self.__hardroot) + root.prev = root.next = root + self.__map = {} + self.__update(*args, **kwds) + + def __setitem__(self, key, value, + dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link): + 'od.__setitem__(i, y) <==> od[i]=y' + # Setting a new item creates a new link at the end of the linked list, + # and the inherited dictionary is updated with the new key/value pair. + if key not in self: + self.__map[key] = link = Link() + root = self.__root + last = root.prev + link.prev, link.next, link.key = last, root, key + last.next = link + root.prev = proxy(link) + dict_setitem(self, key, value) + + def __delitem__(self, key, dict_delitem=dict.__delitem__): + 'od.__delitem__(y) <==> del od[y]' + # Deleting an existing item uses self.__map to find the link which gets + # removed by updating the links in the predecessor and successor nodes. + dict_delitem(self, key) + link = self.__map.pop(key) + link_prev = link.prev + link_next = link.next + link_prev.next = link_next + link_next.prev = link_prev + link.prev = None + link.next = None + + def __iter__(self): + 'od.__iter__() <==> iter(od)' + # Traverse the linked list in order. + root = self.__root + curr = root.next + while curr is not root: + yield curr.key + curr = curr.next + + def __reversed__(self): + 'od.__reversed__() <==> reversed(od)' + # Traverse the linked list in reverse order. + root = self.__root + curr = root.prev + while curr is not root: + yield curr.key + curr = curr.prev + + def clear(self): + 'od.clear() -> None. Remove all items from od.' + root = self.__root + root.prev = root.next = root + self.__map.clear() + dict.clear(self) + + def popitem(self, last=True): + '''od.popitem() -> (k, v), return and remove a (key, value) pair. + Pairs are returned in LIFO order if last is true or FIFO order if false. + + ''' + if not self: + raise KeyError('dictionary is empty') + root = self.__root + if last: + link = root.prev + link_prev = link.prev + link_prev.next = root + root.prev = link_prev + else: + link = root.next + link_next = link.next + root.next = link_next + link_next.prev = root + key = link.key + del self.__map[key] + value = dict.pop(self, key) + return key, value + + def move_to_end(self, key, last=True): + '''Move an existing element to the end (or beginning if last==False). + + Raises KeyError if the element does not exist. + When last=True, acts like a fast version of self[key]=self.pop(key). + + ''' + link = self.__map[key] + link_prev = link.prev + link_next = link.next + soft_link = link_next.prev + link_prev.next = link_next + link_next.prev = link_prev + root = self.__root + if last: + last = root.prev + link.prev = last + link.next = root + root.prev = soft_link + last.next = link + else: + first = root.next + link.prev = root + link.next = first + first.prev = soft_link + root.next = link + + def __sizeof__(self): + sizeof = _sys.getsizeof + n = len(self) + 1 # number of links including root + size = sizeof(self.__dict__) # instance dictionary + size += sizeof(self.__map) * 2 # internal dict and inherited dict + size += sizeof(self.__hardroot) * n # link objects + size += sizeof(self.__root) * n # proxy objects + return size + + update = __update = MutableMapping.update + + def keys(self): + "D.keys() -> a set-like object providing a view on D's keys" + return _OrderedDictKeysView(self) + + def items(self): + "D.items() -> a set-like object providing a view on D's items" + return _OrderedDictItemsView(self) + + def values(self): + "D.values() -> an object providing a view on D's values" + return _OrderedDictValuesView(self) + + __ne__ = MutableMapping.__ne__ + + __marker = object() + + def pop(self, key, default=__marker): + '''od.pop(k[,d]) -> v, remove specified key and return the corresponding + value. If key is not found, d is returned if given, otherwise KeyError + is raised. + + ''' + if key in self: + result = self[key] + del self[key] + return result + if default is self.__marker: + raise KeyError(key) + return default + + def setdefault(self, key, default=None): + 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od' + if key in self: + return self[key] + self[key] = default + return default + + @_recursive_repr() + def __repr__(self): + 'od.__repr__() <==> repr(od)' + if not self: + return '%s()' % (self.__class__.__name__,) + return '%s(%r)' % (self.__class__.__name__, list(self.items())) + + def __reduce__(self): + 'Return state information for pickling' + inst_dict = vars(self).copy() + for k in vars(OrderedDict()): + inst_dict.pop(k, None) + return self.__class__, (), inst_dict or None, None, iter(self.items()) + + def copy(self): + 'od.copy() -> a shallow copy of od' + return self.__class__(self) + + @classmethod + def fromkeys(cls, iterable, value=None): + '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S. + If not specified, the value defaults to None. + + ''' + self = cls() + for key in iterable: + self[key] = value + return self + + def __eq__(self, other): + '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive + while comparison to a regular mapping is order-insensitive. + + ''' + if isinstance(other, OrderedDict): + return dict.__eq__(self, other) and all(map(_eq, self, other)) + return dict.__eq__(self, other) + + +try: + from _collections import OrderedDict +except ImportError: + # Leave the pure Python version in place. + pass + + +################################################################################ +### namedtuple +################################################################################ + +_class_template = """\ +from builtins import property as _property, tuple as _tuple +from operator import itemgetter as _itemgetter +from collections import OrderedDict + +class {typename}(tuple): + '{typename}({arg_list})' + + __slots__ = () + + _fields = {field_names!r} + + def __new__(_cls, {arg_list}): + 'Create new instance of {typename}({arg_list})' + return _tuple.__new__(_cls, ({arg_list})) + + @classmethod + def _make(cls, iterable, new=tuple.__new__, len=len): + 'Make a new {typename} object from a sequence or iterable' + result = new(cls, iterable) + if len(result) != {num_fields:d}: + raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result)) + return result + + def _replace(_self, **kwds): + 'Return a new {typename} object replacing specified fields with new values' + result = _self._make(map(kwds.pop, {field_names!r}, _self)) + if kwds: + raise ValueError('Got unexpected field names: %r' % list(kwds)) + return result + + def __repr__(self): + 'Return a nicely formatted representation string' + return self.__class__.__name__ + '({repr_fmt})' % self + + def _asdict(self): + 'Return a new OrderedDict which maps field names to their values.' + return OrderedDict(zip(self._fields, self)) + + def __getnewargs__(self): + 'Return self as a plain tuple. Used by copy and pickle.' + return tuple(self) + +{field_defs} +""" + +_repr_template = '{name}=%r' + +_field_template = '''\ + {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}') +''' + +def namedtuple(typename, field_names, *, verbose=False, rename=False, module=None): + """Returns a new subclass of tuple with named fields. + + >>> Point = namedtuple('Point', ['x', 'y']) + >>> Point.__doc__ # docstring for the new class + 'Point(x, y)' + >>> p = Point(11, y=22) # instantiate with positional args or keywords + >>> p[0] + p[1] # indexable like a plain tuple + 33 + >>> x, y = p # unpack like a regular tuple + >>> x, y + (11, 22) + >>> p.x + p.y # fields also accessible by name + 33 + >>> d = p._asdict() # convert to a dictionary + >>> d['x'] + 11 + >>> Point(**d) # convert from a dictionary + Point(x=11, y=22) + >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields + Point(x=100, y=22) + + """ + + # Validate the field names. At the user's option, either generate an error + # message or automatically replace the field name with a valid name. + if isinstance(field_names, str): + field_names = field_names.replace(',', ' ').split() + field_names = list(map(str, field_names)) + typename = str(typename) + if rename: + seen = set() + for index, name in enumerate(field_names): + if (not name.isidentifier() + or _iskeyword(name) + or name.startswith('_') + or name in seen): + field_names[index] = '_%d' % index + seen.add(name) + for name in [typename] + field_names: + if type(name) is not str: + raise TypeError('Type names and field names must be strings') + if not name.isidentifier(): + raise ValueError('Type names and field names must be valid ' + 'identifiers: %r' % name) + if _iskeyword(name): + raise ValueError('Type names and field names cannot be a ' + 'keyword: %r' % name) + seen = set() + for name in field_names: + if name.startswith('_') and not rename: + raise ValueError('Field names cannot start with an underscore: ' + '%r' % name) + if name in seen: + raise ValueError('Encountered duplicate field name: %r' % name) + seen.add(name) + + # Fill-in the class template + class_definition = _class_template.format( + typename = typename, + field_names = tuple(field_names), + num_fields = len(field_names), + arg_list = repr(tuple(field_names)).replace("'", "")[1:-1], + repr_fmt = ', '.join(_repr_template.format(name=name) + for name in field_names), + field_defs = '\n'.join(_field_template.format(index=index, name=name) + for index, name in enumerate(field_names)) + ) + + # Execute the template string in a temporary namespace and support + # tracing utilities by setting a value for frame.f_globals['__name__'] + namespace = dict(__name__='namedtuple_%s' % typename) + exec(class_definition, namespace) + result = namespace[typename] + result._source = class_definition + if verbose: + print(result._source) + + # For pickling to work, the __module__ variable needs to be set to the frame + # where the named tuple is created. Bypass this step in environments where + # sys._getframe is not defined (Jython for example) or sys._getframe is not + # defined for arguments greater than 0 (IronPython), or where the user has + # specified a particular module. + if module is None: + try: + module = _sys._getframe(1).f_globals.get('__name__', '__main__') + except (AttributeError, ValueError): + pass + if module is not None: + result.__module__ = module + + return result + + +######################################################################## +### Counter +######################################################################## + +def _count_elements(mapping, iterable): + 'Tally elements from the iterable.' + mapping_get = mapping.get + for elem in iterable: + mapping[elem] = mapping_get(elem, 0) + 1 + +try: # Load C helper function if available + from _collections import _count_elements +except ImportError: + pass + +class Counter(dict): + '''Dict subclass for counting hashable items. Sometimes called a bag + or multiset. Elements are stored as dictionary keys and their counts + are stored as dictionary values. + + >>> c = Counter('abcdeabcdabcaba') # count elements from a string + + >>> c.most_common(3) # three most common elements + [('a', 5), ('b', 4), ('c', 3)] + >>> sorted(c) # list all unique elements + ['a', 'b', 'c', 'd', 'e'] + >>> ''.join(sorted(c.elements())) # list elements with repetitions + 'aaaaabbbbcccdde' + >>> sum(c.values()) # total of all counts + 15 + + >>> c['a'] # count of letter 'a' + 5 + >>> for elem in 'shazam': # update counts from an iterable + ... c[elem] += 1 # by adding 1 to each element's count + >>> c['a'] # now there are seven 'a' + 7 + >>> del c['b'] # remove all 'b' + >>> c['b'] # now there are zero 'b' + 0 + + >>> d = Counter('simsalabim') # make another counter + >>> c.update(d) # add in the second counter + >>> c['a'] # now there are nine 'a' + 9 + + >>> c.clear() # empty the counter + >>> c + Counter() + + Note: If a count is set to zero or reduced to zero, it will remain + in the counter until the entry is deleted or the counter is cleared: + + >>> c = Counter('aaabbc') + >>> c['b'] -= 2 # reduce the count of 'b' by two + >>> c.most_common() # 'b' is still in, but its count is zero + [('a', 3), ('c', 1), ('b', 0)] + + ''' + # References: + # http://en.wikipedia.org/wiki/Multiset + # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html + # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm + # http://code.activestate.com/recipes/259174/ + # Knuth, TAOCP Vol. II section 4.6.3 + + def __init__(*args, **kwds): + '''Create a new, empty Counter object. And if given, count elements + from an input iterable. Or, initialize the count from another mapping + of elements to their counts. + + >>> c = Counter() # a new, empty counter + >>> c = Counter('gallahad') # a new counter from an iterable + >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping + >>> c = Counter(a=4, b=2) # a new counter from keyword args + + ''' + if not args: + raise TypeError("descriptor '__init__' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + super(Counter, self).__init__() + self.update(*args, **kwds) + + def __missing__(self, key): + 'The count of elements not in the Counter is zero.' + # Needed so that self[missing_item] does not raise KeyError + return 0 + + def most_common(self, n=None): + '''List the n most common elements and their counts from the most + common to the least. If n is None, then list all element counts. + + >>> Counter('abcdeabcdabcaba').most_common(3) + [('a', 5), ('b', 4), ('c', 3)] + + ''' + # Emulate Bag.sortedByCount from Smalltalk + if n is None: + return sorted(self.items(), key=_itemgetter(1), reverse=True) + return _heapq.nlargest(n, self.items(), key=_itemgetter(1)) + + def elements(self): + '''Iterator over elements repeating each as many times as its count. + + >>> c = Counter('ABCABC') + >>> sorted(c.elements()) + ['A', 'A', 'B', 'B', 'C', 'C'] + + # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1 + >>> prime_factors = Counter({2: 2, 3: 3, 17: 1}) + >>> product = 1 + >>> for factor in prime_factors.elements(): # loop over factors + ... product *= factor # and multiply them + >>> product + 1836 + + Note, if an element's count has been set to zero or is a negative + number, elements() will ignore it. + + ''' + # Emulate Bag.do from Smalltalk and Multiset.begin from C++. + return _chain.from_iterable(_starmap(_repeat, self.items())) + + # Override dict methods where necessary + + @classmethod + def fromkeys(cls, iterable, v=None): + # There is no equivalent method for counters because setting v=1 + # means that no element can have a count greater than one. + raise NotImplementedError( + 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') + + def update(*args, **kwds): + '''Like dict.update() but add counts instead of replacing them. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.update('witch') # add elements from another iterable + >>> d = Counter('watch') + >>> c.update(d) # add elements from another counter + >>> c['h'] # four 'h' in which, witch, and watch + 4 + + ''' + # The regular dict.update() operation makes no sense here because the + # replace behavior results in the some of original untouched counts + # being mixed-in with all of the other counts for a mismash that + # doesn't have a straight-forward interpretation in most counting + # contexts. Instead, we implement straight-addition. Both the inputs + # and outputs are allowed to contain zero and negative counts. + + if not args: + raise TypeError("descriptor 'update' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + iterable = args[0] if args else None + if iterable is not None: + if isinstance(iterable, Mapping): + if self: + self_get = self.get + for elem, count in iterable.items(): + self[elem] = count + self_get(elem, 0) + else: + super(Counter, self).update(iterable) # fast path when counter is empty + else: + _count_elements(self, iterable) + if kwds: + self.update(kwds) + + def subtract(*args, **kwds): + '''Like dict.update() but subtracts counts instead of replacing them. + Counts can be reduced below zero. Both the inputs and outputs are + allowed to contain zero and negative counts. + + Source can be an iterable, a dictionary, or another Counter instance. + + >>> c = Counter('which') + >>> c.subtract('witch') # subtract elements from another iterable + >>> c.subtract(Counter('watch')) # subtract elements from another counter + >>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch + 0 + >>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch + -1 + + ''' + if not args: + raise TypeError("descriptor 'subtract' of 'Counter' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + iterable = args[0] if args else None + if iterable is not None: + self_get = self.get + if isinstance(iterable, Mapping): + for elem, count in iterable.items(): + self[elem] = self_get(elem, 0) - count + else: + for elem in iterable: + self[elem] = self_get(elem, 0) - 1 + if kwds: + self.subtract(kwds) + + def copy(self): + 'Return a shallow copy.' + return self.__class__(self) + + def __reduce__(self): + return self.__class__, (dict(self),) + + def __delitem__(self, elem): + 'Like dict.__delitem__() but does not raise KeyError for missing values.' + if elem in self: + super().__delitem__(elem) + + def __repr__(self): + if not self: + return '%s()' % self.__class__.__name__ + try: + items = ', '.join(map('%r: %r'.__mod__, self.most_common())) + return '%s({%s})' % (self.__class__.__name__, items) + except TypeError: + # handle case where values are not orderable + return '{0}({1!r})'.format(self.__class__.__name__, dict(self)) + + # Multiset-style mathematical operations discussed in: + # Knuth TAOCP Volume II section 4.6.3 exercise 19 + # and at http://en.wikipedia.org/wiki/Multiset + # + # Outputs guaranteed to only include positive counts. + # + # To strip negative and zero counts, add-in an empty counter: + # c += Counter() + + def __add__(self, other): + '''Add counts from two counters. + + >>> Counter('abbb') + Counter('bcc') + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count + other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __sub__(self, other): + ''' Subtract count, but keep only results with positive counts. + + >>> Counter('abbbc') - Counter('bccd') + Counter({'b': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + newcount = count - other[elem] + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count < 0: + result[elem] = 0 - count + return result + + def __or__(self, other): + '''Union is the maximum of value in either of the input counters. + + >>> Counter('abbb') | Counter('bcc') + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = other_count if count < other_count else count + if newcount > 0: + result[elem] = newcount + for elem, count in other.items(): + if elem not in self and count > 0: + result[elem] = count + return result + + def __and__(self, other): + ''' Intersection is the minimum of corresponding counts. + + >>> Counter('abbb') & Counter('bcc') + Counter({'b': 1}) + + ''' + if not isinstance(other, Counter): + return NotImplemented + result = Counter() + for elem, count in self.items(): + other_count = other[elem] + newcount = count if count < other_count else other_count + if newcount > 0: + result[elem] = newcount + return result + + def __pos__(self): + 'Adds an empty counter, effectively stripping negative and zero counts' + result = Counter() + for elem, count in self.items(): + if count > 0: + result[elem] = count + return result + + def __neg__(self): + '''Subtracts from an empty counter. Strips positive and zero counts, + and flips the sign on negative counts. + + ''' + result = Counter() + for elem, count in self.items(): + if count < 0: + result[elem] = 0 - count + return result + + def _keep_positive(self): + '''Internal method to strip elements with a negative or zero count''' + nonpositive = [elem for elem, count in self.items() if not count > 0] + for elem in nonpositive: + del self[elem] + return self + + def __iadd__(self, other): + '''Inplace add from another counter, keeping only positive counts. + + >>> c = Counter('abbb') + >>> c += Counter('bcc') + >>> c + Counter({'b': 4, 'c': 2, 'a': 1}) + + ''' + for elem, count in other.items(): + self[elem] += count + return self._keep_positive() + + def __isub__(self, other): + '''Inplace subtract counter, but keep only results with positive counts. + + >>> c = Counter('abbbc') + >>> c -= Counter('bccd') + >>> c + Counter({'b': 2, 'a': 1}) + + ''' + for elem, count in other.items(): + self[elem] -= count + return self._keep_positive() + + def __ior__(self, other): + '''Inplace union is the maximum of value from either counter. + + >>> c = Counter('abbb') + >>> c |= Counter('bcc') + >>> c + Counter({'b': 3, 'c': 2, 'a': 1}) + + ''' + for elem, other_count in other.items(): + count = self[elem] + if other_count > count: + self[elem] = other_count + return self._keep_positive() + + def __iand__(self, other): + '''Inplace intersection is the minimum of corresponding counts. + + >>> c = Counter('abbb') + >>> c &= Counter('bcc') + >>> c + Counter({'b': 1}) + + ''' + for elem, count in self.items(): + other_count = other[elem] + if other_count < count: + self[elem] = other_count + return self._keep_positive() + + +######################################################################## +### ChainMap +######################################################################## + +class ChainMap(MutableMapping): + ''' A ChainMap groups multiple dicts (or other mappings) together + to create a single, updateable view. + + The underlying mappings are stored in a list. That list is public and can + be accessed or updated using the *maps* attribute. There is no other + state. + + Lookups search the underlying mappings successively until a key is found. + In contrast, writes, updates, and deletions only operate on the first + mapping. + + ''' + + def __init__(self, *maps): + '''Initialize a ChainMap by setting *maps* to the given mappings. + If no mappings are provided, a single empty dictionary is used. + + ''' + self.maps = list(maps) or [{}] # always at least one map + + def __missing__(self, key): + raise KeyError(key) + + def __getitem__(self, key): + for mapping in self.maps: + try: + return mapping[key] # can't use 'key in mapping' with defaultdict + except KeyError: + pass + return self.__missing__(key) # support subclasses that define __missing__ + + def get(self, key, default=None): + return self[key] if key in self else default + + def __len__(self): + return len(set().union(*self.maps)) # reuses stored hash values if possible + + def __iter__(self): + return iter(set().union(*self.maps)) + + def __contains__(self, key): + return any(key in m for m in self.maps) + + def __bool__(self): + return any(self.maps) + + @_recursive_repr() + def __repr__(self): + return '{0.__class__.__name__}({1})'.format( + self, ', '.join(map(repr, self.maps))) + + @classmethod + def fromkeys(cls, iterable, *args): + 'Create a ChainMap with a single dict created from the iterable.' + return cls(dict.fromkeys(iterable, *args)) + + def copy(self): + 'New ChainMap or subclass with a new copy of maps[0] and refs to maps[1:]' + return self.__class__(self.maps[0].copy(), *self.maps[1:]) + + __copy__ = copy + + def new_child(self, m=None): # like Django's Context.push() + '''New ChainMap with a new map followed by all previous maps. + If no map is provided, an empty dict is used. + ''' + if m is None: + m = {} + return self.__class__(m, *self.maps) + + @property + def parents(self): # like Django's Context.pop() + 'New ChainMap from maps[1:].' + return self.__class__(*self.maps[1:]) + + def __setitem__(self, key, value): + self.maps[0][key] = value + + def __delitem__(self, key): + try: + del self.maps[0][key] + except KeyError: + raise KeyError('Key not found in the first mapping: {!r}'.format(key)) + + def popitem(self): + 'Remove and return an item pair from maps[0]. Raise KeyError is maps[0] is empty.' + try: + return self.maps[0].popitem() + except KeyError: + raise KeyError('No keys found in the first mapping.') + + def pop(self, key, *args): + 'Remove *key* from maps[0] and return its value. Raise KeyError if *key* not in maps[0].' + try: + return self.maps[0].pop(key, *args) + except KeyError: + raise KeyError('Key not found in the first mapping: {!r}'.format(key)) + + def clear(self): + 'Clear maps[0], leaving maps[1:] intact.' + self.maps[0].clear() + + +################################################################################ +### UserDict +################################################################################ + +class UserDict(MutableMapping): + + # Start by filling-out the abstract methods + def __init__(*args, **kwargs): + if not args: + raise TypeError("descriptor '__init__' of 'UserDict' object " + "needs an argument") + self, *args = args + if len(args) > 1: + raise TypeError('expected at most 1 arguments, got %d' % len(args)) + if args: + dict = args[0] + elif 'dict' in kwargs: + dict = kwargs.pop('dict') + import warnings + warnings.warn("Passing 'dict' as keyword argument is deprecated", + DeprecationWarning, stacklevel=2) + else: + dict = None + self.data = {} + if dict is not None: + self.update(dict) + if len(kwargs): + self.update(kwargs) + def __len__(self): return len(self.data) + def __getitem__(self, key): + if key in self.data: + return self.data[key] + if hasattr(self.__class__, "__missing__"): + return self.__class__.__missing__(self, key) + raise KeyError(key) + def __setitem__(self, key, item): self.data[key] = item + def __delitem__(self, key): del self.data[key] + def __iter__(self): + return iter(self.data) + + # Modify __contains__ to work correctly when __missing__ is present + def __contains__(self, key): + return key in self.data + + # Now, add the methods in dicts but not in MutableMapping + def __repr__(self): return repr(self.data) + def copy(self): + if self.__class__ is UserDict: + return UserDict(self.data.copy()) + import copy + data = self.data + try: + self.data = {} + c = copy.copy(self) + finally: + self.data = data + c.update(self) + return c + @classmethod + def fromkeys(cls, iterable, value=None): + d = cls() + for key in iterable: + d[key] = value + return d + + + +################################################################################ +### UserList +################################################################################ + +class UserList(MutableSequence): + """A more or less complete user-defined wrapper around list objects.""" + def __init__(self, initlist=None): + self.data = [] + if initlist is not None: + # XXX should this accept an arbitrary sequence? + if type(initlist) == type(self.data): + self.data[:] = initlist + elif isinstance(initlist, UserList): + self.data[:] = initlist.data[:] + else: + self.data = list(initlist) + def __repr__(self): return repr(self.data) + def __lt__(self, other): return self.data < self.__cast(other) + def __le__(self, other): return self.data <= self.__cast(other) + def __eq__(self, other): return self.data == self.__cast(other) + def __gt__(self, other): return self.data > self.__cast(other) + def __ge__(self, other): return self.data >= self.__cast(other) + def __cast(self, other): + return other.data if isinstance(other, UserList) else other + def __contains__(self, item): return item in self.data + def __len__(self): return len(self.data) + def __getitem__(self, i): return self.data[i] + def __setitem__(self, i, item): self.data[i] = item + def __delitem__(self, i): del self.data[i] + def __add__(self, other): + if isinstance(other, UserList): + return self.__class__(self.data + other.data) + elif isinstance(other, type(self.data)): + return self.__class__(self.data + other) + return self.__class__(self.data + list(other)) + def __radd__(self, other): + if isinstance(other, UserList): + return self.__class__(other.data + self.data) + elif isinstance(other, type(self.data)): + return self.__class__(other + self.data) + return self.__class__(list(other) + self.data) + def __iadd__(self, other): + if isinstance(other, UserList): + self.data += other.data + elif isinstance(other, type(self.data)): + self.data += other + else: + self.data += list(other) + return self + def __mul__(self, n): + return self.__class__(self.data*n) + __rmul__ = __mul__ + def __imul__(self, n): + self.data *= n + return self + def append(self, item): self.data.append(item) + def insert(self, i, item): self.data.insert(i, item) + def pop(self, i=-1): return self.data.pop(i) + def remove(self, item): self.data.remove(item) + def clear(self): self.data.clear() + def copy(self): return self.__class__(self) + def count(self, item): return self.data.count(item) + def index(self, item, *args): return self.data.index(item, *args) + def reverse(self): self.data.reverse() + def sort(self, *args, **kwds): self.data.sort(*args, **kwds) + def extend(self, other): + if isinstance(other, UserList): + self.data.extend(other.data) + else: + self.data.extend(other) + + + +################################################################################ +### UserString +################################################################################ + +class UserString(Sequence): + def __init__(self, seq): + if isinstance(seq, str): + self.data = seq + elif isinstance(seq, UserString): + self.data = seq.data[:] + else: + self.data = str(seq) + def __str__(self): return str(self.data) + def __repr__(self): return repr(self.data) + def __int__(self): return int(self.data) + def __float__(self): return float(self.data) + def __complex__(self): return complex(self.data) + def __hash__(self): return hash(self.data) + def __getnewargs__(self): + return (self.data[:],) + + def __eq__(self, string): + if isinstance(string, UserString): + return self.data == string.data + return self.data == string + def __lt__(self, string): + if isinstance(string, UserString): + return self.data < string.data + return self.data < string + def __le__(self, string): + if isinstance(string, UserString): + return self.data <= string.data + return self.data <= string + def __gt__(self, string): + if isinstance(string, UserString): + return self.data > string.data + return self.data > string + def __ge__(self, string): + if isinstance(string, UserString): + return self.data >= string.data + return self.data >= string + + def __contains__(self, char): + if isinstance(char, UserString): + char = char.data + return char in self.data + + def __len__(self): return len(self.data) + def __getitem__(self, index): return self.__class__(self.data[index]) + def __add__(self, other): + if isinstance(other, UserString): + return self.__class__(self.data + other.data) + elif isinstance(other, str): + return self.__class__(self.data + other) + return self.__class__(self.data + str(other)) + def __radd__(self, other): + if isinstance(other, str): + return self.__class__(other + self.data) + return self.__class__(str(other) + self.data) + def __mul__(self, n): + return self.__class__(self.data*n) + __rmul__ = __mul__ + def __mod__(self, args): + return self.__class__(self.data % args) + def __rmod__(self, format): + return self.__class__(format % args) + + # the following methods are defined in alphabetical order: + def capitalize(self): return self.__class__(self.data.capitalize()) + def casefold(self): + return self.__class__(self.data.casefold()) + def center(self, width, *args): + return self.__class__(self.data.center(width, *args)) + def count(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.count(sub, start, end) + def encode(self, encoding=None, errors=None): # XXX improve this? + if encoding: + if errors: + return self.__class__(self.data.encode(encoding, errors)) + return self.__class__(self.data.encode(encoding)) + return self.__class__(self.data.encode()) + def endswith(self, suffix, start=0, end=_sys.maxsize): + return self.data.endswith(suffix, start, end) + def expandtabs(self, tabsize=8): + return self.__class__(self.data.expandtabs(tabsize)) + def find(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.find(sub, start, end) + def format(self, *args, **kwds): + return self.data.format(*args, **kwds) + def format_map(self, mapping): + return self.data.format_map(mapping) + def index(self, sub, start=0, end=_sys.maxsize): + return self.data.index(sub, start, end) + def isalpha(self): return self.data.isalpha() + def isalnum(self): return self.data.isalnum() + def isdecimal(self): return self.data.isdecimal() + def isdigit(self): return self.data.isdigit() + def isidentifier(self): return self.data.isidentifier() + def islower(self): return self.data.islower() + def isnumeric(self): return self.data.isnumeric() + def isprintable(self): return self.data.isprintable() + def isspace(self): return self.data.isspace() + def istitle(self): return self.data.istitle() + def isupper(self): return self.data.isupper() + def join(self, seq): return self.data.join(seq) + def ljust(self, width, *args): + return self.__class__(self.data.ljust(width, *args)) + def lower(self): return self.__class__(self.data.lower()) + def lstrip(self, chars=None): return self.__class__(self.data.lstrip(chars)) + maketrans = str.maketrans + def partition(self, sep): + return self.data.partition(sep) + def replace(self, old, new, maxsplit=-1): + if isinstance(old, UserString): + old = old.data + if isinstance(new, UserString): + new = new.data + return self.__class__(self.data.replace(old, new, maxsplit)) + def rfind(self, sub, start=0, end=_sys.maxsize): + if isinstance(sub, UserString): + sub = sub.data + return self.data.rfind(sub, start, end) + def rindex(self, sub, start=0, end=_sys.maxsize): + return self.data.rindex(sub, start, end) + def rjust(self, width, *args): + return self.__class__(self.data.rjust(width, *args)) + def rpartition(self, sep): + return self.data.rpartition(sep) + def rstrip(self, chars=None): + return self.__class__(self.data.rstrip(chars)) + def split(self, sep=None, maxsplit=-1): + return self.data.split(sep, maxsplit) + def rsplit(self, sep=None, maxsplit=-1): + return self.data.rsplit(sep, maxsplit) + def splitlines(self, keepends=False): return self.data.splitlines(keepends) + def startswith(self, prefix, start=0, end=_sys.maxsize): + return self.data.startswith(prefix, start, end) + def strip(self, chars=None): return self.__class__(self.data.strip(chars)) + def swapcase(self): return self.__class__(self.data.swapcase()) + def title(self): return self.__class__(self.data.title()) + def translate(self, *args): + return self.__class__(self.data.translate(*args)) + def upper(self): return self.__class__(self.data.upper()) + def zfill(self, width): return self.__class__(self.data.zfill(width)) diff --git a/typing_extensions/test_data/python-3.6.1/collections/abc.py b/typing_extensions/test_data/python-3.6.1/collections/abc.py new file mode 100644 index 000000000..891600d16 --- /dev/null +++ b/typing_extensions/test_data/python-3.6.1/collections/abc.py @@ -0,0 +1,2 @@ +from _collections_abc import * +from _collections_abc import __all__ diff --git a/typing_extensions/test_data/python-3.6.1/typing.py b/typing_extensions/test_data/python-3.6.1/typing.py new file mode 100644 index 000000000..9a0f49099 --- /dev/null +++ b/typing_extensions/test_data/python-3.6.1/typing.py @@ -0,0 +1,2335 @@ +import abc +from abc import abstractmethod, abstractproperty +import collections +import contextlib +import functools +import re as stdlib_re # Avoid confusion with the re we export. +import sys +import types +try: + import collections.abc as collections_abc +except ImportError: + import collections as collections_abc # Fallback for PY3.2. +try: + from types import SlotWrapperType, MethodWrapperType, MethodDescriptorType +except ImportError: + SlotWrapperType = type(object.__init__) + MethodWrapperType = type(object().__str__) + MethodDescriptorType = type(str.join) + + +# Please keep __all__ alphabetized within each category. +__all__ = [ + # Super-special typing primitives. + 'Any', + 'Callable', + 'ClassVar', + 'Generic', + 'Optional', + 'Tuple', + 'Type', + 'TypeVar', + 'Union', + + # ABCs (from collections.abc). + 'AbstractSet', # collections.abc.Set. + 'GenericMeta', # subclass of abc.ABCMeta and a metaclass + # for 'Generic' and ABCs below. + 'ByteString', + 'Container', + 'Hashable', + 'ItemsView', + 'Iterable', + 'Iterator', + 'KeysView', + 'Mapping', + 'MappingView', + 'MutableMapping', + 'MutableSequence', + 'MutableSet', + 'Sequence', + 'Sized', + 'ValuesView', + # The following are added depending on presence + # of their non-generic counterparts in stdlib: + # Awaitable, + # AsyncIterator, + # AsyncIterable, + # Coroutine, + # Collection, + # ContextManager, + # AsyncGenerator, + + # Structural checks, a.k.a. protocols. + 'Reversible', + 'SupportsAbs', + 'SupportsFloat', + 'SupportsInt', + 'SupportsRound', + + # Concrete collection types. + 'Counter', + 'Deque', + 'Dict', + 'DefaultDict', + 'List', + 'Set', + 'FrozenSet', + 'NamedTuple', # Not really a type. + 'Generator', + + # One-off things. + 'AnyStr', + 'cast', + 'get_type_hints', + 'NewType', + 'no_type_check', + 'no_type_check_decorator', + 'overload', + 'Text', + 'TYPE_CHECKING', +] + +# The pseudo-submodules 're' and 'io' are part of the public +# namespace, but excluded from __all__ because they might stomp on +# legitimate imports of those modules. + + +def _qualname(x): + if sys.version_info[:2] >= (3, 3): + return x.__qualname__ + else: + # Fall back to just name. + return x.__name__ + + +def _trim_name(nm): + whitelist = ('_TypeAlias', '_ForwardRef', '_TypingBase', '_FinalTypingBase') + if nm.startswith('_') and nm not in whitelist: + nm = nm[1:] + return nm + + +class TypingMeta(type): + """Metaclass for most types defined in typing module + (not a part of public API). + + This overrides __new__() to require an extra keyword parameter + '_root', which serves as a guard against naive subclassing of the + typing classes. Any legitimate class defined using a metaclass + derived from TypingMeta must pass _root=True. + + This also defines a dummy constructor (all the work for most typing + constructs is done in __new__) and a nicer repr(). + """ + + _is_protocol = False + + def __new__(cls, name, bases, namespace, *, _root=False): + if not _root: + raise TypeError("Cannot subclass %s" % + (', '.join(map(_type_repr, bases)) or '()')) + return super().__new__(cls, name, bases, namespace) + + def __init__(self, *args, **kwds): + pass + + def _eval_type(self, globalns, localns): + """Override this in subclasses to interpret forward references. + + For example, List['C'] is internally stored as + List[_ForwardRef('C')], which should evaluate to List[C], + where C is an object found in globalns or localns (searching + localns first, of course). + """ + return self + + def _get_type_vars(self, tvars): + pass + + def __repr__(self): + qname = _trim_name(_qualname(self)) + return '%s.%s' % (self.__module__, qname) + + +class _TypingBase(metaclass=TypingMeta, _root=True): + """Internal indicator of special typing constructs.""" + + __slots__ = ('__weakref__',) + + def __init__(self, *args, **kwds): + pass + + def __new__(cls, *args, **kwds): + """Constructor. + + This only exists to give a better error message in case + someone tries to subclass a special typing object (not a good idea). + """ + if (len(args) == 3 and + isinstance(args[0], str) and + isinstance(args[1], tuple)): + # Close enough. + raise TypeError("Cannot subclass %r" % cls) + return super().__new__(cls) + + # Things that are not classes also need these. + def _eval_type(self, globalns, localns): + return self + + def _get_type_vars(self, tvars): + pass + + def __repr__(self): + cls = type(self) + qname = _trim_name(_qualname(cls)) + return '%s.%s' % (cls.__module__, qname) + + def __call__(self, *args, **kwds): + raise TypeError("Cannot instantiate %r" % type(self)) + + +class _FinalTypingBase(_TypingBase, _root=True): + """Internal mix-in class to prevent instantiation. + + Prevents instantiation unless _root=True is given in class call. + It is used to create pseudo-singleton instances Any, Union, Optional, etc. + """ + + __slots__ = () + + def __new__(cls, *args, _root=False, **kwds): + self = super().__new__(cls, *args, **kwds) + if _root is True: + return self + raise TypeError("Cannot instantiate %r" % cls) + + def __reduce__(self): + return _trim_name(type(self).__name__) + + +class _ForwardRef(_TypingBase, _root=True): + """Internal wrapper to hold a forward reference.""" + + __slots__ = ('__forward_arg__', '__forward_code__', + '__forward_evaluated__', '__forward_value__') + + def __init__(self, arg): + super().__init__(arg) + if not isinstance(arg, str): + raise TypeError('Forward reference must be a string -- got %r' % (arg,)) + try: + code = compile(arg, '', 'eval') + except SyntaxError: + raise SyntaxError('Forward reference must be an expression -- got %r' % + (arg,)) + self.__forward_arg__ = arg + self.__forward_code__ = code + self.__forward_evaluated__ = False + self.__forward_value__ = None + + def _eval_type(self, globalns, localns): + if not self.__forward_evaluated__ or localns is not globalns: + if globalns is None and localns is None: + globalns = localns = {} + elif globalns is None: + globalns = localns + elif localns is None: + localns = globalns + self.__forward_value__ = _type_check( + eval(self.__forward_code__, globalns, localns), + "Forward references must evaluate to types.") + self.__forward_evaluated__ = True + return self.__forward_value__ + + def __eq__(self, other): + if not isinstance(other, _ForwardRef): + return NotImplemented + return (self.__forward_arg__ == other.__forward_arg__ and + self.__forward_value__ == other.__forward_value__) + + def __hash__(self): + return hash((self.__forward_arg__, self.__forward_value__)) + + def __instancecheck__(self, obj): + raise TypeError("Forward references cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Forward references cannot be used with issubclass().") + + def __repr__(self): + return '_ForwardRef(%r)' % (self.__forward_arg__,) + + +class _TypeAlias(_TypingBase, _root=True): + """Internal helper class for defining generic variants of concrete types. + + Note that this is not a type; let's call it a pseudo-type. It cannot + be used in instance and subclass checks in parameterized form, i.e. + ``isinstance(42, Match[str])`` raises ``TypeError`` instead of returning + ``False``. + """ + + __slots__ = ('name', 'type_var', 'impl_type', 'type_checker') + + def __init__(self, name, type_var, impl_type, type_checker): + """Initializer. + + Args: + name: The name, e.g. 'Pattern'. + type_var: The type parameter, e.g. AnyStr, or the + specific type, e.g. str. + impl_type: The implementation type. + type_checker: Function that takes an impl_type instance. + and returns a value that should be a type_var instance. + """ + assert isinstance(name, str), repr(name) + assert isinstance(impl_type, type), repr(impl_type) + assert not isinstance(impl_type, TypingMeta), repr(impl_type) + assert isinstance(type_var, (type, _TypingBase)), repr(type_var) + self.name = name + self.type_var = type_var + self.impl_type = impl_type + self.type_checker = type_checker + + def __repr__(self): + return "%s[%s]" % (self.name, _type_repr(self.type_var)) + + def __getitem__(self, parameter): + if not isinstance(self.type_var, TypeVar): + raise TypeError("%s cannot be further parameterized." % self) + if self.type_var.__constraints__ and isinstance(parameter, type): + if not issubclass(parameter, self.type_var.__constraints__): + raise TypeError("%s is not a valid substitution for %s." % + (parameter, self.type_var)) + if isinstance(parameter, TypeVar) and parameter is not self.type_var: + raise TypeError("%s cannot be re-parameterized." % self) + return self.__class__(self.name, parameter, + self.impl_type, self.type_checker) + + def __eq__(self, other): + if not isinstance(other, _TypeAlias): + return NotImplemented + return self.name == other.name and self.type_var == other.type_var + + def __hash__(self): + return hash((self.name, self.type_var)) + + def __instancecheck__(self, obj): + if not isinstance(self.type_var, TypeVar): + raise TypeError("Parameterized type aliases cannot be used " + "with isinstance().") + return isinstance(obj, self.impl_type) + + def __subclasscheck__(self, cls): + if not isinstance(self.type_var, TypeVar): + raise TypeError("Parameterized type aliases cannot be used " + "with issubclass().") + return issubclass(cls, self.impl_type) + + +def _get_type_vars(types, tvars): + for t in types: + if isinstance(t, TypingMeta) or isinstance(t, _TypingBase): + t._get_type_vars(tvars) + + +def _type_vars(types): + tvars = [] + _get_type_vars(types, tvars) + return tuple(tvars) + + +def _eval_type(t, globalns, localns): + if isinstance(t, TypingMeta) or isinstance(t, _TypingBase): + return t._eval_type(globalns, localns) + return t + + +def _type_check(arg, msg): + """Check that the argument is a type, and return it (internal helper). + + As a special case, accept None and return type(None) instead. + Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable. + + The msg argument is a human-readable error message, e.g. + + "Union[arg, ...]: arg should be a type." + + We append the repr() of the actual value (truncated to 100 chars). + """ + if arg is None: + return type(None) + if isinstance(arg, str): + arg = _ForwardRef(arg) + if ( + isinstance(arg, _TypingBase) and type(arg).__name__ == '_ClassVar' or + not isinstance(arg, (type, _TypingBase)) and not callable(arg) + ): + raise TypeError(msg + " Got %.100r." % (arg,)) + # Bare Union etc. are not valid as type arguments + if ( + type(arg).__name__ in ('_Union', '_Optional') and + not getattr(arg, '__origin__', None) or + isinstance(arg, TypingMeta) and _gorg(arg) in (Generic, _Protocol) + ): + raise TypeError("Plain %s is not valid as type argument" % arg) + return arg + + +def _type_repr(obj): + """Return the repr() of an object, special-casing types (internal helper). + + If obj is a type, we return a shorter version than the default + type.__repr__, based on the module and qualified name, which is + typically enough to uniquely identify a type. For everything + else, we fall back on repr(obj). + """ + if isinstance(obj, type) and not isinstance(obj, TypingMeta): + if obj.__module__ == 'builtins': + return _qualname(obj) + return '%s.%s' % (obj.__module__, _qualname(obj)) + if obj is ...: + return('...') + if isinstance(obj, types.FunctionType): + return obj.__name__ + return repr(obj) + + +class _Any(_FinalTypingBase, _root=True): + """Special type indicating an unconstrained type. + + - Any is compatible with every type. + - Any assumed to have all methods. + - All values assumed to be instances of Any. + + Note that all the above statements are true from the point of view of + static type checkers. At runtime, Any should not be used with instance + or class checks. + """ + + __slots__ = () + + def __instancecheck__(self, obj): + raise TypeError("Any cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Any cannot be used with issubclass().") + + +Any = _Any(_root=True) + + +class TypeVar(_TypingBase, _root=True): + """Type variable. + + Usage:: + + T = TypeVar('T') # Can be anything + A = TypeVar('A', str, bytes) # Must be str or bytes + + Type variables exist primarily for the benefit of static type + checkers. They serve as the parameters for generic types as well + as for generic function definitions. See class Generic for more + information on generic types. Generic functions work as follows: + + def repeat(x: T, n: int) -> List[T]: + '''Return a list containing n references to x.''' + return [x]*n + + def longest(x: A, y: A) -> A: + '''Return the longest of two strings.''' + return x if len(x) >= len(y) else y + + The latter example's signature is essentially the overloading + of (str, str) -> str and (bytes, bytes) -> bytes. Also note + that if the arguments are instances of some subclass of str, + the return type is still plain str. + + At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError. + + Type variables defined with covariant=True or contravariant=True + can be used do declare covariant or contravariant generic types. + See PEP 484 for more details. By default generic types are invariant + in all type variables. + + Type variables can be introspected. e.g.: + + T.__name__ == 'T' + T.__constraints__ == () + T.__covariant__ == False + T.__contravariant__ = False + A.__constraints__ == (str, bytes) + """ + + __slots__ = ('__name__', '__bound__', '__constraints__', + '__covariant__', '__contravariant__') + + def __init__(self, name, *constraints, bound=None, + covariant=False, contravariant=False): + super().__init__(name, *constraints, bound=bound, + covariant=covariant, contravariant=contravariant) + self.__name__ = name + if covariant and contravariant: + raise ValueError("Bivariant types are not supported.") + self.__covariant__ = bool(covariant) + self.__contravariant__ = bool(contravariant) + if constraints and bound is not None: + raise TypeError("Constraints cannot be combined with bound=...") + if constraints and len(constraints) == 1: + raise TypeError("A single constraint is not allowed") + msg = "TypeVar(name, constraint, ...): constraints must be types." + self.__constraints__ = tuple(_type_check(t, msg) for t in constraints) + if bound: + self.__bound__ = _type_check(bound, "Bound must be a type.") + else: + self.__bound__ = None + + def _get_type_vars(self, tvars): + if self not in tvars: + tvars.append(self) + + def __repr__(self): + if self.__covariant__: + prefix = '+' + elif self.__contravariant__: + prefix = '-' + else: + prefix = '~' + return prefix + self.__name__ + + def __instancecheck__(self, instance): + raise TypeError("Type variables cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Type variables cannot be used with issubclass().") + + +# Some unconstrained type variables. These are used by the container types. +# (These are not for export.) +T = TypeVar('T') # Any type. +KT = TypeVar('KT') # Key type. +VT = TypeVar('VT') # Value type. +T_co = TypeVar('T_co', covariant=True) # Any type covariant containers. +V_co = TypeVar('V_co', covariant=True) # Any type covariant containers. +VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers. +T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant. + +# A useful type variable with constraints. This represents string types. +# (This one *is* for export!) +AnyStr = TypeVar('AnyStr', bytes, str) + + +def _replace_arg(arg, tvars, args): + """An internal helper function: replace arg if it is a type variable + found in tvars with corresponding substitution from args or + with corresponding substitution sub-tree if arg is a generic type. + """ + + if tvars is None: + tvars = [] + if hasattr(arg, '_subs_tree') and isinstance(arg, (GenericMeta, _TypingBase)): + return arg._subs_tree(tvars, args) + if isinstance(arg, TypeVar): + for i, tvar in enumerate(tvars): + if arg == tvar: + return args[i] + return arg + + +# Special typing constructs Union, Optional, Generic, Callable and Tuple +# use three special attributes for internal bookkeeping of generic types: +# * __parameters__ is a tuple of unique free type parameters of a generic +# type, for example, Dict[T, T].__parameters__ == (T,); +# * __origin__ keeps a reference to a type that was subscripted, +# e.g., Union[T, int].__origin__ == Union; +# * __args__ is a tuple of all arguments used in subscripting, +# e.g., Dict[T, int].__args__ == (T, int). + + +def _subs_tree(cls, tvars=None, args=None): + """An internal helper function: calculate substitution tree + for generic cls after replacing its type parameters with + substitutions in tvars -> args (if any). + Repeat the same following __origin__'s. + + Return a list of arguments with all possible substitutions + performed. Arguments that are generic classes themselves are represented + as tuples (so that no new classes are created by this function). + For example: _subs_tree(List[Tuple[int, T]][str]) == [(Tuple, int, str)] + """ + + if cls.__origin__ is None: + return cls + # Make of chain of origins (i.e. cls -> cls.__origin__) + current = cls.__origin__ + orig_chain = [] + while current.__origin__ is not None: + orig_chain.append(current) + current = current.__origin__ + # Replace type variables in __args__ if asked ... + tree_args = [] + for arg in cls.__args__: + tree_args.append(_replace_arg(arg, tvars, args)) + # ... then continue replacing down the origin chain. + for ocls in orig_chain: + new_tree_args = [] + for arg in ocls.__args__: + new_tree_args.append(_replace_arg(arg, ocls.__parameters__, tree_args)) + tree_args = new_tree_args + return tree_args + + +def _remove_dups_flatten(parameters): + """An internal helper for Union creation and substitution: flatten Union's + among parameters, then remove duplicates and strict subclasses. + """ + + # Flatten out Union[Union[...], ...]. + params = [] + for p in parameters: + if isinstance(p, _Union) and p.__origin__ is Union: + params.extend(p.__args__) + elif isinstance(p, tuple) and len(p) > 0 and p[0] is Union: + params.extend(p[1:]) + else: + params.append(p) + # Weed out strict duplicates, preserving the first of each occurrence. + all_params = set(params) + if len(all_params) < len(params): + new_params = [] + for t in params: + if t in all_params: + new_params.append(t) + all_params.remove(t) + params = new_params + assert not all_params, all_params + # Weed out subclasses. + # E.g. Union[int, Employee, Manager] == Union[int, Employee]. + # If object is present it will be sole survivor among proper classes. + # Never discard type variables. + # (In particular, Union[str, AnyStr] != AnyStr.) + all_params = set(params) + for t1 in params: + if not isinstance(t1, type): + continue + if any(isinstance(t2, type) and issubclass(t1, t2) + for t2 in all_params - {t1} + if not (isinstance(t2, GenericMeta) and + t2.__origin__ is not None)): + all_params.remove(t1) + return tuple(t for t in params if t in all_params) + + +def _check_generic(cls, parameters): + # Check correct count for parameters of a generic cls (internal helper). + if not cls.__parameters__: + raise TypeError("%s is not a generic class" % repr(cls)) + alen = len(parameters) + elen = len(cls.__parameters__) + if alen != elen: + raise TypeError("Too %s parameters for %s; actual %s, expected %s" % + ("many" if alen > elen else "few", repr(cls), alen, elen)) + + +_cleanups = [] + + +def _tp_cache(func): + """Internal wrapper caching __getitem__ of generic types with a fallback to + original function for non-hashable arguments. + """ + + cached = functools.lru_cache()(func) + _cleanups.append(cached.cache_clear) + + @functools.wraps(func) + def inner(*args, **kwds): + try: + return cached(*args, **kwds) + except TypeError: + pass # All real errors (not unhashable args) are raised below. + return func(*args, **kwds) + return inner + + +class _Union(_FinalTypingBase, _root=True): + """Union type; Union[X, Y] means either X or Y. + + To define a union, use e.g. Union[int, str]. Details: + + - The arguments must be types and there must be at least one. + + - None as an argument is a special case and is replaced by + type(None). + + - Unions of unions are flattened, e.g.:: + + Union[Union[int, str], float] == Union[int, str, float] + + - Unions of a single argument vanish, e.g.:: + + Union[int] == int # The constructor actually returns int + + - Redundant arguments are skipped, e.g.:: + + Union[int, str, int] == Union[int, str] + + - When comparing unions, the argument order is ignored, e.g.:: + + Union[int, str] == Union[str, int] + + - When two arguments have a subclass relationship, the least + derived argument is kept, e.g.:: + + class Employee: pass + class Manager(Employee): pass + Union[int, Employee, Manager] == Union[int, Employee] + Union[Manager, int, Employee] == Union[int, Employee] + Union[Employee, Manager] == Employee + + - Similar for object:: + + Union[int, object] == object + + - You cannot subclass or instantiate a union. + + - You can use Optional[X] as a shorthand for Union[X, None]. + """ + + __slots__ = ('__parameters__', '__args__', '__origin__', '__tree_hash__') + + def __new__(cls, parameters=None, origin=None, *args, _root=False): + self = super().__new__(cls, parameters, origin, *args, _root=_root) + if origin is None: + self.__parameters__ = None + self.__args__ = None + self.__origin__ = None + self.__tree_hash__ = hash(frozenset(('Union',))) + return self + if not isinstance(parameters, tuple): + raise TypeError("Expected parameters=") + if origin is Union: + parameters = _remove_dups_flatten(parameters) + # It's not a union if there's only one type left. + if len(parameters) == 1: + return parameters[0] + self.__parameters__ = _type_vars(parameters) + self.__args__ = parameters + self.__origin__ = origin + # Pre-calculate the __hash__ on instantiation. + # This improves speed for complex substitutions. + subs_tree = self._subs_tree() + if isinstance(subs_tree, tuple): + self.__tree_hash__ = hash(frozenset(subs_tree)) + else: + self.__tree_hash__ = hash(subs_tree) + return self + + def _eval_type(self, globalns, localns): + if self.__args__ is None: + return self + ev_args = tuple(_eval_type(t, globalns, localns) for t in self.__args__) + ev_origin = _eval_type(self.__origin__, globalns, localns) + if ev_args == self.__args__ and ev_origin == self.__origin__: + # Everything is already evaluated. + return self + return self.__class__(ev_args, ev_origin, _root=True) + + def _get_type_vars(self, tvars): + if self.__origin__ and self.__parameters__: + _get_type_vars(self.__parameters__, tvars) + + def __repr__(self): + if self.__origin__ is None: + return super().__repr__() + tree = self._subs_tree() + if not isinstance(tree, tuple): + return repr(tree) + return tree[0]._tree_repr(tree) + + def _tree_repr(self, tree): + arg_list = [] + for arg in tree[1:]: + if not isinstance(arg, tuple): + arg_list.append(_type_repr(arg)) + else: + arg_list.append(arg[0]._tree_repr(arg)) + return super().__repr__() + '[%s]' % ', '.join(arg_list) + + @_tp_cache + def __getitem__(self, parameters): + if parameters == (): + raise TypeError("Cannot take a Union of no types.") + if not isinstance(parameters, tuple): + parameters = (parameters,) + if self.__origin__ is None: + msg = "Union[arg, ...]: each arg must be a type." + else: + msg = "Parameters to generic types must be types." + parameters = tuple(_type_check(p, msg) for p in parameters) + if self is not Union: + _check_generic(self, parameters) + return self.__class__(parameters, origin=self, _root=True) + + def _subs_tree(self, tvars=None, args=None): + if self is Union: + return Union # Nothing to substitute + tree_args = _subs_tree(self, tvars, args) + tree_args = _remove_dups_flatten(tree_args) + if len(tree_args) == 1: + return tree_args[0] # Union of a single type is that type + return (Union,) + tree_args + + def __eq__(self, other): + if isinstance(other, _Union): + return self.__tree_hash__ == other.__tree_hash__ + elif self is not Union: + return self._subs_tree() == other + else: + return self is other + + def __hash__(self): + return self.__tree_hash__ + + def __instancecheck__(self, obj): + raise TypeError("Unions cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + raise TypeError("Unions cannot be used with issubclass().") + + +Union = _Union(_root=True) + + +class _Optional(_FinalTypingBase, _root=True): + """Optional type. + + Optional[X] is equivalent to Union[X, None]. + """ + + __slots__ = () + + @_tp_cache + def __getitem__(self, arg): + arg = _type_check(arg, "Optional[t] requires a single type.") + return Union[arg, type(None)] + + +Optional = _Optional(_root=True) + + +def _gorg(a): + """Return the farthest origin of a generic class (internal helper).""" + assert isinstance(a, GenericMeta) + while a.__origin__ is not None: + a = a.__origin__ + return a + + +def _geqv(a, b): + """Return whether two generic classes are equivalent (internal helper). + + The intention is to consider generic class X and any of its + parameterized forms (X[T], X[int], etc.) as equivalent. + + However, X is not equivalent to a subclass of X. + + The relation is reflexive, symmetric and transitive. + """ + assert isinstance(a, GenericMeta) and isinstance(b, GenericMeta) + # Reduce each to its origin. + return _gorg(a) is _gorg(b) + + +def _next_in_mro(cls): + """Helper for Generic.__new__. + + Returns the class after the last occurrence of Generic or + Generic[...] in cls.__mro__. + """ + next_in_mro = object + # Look for the last occurrence of Generic or Generic[...]. + for i, c in enumerate(cls.__mro__[:-1]): + if isinstance(c, GenericMeta) and _gorg(c) is Generic: + next_in_mro = cls.__mro__[i + 1] + return next_in_mro + + +def _make_subclasshook(cls): + """Construct a __subclasshook__ callable that incorporates + the associated __extra__ class in subclass checks performed + against cls. + """ + if isinstance(cls.__extra__, abc.ABCMeta): + # The logic mirrors that of ABCMeta.__subclasscheck__. + # Registered classes need not be checked here because + # cls and its extra share the same _abc_registry. + def __extrahook__(subclass): + res = cls.__extra__.__subclasshook__(subclass) + if res is not NotImplemented: + return res + if cls.__extra__ in subclass.__mro__: + return True + for scls in cls.__extra__.__subclasses__(): + if isinstance(scls, GenericMeta): + continue + if issubclass(subclass, scls): + return True + return NotImplemented + else: + # For non-ABC extras we'll just call issubclass(). + def __extrahook__(subclass): + if cls.__extra__ and issubclass(subclass, cls.__extra__): + return True + return NotImplemented + return __extrahook__ + + +def _no_slots_copy(dct): + """Internal helper: copy class __dict__ and clean slots class variables. + (They will be re-created if necessary by normal class machinery.) + """ + dict_copy = dict(dct) + if '__slots__' in dict_copy: + for slot in dict_copy['__slots__']: + dict_copy.pop(slot, None) + return dict_copy + + +class GenericMeta(TypingMeta, abc.ABCMeta): + """Metaclass for generic types. + + This is a metaclass for typing.Generic and generic ABCs defined in + typing module. User defined subclasses of GenericMeta can override + __new__ and invoke super().__new__. Note that GenericMeta.__new__ + has strict rules on what is allowed in its bases argument: + * plain Generic is disallowed in bases; + * Generic[...] should appear in bases at most once; + * if Generic[...] is present, then it should list all type variables + that appear in other bases. + In addition, type of all generic bases is erased, e.g., C[int] is + stripped to plain C. + """ + + def __new__(cls, name, bases, namespace, + tvars=None, args=None, origin=None, extra=None, orig_bases=None): + """Create a new generic class. GenericMeta.__new__ accepts + keyword arguments that are used for internal bookkeeping, therefore + an override should pass unused keyword arguments to super(). + """ + if tvars is not None: + # Called from __getitem__() below. + assert origin is not None + assert all(isinstance(t, TypeVar) for t in tvars), tvars + else: + # Called from class statement. + assert tvars is None, tvars + assert args is None, args + assert origin is None, origin + + # Get the full set of tvars from the bases. + tvars = _type_vars(bases) + # Look for Generic[T1, ..., Tn]. + # If found, tvars must be a subset of it. + # If not found, tvars is it. + # Also check for and reject plain Generic, + # and reject multiple Generic[...]. + gvars = None + for base in bases: + if base is Generic: + raise TypeError("Cannot inherit from plain Generic") + if (isinstance(base, GenericMeta) and + base.__origin__ is Generic): + if gvars is not None: + raise TypeError( + "Cannot inherit from Generic[...] multiple types.") + gvars = base.__parameters__ + if gvars is None: + gvars = tvars + else: + tvarset = set(tvars) + gvarset = set(gvars) + if not tvarset <= gvarset: + raise TypeError( + "Some type variables (%s) " + "are not listed in Generic[%s]" % + (", ".join(str(t) for t in tvars if t not in gvarset), + ", ".join(str(g) for g in gvars))) + tvars = gvars + + initial_bases = bases + if extra is not None and type(extra) is abc.ABCMeta and extra not in bases: + bases = (extra,) + bases + bases = tuple(_gorg(b) if isinstance(b, GenericMeta) else b for b in bases) + + # remove bare Generic from bases if there are other generic bases + if any(isinstance(b, GenericMeta) and b is not Generic for b in bases): + bases = tuple(b for b in bases if b is not Generic) + namespace.update({'__origin__': origin, '__extra__': extra}) + self = super().__new__(cls, name, bases, namespace, _root=True) + + self.__parameters__ = tvars + # Be prepared that GenericMeta will be subclassed by TupleMeta + # and CallableMeta, those two allow ..., (), or [] in __args___. + self.__args__ = tuple(... if a is _TypingEllipsis else + () if a is _TypingEmpty else + a for a in args) if args else None + # Speed hack (https://github.com/python/typing/issues/196). + self.__next_in_mro__ = _next_in_mro(self) + # Preserve base classes on subclassing (__bases__ are type erased now). + if orig_bases is None: + self.__orig_bases__ = initial_bases + + # This allows unparameterized generic collections to be used + # with issubclass() and isinstance() in the same way as their + # collections.abc counterparts (e.g., isinstance([], Iterable)). + if ( + '__subclasshook__' not in namespace and extra or + # allow overriding + getattr(self.__subclasshook__, '__name__', '') == '__extrahook__' + ): + self.__subclasshook__ = _make_subclasshook(self) + if isinstance(extra, abc.ABCMeta): + self._abc_registry = extra._abc_registry + self._abc_cache = extra._abc_cache + elif origin is not None: + self._abc_registry = origin._abc_registry + self._abc_cache = origin._abc_cache + + if origin and hasattr(origin, '__qualname__'): # Fix for Python 3.2. + self.__qualname__ = origin.__qualname__ + self.__tree_hash__ = (hash(self._subs_tree()) if origin else + super(GenericMeta, self).__hash__()) + return self + + # _abc_negative_cache and _abc_negative_cache_version + # realised as descriptors, since GenClass[t1, t2, ...] always + # share subclass info with GenClass. + # This is an important memory optimization. + @property + def _abc_negative_cache(self): + if isinstance(self.__extra__, abc.ABCMeta): + return self.__extra__._abc_negative_cache + return _gorg(self)._abc_generic_negative_cache + + @_abc_negative_cache.setter + def _abc_negative_cache(self, value): + if self.__origin__ is None: + if isinstance(self.__extra__, abc.ABCMeta): + self.__extra__._abc_negative_cache = value + else: + self._abc_generic_negative_cache = value + + @property + def _abc_negative_cache_version(self): + if isinstance(self.__extra__, abc.ABCMeta): + return self.__extra__._abc_negative_cache_version + return _gorg(self)._abc_generic_negative_cache_version + + @_abc_negative_cache_version.setter + def _abc_negative_cache_version(self, value): + if self.__origin__ is None: + if isinstance(self.__extra__, abc.ABCMeta): + self.__extra__._abc_negative_cache_version = value + else: + self._abc_generic_negative_cache_version = value + + def _get_type_vars(self, tvars): + if self.__origin__ and self.__parameters__: + _get_type_vars(self.__parameters__, tvars) + + def _eval_type(self, globalns, localns): + ev_origin = (self.__origin__._eval_type(globalns, localns) + if self.__origin__ else None) + ev_args = tuple(_eval_type(a, globalns, localns) for a + in self.__args__) if self.__args__ else None + if ev_origin == self.__origin__ and ev_args == self.__args__: + return self + return self.__class__(self.__name__, + self.__bases__, + _no_slots_copy(self.__dict__), + tvars=_type_vars(ev_args) if ev_args else None, + args=ev_args, + origin=ev_origin, + extra=self.__extra__, + orig_bases=self.__orig_bases__) + + def __repr__(self): + if self.__origin__ is None: + return super().__repr__() + return self._tree_repr(self._subs_tree()) + + def _tree_repr(self, tree): + arg_list = [] + for arg in tree[1:]: + if arg == (): + arg_list.append('()') + elif not isinstance(arg, tuple): + arg_list.append(_type_repr(arg)) + else: + arg_list.append(arg[0]._tree_repr(arg)) + return super().__repr__() + '[%s]' % ', '.join(arg_list) + + def _subs_tree(self, tvars=None, args=None): + if self.__origin__ is None: + return self + tree_args = _subs_tree(self, tvars, args) + return (_gorg(self),) + tuple(tree_args) + + def __eq__(self, other): + if not isinstance(other, GenericMeta): + return NotImplemented + if self.__origin__ is None or other.__origin__ is None: + return self is other + return self.__tree_hash__ == other.__tree_hash__ + + def __hash__(self): + return self.__tree_hash__ + + @_tp_cache + def __getitem__(self, params): + if not isinstance(params, tuple): + params = (params,) + if not params and not _gorg(self) is Tuple: + raise TypeError( + "Parameter list to %s[...] cannot be empty" % _qualname(self)) + msg = "Parameters to generic types must be types." + params = tuple(_type_check(p, msg) for p in params) + if self is Generic: + # Generic can only be subscripted with unique type variables. + if not all(isinstance(p, TypeVar) for p in params): + raise TypeError( + "Parameters to Generic[...] must all be type variables") + if len(set(params)) != len(params): + raise TypeError( + "Parameters to Generic[...] must all be unique") + tvars = params + args = params + elif self in (Tuple, Callable): + tvars = _type_vars(params) + args = params + elif self is _Protocol: + # _Protocol is internal, don't check anything. + tvars = params + args = params + elif self.__origin__ in (Generic, _Protocol): + # Can't subscript Generic[...] or _Protocol[...]. + raise TypeError("Cannot subscript already-subscripted %s" % + repr(self)) + else: + # Subscripting a regular Generic subclass. + _check_generic(self, params) + tvars = _type_vars(params) + args = params + + prepend = (self,) if self.__origin__ is None else () + return self.__class__(self.__name__, + prepend + self.__bases__, + _no_slots_copy(self.__dict__), + tvars=tvars, + args=args, + origin=self, + extra=self.__extra__, + orig_bases=self.__orig_bases__) + + def __subclasscheck__(self, cls): + if self.__origin__ is not None: + if sys._getframe(1).f_globals['__name__'] not in ['abc', 'functools']: + raise TypeError("Parameterized generics cannot be used with class " + "or instance checks") + return False + if self is Generic: + raise TypeError("Class %r cannot be used with class " + "or instance checks" % self) + return super().__subclasscheck__(cls) + + def __instancecheck__(self, instance): + # Since we extend ABC.__subclasscheck__ and + # ABC.__instancecheck__ inlines the cache checking done by the + # latter, we must extend __instancecheck__ too. For simplicity + # we just skip the cache check -- instance checks for generic + # classes are supposed to be rare anyways. + return issubclass(instance.__class__, self) + + def __copy__(self): + return self.__class__(self.__name__, self.__bases__, + _no_slots_copy(self.__dict__), + self.__parameters__, self.__args__, self.__origin__, + self.__extra__, self.__orig_bases__) + + def __setattr__(self, attr, value): + # We consider all the subscripted genrics as proxies for original class + if ( + attr.startswith('__') and attr.endswith('__') or + attr.startswith('_abc_') + ): + super(GenericMeta, self).__setattr__(attr, value) + else: + super(GenericMeta, _gorg(self)).__setattr__(attr, value) + + +# Prevent checks for Generic to crash when defining Generic. +Generic = None + + +def _generic_new(base_cls, cls, *args, **kwds): + # Assure type is erased on instantiation, + # but attempt to store it in __orig_class__ + if cls.__origin__ is None: + return base_cls.__new__(cls) + else: + origin = _gorg(cls) + obj = base_cls.__new__(origin) + try: + obj.__orig_class__ = cls + except AttributeError: + pass + obj.__init__(*args, **kwds) + return obj + + +class Generic(metaclass=GenericMeta): + """Abstract base class for generic types. + + A generic type is typically declared by inheriting from + this class parameterized with one or more type variables. + For example, a generic mapping type might be defined as:: + + class Mapping(Generic[KT, VT]): + def __getitem__(self, key: KT) -> VT: + ... + # Etc. + + This class can then be used as follows:: + + def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT: + try: + return mapping[key] + except KeyError: + return default + """ + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Generic): + raise TypeError("Type Generic cannot be instantiated; " + "it can be used only as a base class") + return _generic_new(cls.__next_in_mro__, cls, *args, **kwds) + + +class _TypingEmpty: + """Internal placeholder for () or []. Used by TupleMeta and CallableMeta + to allow empty list/tuple in specific places, without allowing them + to sneak in where prohibited. + """ + + +class _TypingEllipsis: + """Internal placeholder for ... (ellipsis).""" + + +class TupleMeta(GenericMeta): + """Metaclass for Tuple (internal).""" + + @_tp_cache + def __getitem__(self, parameters): + if self.__origin__ is not None or not _geqv(self, Tuple): + # Normal generic rules apply if this is not the first subscription + # or a subscription of a subclass. + return super().__getitem__(parameters) + if parameters == (): + return super().__getitem__((_TypingEmpty,)) + if not isinstance(parameters, tuple): + parameters = (parameters,) + if len(parameters) == 2 and parameters[1] is ...: + msg = "Tuple[t, ...]: t must be a type." + p = _type_check(parameters[0], msg) + return super().__getitem__((p, _TypingEllipsis)) + msg = "Tuple[t0, t1, ...]: each t must be a type." + parameters = tuple(_type_check(p, msg) for p in parameters) + return super().__getitem__(parameters) + + def __instancecheck__(self, obj): + if self.__args__ is None: + return isinstance(obj, tuple) + raise TypeError("Parameterized Tuple cannot be used " + "with isinstance().") + + def __subclasscheck__(self, cls): + if self.__args__ is None: + return issubclass(cls, tuple) + raise TypeError("Parameterized Tuple cannot be used " + "with issubclass().") + + +class Tuple(tuple, extra=tuple, metaclass=TupleMeta): + """Tuple type; Tuple[X, Y] is the cross-product type of X and Y. + + Example: Tuple[T1, T2] is a tuple of two elements corresponding + to type variables T1 and T2. Tuple[int, float, str] is a tuple + of an int, a float and a string. + + To specify a variable-length tuple of homogeneous type, use Tuple[T, ...]. + """ + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Tuple): + raise TypeError("Type Tuple cannot be instantiated; " + "use tuple() instead") + return _generic_new(tuple, cls, *args, **kwds) + + +class CallableMeta(GenericMeta): + """Metaclass for Callable (internal).""" + + def __repr__(self): + if self.__origin__ is None: + return super().__repr__() + return self._tree_repr(self._subs_tree()) + + def _tree_repr(self, tree): + if _gorg(self) is not Callable: + return super()._tree_repr(tree) + # For actual Callable (not its subclass) we override + # super()._tree_repr() for nice formatting. + arg_list = [] + for arg in tree[1:]: + if not isinstance(arg, tuple): + arg_list.append(_type_repr(arg)) + else: + arg_list.append(arg[0]._tree_repr(arg)) + if arg_list[0] == '...': + return repr(tree[0]) + '[..., %s]' % arg_list[1] + return (repr(tree[0]) + + '[[%s], %s]' % (', '.join(arg_list[:-1]), arg_list[-1])) + + def __getitem__(self, parameters): + """A thin wrapper around __getitem_inner__ to provide the latter + with hashable arguments to improve speed. + """ + + if self.__origin__ is not None or not _geqv(self, Callable): + return super().__getitem__(parameters) + if not isinstance(parameters, tuple) or len(parameters) != 2: + raise TypeError("Callable must be used as " + "Callable[[arg, ...], result].") + args, result = parameters + if args is Ellipsis: + parameters = (Ellipsis, result) + else: + if not isinstance(args, list): + raise TypeError("Callable[args, result]: args must be a list." + " Got %.100r." % (args,)) + parameters = (tuple(args), result) + return self.__getitem_inner__(parameters) + + @_tp_cache + def __getitem_inner__(self, parameters): + args, result = parameters + msg = "Callable[args, result]: result must be a type." + result = _type_check(result, msg) + if args is Ellipsis: + return super().__getitem__((_TypingEllipsis, result)) + msg = "Callable[[arg, ...], result]: each arg must be a type." + args = tuple(_type_check(arg, msg) for arg in args) + parameters = args + (result,) + return super().__getitem__(parameters) + + +class Callable(extra=collections_abc.Callable, metaclass=CallableMeta): + """Callable type; Callable[[int], str] is a function of (int) -> str. + + The subscription syntax must always be used with exactly two + values: the argument list and the return type. The argument list + must be a list of types or ellipsis; the return type must be a single type. + + There is no syntax to indicate optional or keyword arguments, + such function types are rarely used as callback types. + """ + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Callable): + raise TypeError("Type Callable cannot be instantiated; " + "use a non-abstract subclass instead") + return _generic_new(cls.__next_in_mro__, cls, *args, **kwds) + + +class _ClassVar(_FinalTypingBase, _root=True): + """Special type construct to mark class variables. + + An annotation wrapped in ClassVar indicates that a given + attribute is intended to be used as a class variable and + should not be set on instances of that class. Usage:: + + class Starship: + stats: ClassVar[Dict[str, int]] = {} # class variable + damage: int = 10 # instance variable + + ClassVar accepts only types and cannot be further subscribed. + + Note that ClassVar is not a class itself, and should not + be used with isinstance() or issubclass(). + """ + + __slots__ = ('__type__',) + + def __init__(self, tp=None, **kwds): + self.__type__ = tp + + def __getitem__(self, item): + cls = type(self) + if self.__type__ is None: + return cls(_type_check(item, + '{} accepts only single type.'.format(cls.__name__[1:])), + _root=True) + raise TypeError('{} cannot be further subscripted' + .format(cls.__name__[1:])) + + def _eval_type(self, globalns, localns): + new_tp = _eval_type(self.__type__, globalns, localns) + if new_tp == self.__type__: + return self + return type(self)(new_tp, _root=True) + + def __repr__(self): + r = super().__repr__() + if self.__type__ is not None: + r += '[{}]'.format(_type_repr(self.__type__)) + return r + + def __hash__(self): + return hash((type(self).__name__, self.__type__)) + + def __eq__(self, other): + if not isinstance(other, _ClassVar): + return NotImplemented + if self.__type__ is not None: + return self.__type__ == other.__type__ + return self is other + + +ClassVar = _ClassVar(_root=True) + + +def cast(typ, val): + """Cast a value to a type. + + This returns the value unchanged. To the type checker this + signals that the return value has the designated type, but at + runtime we intentionally don't check anything (we want this + to be as fast as possible). + """ + return val + + +def _get_defaults(func): + """Internal helper to extract the default arguments, by name.""" + try: + code = func.__code__ + except AttributeError: + # Some built-in functions don't have __code__, __defaults__, etc. + return {} + pos_count = code.co_argcount + arg_names = code.co_varnames + arg_names = arg_names[:pos_count] + defaults = func.__defaults__ or () + kwdefaults = func.__kwdefaults__ + res = dict(kwdefaults) if kwdefaults else {} + pos_offset = pos_count - len(defaults) + for name, value in zip(arg_names[pos_offset:], defaults): + assert name not in res + res[name] = value + return res + + +_allowed_types = (types.FunctionType, types.BuiltinFunctionType, + types.MethodType, types.ModuleType, + SlotWrapperType, MethodWrapperType, MethodDescriptorType) + + +def get_type_hints(obj, globalns=None, localns=None): + """Return type hints for an object. + + This is often the same as obj.__annotations__, but it handles + forward references encoded as string literals, and if necessary + adds Optional[t] if a default value equal to None is set. + + The argument may be a module, class, method, or function. The annotations + are returned as a dictionary. For classes, annotations include also + inherited members. + + TypeError is raised if the argument is not of a type that can contain + annotations, and an empty dictionary is returned if no annotations are + present. + + BEWARE -- the behavior of globalns and localns is counterintuitive + (unless you are familiar with how eval() and exec() work). The + search order is locals first, then globals. + + - If no dict arguments are passed, an attempt is made to use the + globals from obj, and these are also used as the locals. If the + object does not appear to have globals, an exception is raised. + + - If one dict argument is passed, it is used for both globals and + locals. + + - If two dict arguments are passed, they specify globals and + locals, respectively. + """ + + if getattr(obj, '__no_type_check__', None): + return {} + if globalns is None: + globalns = getattr(obj, '__globals__', {}) + if localns is None: + localns = globalns + elif localns is None: + localns = globalns + # Classes require a special treatment. + if isinstance(obj, type): + hints = {} + for base in reversed(obj.__mro__): + ann = base.__dict__.get('__annotations__', {}) + for name, value in ann.items(): + if value is None: + value = type(None) + if isinstance(value, str): + value = _ForwardRef(value) + value = _eval_type(value, globalns, localns) + hints[name] = value + return hints + hints = getattr(obj, '__annotations__', None) + if hints is None: + # Return empty annotations for something that _could_ have them. + if isinstance(obj, _allowed_types): + return {} + else: + raise TypeError('{!r} is not a module, class, method, ' + 'or function.'.format(obj)) + defaults = _get_defaults(obj) + hints = dict(hints) + for name, value in hints.items(): + if value is None: + value = type(None) + if isinstance(value, str): + value = _ForwardRef(value) + value = _eval_type(value, globalns, localns) + if name in defaults and defaults[name] is None: + value = Optional[value] + hints[name] = value + return hints + + +def no_type_check(arg): + """Decorator to indicate that annotations are not type hints. + + The argument must be a class or function; if it is a class, it + applies recursively to all methods and classes defined in that class + (but not to methods defined in its superclasses or subclasses). + + This mutates the function(s) or class(es) in place. + """ + if isinstance(arg, type): + arg_attrs = arg.__dict__.copy() + for attr, val in arg.__dict__.items(): + if val in arg.__bases__: + arg_attrs.pop(attr) + for obj in arg_attrs.values(): + if isinstance(obj, types.FunctionType): + obj.__no_type_check__ = True + if isinstance(obj, type): + no_type_check(obj) + try: + arg.__no_type_check__ = True + except TypeError: # built-in classes + pass + return arg + + +def no_type_check_decorator(decorator): + """Decorator to give another decorator the @no_type_check effect. + + This wraps the decorator with something that wraps the decorated + function in @no_type_check. + """ + + @functools.wraps(decorator) + def wrapped_decorator(*args, **kwds): + func = decorator(*args, **kwds) + func = no_type_check(func) + return func + + return wrapped_decorator + + +def _overload_dummy(*args, **kwds): + """Helper for @overload to raise when called.""" + raise NotImplementedError( + "You should not call an overloaded function. " + "A series of @overload-decorated functions " + "outside a stub module should always be followed " + "by an implementation that is not @overload-ed.") + + +def overload(func): + """Decorator for overloaded functions/methods. + + In a stub file, place two or more stub definitions for the same + function in a row, each decorated with @overload. For example: + + @overload + def utf8(value: None) -> None: ... + @overload + def utf8(value: bytes) -> bytes: ... + @overload + def utf8(value: str) -> bytes: ... + + In a non-stub file (i.e. a regular .py file), do the same but + follow it with an implementation. The implementation should *not* + be decorated with @overload. For example: + + @overload + def utf8(value: None) -> None: ... + @overload + def utf8(value: bytes) -> bytes: ... + @overload + def utf8(value: str) -> bytes: ... + def utf8(value): + # implementation goes here + """ + return _overload_dummy + + +class _ProtocolMeta(GenericMeta): + """Internal metaclass for _Protocol. + + This exists so _Protocol classes can be generic without deriving + from Generic. + """ + + def __instancecheck__(self, obj): + if _Protocol not in self.__bases__: + return super().__instancecheck__(obj) + raise TypeError("Protocols cannot be used with isinstance().") + + def __subclasscheck__(self, cls): + if not self._is_protocol: + # No structural checks since this isn't a protocol. + return NotImplemented + + if self is _Protocol: + # Every class is a subclass of the empty protocol. + return True + + # Find all attributes defined in the protocol. + attrs = self._get_protocol_attrs() + + for attr in attrs: + if not any(attr in d.__dict__ for d in cls.__mro__): + return False + return True + + def _get_protocol_attrs(self): + # Get all Protocol base classes. + protocol_bases = [] + for c in self.__mro__: + if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol': + protocol_bases.append(c) + + # Get attributes included in protocol. + attrs = set() + for base in protocol_bases: + for attr in base.__dict__.keys(): + # Include attributes not defined in any non-protocol bases. + for c in self.__mro__: + if (c is not base and attr in c.__dict__ and + not getattr(c, '_is_protocol', False)): + break + else: + if (not attr.startswith('_abc_') and + attr != '__abstractmethods__' and + attr != '__annotations__' and + attr != '__weakref__' and + attr != '_is_protocol' and + attr != '__dict__' and + attr != '__args__' and + attr != '__slots__' and + attr != '_get_protocol_attrs' and + attr != '__next_in_mro__' and + attr != '__parameters__' and + attr != '__origin__' and + attr != '__orig_bases__' and + attr != '__extra__' and + attr != '__tree_hash__' and + attr != '__module__'): + attrs.add(attr) + + return attrs + + +class _Protocol(metaclass=_ProtocolMeta): + """Internal base class for protocol classes. + + This implements a simple-minded structural issubclass check + (similar but more general than the one-offs in collections.abc + such as Hashable). + """ + + __slots__ = () + + _is_protocol = True + + +# Various ABCs mimicking those in collections.abc. +# A few are simply re-exported for completeness. + +Hashable = collections_abc.Hashable # Not generic. + + +if hasattr(collections_abc, 'Awaitable'): + class Awaitable(Generic[T_co], extra=collections_abc.Awaitable): + __slots__ = () + + __all__.append('Awaitable') + + +if hasattr(collections_abc, 'Coroutine'): + class Coroutine(Awaitable[V_co], Generic[T_co, T_contra, V_co], + extra=collections_abc.Coroutine): + __slots__ = () + + __all__.append('Coroutine') + + +if hasattr(collections_abc, 'AsyncIterable'): + + class AsyncIterable(Generic[T_co], extra=collections_abc.AsyncIterable): + __slots__ = () + + class AsyncIterator(AsyncIterable[T_co], + extra=collections_abc.AsyncIterator): + __slots__ = () + + __all__.append('AsyncIterable') + __all__.append('AsyncIterator') + + +class Iterable(Generic[T_co], extra=collections_abc.Iterable): + __slots__ = () + + +class Iterator(Iterable[T_co], extra=collections_abc.Iterator): + __slots__ = () + + +class SupportsInt(_Protocol): + __slots__ = () + + @abstractmethod + def __int__(self) -> int: + pass + + +class SupportsFloat(_Protocol): + __slots__ = () + + @abstractmethod + def __float__(self) -> float: + pass + + +class SupportsComplex(_Protocol): + __slots__ = () + + @abstractmethod + def __complex__(self) -> complex: + pass + + +class SupportsBytes(_Protocol): + __slots__ = () + + @abstractmethod + def __bytes__(self) -> bytes: + pass + + +class SupportsAbs(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __abs__(self) -> T_co: + pass + + +class SupportsRound(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __round__(self, ndigits: int = 0) -> T_co: + pass + + +if hasattr(collections_abc, 'Reversible'): + class Reversible(Iterable[T_co], extra=collections_abc.Reversible): + __slots__ = () +else: + class Reversible(_Protocol[T_co]): + __slots__ = () + + @abstractmethod + def __reversed__(self) -> 'Iterator[T_co]': + pass + + +Sized = collections_abc.Sized # Not generic. + + +class Container(Generic[T_co], extra=collections_abc.Container): + __slots__ = () + + +if hasattr(collections_abc, 'Collection'): + class Collection(Sized, Iterable[T_co], Container[T_co], + extra=collections_abc.Collection): + __slots__ = () + + __all__.append('Collection') + + +# Callable was defined earlier. + +if hasattr(collections_abc, 'Collection'): + class AbstractSet(Collection[T_co], + extra=collections_abc.Set): + __slots__ = () +else: + class AbstractSet(Sized, Iterable[T_co], Container[T_co], + extra=collections_abc.Set): + __slots__ = () + + +class MutableSet(AbstractSet[T], extra=collections_abc.MutableSet): + __slots__ = () + + +# NOTE: It is only covariant in the value type. +if hasattr(collections_abc, 'Collection'): + class Mapping(Collection[KT], Generic[KT, VT_co], + extra=collections_abc.Mapping): + __slots__ = () +else: + class Mapping(Sized, Iterable[KT], Container[KT], Generic[KT, VT_co], + extra=collections_abc.Mapping): + __slots__ = () + + +class MutableMapping(Mapping[KT, VT], extra=collections_abc.MutableMapping): + __slots__ = () + + +if hasattr(collections_abc, 'Reversible'): + if hasattr(collections_abc, 'Collection'): + class Sequence(Reversible[T_co], Collection[T_co], + extra=collections_abc.Sequence): + __slots__ = () + else: + class Sequence(Sized, Reversible[T_co], Container[T_co], + extra=collections_abc.Sequence): + __slots__ = () +else: + class Sequence(Sized, Iterable[T_co], Container[T_co], + extra=collections_abc.Sequence): + __slots__ = () + + +class MutableSequence(Sequence[T], extra=collections_abc.MutableSequence): + __slots__ = () + + +class ByteString(Sequence[int], extra=collections_abc.ByteString): + __slots__ = () + + +class List(list, MutableSequence[T], extra=list): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, List): + raise TypeError("Type List cannot be instantiated; " + "use list() instead") + return _generic_new(list, cls, *args, **kwds) + + +class Deque(collections.deque, MutableSequence[T], extra=collections.deque): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Deque): + return collections.deque(*args, **kwds) + return _generic_new(collections.deque, cls, *args, **kwds) + + +class Set(set, MutableSet[T], extra=set): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Set): + raise TypeError("Type Set cannot be instantiated; " + "use set() instead") + return _generic_new(set, cls, *args, **kwds) + + +class FrozenSet(frozenset, AbstractSet[T_co], extra=frozenset): + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, FrozenSet): + raise TypeError("Type FrozenSet cannot be instantiated; " + "use frozenset() instead") + return _generic_new(frozenset, cls, *args, **kwds) + + +class MappingView(Sized, Iterable[T_co], extra=collections_abc.MappingView): + __slots__ = () + + +class KeysView(MappingView[KT], AbstractSet[KT], + extra=collections_abc.KeysView): + __slots__ = () + + +class ItemsView(MappingView[Tuple[KT, VT_co]], + AbstractSet[Tuple[KT, VT_co]], + Generic[KT, VT_co], + extra=collections_abc.ItemsView): + __slots__ = () + + +class ValuesView(MappingView[VT_co], extra=collections_abc.ValuesView): + __slots__ = () + + +if hasattr(contextlib, 'AbstractContextManager'): + class ContextManager(Generic[T_co], extra=contextlib.AbstractContextManager): + __slots__ = () + __all__.append('ContextManager') + + +class Dict(dict, MutableMapping[KT, VT], extra=dict): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Dict): + raise TypeError("Type Dict cannot be instantiated; " + "use dict() instead") + return _generic_new(dict, cls, *args, **kwds) + + +class DefaultDict(collections.defaultdict, MutableMapping[KT, VT], + extra=collections.defaultdict): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, DefaultDict): + return collections.defaultdict(*args, **kwds) + return _generic_new(collections.defaultdict, cls, *args, **kwds) + + +class Counter(collections.Counter, Dict[T, int], extra=collections.Counter): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Counter): + return collections.Counter(*args, **kwds) + return _generic_new(collections.Counter, cls, *args, **kwds) + + +if hasattr(collections, 'ChainMap'): + # ChainMap only exists in 3.3+ + __all__.append('ChainMap') + + class ChainMap(collections.ChainMap, MutableMapping[KT, VT], + extra=collections.ChainMap): + + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, ChainMap): + return collections.ChainMap(*args, **kwds) + return _generic_new(collections.ChainMap, cls, *args, **kwds) + + +# Determine what base class to use for Generator. +if hasattr(collections_abc, 'Generator'): + # Sufficiently recent versions of 3.5 have a Generator ABC. + _G_base = collections_abc.Generator +else: + # Fall back on the exact type. + _G_base = types.GeneratorType + + +class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co], + extra=_G_base): + __slots__ = () + + def __new__(cls, *args, **kwds): + if _geqv(cls, Generator): + raise TypeError("Type Generator cannot be instantiated; " + "create a subclass instead") + return _generic_new(_G_base, cls, *args, **kwds) + + +if hasattr(collections_abc, 'AsyncGenerator'): + class AsyncGenerator(AsyncIterator[T_co], Generic[T_co, T_contra], + extra=collections_abc.AsyncGenerator): + __slots__ = () + + __all__.append('AsyncGenerator') + + +# Internal type variable used for Type[]. +CT_co = TypeVar('CT_co', covariant=True, bound=type) + + +# This is not a real generic class. Don't use outside annotations. +class Type(Generic[CT_co], extra=type): + """A special construct usable to annotate class objects. + + For example, suppose we have the following classes:: + + class User: ... # Abstract base for User classes + class BasicUser(User): ... + class ProUser(User): ... + class TeamUser(User): ... + + And a function that takes a class argument that's a subclass of + User and returns an instance of the corresponding class:: + + U = TypeVar('U', bound=User) + def new_user(user_class: Type[U]) -> U: + user = user_class() + # (Here we could write the user object to a database) + return user + + joe = new_user(BasicUser) + + At this point the type checker knows that joe has type BasicUser. + """ + + __slots__ = () + + +def _make_nmtuple(name, types): + msg = "NamedTuple('Name', [(f0, t0), (f1, t1), ...]); each t must be a type" + types = [(n, _type_check(t, msg)) for n, t in types] + nm_tpl = collections.namedtuple(name, [n for n, t in types]) + # Prior to PEP 526, only _field_types attribute was assigned. + # Now, both __annotations__ and _field_types are used to maintain compatibility. + nm_tpl.__annotations__ = nm_tpl._field_types = collections.OrderedDict(types) + try: + nm_tpl.__module__ = sys._getframe(2).f_globals.get('__name__', '__main__') + except (AttributeError, ValueError): + pass + return nm_tpl + + +_PY36 = sys.version_info[:2] >= (3, 6) + +# attributes prohibited to set in NamedTuple class syntax +_prohibited = ('__new__', '__init__', '__slots__', '__getnewargs__', + '_fields', '_field_defaults', '_field_types', + '_make', '_replace', '_asdict') + +_special = ('__module__', '__name__', '__qualname__', '__annotations__') + + +class NamedTupleMeta(type): + + def __new__(cls, typename, bases, ns): + if ns.get('_root', False): + return super().__new__(cls, typename, bases, ns) + if not _PY36: + raise TypeError("Class syntax for NamedTuple is only supported" + " in Python 3.6+") + types = ns.get('__annotations__', {}) + nm_tpl = _make_nmtuple(typename, types.items()) + defaults = [] + defaults_dict = {} + for field_name in types: + if field_name in ns: + default_value = ns[field_name] + defaults.append(default_value) + defaults_dict[field_name] = default_value + elif defaults: + raise TypeError("Non-default namedtuple field {field_name} cannot " + "follow default field(s) {default_names}" + .format(field_name=field_name, + default_names=', '.join(defaults_dict.keys()))) + nm_tpl.__new__.__defaults__ = tuple(defaults) + nm_tpl._field_defaults = defaults_dict + # update from user namespace without overriding special namedtuple attributes + for key in ns: + if key in _prohibited: + raise AttributeError("Cannot overwrite NamedTuple attribute " + key) + elif key not in _special and key not in nm_tpl._fields: + setattr(nm_tpl, key, ns[key]) + return nm_tpl + + +class NamedTuple(metaclass=NamedTupleMeta): + """Typed version of namedtuple. + + Usage in Python versions >= 3.6:: + + class Employee(NamedTuple): + name: str + id: int + + This is equivalent to:: + + Employee = collections.namedtuple('Employee', ['name', 'id']) + + The resulting class has extra __annotations__ and _field_types + attributes, giving an ordered dict mapping field names to types. + __annotations__ should be preferred, while _field_types + is kept to maintain pre PEP 526 compatibility. (The field names + are in the _fields attribute, which is part of the namedtuple + API.) Alternative equivalent keyword syntax is also accepted:: + + Employee = NamedTuple('Employee', name=str, id=int) + + In Python versions <= 3.5 use:: + + Employee = NamedTuple('Employee', [('name', str), ('id', int)]) + """ + _root = True + + def __new__(self, typename, fields=None, **kwargs): + if kwargs and not _PY36: + raise TypeError("Keyword syntax for NamedTuple is only supported" + " in Python 3.6+") + if fields is None: + fields = kwargs.items() + elif kwargs: + raise TypeError("Either list of fields or keywords" + " can be provided to NamedTuple, not both") + return _make_nmtuple(typename, fields) + + +def NewType(name, tp): + """NewType creates simple unique types with almost zero + runtime overhead. NewType(name, tp) is considered a subtype of tp + by static type checkers. At runtime, NewType(name, tp) returns + a dummy function that simply returns its argument. Usage:: + + UserId = NewType('UserId', int) + + def name_by_id(user_id: UserId) -> str: + ... + + UserId('user') # Fails type check + + name_by_id(42) # Fails type check + name_by_id(UserId(42)) # OK + + num = UserId(5) + 1 # type: int + """ + + def new_type(x): + return x + + new_type.__name__ = name + new_type.__supertype__ = tp + return new_type + + +# Python-version-specific alias (Python 2: unicode; Python 3: str) +Text = str + + +# Constant that's True when type checking, but False here. +TYPE_CHECKING = False + + +class IO(Generic[AnyStr]): + """Generic base class for TextIO and BinaryIO. + + This is an abstract, generic version of the return of open(). + + NOTE: This does not distinguish between the different possible + classes (text vs. binary, read vs. write vs. read/write, + append-only, unbuffered). The TextIO and BinaryIO subclasses + below capture the distinctions between text vs. binary, which is + pervasive in the interface; however we currently do not offer a + way to track the other distinctions in the type system. + """ + + __slots__ = () + + @abstractproperty + def mode(self) -> str: + pass + + @abstractproperty + def name(self) -> str: + pass + + @abstractmethod + def close(self) -> None: + pass + + @abstractmethod + def closed(self) -> bool: + pass + + @abstractmethod + def fileno(self) -> int: + pass + + @abstractmethod + def flush(self) -> None: + pass + + @abstractmethod + def isatty(self) -> bool: + pass + + @abstractmethod + def read(self, n: int = -1) -> AnyStr: + pass + + @abstractmethod + def readable(self) -> bool: + pass + + @abstractmethod + def readline(self, limit: int = -1) -> AnyStr: + pass + + @abstractmethod + def readlines(self, hint: int = -1) -> List[AnyStr]: + pass + + @abstractmethod + def seek(self, offset: int, whence: int = 0) -> int: + pass + + @abstractmethod + def seekable(self) -> bool: + pass + + @abstractmethod + def tell(self) -> int: + pass + + @abstractmethod + def truncate(self, size: int = None) -> int: + pass + + @abstractmethod + def writable(self) -> bool: + pass + + @abstractmethod + def write(self, s: AnyStr) -> int: + pass + + @abstractmethod + def writelines(self, lines: List[AnyStr]) -> None: + pass + + @abstractmethod + def __enter__(self) -> 'IO[AnyStr]': + pass + + @abstractmethod + def __exit__(self, type, value, traceback) -> None: + pass + + +class BinaryIO(IO[bytes]): + """Typed version of the return of open() in binary mode.""" + + __slots__ = () + + @abstractmethod + def write(self, s: Union[bytes, bytearray]) -> int: + pass + + @abstractmethod + def __enter__(self) -> 'BinaryIO': + pass + + +class TextIO(IO[str]): + """Typed version of the return of open() in text mode.""" + + __slots__ = () + + @abstractproperty + def buffer(self) -> BinaryIO: + pass + + @abstractproperty + def encoding(self) -> str: + pass + + @abstractproperty + def errors(self) -> Optional[str]: + pass + + @abstractproperty + def line_buffering(self) -> bool: + pass + + @abstractproperty + def newlines(self) -> Any: + pass + + @abstractmethod + def __enter__(self) -> 'TextIO': + pass + + +class io: + """Wrapper namespace for IO generic classes.""" + + __all__ = ['IO', 'TextIO', 'BinaryIO'] + IO = IO + TextIO = TextIO + BinaryIO = BinaryIO + + +io.__name__ = __name__ + '.io' +sys.modules[io.__name__] = io + + +Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')), + lambda p: p.pattern) +Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')), + lambda m: m.re.pattern) + + +class re: + """Wrapper namespace for re type aliases.""" + + __all__ = ['Pattern', 'Match'] + Pattern = Pattern + Match = Match + + +re.__name__ = __name__ + '.re' +sys.modules[re.__name__] = re