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1.0. Introduction 

This report covers the steps carried out in the analysis and cleaning of an unstructured Car 

review dataset. The dataset is made up of reviews of 10,678 customers for four different car 

models (Toyota, Hyundai, Ford, and Kia), with their respective car recommendation choices 

to other people, over a period. The aim is to develop a suitable model that will utilize the 

information in the dataset and classify new/future customer reviews appropriately. This 

information would help the car manufacturers/industry’s to make informed decisions based on 

predicted positive and negative car recommendation reviews to others. 

The dataset used in this report is stored in a csv file titled, “Car_Reviews.csv”. Relevant 

information about the “Car_Reviews.csv” dataset can be found in the appendix of this report.  

 

2.0. Data Cleaning/Pre-Processing 

The Car reviews dataset is populated with text data in an unstructured format and must be 

converted to a structured format before algorithmic patterns can be extracted from it. This 

dataset differs from structured and semi-structured dataset because it does not hold a tabular 

structure nor contain markers or tags showing hierarchy or semantics. The reason for this 

conversion is because the algorithm needed to train the car reviews data can only be loaded 

with structured numerical data in organized rows and columns. Unlike numerical data, text 

data/categorical data is quite complex and must undergo a cleaning process before conversion 

can be made to a structured format. The following steps have further been taken to clean the 

car reviews dataset: 

a) The unstructured dataset was imported into the integrated development environment as a 

dataframe [df] using the pandas function (pd.read_csv), useful for reading csv files. The 

pandas set option was further used to ensure all columns and column values were visible, 

by setting the cells to the maximum column width. 
 

b) The column of interest (‘Recommend’), showing whether a customer is willing to 

recommend cars for purchase or not, was further converted to a numerical feature using 

the map method of conversion to ensure compliance with the numeric algorithm 

requirement. It is worthy of note that the ‘Yes’ textual label in the ‘Recommend’ column 

was assigned to the positive label ‘1’, and the ‘No’ textual label was assigned to the 

negative label ‘0’. 
 

c) A cleaner function was defined for the application of different data cleaning operations on 

the unstructured customer reviews column. The importance of the cleaner function is to 

accommodate all data cleaning steps and apply the operations in its entirety to the ‘Review’ 

column, thereby creating a new dataframe holding the cleaned customer reviews. 
 

d) The ‘Review’ column is passed through the BeautifulSoup function imported from a 

python package called bs4 (beautifulsoup4). This function helps to remove all html 

encodings from the car reviews dataset to ensure the absence of unnecessary symbols that 

can inhibit the smooth running of the algorithm. This function has an inbuilt html parser 

called ‘lmxl’ used to identify and remove all html entities present in the dataset. 
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e) All texts are further extracted from the dataset without the html entities using a ‘get_text()’ 

function and redefined with a new variable name. 
 

f) The redefined data was passed through a specialized language called regular expressions 

(re), used to compare/match strings in a text data. The substitution method of regular 

expression was used to replace all URL’s, hyperlinks, non-alphabetic characters such as 

numbers, punctuations etc., occurring multiple times within the dataset, with a whitespace. 

This is done to ensure the removal of non-textual characters in preparation for the data 

structure conversion process. 
 

g) Upon removal of all symbols, numbers and punctuations from the dataset, all texts were 

further converted to lower case using the ‘t.lower()’ inbuilt python function. This is to 

ensure uniformity and standardize all texts in the dataset. However, for these texts to be 

converted seamlessly, they need to be tokenized (i.e., broken down into individual 

words/tokens). The lowercase function will not convert sentences or string of words until 

they are broken to tokens. The cleaned data was passed into a natural language toolkit 

tokenizer (nltk.word_tokenize()) before running it through the lower case function. The 

natural language toolkit also uses a sentence tokenizer called ‘punkt’ in the tokenization 

process to identify where words or sentences end for the creation of more accurate tokens. 
 

h) The tokenized data was further filtered to remove all stop words (i.e., common words that 

have a less useful meaning). The stop words were first imported in English language 

because the dataset is in English, and then filtered using ‘lambda’ function. The ‘lambda’ 

function returns all words except the stop words defined in the list of documented stop 

words downloaded using the natural language toolkit (nltk). 
 

i) The cleaned data was passed through a process called lemmatization (removal of 

synonyms, plurals, and some parts of speech). This is important to ensure the algorithm 

treats similar words with different suffixes as one; thereby reducing word repetition and 

complexity. A wordnet document containing the synonyms and plural forms of different 

words was downloaded from natural language toolkit and used by the 

‘wordnetlemmatizer()’ function to compare and remove all plural forms, synonyms, and 

parts of speech leaving only root words (i.e., noun form of words). 
 

j) All steps embedded in the cleaner function was applied to the entire ‘Review’ column and 

stored in a dataframe with a new variable name (‘cleaned_review’). 
 

k) The null/empty rows in the cleaned dataset were further removed using the ‘map(len)’ 

function to retain only rows with values greater than zero. This is to ensure that all empty 

rows resulting from substitution with whitespaces or total elimination is discarded to 

reduce the sparseness of the dataset. 
 

l) The target label and features label were further defined. The target label or label of interest 

is the ‘Recommend’ column, showing whether a customer is willing to recommend a car 

to other people or not. The cleaned review column (‘cleaned_review’) was set as the 

features label. 
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3.0. TF-IDF Matrix 

The Term Frequency-Inverse Document Frequency (TF-IDF) Matrix is the structured format 

that the cleaned car review dataset was converted to, for the purpose of model development. 

The dynamics of this matrix takes the product of the frequency of token values (TF) in a 

document and the degree of rarity of the same token (IDF) in the entire corpus. This structured 

format is preferred because it combines both token importance in a document and rarity of 

tokens in a corpus to determine token significance. The steps carried out in the creation of the 

TF-IDF matrix are as follows: 

a) The tokens in the cleaned data were first joined together to form a sentence before passing 

it to the matrix creation function (TfidfVectorizer). The ‘TfidfVectorizer’ function is a 

function imported from scikit learn python library used for the creation of the TF-IDF 

matrix. The reason for joining all individual tokens in the data is because the 

‘TfidfVectorizer’ does not accept stand-alone words/tokens but works excellently well with 

sentences of words.  
 

b) The ‘TfidfVectorizer’ is further defined with two hyperparameters needed to regulate the 

dataset. The ‘ngram_range’ is used to specify the type of variables to be created in the TF-

IDF matrix. This parameter was set to create unigrams (single words), bigrams (double 

words) and trigrams (triple words). This wide range of words is to ensure the 

accommodation of different word types within the matrix. Another parameter defined 

within the ‘TfidfVectorizer’ function is the minimum document frequency (min_df) used 

to remove words that are least sensible or words with lower predicting power in the dataset. 

The purpose of this is to regulate the number of variables created in the matrix to build a 

simple or less complex model. The number of ‘min_df’ (0.00281) defined, implies that 

only sensible words within 30 documents of the 10,678 documents in the dataset would be 

considered as a variable. 
 

c) All sensible unigrams, bigrams and trigrams that met the ‘min_df’ condition was then 

extracted using the ‘tfidf.fit()’ function to create variables for the TF-IDF matrix. 
 

d) The TF-IDF matrix was finally created using the ‘tfidf.transform()’ function and further 

populated with the created TF-IDF values into a sparse matrix datatype. A new name is 

assigned to the matrix representing the structured data which has been converted from its 

unstructured format. 

 

4.0. Hyperparameter Tuning 

Two hyperparameters (min_df and ngram_range) were identified in the creation of the TF-IDF 

matrix and was tuned using the ‘TdidfVectorizer’ function from the scikit learn library.  

a) Minimum document frequency (min_df): This is an unknown value selected to represent a 

proportion of the dataset. This is used because an average unstructured dataset is made up 

of diverse tokens, all of which may not be useful in the creation of the TF-IDF matrix and 

the classification model development. Upon repetitive trials, the optimal value with 

sensible unigrams, bigrams and trigrams was 0.00281. This represents a strict condition of 

30 out of 10,678 documents (i.e., 0.00281*10678=30), meaning all unigrams, bigrams and 

trigrams must be present in at least 30 documents to be considered a variable suitable for 
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the matrix. This hyperparameter needs to be tuned to detect the optimum number of 

documents containing a reasonable level of comprehensive or sensible variables. This 

parameter when tuned appropriately, simplifies the model, and discards irrelevant words 

in a document. 
 

b) N-grams (ngram_range): N-gram is a sequence of words or token present in a document, 

where n represents a positive number from 1 to infinity. N-grams is a bag-of-words 

approach for creating/extracting words from a text data for the purpose of modelling. This 

hyperparameter is used to specify the kind of variables to create. By defining 

(ngram_range=(1,3)), the hyperparameter was tuned to create only unigrams, bigrams 

(sequence of two words) and trigrams (sequence of three words) in the documents. This 

was to allow for more options of words within the cleaned dataset. 

 

5.0. Supervised Learning 

These are learning algorithms loaded with known input and output data to learn patterns in the 

data, explain the relationship between the input and output data and make predictions for future 

data.  

5.1. Model Creation, Evaluation and Selection 

Two supervised learning classification models were implemented on the car review dataset. 

These two models were selected because they perform well on a text dataset compared to other 

classification models. Critical analysis of both models is further evaluated, and a preferred 

model is selected for the car recommendation business application. 
 

5.1.1.  Support Vector Classifier (SVC) 

This classifier model was implemented because it performs excellently well on text datasets, 

due to its dimensionality ignorance property. It is also suitable for datasets with discrete 

output, which is a perfect fit for the car review dataset which has just two output classes. SVC 

is also preferred due to the speed employed in running the algorithm to completion. Due to 

decreased emphasis placed on dimensionality (number of attributes in a dataset), the model 

development process is not slowed down by the high dimensional nature of text data. 

Generally, kernel tuning is the only process that slows down the running of SVC model on a 

regular dataset; but for implementation on a text dataset, the kernel is not tuned. This is 

because the text data is already in a high dimensional form and does not need to be 

transformed to a higher dimension to be linearly separable as in the case of a low dimensional 

data.  
 

The kernel was however set to a linear default with a low regularization parameter (C=1), 

permitting a lot of slack data points on the other side of the linearly separable margin for the 

purpose of generalization. SVC is also great at avoiding overfitting through the 

implementation of cross validation. A 10-split cross validation was used because of the large 

size of the car review dataset and for a better evaluation accuracy as evaluation on a single 

test set is a poor practice for model development. This split trains the data and evaluates the 

performance of the model on different test sets to detect whether overfitting is occurring or 

not. The ‘stratifiedkfold’ function from scikit learn library was used to run the cross validation 

for the car review data by ensuring that the ratio between the two classes (training/test data 
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and original data) is consistently maintained; in this case, to ensure that the training set is 

balanced in the same ratio as the original balanced dataset. This method was used in this 

scenario as opposed to grid search because there is no hyperparameter tuning to be carried 

out under SVC. Therefore, a for loop function is used to iterate over the defined train and test 

set indices. 
 

The model was trained by passing the training sets into a ‘fit()’ function and then predicted 

using the ‘predict()’ function. The predicted output was further compared with the actual 

output by estimating an accuracy score for each split. The criteria for selecting and 

minimizing the accuracy prediction error is due to the state of the car review dataset being a 

balanced dataset and for the purpose of maximizing prediction accuracy. The accuracy score 

for each split was displayed, and the mean for all 10 scores were estimated to give the final 

model performance which was 0.91447. 

 

5.1.2. Naïve Bayes Classifier (NBC) 

This model was implemented because it is equally suitable for a text classification problem 

but will perform poorly on a regular dataset and result in overfitting. It assumes that all 

variables in a dataset are independent of each other which is in line with the objective of 

developing a TF-IDF matrix, where tokens are independent of one another. This strong but 

naive assumption is usually not applicable in a regular dataset, as variables in these datasets 

are mostly related, resulting in an overall poor performance when applied. NBC is also 

suitable for a high dimensional data because it runs fast by using conditional probability 

estimations to make fast predictions.  The multinomial naïve bayes function was used because 

it uses a multinomial distribution to represent the frequency of each token and favourable for 

discrete features. 

Unlike SVC, NBC considers dimensionality, but the model speed is not affected by the 

number of attributes in a data; Hence, it performs at a reasonably high speed. NBC has no 

hyperparameter to tune but a 10-split cross-validation process similar to the training and 

testing sampling performed in the development of the SVC model was carried out. The 

evaluation metric and prediction error selected to be minimized in the NBC model was 

accuracy.  This is because of the balanced dataset used in the development of this model as 

well as to maximize prediction accuracy. An iteration function was used for the defined test 

and train data and the accuracy scores for all 10 splits were computed and stored in an empty 

list. The mean of these scores was taken to give an average score of 0.89405. 

5.1.3. Model Selection and Interpretation 

Both SVC and NBC models performed well on the car review dataset with similar 

performance accuracy scores of 0.914 and 0.894 respectively. However, these models differ 

slightly with respect to certain properties. Although, they both run fast and are not affected 

by large number of variables, NBC is a simpler model as predictions are made using the bayes 

theorem probabilistic formular. The use of this formular simplifies the model engineering 

process needed to train the data compared to SVC. Also, NBC has a probabilistic 

interpretation based on its naive assumption of independence i.e., the probability of a 

document belonging to a class over another can be derived. This interpretability is achieved 

because each feature is treated independently towards the class prediction; therefore, the 
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extent to which each feature contributes to the class prediction in the conditional probability 

estimation can be explained in this model. 

SVC on the other hand equally performed well but is more complex and more computationally 

technical to train than NBC model. SVC is a relatively non-interpretable model; therefore, 

inferences cannot be drawn from the data and how they contribute to the overall performance 

with respect to business applications. 

Although, SVC has a higher performance score by a 0.02 margin more than the NBC model 

performance score, NBC model is the recommended model to deploy in this case, because 

the NBC model is simpler, performs well on multi-class problems and sentiment analysis 

application like the car review problem, highly scalable, not sensitive to irrelevant features 

and provides the car manufacturers with the option to gain insights from the data through its 

relative model interpretability. 

5.2. Model Deployment 

A limitation of deploying NBC model on new car reviews dataset is that if the new reviews 

obtained are not in a categorical text format i.e., a regular dataset, the independence 

assumption may not hold through, thereby leading to a poor performance. Also, NBC has a 

zero-frequency issue, where zero probability is assigned to a categorical feature in a test set 

that is absent in a training data. Another weakness of the NBC model is that it assumes that 

predictor variables especially the continuous variables are normally distributed. The 

implication, however, is that if the new car reviews are continuous and are not normally 

distributed, then the performance will plunge to a low. A general limitation of text mining on 

new car reviews dataset is the syntactics issue i.e., position of car reviews tokens in the data 

and semantics issue i.e., meaning of car reviews token in the dataset. Although, this limitation 

can be handled by technical tokenization processes such as deep learning etc, the engineering 

process becomes more complex. 

 

6.0. Unsupervised Learning 

This is a learning method where the algorithms are not provided with output, but only provided 

with input variables. The major function of an unsupervised learning model is data exploration 

and pattern extraction. Prediction is not done with these types of models as data points are not 

labelled. 

6.1. Uniform Manifold Approximation and Projection (UMAP) 

The unsupervised model used in the visualization of clusters in the car reviews dataset is the 

UMAP technique. This visualization technique was chosen because the car review dataset is 

a high dimensional text data with reasonably large number of variables. This technique is 

preferred to avoid overcrowding when the data is transformed and represented on a two-

dimensional scatter plot compared to other visualization techniques like PCA etc. The 

methodology of overcrowding prevention is by the use of a fuzzy radius projected from each 

data point, covering ‘n’ number of data points within the radius. The probability of data points 

being neighbours is derived when the radii overlap each other. A fuzzy radius is preferred to 

a fixed or variable radius because it reduces the isolation of data points and increases the 

accuracy of datapoints being probable neighbours. 
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The UMAP visualization technique ensures that the distance between data points in its high 

dimensional form is accurately represented as the same distance between data points in its low-

dimensional form. Therefore, data points closest to each other will have a stronger outline 

indicating a higher probability of being neighbours while farther points will be fuzzy with a 

faded outlook, showing a lesser probability of being neighbours. UMAP initially estimates 

probabilities of data points randomly placed on a two-dimensional space using fuzzy radii i.e., 

random embedding, and then compares it with the probability estimation in the high 

dimensional space. An optimization algorithm (stochastic gradient descent) is also run to 

minimize the differences between the two probabilities, which synchronizes both probabilities 

to have the same position represented in a scatter plot visualization.  

UMAP has two hyperparameters which are ‘n_neighbors’ representing the number of 

neighbour extensions of a radius i.e., nearest neighbours and ‘min_dist’ representing the 

minimum distance between similar datapoints in a low-dimensional space.  

a) An optimal value of 170 was set for the ‘n_neighbors’ to accommodate a reasonable 

number of datapoints within the fuzzy radius, for the identification of clusters with similar 

car recommendations. By setting this ‘n_neighbors’ value, the fuzzy radius was able to 

extend its radar to cover 170 data points leading to the probability estimation of stronger 

or closer datapoints. This value also resulted in the creation of a descent scatter plot 

visualization that was easy to read and interpret.  
 

A low value of 0.4 was set for the ‘min_dist’ to ensure a close distance between datapoints 

and avoid overly spaced datapoints within the scatter plot visualization, thereby creating 

clusters of similar datapoints. This helps to better achieve the clustering function of the 

UMAP visualization technique and provides a solution to the car review problem by 

clustering similar recommendations together.  

 

The ‘n_components’ was set to a value of 2 because the data is to be visualized on a two-

dimensional plot having X and Y axis. The data was further transformed into two variables 

using the ‘u.fit_transform()’ function. All three columns (Review, Recommend and 

Vehicle Title) were defined in a list before passing them into the ‘text’ function, to ensure 

that all three values are displayed when data points are hovered on in the scatter plot. The 

scatter plot was created using plotly, with a layout width and height of 1500. These 

respective layout dimensions were chosen because it provided a clearer and readable 

visualization. All properties were passed into the ‘go.Figure()’ function for display. 

 

Upon analysis of the scatter plot, two clusters were identified. The positive 

recommendation class with good customer reviews (red data points) constituting the upper 

half of the scatter plot and the negative recommendation class with poor customer reviews 

(purple data points), clustered at the lower part of the scatter plot diagram. This shows that 

UMAP was able to successfully cluster datapoints with similar recommendation 

information together. This further helps the relevant actors of the business to visualize 

reviews with respect to recommendation choice and make improved business decisions. 

 

b) One sub-cluster was also identified, embedded in both the positive and negative car 

recommendation labels. Sub-clusters are simply subdivisions of an existing cluster, it is a 

clustering term that is used to describe grouping of datapoints within a large cluster. 
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Similar vehicle types were however found around different parts of the scatter plot 

clustered together. This sub cluster was identified because the vehicle type column was 

passed into the text function for more insights on the dataset. This however implies that 

selected vehicle types and models were relevant in recording similar reviews within the 

dataset. These sub-clusters were made possible because UMAP successfully identified 

similar vehicle types within each recommendation class. This information is useful to 

establish links between vehicle types, car reviews and possible recommendations in the 

future.  

 

7.0. Conclusion 

Upon critical analysis of the problem domain, the car review dataset was better suited to be 

trained using SVC and NBC after proper cleaning and conversion from its unstructured format 

to a structured format. Excellent accuracy scores were recorded from both models reflecting 

accurate classification of future car reviews. NBC is however recommended for the business 

application in this scenario, as it is simpler and a great performing model. The developed scatter 

plot was also able to successfully classify positive and negative customer recommendations 

into clusters and subclusters of vehicle type for easy visualization and interpretation. 
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9.0. Appendix 

Number of Instances = 10,678 

Number of Columns = 3 

S/N Column Name Label 

1 Vehicle_Title Ford, Hyundai, Kia, and Toyota Car Models 

2 Review Customer Reviews 

3 Recommend Customer Recommendation (Yes, No) 
 


