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0 Blurb

As its title suggests, this module is a continuation of last year’s MA106 Linear Algebra module;
we’ll be studying vector spaces, linear maps, and their properties in a bit more detail. Later in
the module we’ll think a bit about matrices whose entries lie not in a field but in the integers Z,
and we’ll see what our methods have to tell us in that case.
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1 Review of some MA106 material

1 Review of some MA106 material

In this section, we’ll recall some ideas from the first year MA106 Linear Algebra module. This
will just be a brief reminder; for detailed statements and proofs, go back to your MA106 notes.

1.1 Fields

Recall that a field is a number system where we know how to do all of the basic arithmetic
operations: we can add, subtract, multiply and divide (as long as we’re not trying to divide by
zero).

Definition 1.1.1. A field is a non-empty set K together with two operations (maps from K× K
to K) addition, denoted by +, and multiplication, denoted by · (or just juxtaposition), satisfying
the following axioms:

1. a + b = b + a for all a, b ∈ K;

2. there exists an element 0 ∈ K such that a + 0 = a for all a ∈ K;

3. (a + b) + c = a + (b + c) for all a, b, c ∈ K;

4. there exists an element −a ∈ K such that a + (−a) = 0 for all a ∈ K;

5. a · b = b · a;

6. there exists an element 1 ∈ K, 1 6= 0, such that 1 · a = a for all a ∈ K;

7. (a · b) · c = a · (b · c) for all a, b, c ∈ K;

8. there exists an element a−1 ∈ K such that a · a−1 = 1 for all 0 6= a ∈ K;

9. a · (b + c) = (a · b) + (a · c) for all a, b, c ∈ K.

Examples.

• A non-example is Z, the integers. Here we can add, subtract, and multiply, but we can’t
always divide without jumping out of Z into some bigger world. That is to say that
Axiom 8 would fail: there are no multiplicative inverses of any integer apart from 1 and
−1.

• The real numbers R and the complex numbers C are fields, and these are perhaps the
most familiar ones.

• The rational numbers Q are also a field.

• A more subtle example: if p is a prime number, the integers mod p are a field, written as
Z/pZ or Fp.

There are lots of fields out there, and the reason we take the axiomatic approach is that we know
that everything we prove will be applicable to any field we like, as long as we’ve only used the
field axioms in our proofs (rather than any specific properties of the fields we happen to most
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1 Review of some MA106 material

like). We don’t have to know all the fields in existence and check that our proofs are valid for
each one separately.

1.2 Vector spaces

Let K be a field1. A vector space over K is a non-empty set V together with two extra pieces of
structure. Firstly, it has to have a notion of addition: we need to know what v + w means if v
and w are in V. Secondly, it has to have a notion of scalar multiplication: we need to know what
λv means if v is in V and λ is in K. These have to satisfy some axioms, for which I’m going to
refer you again to your MA106 notes.

Definition 1.2.1. A vector space V over a field K is a set V with two operations. The first is
addition, a map from V × V to V satisfying Axioms 1 to 4 in the definition of a field. The
second operation is scalar multiplication, a map from K×V to V denoted by juxtaposition or ·,
satisfying the following axioms:

1. α(u + v) = αu + αv for all u, v ∈ V, α ∈ K;

2. (α + β)v = αv + βv for all v ∈ V, α, β ∈ K;

3. (α · β)v = α(βv) for all v ∈ V, α, β ∈ K;

4. 1 · v = v for all v ∈ V.

A basis of a vector space is a subset B ⊂ V such that every v ∈ V can be written uniquely as a
finite linear combination of elements of B,

v = λ1b1 + · · ·+ λnbn,

for some n ∈N and some λ1, . . . , λn ∈ K. So for each v ∈ V, we can do this in one and only one
way. Another way of saying this is that B is a linearly independent set which spans V, which
is the definition you had in MA106. We say V is finite-dimensional if there is a finite basis of V.
You saw last year that if V has one basis which is finite, then every basis of V is finite, and they
all have the same cardinality; and we define the dimension of V to be this number which is the
number of elements in any basis of V.

Examples. Let K = R.

• The space of polynomials in x with coefficients in R is certainly a vector space over R; but
it’s not finite-dimensional (rather obviously).

• For any d ∈N, the set Rd of column vectors with d real entries is a vector space over R

(which, not surprisingly, has dimension d).

• The set 
x1

x2
x3

 ∈ R3 : x1 + x2 + x3 = 0


1It’s conventional to use K as the letter to denote a field; the K stands for the German word “Körper”.
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1 Review of some MA106 material

is a vector space over R if we define vector addition and scalar multiplication component-
wise as usual.

The third example above is an interesting one because there’s no “natural choice” of basis. It
certainly has bases, e.g. the set 

 1
−2

1

 ,

 1
0
−1

 ,

but there’s no reason why that’s better than any other one. This is one of the reasons why we
need to worry about the choice of basis – if you want to tell someone else all the wonderful
things you’ve found out about this vector space, you might get into a total muddle if you
insisted on using one particular basis and they preferred another different one.

The following lemma (which will be required in the proof of one of our main theorems) is
straightforward from the material in MA106 - the proof is left as an exercise to check you are
comfortable with such material.

Lemma 1.2.2. Suppose that U is an m-dimensional subspace of an n-dimensional vector space V and
w1, . . . , wn−m extend a basis of U to a basis of V. Then the equation

α1w1 + · · ·+ αn−mwn−m + u = 0, where u ∈ U , (1)

only has the solution αi = 0 for all 1 ≤ i ≤ n−m and u = 0.

1.3 Linear maps

If V and W are vector spaces (over the same field K), then a linear map from V to W is a map
T : V →W which “respects the vector space structures”. That is, we know two things that we
can do with vectors in a vector space – add them, and multiply them by scalars; and a linear
map is a map where adding or scalar-multiplying on the V side, then applying the map T, is
the same as applying the map T, then adding or multiplying on the W side. Formally, for T to
be a linear map means that we must have

T(v1 + v2) = T(v1) + T(v2) ∀ v1, v2 ∈ V

and
T(λv1) = λT(v1) ∀ λ ∈ K, v1 ∈ V.

Example 1. Let V and W be vector spaces over K. Then T : V → W defined by T(v) = 0W = 0
for all v ∈ V is a linear map, called the zero linear map. Furthermore, we have S : V → V
defined by S(v) = v for all v ∈ V is a linear map, called the identity linear map.

Example 2. Let V = R3 and W = R2. Then the following maps T : V →W are linear.

1. T

a
b
c

 =

(
a
b

)
;
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2. T

a
b
c

 =

(
b
0

)
;

3. T

a
b
c

 =

(
a + b
b + c

)
.

Whereas, you should check that T

a
b
c

 =

(
a2

b

)
is NOT a linear map.

1.4 The matrix of a linear map with respect to a choice of (ordered) bases

Let V and W be vector spaces over a field K. Let T : V →W be a linear map, where dim(V) =
n, dim(W) = m. Choose a basis e1, . . . , en of V and a basis f1, . . . , fm of W. Note that formally
what we are doing here is choosing ordered bases- above we defined a basis of a vector space to
be simply a subset without any preferred ordering, but here we actually make a choice of two
ordered sets of bases, E = (e1, . . . , en) and F = (f1, . . . , fm), the ordering being encoded in the
choice of indices.

Now, for 1 ≤ j ≤ n, T(ej) ∈ W, so T(ej) can be written uniquely as a linear combination of
f1, . . . , fm. Let

T(e1) = α11f1 + α21f2 + · · ·+ αm1fm

T(e2) = α12f1 + α22f2 + · · ·+ αm2fm

...
T(en) = α1nf1 + α2nf2 + · · ·+ αmnfm

where the coefficients αij ∈ K (for 1 ≤ i ≤ m, 1 ≤ j ≤ n) are uniquely determined.

The coefficients αij form an m× n matrix

A =


α11 α12 . . . α1n
α21 α22 . . . α2n

...
...

. . .
...

αm1 αm2 . . . αmn


over K. Then A is called the matrix of the linear map T with respect to the chosen bases of V
and W. Note that the columns of A are the images T(e1), . . . , T(en) of the basis vectors of V
represented as column vectors with respect to the basis f1, . . . , fm of W.

It was shown in MA106 that T is uniquely determined by A, and so there is a one-one corre-
spondence between linear maps T : V → W and m× n matrices over K, which depends on the
choice of ordered bases of V and W.
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1 Review of some MA106 material

For v ∈ V, we can write v uniquely as a linear combination of the basis vectors ei; that is,
v = x1e1 + · · ·+ xnen, where the xi are uniquely determined by v and the basis ei. We shall call
xi the coordinates of v with respect to the basis e1, . . . , en. We associate the column vector

v =


x1
x2

.

.
xn

 ∈ Kn,1,

to v, where Kn,1 denotes the space of n× 1-column vectors with entries in K. Notice that v
depends on the chosen basis E so a notation such as vE or vE would possibly be better, but also
heavier, so we stick with v and assume you bear in mind that v not only depends on v but also
on E.

It was proved in MA106 that if A is the matrix of the linear map T, then for v ∈ V, we have
T(v) = w if and only if Av = w, where w ∈ Km,1 is the column vector associated with w ∈W.

Example. We can write down the matrices for the linear maps in Example 2, using the standard
bases for V and W: the standard basis of Rn is e1, . . . , en where ei is the column vector with a
1 in the ith row and all other entries 0 (so it’s the n× 1 matrix defined by αj,1 = 1 if j = i and
αj,i = 0 otherwise).

1. We calculate that T(e1) = e1 = 1 · e1 + 0 · e2, T(e2) = e2 = 0 · e1 + 1 · e2 and T(e3) = 0 =
0 · e1 + 0 · e2 (OK, this could be confusing so we could denote the standard basis for W by
f1, f2). The matrix is thus

A =

(
1 0 0
0 1 0

)
.

2. We skip the details but the matrix is

A =

(
0 1 0
0 0 0

)
.

3. This time T(e1) = e1, T(e2) = e1 + e2 and T(e3) = e2 and so the matrix is

A =

(
1 1 0
0 1 1

)
.

1.5 Change of basis

Let V be a vector space of dimension n over a field K, and let e1, . . . , en and e′1, . . . , e′n be two
bases of V (ordered of course). Then there is an invertible n× n matrix P = (pij) such that

e′j =
n

∑
i=1

pijei for 1 ≤ j ≤ n. (∗)
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Note that the columns of P are the new basis vectors e′i written as column vectors in the old
basis vectors ei. (Recall also that P is the matrix of the identity map V → V using basis e′1, . . . , e′n
in the domain and basis e1, . . . , en in the codomain.)

Often, but not always, the original basis e1, . . . , en will be the standard basis of Kn.

Example. Let V = R3, e1 =

1
0
0

, e2 =

0
1
0

, e3 =

0
0
1

 (the standard basis) and e′1 =

0
1
2

,

e′2 =

1
2
0

, e′3 =

−1
0
0

. Then

P =

0 1 −1
1 2 0
2 0 0

 .

The following result was proved in MA106.

Proposition 1.5.1. With the above notation, let v ∈ V, and let v and v′ denote the column vectors
associated with v when we use the bases e1, . . . , en and e′1, . . . , e′n, respectively. Then Pv′ = v.

So, in the example above, if we take v =

 1
−2

4

, then we have v = e1 − 2e2 + 4e3 (obviously);

so the coordinates of v in the basis {e1, e2, e3} are v =

 1
−2

4

.

On the other hand, we also have v = 2e′1 − 2e′2 − 3e′3, so the coordinates of v in the basis
{e′1, e′2, e′3} are

v′ =

 2
−2
−3

 ,

and you can check that

Pv′ =

0 1 −1
1 2 0
2 0 0

 2
−2
−3

 =

 1
−2

4

 = v,

just as Proposition 1.5.1 says.

This equation Pv′ = v describes the change of coordinates associated with our basis change. If
we want to compute the new coordinates from the old ones, we need to use the inverse matrix:
v′ = P−1v. Thus, to enable calculations in the new basis we need both matrices P and P−1.
We’ll be using this relationship over and over again, so make sure you’re happy with it!

Which matrix, P or P−1 should be called the basis change matrix or transition matrix from the
original basis e1, . . . , en to the new basis e′1, . . . , e′n?
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1 Review of some MA106 material

Well, the books are split on this. As a historic quirk, the basis change matrix in Algebra-1
was always P and the basis change matrix in Linear Algebra was P−1 since around 2011. We
continue with this noble tradition of calling P the basis change matrix because, otherwise, we risk
introducing typos throughout the text.

Now let T : V →W, ei, fi and A be as in Subsection 1.4 above, and choose new bases e′1, . . . , e′n
of V and f′1, . . . , f′m of W. Then

T(e′j) =
m

∑
i=1

βijf′i for 1 ≤ j ≤ n,

where B = (βij) is the m× n matrix of T with respect to the bases {e′i} and {f′i} of V and W. Let
the n× n matrix P = (pij) be the basis change matrix for the original basis {ei} and new basis
{e′i}, and let the m×m matrix Q = (qij) be the basis change matrix for original basis {fi} and
new basis {f′i}. The following theorem was proved in MA106:

Theorem 1.5.2. With the above notation, we have AP = QB, or equivalently B = Q−1AP.

In most of the applications in this module we will have V = W (= Kn), {ei} = {fi}, and
{e′i} = {f′i}. So P = Q, and hence B = P−1AP.

You may have noticed that the above is a bit messy, and it can be difficult to remember the
definitions of P and Q (and to distinguish them from their inverses). Experience shows that
students (and lecturers) have trouble with this. So here is what I hope is a better and more trans-
parent way to think about change of basis in vector spaces and the way it affects representing
matrices for linear maps:

First, we saw in the preceding section, that given:

1. a linear map T : V →W, dim(V) = n, dim(W) = m;

2. ordered bases E = (e1, . . . , en) and F = (f1, . . . , fm) of V and W;

we can associate to T an m× n-matrix in Km×n representing the linear map T with respect to
the chosen ordered bases. Let’s do our book-keeping neatly and try to keep track of all the data
involved in our notation: let’s denote this matrix temporarily by

M(T)F
E.

Note that the lower index E remembers the basis in the source V, the upper index F remembers
the basis in the target, andM just stands for matrix. Of course that’s a notational monstrosity,
but you will see that for the purpose of explaining base change , it is very convenient. Indeed,
choosing different ordered bases for V and W,

E′ = (e′1, . . . , e′n) and F′ = (f′1, . . . , f′m)

the problem we want to address is: how are the matrices

A =M(T)F
E and B =M(T)F′

E′

9
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related? The answer to this is very easy if you remember from MA106 that matrix multiplication
is compatible with composition of linear maps in the following sense: suppose

U R−−−→ V S−−−→ W

A B C

is a diagram of vector spaces and linear maps, and A, B, C are ordered bases in U, V, W. Then
we have the very basic fact that

MC
A(S ◦ R) =MC

B(S) ·MB
A(R).

Don’t be intimidated by the formula and take a second to think about how natural this is! If we
form the composite map S ◦ R and pass to the matrix representing it with respect to the given
ordered bases, we can also get it by matrix-multiplying the matrices for S and R with respect
to the chosen ordered bases! Now back to our problem above: consider the sequence of linear
maps between vector spaces together with choices of ordered bases:

V
idV−−−→ V T−−−→ W

idW−−−→ W

E′ E F F′

Applying the preceding basic fact gives

M(T)F′
E′ =M(idW)F′

F ·M(T)F
E ·M(idV)

E
E′ .

Or, putting
P :=M(idV)

E
E′ , Q :=M(idW)F

F′

and noticing that
M(idW)F′

F = (M(idW)F
F′)
−1

we get
B = Q−1AP

which proves Theorem 1.5.2, but also gives us a means to remember the right definitions of P and
Q (which is important because that is the vital information and this is precisely the information
students and lecturer always tend to forget): for example, P =M(idV)

E
E′ is the matrix whose

columns are the basis vectors e′i written in the old basis E with basis vectors ei. You don’t have
to remember the entire discussion preceding Theorem 1.5.2 anymore (which is necessary to
understand what the theorem says): it’s all encoded in the notation! I hope you will never forget
this base change formula again.
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2 The Jordan Canonical Form

2.1 Introduction

Throughout this section V will be a vector space of dimension n over a field K, T : V → V
will be a linear map, and A will be the matrix of T with respect to a fixed basis e1, . . . , en of
V (the same in the source and target V). Our aim is to find a new basis e′1, . . . , e′n for V, such
that the matrix of T with respect to the new basis is as simple as possible. Equivalently (by
Theorem 1.5.2), we want to find an invertible matrix P (the associated basis change matrix) such
that P−1 AP is as simple as possible.

(Recall that if B is a matrix which can be written in the form B = P−1AP, we say B is similar to
A. So a third way of saying the above is that we want to find a matrix that’s similar to A, but
which is as nice as possible.)

One particularly simple form of a matrix is a diagonal matrix. So we’d really rather like it if
every matrix was similar to a diagonal matrix. But this won’t work: we saw in MA106 that

the matrix
(

1 1
0 1

)
, for example, is not similar to a diagonal matrix. (We say this matrix is not

diagonalizable.)

The point of this section of the module is to show that although we can’t always get to a diagonal
matrix, we can get pretty close (at least if K is C). Under this assumption, it can be proved that
A is always similar to a matrix B of a certain type (called the Jordan canonical form or sometimes
Jordan normal form of the matrix), which is not far off being diagonal: its only non-zero entries
are on the diagonal or just above it.

2.2 Eigenvalues and eigenvectors

We start by summarising some of what we know from MA106 which is going to be relevant to
us here.

If we can find some 0 6= v ∈ V and λ ∈ K such that Tv = λv, or equivalently Av = λv, then λ
is an eigenvalue, and v a corresponding eigenvector of T (or of A).

From MA106, you have a theorem that tells you when a matrix is diagonalizable:

Proposition 2.2.1. Let T : V → V be a linear map. Then the matrix of T is diagonal with respect to
some basis of V if and only if V has a basis consisting of eigenvectors of T.

This is a nice theorem, but it is also more or less a tautology, and it doesn’t tell you how you
might find such a basis! But there’s one case where it’s easy, as another theorem from MA106
tells us:

Proposition 2.2.2. Let λ1, . . . , λr be distinct eigenvalues of T : V → V, and let v1, . . . , vr be corre-
sponding eigenvectors. (So T(vi) = λivi for 1 ≤ i ≤ r.) Then v1, . . . , vr are linearly independent.

11



2 The Jordan Canonical Form

Corollary 2.2.3. If the linear map T : V → V (or equivalently the n× n matrix A) has n distinct
eigenvalues, where n = dim(V), then T (or A) is diagonalizable.

2.3 The minimal polynomial

The minimal polynomial, while arguably not the most important player in the spectral theory
of endomorphisms, derives its importance from the fact that it can be used to detect diago-
nalisability and also classifies nilpotent transformations, and we’ll start with it to get off the
ground.

If A ∈ Kn,n is a square n× n matrix over K, and p ∈ K[x] is a polynomial, then we can make
sense of p(A): we just calculate the powers of A in the usual way, and then plug them into the
formula defining p, interpreting the constant term as a multiple of In.

For instance, if K = Q, p = 2x2 − 3
2 x + 11, and A =

(
2 3
0 1

)
, then A2 =

(
4 9
0 1

)
, and

p(A) = 2
(

4 9
0 1

)
− 3

2

(
2 3
0 1

)
+ 11

(
1 0
0 1

)
=

(
16 27/2

0 23/2

)
.

Warning. Notice that this is in general of course not the same as the matrix
(

p(2) p(3)
p(0) p(1)

)
.

Theorem 2.3.1. Let A ∈ Kn,n. Then there is some non-zero polynomial p ∈ K[x] of degree at most n2

such that p(A) is the n× n zero matrix 0n.

Proof. The key thing to observe is that Kn,n, the space of n× n matrices over K, is itself a vector
space over K. Its dimension is n2.

Let’s consider the set {In, A, A2, . . . , An2} ⊂ Kn,n. Since this is a set of n2 + 1 vectors in an
n2-dimensional vector space, there is a nontrivial linear dependency relation between them.
That is, we can find constants λ0, λ1, . . . , λn2 , not all zero, such that

λ0 In + · · ·+ λn2 An2
= 0n.

Now we define the polynomial p = λ0 + λ1x + · · ·+ λn2 xn2
. This isn’t zero, and its degree is at

most n2. (It might be less, since λn2 might be 0.) Then that’s it!

Is there a way of finding a unique polynomial (of minimal degree) that A satisfies? To answer
that question, we’ll have to think a little bit about arithmetic in K[x].

Note that we can do “division” with polynomials, a bit like with integers. We can divide one
polynomial p (with p 6= 0) into another polynomial q and get a remainder with degree less than

12
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p. For example, if q = x5 − 3, p = x2 + x + 1, then we find q = sp + r with s = x3 − x2 + 1 and
r = −x− 4.

If the remainder is 0, so q = sp for some s, we say “p divides q” and write this relation as p | q.

Finally, a polynomial with coefficients in a field K is called monic if the coefficient of the highest
power of x is 1. So, for example, x3 − 2x2 + x + 11 is monic, but 2x2 − x− 1 is not.

Theorem 2.3.2. Let A be an n× n matrix over K representing the linear map T : V → V. Then

(i) There is a unique monic non-zero polynomial p(x) with minimal degree and coefficients in K such
that p(A) = 0.

(ii) If q(x) is any polynomial with q(A) = 0, then p | q.

Proof. (i) If we have any polynomial p(x) with p(A) = 0, then we can make p monic by
multiplying it by a constant. By Theorem 2.3.1, there exists such a p(x), so there exists one of
minimal degree. If we had two distinct monic polynomials p1(x), p2(x) of the same minimal
degree with p1(A) = p2(A) = 0, then p = p1 − p2 would be a non-zero polynomial of smaller
degree with p(A) = 0, contradicting the minimality of the degree, so p is unique.

(ii) Let p(x) be the minimal monic polynomial in (i) and suppose that q(A) = 0. As we saw
above, we can write q = sp + r where r has smaller degree than p. If r is non-zero, then
r(A) = q(A)− s(A)p(A) = 0 contradicting the minimality of p, so r = 0 and p | q.

Definition 2.3.3. The unique monic non-zero polynomial µA(x) of minimal degree with µA(A) =
0 is called the minimal polynomial of A.

We know that for p ∈ K[x], p(T) = 0V if and only if p(A) = 0n; so µA is also the unique monic
polynomial of minimal degree such that µA(T) = 0 (the minimal polynomial of T.) In particular,
since similar matrices A and B represent the same linear map T, and their minimal polynomial
is the same as that of T, we have

Proposition 2.3.4. Similar matrices have the same minimal polynomial.

By Theorem 2.3.1 and Theorem 2.3.2 (ii), we have

Corollary 2.3.5. The minimal polynomial of an n× n matrix A has degree at most n2.

(In the next section, we’ll see that we can do much better than this.)

Example. If D is a diagonal matrix, say

D =

d11
. . .

dnn

 ,

then for any polynomial p we see that p(D) is the diagonal matrix with entriesp(d11)
. . .

p(dnn)

 .

13
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Hence p(D) = 0 if and only if p(dii) = 0 for all i. So for instance if

D =

3 0 0
0 3 0
0 0 2

 ,

the minimal polynomial of D is the smallest-degree polynomial which has 2 and 3 as roots,
which is clearly µD(x) = (x− 2)(x− 3) = x2 − 5x + 6.

We can generalize this example as follows

Proposition 2.3.6. Let D be any diagonal matrix and let {δ1, . . . , δr} be the set of diagonal entries of
D (i.e. without any repetitions, so the values δ1, . . . , δr are all different). Then we have

µD(x) = (x− δ1)(x− δ2) . . . (x− δr).

Proof. As in the example, we have p(D) = 0 if and only if p(δi) = 0 for all i ∈ {1, . . . , r}. The
smallest-degree monic polynomial vanishing at these points is clearly the polynomial above.

Corollary 2.3.7. If A is any diagonalizable matrix, then µA(x) is a product of distinct linear factors.

Proof. Clear from Proposition 2.3.6 and Proposition 2.3.4.

Remark. We’ll see later in the course that this is a necessary and sufficient condition: A is diagonalizable
if and only if µA(x) is a product of distinct linear factors. But we don’t have enough tools to prove this
theorem yet – be patient!

2.4 The Cayley–Hamilton theorem

Theorem 2.4.1 (Cayley–Hamiton). Let cA(x) be the characteristic polynomial of the n× n matrix A
over an arbitrary field K. Then cA(A) = 0.

Proof. Let’s agree to drop the various subscripts and bold zeroes – it’ll be obvious from context
when we mean a zero matrix, zero vector, zero linear map, etc.

Recall from MA106 that, if B is any n× n matrix, the “adjugate matrix” of B is another matrix
adj(B) which was constructed along the way to constructing the inverse of B. The entries of
adj(B) are the “cofactors” of B: the (i, j) entry of B is (−1)i+jcji (note the transposition of indices
here!), where cji = det(Bji), Bji being the (n− 1)× (n− 1) matrix obtained by deleting the j-th
row and the i-th column of B. The key property of adj(B) is that it satisfies

B adj(B) = adj(B)B = (det B)In.

(Notice that if B is invertible, this just says that adj(B) = (det B)B−1, but the adjugate matrix
still makes sense even if B is not invertible.)

14
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Let’s apply this to the matrix B = A− xIn. By definition, det(B) is the characteristic polynomial
cA(x), so

adj(A− xIn)(A− xIn) = cA(x)In. (2)

Now we use the following statement whose proof is obvious: suppose P(x) = ∑j Pjxj and
Q(x) = ∑k Qkxk are two polynomials in the indeterminate x with matrix coefficients; so Pj and
Qk are n× n matrices. Then the product of P and Q is R(x) = ∑l Rlxl with

Rl = ∑
j+k=l

PjQk.

Then if an n× n matrix M commutes with all the coefficients of Q we have R(M) = P(M)Q(M).
We now apply this observation with

P(x) = adj(A− xIn), Q(x) = A− xIn, M = A.

Since Q(A) = 0, we get cA(A) = 0.

Corollary 2.4.2. For any A ∈ Kn,n, we have µA | cA, and in particular deg(µA) ≤ n.

Example. Let D be the diagonal matrix

3 0 0
0 3 0
0 0 2

 from the previous example. We saw above

that µA(x) = (x− 2)(x− 3). However, it’s easy to see that

cA(x) =

∣∣∣∣∣∣
3− x 0 0

0 3− x 0
0 0 2− x

∣∣∣∣∣∣ = −(x− 2)(x− 3)2.

How NOT to prove the Cayley–Hamilton theorem It is very tempting to try and prove the
Cayley–Hamilton theorem as follows: we know that

cA(x) = det(A− xIn),

so shouldn’t we have

cA(A) = det(A− AIn) = det(A− A) = det(0) = 0?

This is wrong. In fact, cA(A) is a matrix, and det(A− AIn) is an element of K, so they are not
even objects of the same type in general.

2.5 Calculating the minimal polynomial

We will present two methods for this.

Method 1 (“top down”; always never works in practice; it only works well if a benign lec-
turer or some other benevolent power reveals to you the factorisation of the characteristic
polynomial into irreducibles).

15
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Lemma 2.5.1. Let λ be any eigenvalue of A. Then µA(λ) = 0.

Proof. Let v ∈ Kn,1 be an eigenvector corresponding to λ. Then Anv = λnv, and hence for any
polynomial p ∈ K[x], we have

p(A)v = p(λ)v.

We know that µA(A)v = 0, since µA(A) is the zero matrix. Hence µA(λ)v = 0, and since v 6= 0
and µA(λ) is an element of K (not a matrix!), this can only happen if µA(λ) = 0.

This lemma, together with Cayley–Hamilton, give us very, very few possibilities for µA. Let’s
look at an example.

Example. Take K = C and let

A =


4 0 −1 −1
1 2 0 0
2 −2 2 −2
−1 1 0 3

 .

This is rather large, but it has a fair few zeros, so you can calculate its characteristic polynomial
fairly quickly by hand and find out that

cA(x) = x4 − 11x3 + 45x2 − 81x + 54.

Some trial and error shows that 2 is a root of this, and we find that

cA(x) = (x− 2)(x3 − 9x2 + 27x− 27) = (x− 2)(x− 3)3.

So µA(x) divides (x− 2)(x− 3)3. On the other hand, the eigenvalues of A are the roots of cA(x),
namely {2, 3}; and we know that µA must have each of these as roots. So the only possibilities
for µA(x) are:

µA(x) ∈


(x− 2)(x− 3),
(x− 2)(x− 3)2,
(x− 2)(x− 3)3.

 .

Some slightly tedious calculation shows that (A− 2)(A− 3) isn’t zero, and nor is (A− 2)(A−
3)2, and so it must be the case that (x− 2)(x− 3)3 is the minimal polynomial of A.

Method 2 (“bottom up”; this works well, also for large matrices)

This is based on

Lemma 2.5.2. Let T : V → V be a linear map of an n-dimensional vector space V over K to itself, and
suppose W1, . . . , Wk are finitely many T-invariant subspaces spanning V. In other words, we require
T(Wi) ⊂Wi and

V = W1 + · · ·+ Wk

16
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(but the sum doesn’t have to be direct). Let µi(x) be the minimal polynomial of T |Wi . Then

µT(x) = l.c.m.{µ1, . . . , µk}.

In words: the minimal polynomial of T is the least common multiple of the minimal polynomials of the
T |Wi , i = 1, . . . , k.

Proof. First we will show that setting

f (x) = l.c.m.{µ1, . . . , µk}

we have that µT(x) divides f (x). Indeed, if v ∈Wi, then writing f (x) = gi(x)µi(x) we calculate

f (T)v = gi(T)µi(T)v = gi(T |Wi)µi(T |Wi)v = 0

since µi(T |Wi) = 0. Since this argument is valid for any i and the Wi’s span V, we conclude that
f (T) annihilates all of V hence is the zero linear map on V. Thus f (x) is divisible by µT(x).

But f (x) also divides µT(x): indeed, µT(T) = 0, and hence also µT(T |Wi) = 0 for any i. Hence,
µT(x) is divisible by any µi(x), and consequently by their least common multiple, too.

Since both f (x) and µT(x) are monic, they must be equal.

The preceding Lemma allows us to come up with a sensible algorithm to compute the minimal
polynomial of T:

Algorithm:

Pick any v 6= 0 in V and set

W = span{v, T(v), T2(v), . . . }.

By definition, W is T-invariant. Now let d be the minimal positive integer such that

v, T(v), . . . , Td(v)

are linearly dependent. In particular,

v, T(v), . . . , Td−1(v)

are linearly independent, and if p(x) is any polynomial of degree ≤ d− 1, p(T)v will never
be zero: hence the minimal polynomial µT|W (x) has degree ≥ d. There is a nontrivial linear
dependency relation of the form

Td(v) + cd−1Td−1(v) + · · ·+ c1T(v) + c0v = 0.

Consider the polynomial
xd + cd−1xd−1 + · · ·+ c1x + c0.
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We claim this must be µT|W (x): indeed, it is monic, µT|W (T |W) annihilates W, and µT|W (x) is of
smallest possible degree d with this property. Therefore we have computed µT|W (x), and we
can set

W1 := W, µ1(x) := µT|W (x).

If W1 6= V, pick a vector v′ not in W1 and repeat the preceding procedure, leading to a T-
invariant subspace W2 such that the span of W1 and W2 will be strictly larger than W1. Since
V is finite-dimensional, after finitely many steps, we compute in this way W1, . . . , Wk and
polynomials µ1(x), . . . , µk(x) satisfying the conditions in Lemma 2.5.2. Since computing a
least common multiple presents no problem (use the Euclidean algorithm for polynomials
repeatedly), we are done.

2.6 Jordan chains and Jordan blocks

We’ll now consider some special vectors attached to our matrix, which satisfy a condition a little
like eigenvectors (but weaker). These will be the stepping-stones towards the Jordan canonical
form.

Definition 2.6.1. A non-zero vector v ∈ Kn,1 such that (A− λIn)iv = 0, for some i > 0, is called
a generalised eigenvector of A with respect to the eigenvalue λ.

Note that, for fixed i > 0,

Ni(A, λ) := { v ∈ V | (A− λIn)
iv = 0 }

is the nullspace of (A− λIn)i, and is called the generalised eigenspace of index i of A with respect
to λ.

The generalised eigenspace of index 1 is just called the eigenspace of A w.r.t. λ; it consists of the
eigenvectors of A w.r.t. λ, together with the zero vector. We sometimes also consider the full
generalised eigenspace of A w.r.t. λ, which is the set of all generalised eigenvectors together with
the zero vector; this is the union of the generalised eigenspaces of index i over all i ∈N.

We can arrange generalised eigenvectors into “chains”:

Definition 2.6.2. A Jordan chain of length k is a sequence of non-zero vectors v1, . . . , vk ∈ Kn,1

that satisfies
Av1 = λv1, Avi = λvi + vi−1, 2 ≤ i ≤ k,

for some eigenvalue λ of A.

Equivalently, (A− λIn)v1 = 0 and (A− λIn)vi = vi−1 for 2 ≤ i ≤ k, so (A− λIn)ivi = 0 for
1 ≤ i ≤ k. Thus all of the vectors in a Jordan chain are generalised eigenvectors, and vi lies in
the generalised eigenspace of index i.

Lemma 2.6.3. Let v1, . . . , vk ∈ Kn,1 be a Jordan chain of length k for eigenvalue λ of A. Then v1, . . . , vk
are linearly independent.
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Proof. Exercise.

For example, take K = C and consider the matrix

A =

3 1 0
0 3 1
0 0 3

 .

We see that, for {b1, b2, b3} the standard basis of C3,1, we have Ab1 = 3b1, Ab2 = 3b2 + b1,
Ab3 = 3b3 + b2, so b1, b2, b3 is a Jordan chain of length 3 for the eigenvalue 3 of A. The
generalised eigenspaces of index 1, 2, and 3 are respectively 〈b1〉, 〈b1, b2〉, and 〈b1, b2, b3〉.

Note that this isn’t the only possible Jordan chain. Obviously, {17b1, 17b2, 17b3} would be a
Jordan chain; but there are more devious possibilities – you can check that {b1, b1 + b2, b2 + b3}
is a Jordan chain, so there can be several Jordan chains with the same first vector. On the other
hand, two Jordan chains with the same last vector are the same and in particular have the same
length.

What are the generalised eigenspaces here? The only eigenvalue is 3. For this eigenvalue, the
generalised eigenspace of index 1 is 〈b1〉 (the linear span of b1); the generalised eigenspace of
index 2 is 〈b1, b2〉; and the generalised eigenspace of index 3 is the whole space 〈b1, b2, b3〉. So
the dimensions are (1, 2, 3).

Proposition 2.6.4. The dimensions of corresponding generalised eigenspaces of similar matrices are the
same.

Proof. Notice that the dimension of a generalised eigenspace of A is the nullity of (T− λIV)
i,

which depends only on the linear map T associated with A. Therefore it’s independent of the
choice of basis. Since similar matrices represent the same linear map in different bases, the
proposition follows.

In the example we had earlier, the standard basis of Kn,1 was a Jordan chain, and this means
that the matrix A had a rather special form. We’ll give a name to matrices of this type:

Definition 2.6.5. We define the Jordan block of degree k with eigenvalue λ to be the k× k matrix
Jλ,k whose entries are given by

γij =


λ if j = i
1 if j = i + 1
0 otherwise.

So, for example,

J1,2 =

(
1 1
0 1

)
, J4i−7,3 =

4i− 7 1 0
0 4i− 7 1
0 0 4i− 7

 , and J0,4 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
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are Jordan blocks.

It should be clear that the matrix of T with respect to the basis v1, . . . , vn of Kn is a Jordan block
of degree n if and only if v1, . . . , vn is a Jordan chain for A.

Note that the minimal polynomial of Jλ,k is equal to (x− λ)k, and the characteristic polynomial
is (λ− x)k.

Warning. Some authors put the 1’s below rather than above the main diagonal in a Jordan
block. This corresponds to writing the Jordan chain in reverse order. This is an arbitrary choice
but in this course we stick to our convention - when you read other notes/books be careful to
check which convention they use.

2.7 Jordan bases and the Jordan canonical form

Definition 2.7.1. A Jordan basis for A is a basis of Kn consisting of one or more Jordan chains
strung together.

Such a basis will look like

w11, . . . , w1k1 , w21, . . . , w2k2 , . . . , ws1, . . . , wsks ,

where, for 1 ≤ i ≤ s, wi1, . . . , wiki is a Jordan chain (for some eigenvalue λi).

This definition is the key to defining Jordan canonical form. However, until we prove the main
theorem (Theorem 2.1) we do not know that such bases always exist! At least Lemma 2.6.3
shows us that the matrices representing the linear map of a single Jordan block has such a basis,
which gives us hope that this definition will be fruitful.

We denote the m× n matrix in which all entries are 0 by 0m,n. If A is an m×m matrix and B an
n× n matrix, then we denote the (m + n)× (m + n) matrix with block form(

A 0m,n
0n,m B

)
,

by A⊕ B, the direct sum of A and B. For example

(
−1 2

0 1

)
⊕

1 1 −1
1 0 1
2 0 −2

 =


−1 2 0 0 0

0 1 0 0 0
0 0 1 1 −1
0 0 1 0 1
0 0 2 0 −2

 .

It’s clear that the matrix of T with respect to a Jordan basis is the direct sum Jλ1,k1 ⊕ Jλ2,k2 ⊕
· · · ⊕ Jλs,ks of the corresponding Jordan blocks.

You’ll be asked to prove the following lemma on an examples sheet, which follows from the
definition of the direct sum and the characteristic and minimal polynomials.
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Lemma 2.7.2. Suppose that M = A⊕ B. Then the characteristic polynomial cM(x) is the product
of cA(x) and cB(x), and the minimal polynomial µM(x) is the lowest common multiple of µA(x) and
µB(x).

It is now time for us to state the main theorem of this section, which says that if K is the complex
numbers C, then Jordan bases exist.

Theorem 2.7.3. Let A be an n× n matrix over C. Then there exists a Jordan basis for A, and hence
A is similar to a matrix J which is a direct sum of Jordan blocks. The Jordan blocks occurring in J are
uniquely determined by A.

The matrix J in the theorem is said to be the Jordan canonical form (JCF) or sometimes Jordan
normal form of A. It is uniquely determined by A up to the order of the blocks.

Remark. The only reason we need K = C in this theorem is to ensure that A has at least one eigenvalue.

If K = R (or Q), we’d run into trouble with
(

0 −1
1 0

)
; this matrix has no eigenvalues, since cA(x) =

x2 + 1 has no roots in K. So it certainly has no Jordan chains. The theorem is valid more generally for
any field K which is such that any non-constant polynomial in K[x] has a root in K (one calls such fields
algebraically closed; there are many more of them out there than just C).

We will prove the theorem later, in Section 2.11. First we derive some consequences and study
methods for calculating the JCF of a matrix. Note that, by Theorem 1.5.2, if P is the matrix
having the Jordan basis as columns, then P−1AP = J.

Theorem 2.7.4 (Consequences of the JCF). Let A ∈ Cn,n, and {λ1, . . . , λr} be the set of eigenvalues
of A.

(i) The characteristic polynomial of A is

(−1)n
r

∏
i=1

(x− λi)
ai ,

where ai is the sum of the degrees of the Jordan blocks of A of eigenvalue λi.

(ii) The minimal polynomial of A is
r

∏
i=1

(x− λi)
bi ,

where bi is the largest among the degrees of the Jordan blocks of A of eigenvalue λi.

(iii) A is diagonalizable if and only if µA(x) has no repeated factors.

Proof. We know that the characteristic and minimal polynomials of A and J, its JCF, are the
same. So the first two parts follow from applying Lemma 2.7.2 (multiple times) to J. For the last
part, notice that if A is diagonalizable, the JCF of A is just the diagonal form of A; since the JCF
is unique, it follows that A is diagonalizable if and only if every Jordan block for A has size 1,
so all of the numbers bi are 1.
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2.8 The JCF when n=2 and 3

When n = 2 and n = 3, the JCF can be deduced just from the minimal and characteristic
polynomials. Let us consider these cases.

When n = 2, we have either two distinct eigenvalues λ1, λ2, or a single repeated eigenvalue λ1.
If the eigenvalues are distinct, then by Corollary 2.2.3 A is diagonalizable and the JCF is the
diagonal matrix Jλ1,1 ⊕ Jλ2,1.

Example 3. A =

(
1 4
1 1

)
. We calculate cA(x) = x2 − 2x − 3 = (x − 3)(x + 1), so there are

two distinct eigenvalues, 3 and −1. Associated eigenvectors are
(

2
1

)
and

(
−2

1

)
, so we put

P =

(
2 −2
1 1

)
and then P−1AP =

(
3 0
0 −1

)
.

If the eigenvalues are equal, then there are two possible JCFs, Jλ1,1 ⊕ Jλ1,1, which is a scalar
matrix, and Jλ1,2. The minimal polynomial is respectively (x− λ1) and (x− λ1)

2 in these two
cases. In fact, these cases can be distinguished without any calculation whatsoever, because in
the first case A is a scalar multiple of the identity, and in particular A is already in JCF.

In the second case, a Jordan basis consists of a single Jordan chain of length 2. To find such a
chain, let v2 be any vector for which (A− λ1 I2)v2 6= 0 and let v1 = (A− λ1 I2)v2. (Note that, in
practice, it is often easier to find the vectors in a Jordan chain in reverse order.)

Example 4. A =

(
1 4
−1 −3

)
. We have cA(x) = x2 + 2x + 1 = (x + 1)2, so there is a single

eigenvalue −1 with multiplicity 2. Since the first column of A + I2 is non-zero, we can choose

v2 =

(
1
0

)
and v1 = (A + I2)v2 =

(
2
−1

)
, so P =

(
2 1
−1 0

)
and P−1AP =

(
−1 1

0 −1

)
.

Now let n = 3. If there are three distinct eigenvalues, then A is diagonalizable.

Suppose that there are two distinct eigenvalues, so one has multiplicity 2, and the other has
multiplicity 1. Let the eigenvalues be λ1, λ1, λ2, with λ1 6= λ2. Then there are two possible JCFs
for A, Jλ1,1⊕ Jλ1,1⊕ Jλ2,1 and Jλ1,2⊕ Jλ2,1, and the minimal polynomial is (x− λ1)(x− λ2) in the
first case and (x− λ1)

2(x− λ2) in the second.

In the first case, a Jordan basis is a union of three Jordan chains of length 1, each of which
consists of an eigenvector of A.

Example 5. A =

 2 0 0
1 5 2
−2 −6 −2

. Then

cA(x) = (2− x)[(5− x)(−2− x) + 12] = (2− x)(x2 − 3x + 2) = (2− x)2(1− x).

We know from the theory above that the minimal polynomial must be (x− 2)(x− 1) or (x−
2)2(x− 1). We can decide which simply by calculating (A− 2I3)(A− I3) to test whether or not
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it is 0. We have

A− 2I3 =

 0 0 0
1 3 2
−2 −6 −4

 , A− I3 =

 1 0 0
1 4 2
−2 −6 −3

 ,

and the product of these two matrices is 0, so µA = (x− 2)(x− 1).

The eigenvectors v for λ1 = 2 satisfy (A− 2I3)v = 0, and we must find two linearly indepen-

dent solutions; for example we can take v1 =

 0
2
−3

, v2 =

 1
−1

1

. An eigenvector for the

eigenvalue 1 is v3 =

 0
1
−2

, so we can choose

P =

 0 1 0
2 −1 1
−3 1 −2


and then P−1AP is diagonal with entries 2, 2, 1.

In the second case, there are two Jordan chains, one for λ1 of length 2, and one for λ2 of length 1.
For the first chain, we need to find a vector v2 with (A−λ1 I3)2v2 = 0 but (A− λ1 I3)v2 6= 0, and
then the chain is v1 = (A− λ1 I3)v2, v2. For the second chain, we simply need an eigenvector
for λ2.

Example 6. A =

 3 2 1
0 3 1
−1 −4 −1

. Then

cA(x) = (3− x)[(3− x)(−1− x) + 4]− 2 + (3− x) = −x3 + 5x2 − 8x + 4 = (2− x)2(1− x),

as in Example 3. We have

A− 2I3 =

 1 2 1
0 1 1
−1 −4 −3

 , (A− 2I3)
2 =

 0 0 0
−1 −3 −2

2 6 4

 , (A− I3) =

 2 2 1
0 2 1
−1 −4 −2

 .

and we can check that (A− 2I3)(A− I3) is non-zero, so we must have µA = (x− 2)2(x− 1).

For the Jordan chain of length 2, we need a vector with (A− 2I3)2v2 = 0 but (A− 2I3)v2 6= 0,

and we can choose v2 =

 2
0
−1

. Then v1 = (A− 2I3)v2 =

 1
−1

1

. An eigenvector for the

eigenvalue 1 is v3 =

 0
1
−2

, so we can choose

P =

 1 2 0
−1 0 1

1 −1 −2
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and then

P−1AP =

2 1 0
0 2 0
0 0 1

 .

Finally, suppose that there is a single eigenvalue, λ1, so cA = (λ1 − x)3. There are three possible
JCFs for A, namely Jλ1,1 ⊕ Jλ1,1 ⊕ Jλ1,1, Jλ1,2 ⊕ Jλ1,1, and Jλ1,3, and the minimal polynomials in
the three cases are (x− λ1), (x− λ1)

2, and (x− λ1)
3, respectively.

In the first case, J is a scalar matrix, and A = PJP−1 = J, so this is recognisable immediately.

In the second case, there are two Jordan chains, one of length 2 and one of length 1. For the
first, we choose v2 with (A− λ1 I3)v2 6= 0, and let v1 = (A− λ1 I3)v2. (This case is easier than
the case illustrated in Example 4, because we have (A− λ1 I3)2v = 0 for all v ∈ C3,1.) For the
second Jordan chain, we choose v3 to be an eigenvector for λ1 such that v1 and v3 are linearly
independent.

Example 7. A =

 0 2 1
−1 −3 −1

1 2 0

. Then

cA(x) = −x[(3 + x)x + 2]− 2(x + 1)− 2 + (3 + x) = −x3 − 3x2 − 3x− 1 = −(1 + x)3.

We have

A + I3 =

 1 2 1
−1 −2 −1

1 2 1

 ,

and we can check that (A + I3)2 = 0. The first column of A + I3 is non-zero, so (A + I3)

1
0
0

 6=
0, and we can choose v2 =

1
0
0

 and v1 = (A + I3)v2 =

 1
−1

1

. For v3 we need to choose a

vector which is not a multiple of v1 such that (A + I3)v3 = 0, and we can choose v3 =

 0
1
−2

.

So we have

P =

 1 1 0
−1 0 1

1 0 −2


and then

P−1AP =

−1 1 0
0 −1 0
0 0 −1

 .

In the third case, there is a single Jordan chain, and we choose v3 such that (A− λ1 I3)2v3 6= 0,
v2 = (A− λ1 I3)v3, v1 = (A− λ1 I3)2v3.

24



2 The Jordan Canonical Form

Example 8. A =

 0 1 0
−1 −1 1

1 0 −2

. Then

cA(x) = −x[(2 + x)(1 + x)]− (2 + x) + 1 = −(1 + x)3.

We have

A + I3 =

 1 1 0
−1 0 1

1 0 −1

 , (A + I3)
2 =

0 1 1
0 −1 −1
0 1 1

 ,

so (A + I3)2 6= 0 and µA = (x + 1)3. For v3, we need a vector that is not in the nullspace of

(A + I3)2. Since the second column, which is the image of

0
1
0

 is non-zero, we can choose

v3 =

0
1
0

, and then v2 = (A + I3)v3 =

1
0
0

 and v1 = (A + I3)v2 =

 1
−1

1

. So we have

P =

 1 1 0
−1 0 1

1 0 0


and then

P−1AP =

−1 1 0
0 −1 1
0 0 −1

 .

2.9 The general case

In the examples above, we could tell what the sizes of the Jordan blocks were for each eigen-
value from the dimensions of the eigenspaces, since the dimension of the eigenspace for each
eigenvalue λ is the number of blocks for that eigenvalue. This doesn’t work for n = 4: for
instance, the matrices

A1 = Jλ,2 ⊕ Jλ,2

and
A2 = Jλ,3 ⊕ Jλ,1

both have only one eigenvalue (λ) with the eigenspace being of dimension 2.

(Knowing the minimal polynomial helps, but it’s a bit of a pain to calculate – generally the
easiest way to find the minimal polynomial is to calculate the JCF first! Worse still, it still doesn’t
uniquely determine the JCF in large dimensions, since

A3 = Jλ,3 ⊕ Jλ,3 ⊕ Jλ,1

and
A4 = Jλ,3 ⊕ Jλ,2 ⊕ Jλ,2
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have the same minimal polynomial, the same characteristic polynomial, and the same number
of blocks.)

In general, we can compute the JCF from the dimensions of the generalised eigenspaces.
Notice that the matrices A1 and A2 can be distinguished by looking at the dimensions of their
generalised eigenspaces: the generalised eigenspace for λ of index 2 has dimension 4 for A1
(it’s the whole space) but dimension only 3 for A2.

Theorem 2.9.1. Let λ be an eigenvalue of a matrix A ∈ Cn,n, and let J be the JCF of A. Then

(i) The number of Jordan blocks of J with eigenvalue λ is equal to nullity(A− λIn).

(ii) More generally, for i > 0, the number of Jordan blocks of J with eigenvalue λ and degree at least i
is equal to nullity((A− λIn)i)− nullity((A− λIn)i−1).

Note that this proves the uniqueness part of Theorem 2.7.3: the theorem says that the block
sizes of the Jordan form of A are determined by the dimensions of the generalised eigenspaces
of A for each eigenvalue, so any two Jordan canonical forms for A must have the same blocks
(possibly ordered differently).

Proof. By Proposition 2.6.4, the corresponding generalised eigenspaces of A and J have the
same dimensions, so we may assume WLOG that A = J. So A is a direct sum of several Jordan
blocks Jλ1,k1 ⊕ · · · ⊕ Jλs,ks .

However, it’s easy to see that the dimension of the generalised λ-eigenspace of index i of a
direct sum A⊕ B is the sum of the dimensions of the generalised λ eigenspaces of index i of A
and of B. Hence it suffices to prove the theorem for a single Jordan block Jλ,k.

But we know that (Jλ,k − λIk)
i has a single diagonal line of ones i places above the diagonal, for

i < k, and is 0 for i ≥ k. Hence the dimension of its kernel is i for 0 ≤ i ≤ k and k for i ≥ k. This
clearly implies the theorem when A is a single Jordan block, and hence for any A.

2.10 Examples

Example 9. A =


−1 −3 −1 0

0 2 1 0
0 0 2 0
0 3 1 −1

. Then cA(x) = (−1− x)2(2− x)2, so there are two

eigenvalues −1, 2, both with multiplicity 2. There are four possibilities for the JCF (one or two
blocks for each of the two eigenvalues). We could determine the JCF by computing the minimal
polynomial µA but it is probably easier to compute the nullities of the eigenspaces and use
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Theorem 2.9.1. We have

A + I4 =


0 −3 −1 0
0 3 1 0
0 0 3 0
0 3 1 0

 , (A− 2I4) =


−3 −3 −1 0

0 0 1 0
0 0 0 0
0 3 1 −3

 ,

(A− 2I4)
2 =


9 9 0 0
0 0 0 0
0 0 0 0
0 −9 0 9

 .

The rank of A + I4 is clearly 2, so its nullity is also 2, and hence there are two Jordan blocks with
eigenvalue −1. The three non-zero rows of (A− 2I4) are linearly independent, so its rank is
3, hence its nullity 1, so there is just one Jordan block with eigenvalue 2, and the JCF of A is
J−1,1 ⊕ J−1,1 ⊕ J2,2.

For the two Jordan chains of length 1 for eigenvalue −1, we just need two linearly independent

eigenvectors, and the obvious choice is v1 =


1
0
0
0

, v2 =


0
0
0
1

. For the Jordan chain v3, v4 for

eigenvalue 2, we need to choose v4 in the nullspace of (A− 2I4)
2 but not in the nullspace of

A− 2I4. (This is why we calculated (A− 2I4)
2.) An obvious choice here is v4 =


0
0
1
0

, and then

v3 =


−1

1
0
1

, and to transform A to JCF, we put

P =


1 0 −1 0
0 0 1 0
0 0 0 1
0 1 1 0

 , P−1 =


1 1 0 0
0 −1 0 1
0 1 0 0
0 0 1 0

 , P−1AP =


−1 0 0 0

0 −1 0 0
0 0 2 1
0 0 0 2

 .

Example 10. A =


−2 0 0 0

0 −2 1 0
0 0 −2 0
1 0 −2 −2

. Then cA(x) = (−2− x)4, so there is a single eigen-

value −2 with multiplicity 4. We find (A + 2I4) =


0 0 0 0
0 0 1 0
0 0 0 0
1 0 −2 0

, and (A + 2I4)
2 = 0, so

µA = (x + 2)2, and the JCF of A could be J−2,2 ⊕ J−2,2 or J−2,2 ⊕ J−2,1 ⊕ J−2,1.
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To decide which case holds, we calculate the nullity of A + 2I4 which, by Theorem 2.9.1, is
equal to the number of Jordan blocks with eigenvalue −2. Since A + 2I4 has just two non-zero
rows, which are distinct, its rank is clearly 2, so its nullity is 4− 2 = 2, and hence the JCF of A is
J−2,2 ⊕ J−2,2.

A Jordan basis consists of a union of two Jordan chains, which we will call v1, v2, and v3, v4,
where v1 and v3 are eigenvectors and v2 and v4 are generalised eigenvectors of index 2. To find
such chains, it is probably easiest to find v2 and v4 first and then to calculate v1 = (A + 2I4)v2
and v3 = (A + 2I4)v4.

Although it is not hard to find v2 and v4 in practice, we have to be careful, because they need to
be chosen so that no linear combination of them lies in the nullspace of (A + 2I4). In fact, since
this nullspace is spanned by the second and fourth standard basis vectors, the obvious choice is

v2 =


1
0
0
0

, v4 =


0
0
1
0

, and then v1 = (A + 2I4)v2 =


0
0
0
1

, v3 = (A + 2I4)v4 =


0
1
0
−2

, so to

transform A to JCF, we put

P =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 −2 0

 , P−1 =


0 2 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 , P−1AP =


−2 1 0 0

0 −2 0 0
0 0 −2 1
0 0 0 −2

 .

2.11 Proof of Theorem 2.7.3

We proceed by induction on n = dim(V). The case n = 1 is clear.

We are looking for a vector space of dimension less than n, related to T to apply our inductive
hypothesis to. Let λ be an eigenvalue of T and set S := T − λIV . Then we let U = im(S) and
m = dim(U). Using the Rank-Nullity Theorem we see that m = rank(S) = n− nullity(S) < n,
because there exists at least one eigenvector of T for λ, which lies in the nullspace of S = T−λIV .
For u ∈ U, we have u = S(v) for some v ∈ V, and hence T(u) = TS(v) = ST(v) ∈ im(S) = U.
Note that TS = ST because T(T− λIV) = T2− TλIV = T2− λIV T = (T− λIV)T. So T maps U
to U and thus T restricts to a linear map TU : U → U. Since m < n, we can apply our inductive
hypothesis to TU to deduce that U has a basis e1, . . . , em, which is a disjoint union of Jordan
chains for TU (for all eigenvalues of TU).

It is our job to show how to extend this Jordan basis of U to one of V. We do this in two stages.
Firstly, let v1, . . . , vk be one of the l disjoint Jordan chains for eigenvalue λ for TU (where l could
be 0), so we have T(v1) = TU(v1) = λv1, T(vi) = TU(vi) = λvi + vi−1, 2 ≤ i ≤ k. Now,
since vk ∈ U = im S = im(T− λIV), we can find vk+1 ∈ V with T(vk+1) = λvk+1 + vk, thereby
extending the chain by an extra vector of V.

We do this for each of the l disjoint chains for λ and so at this point we have adjoined l new
vectors to the basis. Let us call these new vectors w1, . . . , wl .

For the second stage, observe that the first vector in each of the l chains lies in the eigenspace
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of TU for λ. We know that the dimension of the eigenspace of T for λ is the dimension of
the nullspace of S, which is n− m. So we can adjoin (n− m)− l (which could be 0) further
eigenvectors of T to the l that we have already to complete a basis of the nullspace of (T− λIV).
Let us call these (n−m)− l new vectors wl+1, . . . , wn−m. They are adjoined to our basis of V in
the second stage. They each form a Jordan chain of length 1 (since they are not in the image of
S = T − λIV), so we now have a collection of n vectors which form a disjoint union of Jordan
chains.

To complete the proof, we need to show that these n vectors form a basis of V, for which it is
enough to show that they are linearly independent.

Suppose that

α1w1 + · · ·+ αn−mwn−m + x = 0, where x = β1e1 + . . . + βmem , (3)

a linear combination of the basis vectors e1, . . . , em of U. We now apply S to both sides of this
equation, recalling that S(wl+i) = 0 for i ≥ 1, by definition.

α1S(w1) + · · ·+ αlS(wl) + S(x) = 0. (4)

By the construction of the wi, each of the S(wi) for 1 ≤ i ≤ l is the last member of one of the
l Jordan chains for TU . Let this set of l vectors ej be L = {j | ej = S(wi) for some 1 ≤ i ≤ 1}.
Now examine the last term

S(x) = (T − λIn)(x) = (TU − λIm)(x) = β1(TU − λIm)(e1) + · · ·+ βm(TU − λIm)(em) .

Each (TU − λIm)(ej) is a linear combination of the basis vectors of U from the subset

{e1, . . . , em} \ {ej | j ∈ L}.

Indeed, this follows because after application of S we must have ‘moved’ down our Jordan
chains for TU . It now follows from the linear independence of the basis e1, . . . em, that αi = 0 for
all 1 ≤ i ≤ l.

So Equation (4) is now just
S(x) = 0 ,

and so x is in the eigenspace of TU for the eigenvalue λ. Equation (3) looks like

αl+1wl+1 + · · ·+ αn−mwn−m + x = 0. (5)

By construction, wl+1, . . . , wn−m extend a basis of the eigenspace of TU to a basis of the
eigenspace of T for λ. Lemma 1.2.2 now applies (to the eigenspace of T), yielding αi = 0
for l + 1 ≤ i ≤ n− m and x = 0. Since e1, . . . , em is a basis for U, we must have all β j = 0,
which completes the proof.
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2.12 An algorithm to compute the Jordan canonical form in general (brute force)

Whereas the examples above in Sections 2.8 and 2.10 explain some shortcuts, tricks and compu-
tational recipes to compute, given a matrix A ∈ Cn,n, a Jordan canonical form J for A as well
as a matrix P (invertible) such that J = P−1AP, it may also be useful to know how this can be
done systematically, provided we know all the eigenvalues, λ1, . . . , λs, say, of A.

Algorithm:

Step 1: Compute J. This amounts to knowing, for a given eigenvalue λ, the number of Jordan
blocks of degree/size i in J. By Theorem 2.9.1, (ii), this number is

(dim Ni(A, λ)− dim Ni−1(A, λ))− (dim Ni+1(A, λ)− dim Ni(A, λ))

= 2 dim Ni(A, λ)− dim Ni−1(A, λ)− dim Ni+1(A, λ).

So the computation of J is no problem then.

Step 2: Compute P. You can proceed as follows: pick an eigenvalue λ. Now suppose

N1 ≥ N2 ≥ · · · ≥ Nr

are the sizes of the Jordan blocks with eigenvalue λ (repeats among the Ni allowed if there are
several blocks of the same size; we order them according to decreasing size for definiteness).
Then pick a vector v1,1 ∈ V with

(A− λIn)
N1 v1,1 = 0, (A− λIn)

N1−1v1,1 6= 0

(note that this amounts to solving several systems of linear equations ultimately- we leave the
details of how to accomplish this step to you). Then put

v1,2 := (A− λIn)v1,1, v1,3 := (A− λIn)
2v1,1, . . . , v1,N1 := (A− λIn)

N1−1v1,1.

Note that (v1,N1 , . . . , v1,1) is then a Jordan chain. If r = 1, we are done, else we choose a vector
v2,1 ∈ V with

(A− λIn)
N2 v2,1 = 0, (A− λIn)

N2−1v2,1 /∈ 〈v1,1, . . . , v1,N1〉.

So note that the second condition has become more restrictive: we want that (A− λIn)N2−1v2,1
is not just nonzero, but not in the span V1 := 〈v1,1, . . . , v1,N1〉 of the first bunch of basis vectors.
Equivalently, we want it to be nonzero in the quotient V/V1, for those of you who know what
quotient vector spaces are (which isn’t required). We then put

v2,2 := (A− λIn)v2,1, v2,3 := (A− λIn)
2v2,1, . . . , v2,N2 := (A− λIn)

N2−1v2,1.

Then by construction (v2,N2 , . . . , v2,1) is a Jordan chain, and v1,1, . . . , v1,N1 , v2,1, . . . , v2,N2 are
linearly independent (for those who know quotient spaces, an easy way to check this is to notice
that v2,N2 , . . . , v2,1 are a Jordan chain in V/V1). If r = 2, we are done, otherwise we continue in
the same fashion: pick v3,1 ∈ V with

(A− λIn)
N3 v3,1 = 0, (A− λIn)

N3−1v3,1 /∈ 〈v1,1, . . . , v1,N1 , v2,1, . . . , v2,N2〉,
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and now you should see what the pattern to continue is. Finally you end up with vectors

v1,1, . . . , v1,N1 , v2,1, . . . , v2,N2 , . . . , vr,1, . . . , vr,Nr ∈ Cn.

Listing these in reverse order gives us the first N1 + · · ·+ Nr columns of P. Now we repeat the
same procedure for the remaining eigenvalues of A other than λ, adding a bunch of columns to
P at each step in this way. That gives us the desired base change matrix P.

2.13 Grand finale

At this point we would like to take a step back and formulate the basic facts of the spectral the-
ory of matrices we have obtained so far in a way that is both easy to remember and convenient
to use in many applications. We use the more standard Cn×n for Cn,n and Cn for Cn,1 below.

Theorem 2.13.1. Let A ∈ Cn×n be a square matrix with complex entries, p ∈ C[x] any polynomial.
Then if λ is an eigenvalue of A, p(λ) is an eigenvalue of p(A), and any eigenvalue of p(A) is of this
form.

In fact, you have shown that as an exercise on the first assignment.

Theorem 2.13.2. For A ∈ Cn×n let
Ni(A, λ)

be the null-space of (A− λIn)i, so non-zero elements in Ni(A, λ) are generalised eigenvectors of A w.r.t.
λ of index i (index 1 being genuine eigenvectors). Then every vector in Cn can be written as a sum of
eigenvectors of A, genuine or generalised.

This follows immediately from Theorem 2.7.3.

Theorem 2.13.3. (i) Suppose A, B ∈ Cn×n are similar, in the sense that there exists an invertible
n× n matrix S with B = S−1AS. Then A and B have the same set of eigenvalues:

λ1 = µ1, . . . , λk = µk

(here the λ’s are the eigenvalues for A, the µ’s the ones for B), and in addition we have

(∗) dim Ni(A, λj) = dim Ni(B, µj)

for all i, j.

(ii) Conversely, if A, B ∈ Cn×n have the same eigenvalues λ1 = µ1, . . . , λk = µk as above, and (∗)
holds for all i and j, then A and B are similar.
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Whereas (i) is obvious (but also the content of Proposition 2.6.4), (ii) follows from the uniqueness
part of Theorem 2.7.3 (or Theorem 2.9.1 alternatively).

The three results above are the basic results of spectral theory, in some sense even more basic
than the Jordan canonical form itself. Also clearly

N1(A, λ) ⊂ N2(A, λ) ⊂ N3(A, λ) ⊂ . . .

and denoting by d(λ) the smallest index from which these spaces are equal to each other (the
index of the eigenvalue λ), we have: if λ1, . . . , λk are the distinct eigenvalues of A, we have for
the minimal polynomial

µA(x) =
k

∏
i=1

(x− λi)
d(λi).

This is just Theorem 2.7.4, (ii) together with Theorem 2.9.1, (ii).
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3 Functions of matrices

3.1 Powers of matrices

The theory of Jordan canonical form we developed can be used to compute powers of ma-
trices efficiently. Suppose we need to compute A2022 (and please appreciate the joke with
the exponent constantly equalling the current year here and in the exercises...) where A =
−2 0 0 0

0 −2 1 0
0 0 −2 0
1 0 −2 −2

 is the matrix from Example 10 in 2.10.

There are two practical ways of computing An by hand for a general matrix A and a very large
n. The first one involves the JCF of A.

If J = P−1 AP is the JCF of A then it is sufficient to compute Jn because of the telescoping
product:

An = (PJP−1)n = PJP−1PJP−1P . . . JP−1 = PJnP−1.

How do we work out what Jn is? Firstly, we need to convince ourselves that

(B⊕ C)n = Bn ⊕ Cn

for square matrices B, C. We leave this as an exercise in understanding the multiplication of
direct sums of matrices (it might help to look at some small examples!) and we have already
required this when thinking about the minimal polynomial of direct sums of matrices. Clearly,
it extends to the direct sum of any finite number of square matrices.

So we are left to consider what the power of an individual Jordan block is. Again a small
example will help us: (

1 1
0 1

)2

=

(
1 2
0 1

)
, . . . ,

(
1 1
0 1

)n

=

(
1 n
0 1

)
.

The eigenvalue being 1 hides things a little so let’s do a slightly more complicated example.

2 1 0
0 2 1
0 0 2

2

=

4 4 1
0 4 4
0 0 4

 ,

2 1 0
0 2 1
0 0 2

3

=

8 12 6
0 8 12
0 0 8

 .

At this point you should be willing to believe the following formula, which is left as an exercise
(use induction!) to prove.

Jn
λ,k =


λn nλn−1 . . . ( n

k−2)λ
n−k+2 ( n

k−1)λ
n−k+1

0 λn . . . ( n
k−3)λ

n−k+3 ( n
k−2)λ

n−k+2

...
...

...
...

...
0 0 . . . λn nλn−1

0 0 . . . 0 λn

 (6)
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where (n
t) = n!

(n−t)!t! is the choose-function (or binomial coefficient), interpreted as (n
t) = 0

whenever t > n.

Let us apply it to the matrix A above:

An = PJnP−1 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 −2 0



−2 1 0 0

0 −2 0 0
0 0 −2 1
0 0 0 −2


n

0 2 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 −2 0



(−2)n n(−2)n−1 0 0

0 (−2)n 0 0
0 0 (−2)n n(−2)n−1

0 0 0 (−2)n




0 2 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 =


(−2)n 0 0 0

0 (−2)n n(−2)n−1 0
0 0 (−2)n 0

n(−2)n−1 0 n(−2)n (−2)n

 .

The second method of computing An uses Lagrange’s interpolation polynomial. It is less labour
intensive and more suitable for pen-and-paper calculations.

Suppose ψ(M) = 0 for a polynomial ψ(z), in practice we will choose ψ(z) to be either the
minimal or characteristic polynomial. Dividing with remainder gives zn = q(z)ψ(z) + h(z),
and we conclude that

An = q(A)ψ(A) + h(A) = h(A).

Division with remainder may appear problematic2 for large n but there is a shortcut. If we know
the roots of ψ(z), say α1, . . . , αk with their multiplicities m1, . . . , mk, then h(z) can be found by
solving the system of simultaneous equations in coefficients of h(z):

f (t)(αj) = h(t)(αj), 1 ≤ j ≤ k, 0 ≤ t < mj

where f (z) = zn and f (t) is the t-th derivative of f with respect to z. In other words, h(z) is
what is known as Lagrange’s interpolation polynomial for the function zn at the roots of ψ(z).
Note that we only ever need to take h(z) to be a polynomial of degree m1 + · · ·+ mk − 1.

Let’s use this to find An again for A as above. We know the minimal polynomial µA(z) =
(z + 2)2. Given µA(z) is degree 2 we can take the Lagrange interpolation of zn at the roots of
(z + 2)2 to be h(z) = αz + β. To determine α and β we have to solve{

(−2)n = h(−2) = −2α + β
n(−2)n−1 = h′(−2) = α

Solving them gives α = n(−2)n−1 and β = (1− n)(−2)n. It follows that

An = n(−2)n−1A + (1− n)(−2)n I =


(−2)n 0 0 0

0 (−2)n n(−2)n−1 0
0 0 (−2)n 0

n(−2)n−1 0 n(−2)n (−2)n

 .

2Try to divide z2022 by z2 + z + 1 without reading any further.
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3.2 Applications to difference equations

Let us consider an initial value problem for an autonomous system with discrete time:

x(n + 1) = Ax(n), n ∈N, x(0) = w.

Here x(n) ∈ Km is a sequence of vectors in a vector space over a field K. One thinks of x(n) as a
state of the system at time n. The initial state is x(0) = w. The n× n-matrix A with coefficients
in K describes the evolution of the system. The adjective autonomous means that the evolution
equation does not change with the time3.

It takes longer to formulate this problem than to solve it. The solution is straightforward:

x(n) = Ax(n− 1) = A2x(n− 2) = . . . = Anx(0) = Anw. (7)

As a working example, let us consider the Fibonacci numbers:

F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 (n ≥ 2).

The recursion relations for them turn into(
Fn

Fn+1

)
=

(
0 1
1 1

)(
Fn−1
Fn

)
so that (7) immediately yields a general solution(

Fn
Fn+1

)
= An

(
0
1

)
where A =

(
0 1
1 1

)
. (8)

We compute the characteristic polynomial of A to be cA(z) = z2 − z− 1. Its discriminant is 5.
The roots of cA(z) are the golden ratio λ = (1 +

√
5)/2 and 1− λ = (1−

√
5)/2. It is useful to

observe that
2λ− 1 =

√
5 and λ(1− λ) = −1.

Let us introduce the number µn = λn − (1− λ)n. Suppose the Lagrange interpolation of zn at
the roots of z2 − z− 1 is h(z) = αz + β. The condition on the coefficients is given by{

λn = h(λ) = αλ + β
(1− λ)n = h(1− λ) = α(1− λ) + β

Solving them gives
α = µn/

√
5 and β = µn−1/

√
5 .

It follows that

An = αA + β = µn/
√

5A + µn−1/
√

5I2 =

(
µn−1/

√
5 µn/

√
5

µn/
√

5 (µn + µn−1)/
√

5

)
.

3A nonautonomous system would be described by x(n + 1) = A(n)x(n) here.
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Equation (8) immediately implies that

Fn = µn/
√

5 and An =

(
Fn−1 Fn
Fn Fn+1

)
.

If we try and do this for more complicated difference equations, we could meet matrices which
aren’t diagonalisable. Here’s an example (taken from the book by Kaye and Wilson, §14.11),
done using Jordan canonical form.

Example. Let xn, yn, zn be sequences of complex numbers satisfying
xn+1 = 3xn + zn,
yn+1 = −xn + yn − zn,
zn+1 = yn + 2zn.

with x0 = y0 = z0 = 1.

We can write this as

vn+1 =

 3 0 1
−1 1 −1

0 1 2

 vn.

So we have

vn = Anv0 = An

1
1
1


where A is the 3× 3 matrix above.

We find that the JCF of A is J = P−1DP where

J = J2,3 =

2 1 0
0 2 1
0 0 2

 , P =

 1 1 1
0 −1 0
−1 0 0

 .

The formula for the entries of Jk for J a Jordan block tells us that

Jn =

2n n2n−1
(

n
2

)
2n−2

0 2n n2n−1

0 0 2n


= 2n

1 1
2 n 1

4 (
n
2)

0 1 1
2 n

0 0 1
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We therefore have

An = PJnP−1

= 2n

 1 1 1
0 −1 0
−1 0 0

1 1
2 n 1

4 (
n
2)

0 1 1
2 n

0 0 1

0 0 −1
0 −1 0
1 1 1


= 2n

 1 1 + 1
2 n 1 + 1

2 n + 1
4 (

n
2)

0 −1 − 1
2 n

−1 − 1
2 n − 1

4 (
n
2)

0 0 −1
0 −1 0
1 1 1


= 2n

1 + 1
2 n + 1

4 (
n
2)

1
4 (

n
2)

1
2 n + 1

4 (
n
2)

− 1
2 n 1− 1

2 n − 1
2 n

− 1
4 (

n
2)

1
2 n− 1

4 (
n
2) 1− 1

4 (
n
2)


Finally, we obtain

An

1
1
1

 = 2n

 1 + n + 3
4 (

n
2)

1− 3
2 n

1 + 1
2 n− 3

4 (
n
2)


or equivalently, using the fact that (n

2) =
n(n−1)

2 ,
xn = 2n( 3

4 n2 + 5
8 n + 1),

yn = 2n(1− 3
2 n),

zn = 2n(− 3
4 n2 + 7

8 n + 1).

3.3 Motivation: Systems of Differential Equations

Suppose we want to expand our repertoire and solve a system of first-order simultaneous
differential equations, say

da
dt

= 3a− 4b + 8c,

db
dt

= a− c,

dc
dt

= a + b + c.

These are common in the Differential Equations course last year. Let’s write the system in a

different form. We consider v(t) =

a(t)
b(t)
c(t)

, a vector-valued function of time, and write the

above system as
dv
dt

= Av
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where A is the matrix 3 −4 8
1 0 −1
1 1 1

 .

“Aha!” we say. “We know the solution is v(t) = etAv(0)!” But then we pause, and say “Hang on,
what does etA actually mean?” In the next section, we’ll use what we now know about special
forms of matrices to define etA, and other functions of a matrix, in a sensible way that will make
this actually work; and having got our definition, we’ll work out how to calculate with it.

3.4 Definition of a function of a matrix

Suppose we have a “nice” one variable complex-valued function f (z). What is f (A)? In general,
there is no natural answer. We had one for f (z) = zn in Section 3.1 and we choose to generalise
this to define f (A) using the Jordan canonical form of A as follows. Let J = P−1AP with
J = Jλ1,k1 ⊕ · · · ⊕ Jλt,kt being the JCF of A. We define

f (A) = P f (J)P−1, where f (J) = f (Jλ1,k1)⊕ · · · ⊕ f (Jλt,kt),

and

f (Jλ,k) =


f (λ) f ′(λ) . . . f [k−2](λ) f [k−1](λ)

0 f (λ) . . . f [k−3](λ) f [k−2](λ)
...

...
...

...
...

0 0 . . . f (λ) f ′(λ)
0 0 . . . 0 f (λ)

 . (9)

The notation f [k](z) is known as the divided power derivative and defined as

f [k](z) :=
1
k!

f (k)(z).

So f [1] = f ′, f [2] = 1
2 f ′′, f [3] = 1

6 f ′′′, etc. As you might imagine, deciding exactly what a “nice”
function is, and whether this is definition is sensible for functions defined by power series etc. is
more analysis than it is algebra. Thus, in this course we will ignore such issues. We are mainly
interested in the exponential of a matrix. Taylor’s series at zero of the exponential function is
∑∞

k=0
zk

k! and so we might think that the following equation should be true.

eA = In + A +
A2

2
+

A3

6
+ · · · =

∞

∑
k=0

Ak

k!
. (10)

It is indeed true, i.e. this coincides with our definition of eA = f (A) where f is the standard
exponential function. Note, however, that not everything we know about the exponential
function of complex numbers is true when we apply it to matrices. For example, it is not true
that eB+C = eBeC for general matrices B and C; you may wish to find an explicit example.

Let’s start by calculating eA for a matrix A.
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Example 11. Consider A =

(
1 4
1 1

)
. This was Example 3 from Section 2.8 above, and we saw

that P−1 AP = J where

P =

(
2 −2
1 1

)
, J =

(
3 0
0 −1

)
.

Hence

eA = PeJ P−1

=

(
2 −2
1 1

)(
e3 0
0 e−1

)(
2 −2
1 1

)−1

=
1
4

(
2 −2
1 1

)(
e3 0
0 e−1

)(
1 2
−1 2

)
=

( 1
2 e3 + 1

2 e−1 e3 − e−1

1
4 e3 − 1

4 e−1 1
2 e3 + 1

2 e−1

)
.

Let’s see another way to calculate eA. We can again use Lagrange’s interpolation method, which
is often easier in practice.

Example 12. We compute eA for the matrix A from Example 10, Section 2.10, using Lagrange
interpolation. Suppose that h(z) = αz + β is the interpolation of ez at the roots of µA(z) =
(z + 2)2. The condition on the coefficients is given by{

e−2 = h(−2) = −2α + β
e−2 = h′(−2) = α

Solving them gives α = e−2 and β = 3e−2. It follows that

eA = h(A) = e−2A + 3e−2 I =


e−2 0 0 0

0 e−2 e−2 0
0 0 e−2 0

e−2 0 −2e−2 e−2

 .

Our motivation for defining the exponential of a matrix was to find etA so let’s do that in the next
example. It is important to note that t here should be seen as a constant when we differentiate
f (z) = ezt. So f [1](z) = tezt, f [2](z) = 1

2 t2ezt, etc.

Example 13. Let

A =

 1 0 −3
1 −1 −6
−1 2 5

 .

Using the methods of the last chapter we can check that its JCF is J =

2 1 0
0 2 0
0 0 1

 and the basis

change matrix P such that J = P−1AP is given by P =

 3 0 2
3 1 1
−1 −1 0

 .
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Applying the argument above, we see that etA = PetJ P−1 where

etJ =

e2t te2t 0
0 e2t 0
0 0 et

 .

We can now calculate etA explicitly by doing the matrix multiplication to get the entries of
PeJtP−1, as we did in the 2× 2 example above.

It looks messy. Do we really want to write it down here?

Well, let us not do it. In a pen-and-paper calculation, except a few cases (for example, diagonal
matrices) it is simpler to use Lagrange’s interpolation.

Example 14. Let us consider a harmonic oscillator described by the equation y′′(t) + y(t) = 0.
The general solution y(t) = α sin(t) + β cos(t) is well known. Let us obtain it using matrix
exponents. Setting

x(t) =
(

y(t)
y′(t)

)
, A =

(
0 1
−1 0

)
the harmonic oscillator becomes the initial value problem with a solution x(t) = etAx(0). The
eigenvalues of A are i and −i. Interpolating etz at these values of z gives the following condition
on h(z) = αz + β {

eti = h(i) = αi + β
e−ti = h(−i) = −αi + β

Solving them gives α = (eti − e−ti)/2i = sin(t) and β = (eti + e−ti)/2 = cos(t). It follows that

etA = sin(t)A + cos(t)I2 =

(
cos(t) sin(t)
− sin(t) cos(t)

)
and so

x(t) =
(

cos(t)y(0) + sin(t)y′(0)
− sin(t)y(0) + cos(t)y′(0)

)
.

The final solution is thus y(t) = cos(t)y(0) + sin(t)y
′
(0).

Example 15. Let us consider a system of differential equations
y′1 = y1 − 3y3
y′2 = y1 − y2 − 6y3
y′3 = −y1 + 2y2 + 5y3

, with the initial condition


y1(0) = 1
y2(0) = 1
y3(0) = 0

Using matrices

x(t) =

y1(t)
y2(t)
y3(t)

 , w =

1
1
0

 , A =

 1 0 −3
1 −1 −6
−1 2 5

 ,
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it becomes an initial value problem. The characteristic polynomial is cA(z) = −z3 + 5z2 − 8z +
4 = (1− z)(2− z)2. We need to interpolate etz at 1 and 2 by h(z) = αz2 + βz+ γ. At the multiple
root 2 we need to interpolate up to order 2 that involves tracking the derivative (etz)′ = tetz:

et = h(1) = α + β + γ
e2t = h(2) = 4α + 2β + γ
te2t = h′(2) = 4α + β

Solving, α = (t− 1)e2t + et, β = (4− 3t)e2t − 4et, γ = (2t− 3)e2t + 4et. It follows that

etA = e2t

3t− 3 −6t + 6 −9t + 6
3t− 2 −6t + 4 −9t + 3
−t 2t 3t + 1

+ et

4 −6 −6
2 −3 −3
0 0 0


and

x(t) =

y1(t)
y2(t)
y3(t)

 = etA

1
1
0

 =

 (3− 3t)e2t − 2et

(2− 3t)e2t − et

te2t

 .
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4 Bilinear Maps and Quadratic Forms

We’ll now introduce another, rather different kind of object you can define for vector spaces: a
bilinear map. These are a bit different from linear maps: rather than being machines that take a
vector and spit out another vector, they take two vectors as input and spit out a number.

4.1 Bilinear maps: definitions

Let V and W be vector spaces over a field K.

Definition 4.1.1. A bilinear map on V and W is a map τ : V ×W → K such that

(i) τ(α1v1 + α2v2, w) = α1τ(v1, w) + α2τ(v2, w); and

(ii) τ(v, α1w1 + α2w2) = α1τ(v, w1) + α2τ(v, w2)

for all v, v1, v2 ∈ V, w, w1, w2 ∈W, and α1, α2 ∈ K.

So τ(v, w) is linear in v for each w, and linear in w for each v – linear in two different ways,
hence the term “bilinear”.

Clearly if we fix bases of V and W, a bilinear map will be determined by what it does to the
basis vectors. Choose a basis e1, . . . , en of V and a basis f1, . . . , fm of W.

Let τ : V ×W → K be a bilinear map, and let αij = τ(ei, fj), for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then the
n×m matrix A = (αij) is defined to be the matrix of τ with respect to the bases e1, . . . , en and
f1, . . . , fm of V and W.

For v ∈ V, w ∈W, let v = x1e1 + · · ·+ xnen and w = y1f1 + · · ·+ ymfm, so the coordinates of
v and w with respect to our bases are

v =


x1
x2

.

.
xn

 ∈ Kn,1, and w =


y1
y2

.

.
ym

 ∈ Km,1.

Then, by using the equations (i) and (ii) above, we get

τ(v, w) =
n

∑
i=1

m

∑
j=1

xi τ(ei, fj) yj =
n

∑
i=1

m

∑
j=1

xi αij yj = vTAw. (2.1)

So once we’ve fixed bases of V and W, every bilinear map on V and W corresponds to an n×m
matrix, and conversely every matrix determines a bilinear map.

For example, let V = W = R2 and use the natural basis of V. Suppose that A =

(
1 −1
2 0

)
.

Then

τ((x1, x2), (y1, y2)) = (x1 x2)

(
1 −1
2 0

)(
y1
y2

)
= x1y1 − x1y2 + 2x2y1.
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4.2 Bilinear maps: change of basis

We retain the notation of the previous section, so τ is a bilinear map on V and W, and A is the
matrix of τ with respect to some bases e1, . . . , en of V and f1, . . . , fm of W.

As in §1.5 of the course, suppose that we choose new bases e′1, . . . , e′n of V and f′1, . . . , f′m of W,
and let P and Q be the associated basis change matrices. Let B be the matrix of τ with respect to
these new bases.

Let v be any vector in V. Then we know (from Proposition 1.5.1) that if v ∈ Kn,1 is the column
vector of coordinates of v with respect to the old basis e1, . . . , en, and v′ the coordinates of v in
the new basis e′1, . . . , e′n, then we have Pv′ = v. Similarly, for any w ∈ W, the coordinates w
and w′ of w with respect to the old and new bases of W are related by Qw′ = w.

We know that we have
vT Aw = τ(v, w) = (v′)TBw′.

Substituting in the formulae from Proposition 1.5.1, we have

(v′)TBw′ = (Pv′)T A(Qw′)

= (v′)T PT AQ w′.

Since this relation must hold for all v′ ∈ Kn,1 and w′ ∈ Km,1, the two matrices in the middle
must be equal (exercise!): that is, we have B = PT AQ. So we’ve proven:

Theorem 4.2.1. Let A be the matrix of the bilinear map τ : V ×W → K with respect to the bases
e1, . . . , en and f1, . . . , fm of V and W, and let B be its matrix with respect to the bases e′1, . . . , e′n and
f′1, . . . , f′m of V and W. Let P and Q be the basis change matrices, as defined above. Then B = PTAQ.

Compare this result with Theorem 1.5.2.

We shall be concerned from now on only with the case where V = W. A bilinear map τ :
V ×V → K is called a bilinear form on V. Theorem 4.2.1 then becomes:

Theorem 4.2.2. Let A be the matrix of the bilinear form τ on V with respect to the basis e1, . . . , en of
V, and let B be its matrix with respect to the basis e′1, . . . , e′n of V. Let P the basis change matrix with
original basis {ei} and new basis {e′i}. Then B = PT AP.

Let’s give a name to this relation between matrices:

Definition 4.2.3. Two matrices A and B are called congruent if there exists an invertible matrix
P with B = PTAP.

So congruent matrices represent the same bilinear form in different bases. Notice that congru-
ence is very different from similarity; if τ is a bilinear form on V and T is a linear operator on V,
it might be the case that τ and T have the same matrix A in some specific basis of V, but that
doesn’t mean that they have the same matrix in any other basis – they inhabit different worlds.
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So, in the example at the end of Subsection 4.1, if we choose the new basis e′1 =

(
1
−1

)
,

e′2 =

(
1
0

)
then P =

(
1 1
−1 0

)
, PTAP =

(
0 −1
2 1

)
, and

τ((y′1e′1 + y′2e′2, x′1e′1 + x′2e′2)) = −y′1x′2 + 2y′2x′1 + y′2x′2.

Since P is an invertible matrix, PT is also invertible (its inverse is (P−1)T), and so the matrices
PT AP and A are “equivalent matrices” in the sense of MA106, and hence have the same rank.

The rank of the bilinear form τ is defined to be the rank of its matrix A. So we have just shown
that the rank of τ is a well-defined property of τ, not depending on the choice of basis we’ve
used.

In fact we can say a little more. It’s clear that a vector v ∈ Kn,1 is zero if and only if vTw = 0 for
all vectors w ∈ Kn,1. Since

τ(v, w) = vTAw,

the kernel of A is equal to the space

{v ∈ V : τ(w, v) = 0 ∀w ∈ V}

(the right radical of τ) and the kernel of AT is equal to the space

{v ∈ V : τ(v, w) = 0 ∀w ∈ V}

(the left radical). Since AT and A have the same rank, the left and right radicals both have
dimension n− r, where r is the rank of τ. In particular, the rank of τ is n if and only if the left
and right radicals are zero. If this occurs, we’ll say τ is nondegenerate; so τ is nondegenerate if
and only if its matrix (in any basis) is nonsingular.

You could be forgiven for expecting that we were about to launch into a long study of how to
choose, given a bilinear form τ on V, the “best” basis for V which makes the matrix of τ as nice
as possible. We are not going to do this, because although it’s a very natural question to ask, it’s
extremely hard! Instead, we’ll restrict ourselves to a special kind of bilinear form where life is
much easier, which covers most of the bilinear forms that come up in “real life”.

Definition 4.2.4. We say bilinear form τ on V is symmetric if τ(w, v) = τ(v, w) for all v, w ∈ V.

We say τ is antisymmetric (or sometimes alternating) if τ(v, v) = 0 for all v ∈ V.

The antisymmetry condition implies for all v, w ∈ V

τ(v + w, v + w) = τ(v, w) + τ(w, v) = 0

hence for all v, w ∈ V
τ(v, w) = −τ(w, v).

If 2 6= 0 in K, the condition τ(v, w) = −τ(w, v) implies antisymmetry (take v = w, but you
need to be able to divide by 2).

An n× n matrix A is called symmetric if AT = A, and anti-symmetric if AT = −A and it has
zeros along the diagonal. We then clearly have:
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Proposition 4.2.5. The bilinear form τ is symmetric or anti-symmetric if and only if its matrix (with
respect to any basis) is symmetric or anti-symmetric.

The best known example of a symmetric form is when V = Rn, and τ is defined by

τ




x1
x2
...
xn

 ,


y1
y2
...
yn


 = x1y1 + x2y2 + · · ·+ xnyn.

This form has matrix equal to the identity matrix In with respect to the standard basis of Rn.
Geometrically, it is equal to the normal scalar product τ(v, w) = |v||w| cos θ, where θ is the
angle between the vectors v and w.

On the other hand, the form on R2 defined by τ

((
x1
x2

)
,
(

y1
y2

))
= x1y2− x2y1 is anti-symmetric.

This has matrix
(

0 1
−1 0

)
.

Proposition 4.2.6. Suppose that 2 6= 0 in K. Then any bilinear form τ can be written uniquely as
τ1 + τ2 where τ1 is symmetric and τ2 is antisymmetric.

Proof. We just put τ1(v, w) = 1
2 (τ(v, w) + τ(w, v)) and τ2(v, w) = 1

2 (τ(v, w)− τ(w, v)). It’s
clear that τ1 is symmetric and τ2 is antisymmetric.

Moreover, given any other such expression τ = τ′1 + τ′2, we have

τ1(v, w) =
τ′1(v, w) + τ′1(w, v) + τ′2(v, w) + τ′2(w, v)

2

=
τ′1(v, w) + τ′1(v, w) + τ′2(v, w)− τ′2(v, w)

2

from the symmetry and antisymmetry of τ′1 and τ′2. The last two terms cancel each other and
we just have

=
2τ′1(v, w)

2
= τ′1(v, w).

So τ1 = τ′1, and so τ2 = τ − τ1 = τ − τ′1 = τ′2, so the decomposition is unique.

(Notice that 1
2 has to exist in K for all this to make sense!)

4.3 Quadratic forms

Definition 4.3.1. Let V be a vector space over the field K. Then a quadratic form on V is a
function q : V → K that satisfies that

q(λv) = λ2q(v), ∀ v ∈ V, λ ∈ K
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and that
(∗) τq(v1, v2) := q(v1 + v2)− q(v1)− q(v2)

is a symmetric bilinear form on V.

As we can see from the definition, symmetric bilinear forms and quadratic forms are closely
related. Indeed, given a bilinear form τ we can define a quadratic form by

qτ(v) := τ(v, v).

Moreover, given a quadratic form, (*) above gives us a symmetric bilinear form. These processes
are almost inverse to each other: indeed, one can easily compute that starting with a quadratic
form q and bilinear form τ

qτq = 2q, τqτ = 2τ.

So as long as 2 6= 0 in our K, quadratic forms and bilinear forms correspond to each other in a
one-to-one way if we make the associations

q 7→ 1
2

τq, τ 7→ qτ.

If 2 = 0 in K (e.g. in F2 = Z/2Z, but there are again lots of other examples of such fields) this
correspondence breaks down: indeed, in that case there are quadratic forms that are not of the
form τ(−,−) for any symmetric bilinear form τ on V; e.g. let V = F2

2, the space of pairs (x1, x2)
with xi ∈ F2. We would certainly like to be able to call

q((x1, x2)) = x1x2

a quadratic form on V. On the other hand, a general symmetric bilinear form on V looks like

τ((x1, x2), (y1, y2)) = ax1y1 + bx1y2 + bx2y1 + cx2y2

so that putting (x1, x2) = (y1, y2) we only get quadratic forms that a sums of squares.

There is an important and highly developed theory of quadratic forms also when 2 = 0 in
K (exposed in for example the books by Merkurjev-Karpenko-Elman or Kneser on quadratic
forms), but the normal forms for them are a bit different from the case when 2 6= 0 and though
the theory is not actually harder it divides naturally according to whether 2 = 0 or 2 6= 0 in K.
So from now on till the rest of this Chapter we make the:

Assumption: In our field K, we have that 2 = 1 + 1 is not equal to 0.

Let e1, . . . , en be a basis of V. Recall that the coordinates of v with respect to this basis are
defined to be the field elements xi such that v = ∑n

i=1 xiei.

Let A = (αij) be the matrix of a symmetric bilinear form τ with respect to this basis. We will
also call A the matrix of q = qτ with respect to this basis. Then A is symmetric because τ is, and
by Equation (2.1) of Subsection 4.1, we have
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q(v) = vT Av =
n

∑
i=1

n

∑
j=1

xiαijxj =
n

∑
i=1

αiix2
i + 2

n

∑
i=1

i−1

∑
j=1

αijxixj. (3.1)

Conversely, if we are given a quadratic form as in the right hand side of Equation (3.1), then it
is easy to write down its matrix A. For example, if n = 3 and q(v) = 3x2 + y2 − 2z2 + 4xy− xz,

then A =

 3 2 −1/2
2 1 0

−1/2 0 −2

.

4.4 Nice bases for quadratic forms

We’ll now show how to choose a basis for V which makes a given symmetric bilinear form (or,
equivalently, quadratic form) “as nice as possible”. This will turn out to be much easier than
the corresponding problem for linear operators.

Theorem 4.4.1. Let V be a vector space of dimension n equipped with a symmetric bilinear form τ (or,
equivalently, a quadratic form q).

Then there is a basis b1, . . . , bn of V, and constants β1, . . . , βn, such that

τ(bi, bj) =

{
βi if j = i
0 if j 6= i

.

Equivalently,

• given any symmetric matrix A, there is an invertible matrix P such that PTAP is a diagonal
matrix (i.e. A is congruent to a diagonal matrix);

• given any quadratic form q on a vector space V, there is a basis b1, . . . , bn of V and constants
β1, . . . , βn such that

q(x1b1 + · · ·+ xnbn) = β1x2
1 + · · ·+ βnx2

n.

Proof. We shall prove this by induction on n = dim V. If n = 0 then there is nothing to prove,
so let’s assume that n ≥ 1.

If τ is zero, then again there is nothing to prove, so we may assume that τ 6= 0. Then the
associated quadratic form q is not zero either, so there is a vector v ∈ V such that q(v, v) 6= 0.
Let b1 = v and let β1 = q(v).

Consider the linear map V → K given by w 7→ τ(w, v). This is not the zero map, so its image
has rank 1; so its kernel W has rank n− 1. Moreover, this (n− 1)-dimensional subspace doesn’t
contain b1 = v.

By the induction hypothesis, we can find a basis b2, . . . , bn for the kernel such that τ(bi, bj) = 0
for all 2 ≤ i < j ≤ n; and all of these vectors lie in the space W, so we also have τ(b1, bj) = 0
for all 2 ≤ j ≤ n. Since b1 /∈W, it follows that b1, . . . , bn is a basis of V, so we’re done.
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Finding the good basis: The above proof is quite short and slick, and gives us very little help
if we explicitly want to find the diagonalizing basis. So let’s unravel what’s going on a bit more
explicitly. We’ll see in a moment that what’s going on is very closely related to “completing the
square” in school algebra.

So let’s say we have a quadratic form q. As usual, let B = (βij) be the matrix of q with respect to
some arbitrary basis b1, . . . , bn. We’ll modify the basis bi step-by-step in order to eventually get
it into the nice form the theorem predicts.

Step 1: Arrange that q(b1) 6= 0. Here there are various cases to consider.

• If β11 6= 0, then we’re done: this means that q(b1) 6= 0, so we don’t need to do anything.

• If β11 = 0, but βii 6= 0 for some i > 1, then we just interchange b1 and bi in our basis.

• If βii = 0 for all i, but there is some i and j such that βij 6= 0, then we replace bi with
bi + bj; since

q(bi + bj) = q(bi) + q(bj) + 2τ(bi, bj) = 2βij,

after making this change we have q(bi) 6= 0, so we’re reduced to one of the two previous
cases.

• If βij = 0 for all i and j, we can stop: the matrix of q is zero, so it’s certainly diagonal.

Step 2: Modify b2, . . . , bn to make them orthogonal to b1. Suppose we’ve done Step 1,
but we haven’t stopped, so β11 is now non-zero. We want to arrange that τ(b1, bi) is 0 for all
i > 1. To do this, we just replace bi with

bi −
β1i

β11
b1.

This works because

τ(b1, bi −
β1i

β11
b1) = τ(b1, bi)−

β1i

β11
τ(b1, b1) = β1i −

β1i

β11
β11 = 0.

This is where the relation to “completing the square” comes in. We’ve changed our basis by the
matrix

P =


1 − β12

β11
. . . − β1n

β11

1
. . .

1


so the coordinates of a vector v ∈ V change by the inverse of this, which is just

P−1 =


1 β12

β11
. . . β1n

β11

1
. . .

1
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This corresponds to writing

q(x1b1 + · · ·+ xnbn) = β11x2
1 + 2β12x1x2 + · · ·+ 2β1nx1xn + C

where C doesn’t involve x1 at all, and writing this as

β11

(
x1 +

β12

β11
x2 + · · ·+

β1n

β11
xn

)2

+ C′

where C′ also doesn’t involve x1. Then our change of basis changes the coordinates so the whole
bracketed term becomes the first coordinate of v; we’ve eliminated “cross terms” involving x1
and one of the other variables.

Step 3: Induct on n. Now we’ve managed to engineer a basis b1, . . . , bn such that the
matrix B = βij of q looks like 

β11 0 . . . 0
0 ? . . . ?
...

...
. . .

...
0 ? . . . ?


So we can now repeat the process with V replaced by the (n− 1)-dimensional vector space
W spanned by b2, . . . , bn. We can mess around as much as we like with the vectors b2, . . . , bn
without breaking the fact that they pair to zero with b1, since this is true of any vector in W. So
we go back to step 1 but with a smaller n, and keep going until we either have an 0-dimensional
space or a zero form, in which case we can safely stop.

Example. Let V = R3 and q

x
y
z

 = xy + 3yz− 5xz, so the matrix of q with respect to the

standard basis e1, e2, e3 is

A =

 0 1/2 −5/2
1/2 0 3/2
−5/2 3/2 0

 .

Since we have only 3 variables, it’s much less work to call them x, y, z than x1, x2, x3. When we
change the variables, we will write x1, y1, z1 and so on. We still proceed as in the previous proof

and you need to read the proof first! We will use ♥= for the equalities that need no checking
(they are for information purposes only).

First change of basis: All the diagonal entries of A are zero, so we’re in Case 3 of Step 1 of the
proof above. But α12 is 1/2, which isn’t zero; so we replace e1 with e1 + e2. That is, we work in
the basis

b1 := e1 + e2, b2 := e2, b3 := e3 .

Thus the basis change matrix from e1, e2, e3 to b1, b2, b3 is

P =

1 0 0
1 1 0
0 0 1

 so that

x
y
z

 ♥
= P

x1
y1
z1
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where

x1
y1
z1

 is the coordinate expression in the new basis (remember, P takes new coordinates

to old). And we have

q(x1b1 + y1b2 + z1b3) = q

 x1
x1 + y1

z1

 =

= x1(x1 + y1) + 3(x1 + y1)z1 − 5x1z1 = x2
1 + x1y1 − 2x1z1 + 3y1z1,

so the matrix of q in the basis b1, b2, b3 is

B =

 1 1/2 −1
1/2 0 3/2
−1 3/2 0

 ♥
= PT AP.

Second change of basis: Now we can use Step 2 of the proof to clear the entries in the first row
and column by modifying b2 and b3, this is the “completing the square” step. As specified in
Step 2 of the proof, we introduce a new basis b′ as follows

b′1 := b1 =

1
1
0

 , b′2 := b2 −
1
2

b1 =

0
1
0

− 1
2

1
1
0

 =

−1/2
1/2

0

 ,

b′3 := b3 − (−1)b1 =

0
0
1

+

1
1
0

 =

1
1
1

 .

So the basis change matrix from e1, e2, e3 to b′1, b′2, b′3 is

P′ =

1 −1/2 1
1 1/2 1
0 0 1

 ♥
= PQ where Q =

1 −1/2 1
0 1 0
0 0 1

 .

This corresponds to writing[
x2

1 + x1y1 − 2x1z1
]
+ 3y1z1 =

[
(x1 +

1
2

y1 − z1)
2 − 1

4
y2

1 − z2
1 + y1z1

]
+ 3y1z1

= (x1 +
1
2

y1 − z1)
2 − 1

4
y2

1 + 4y1z1 − z2
1.

In the new basis x2b′1 + y2b′2 + z2b′3 = (x2 − 1
2 y2 + z2)b1 + y2b2 + z2b3, which tells us that

q(x2b′1 + y2b′2 + z2b′3) = x2
2 −

1
4

y2
2 + 4y2z2 − z2

2.

so the matrix of q with respect to the b′ basis is

B′ =

1 0 0
0 −1/4 2
0 2 −1

 ♥
= QTBQ ♥

= (P′)T AP′.
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Third change of basis: Now we are in Step 3 of the proof, concentrating on the bottom right
2× 2 block. We must change the second and third basis vectors. Any subsequent changes of
basis we make will keep the first basis vector unchanged. We have

q(y2b′2 + z2b′3) = −
1
4

y2
2 + 4y2z2 − z2

2 ,

the “leftover terms” of the bottom right corner. This is a 2-variable quadratic form.

Since q(b′2) = −1/4 6= 0, we don’t need to do anything for Step 1 of the proof. Using Step 2 of
the proof, we replace b′1, b′2, b′3 by another new basis b′′:

b′′1 := b′1, b′′2 := b′2, b′′3 := b′3 −
2
−1/4

b′2 =

1
1
1

+ 8

−1/2
1/2

0

 =

−3
5
1

 .

So the change of basis matrix from e to b′′ is

P′′ =

1 −1/2 −3
1 1/2 5
0 0 1

 ♥
= P′Q′ where Q′ =

1 0 0
0 1 8
0 0 1

 .

This corresponds, of course, to the completing-the-square operation

−1
4

y2
2 + 4y2z2 − z2

2 = −1
4
(y2 − 8z2)

2 + 15z2
2.

So the matrix of q is now

B′′ =

1 0 0
0 −1/4 0
0 0 15

 ♥
= (Q′)TB′Q′ ♥= (P′′)T AP′′.

This is diagonal, so we’re done: the matrix of q in the basis b′′1 , b′′2 , b′′3 is the diagonal matrix B′′.

Notice that the choice of “good” basis, and the resulting “good” matrix, are extremely far from
unique. For instance, in the example above we could have replaced b′′2 with 2b′′2 to get the
(perhaps nicer) matrix 1 0 0

0 −1 0
0 0 15

 .

In the case K = C, we can do even better. After reducing q to the form q(v) = ∑n
i=1 αiix2

i , we can
permute the coordinates if necessary to get αii 6= 0 for 1 ≤ i ≤ r and αii = 0 for r + 1 ≤ i ≤ n,
where r = rank(q). We can then make a further change of coordinates x′i =

√
αiixi (1 ≤ i ≤ r),

giving q(v) = ∑r
i=1(x′i)

2. Hence we have proved:
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Proposition 4.4.2. A quadratic form q over C has the form q(v) = ∑r
i=1 x2

i with respect to a suitable
basis, where r = rank(q).

Equivalently, given a symmetric matrix A ∈ Cn,n, there is an invertible matrix P ∈ Cn,n such that
PT AP = B, where B = (βij) is a diagonal matrix with βii = 1 for 1 ≤ i ≤ r, βii = 0 for r + 1 ≤ i ≤ n,
and r = rank(A).

In particular, up to changes of basis, a quadratic form on Cn is uniquely determined by its rank.
We say the rank is the only invariant of a quadratic form over C.

When K = R, we cannot take square roots of negative numbers, but we can replace each positive
αi by 1 and each negative αi by −1 to get:

Proposition 4.4.3 (Sylvester’s Theorem). A quadratic form q over R has the form q(v) = ∑t
i=1 x2

i −
∑u

i=1 x2
t+i with respect to a suitable basis, where t + u = rank(q).

Equivalently, given a symmetric matrix A ∈ Rn,n, there is an invertible matrix P ∈ Rn,n such that
PT AP = B, where B = (βij) is a diagonal matrix with βii = 1 for 1 ≤ i ≤ t, βii = −1 for
t + 1 ≤ i ≤ t + u, and βii = 0 for t + u + 1 ≤ i ≤ n, and t + u = rank(A).

We shall now prove that the numbers t and u of positive and negative terms are invariants of q.
The pair of integers (t, u) is called the signature of q.

Theorem 4.4.4 (Sylvester’s Law of Inertia). Suppose that q is a quadratic form on the vector space V
over R, and that e1, . . . , en and e′1, . . . , e′n are two bases of V such that

q(x1e1 + · · ·+ xnen) =
t

∑
i=1

x2
i −

u

∑
i=1

x2
t+i

and

q(x1e′1 + · · ·+ xne′n) =
t′

∑
i=1

x2
i −

u′

∑
i=1

x2
t′+i.

Then t = t′ and u = u′.

Proof. We know that t + u = t′ + u′ = rank(q), so it is enough to prove that t = t′. Suppose not;
by symmetry we may suppose that t > t′.

Let V1 be the span of e1, . . . , et, and let V2 be the span of e′t′+1, . . . , e′n. Then for any non-zero
v ∈ V1 we have q(v) > 0; while for any w ∈ V2 we have q(w) ≤ 0. So there cannot be any
non-zero v ∈ V1 ∩V2.

On the other hand, we have dim(V1) = t and dim(V2) = n− t′. It was proved in MA106 that

dim(V1 + V2) = dim(V1) + dim(V2)− dim(V1 ∩V2),

so
dim(V1 ∩V2) = t + (n− t′)− dim(V1 + V2) = (t− t′) + n− dim(V1 + V2) > 0.

The last inequality follows from our assumption on t− t′ and the fact V1 + V2 is a subspace
of V and thus has dimension at most n. Since we have shown that V1 ∩ V2 = {0}, this is a
contradiction, which completes the proof.
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Remark. Notice that any non-zero x ∈ R is either equal to a square, or −1 times a square, but not both.
This property is shared by the finite field F7 of integers mod 7, so any quadratic form over F7 can be
written as a diagonal matrix with only 0’s, 1’s and −1’s down the diagonal (i.e. Sylvester’s Theorem
holds over F7). But Sylvester’s law of inertia isn’t valid in F7: in fact, we have(

2 3
4 2

)T (1 0
0 1

)(
2 3
4 2

)
=

(
20 14
14 20

)
=

(
−1 0

0 −1

)
,

so the same form has signature (2, 0) and (0, 2)! The proof breaks down because there’s no good notion of a
“positive” element of F7, so a sum of non-zero squares can be zero (the easiest example is 12 + 22 + 32 = 0).
So Sylvester’s law of inertia is really using something quite special about R.

4.5 Euclidean spaces, orthonormal bases and the Gram–Schmidt process

In this section, we’re going to suppose K = R. As usual, we let V be an n-dimensional vector
space over K, and we let q be a quadratic form on V, with associated symmetric bilinear form τ.

Definition 4.5.1. The quadratic form q is said to be positive definite if q(v) > 0 for all 0 6= v ∈ V.

It is clear that this is the case if and only if t = n and u = 0 in Proposition 4.4.3; that is, if q has
signature (n, 0).

The associated symmetric bilinear form τ is also called positive definite when q is.

Definition 4.5.2. A vector space V over R together with a positive definite symmetric bilinear
form τ is called a euclidean space.

In this case, Proposition 4.4.3 says that there is a basis {ei} of V with respect to which τ(ei, ej) =
δij, where

δij =

{
1 if i = j
0 if i 6= j.

(so the matrix A of q is the identity matrix In.) We call a basis of a euclidean space V with this
property an orthonormal basis of V.

(More generally, any set v1, . . . , vr of vectors in V, not necessarily a basis, will be said to be
orthonormal if τ(vi, vj) = δij for 1 ≤ i, j ≤ r.)

We shall assume from now on that V is a euclidean space, and that we have chosen an orthonor-
mal basis e1, . . . , en. Then τ corresponds to the standard dot product and we shall write v ·w
instead of τ(v, w).

Note that v ·w = vTw where, as usual, v and w are the column vectors associated with v and
w.

For v ∈ V, define |v| =
√

v · v. Then |v| is the length of v. Hence the length, and also the cosine
v ·w/(|v||w|) of the angle between two vectors can be defined in terms of the scalar product.
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Thus a set of vectors is orthonormal if the vectors all have length 1 and are at right angles to
each other.

The following theorem tells us that we can always complete a set of orthonormal vectors to an
orthonormal basis.

Theorem 4.5.3 (Gram-Schmidt process). Let V be a euclidean space of dimension n, and suppose that,
for some r with 0 ≤ r ≤ n, f1, . . . , fr are vectors in V such that

fi · fj = δij for 1 ≤ i, j ≤ r. (∗)
Then f1, . . . , fr can be extended to an orthonormal basis f1, . . . , fn of V.

Proof. We prove first that f1, . . . , fr are linearly independent. Suppose that ∑r
i=1 αifi = 0 for

some α1, . . . , αr ∈ R. Then, for each j with 1 ≤ j ≤ r, the scalar product of the left hand side of
this equation with fj is ∑r

i=1 αifj · fi = αj, by (∗). Since fj · 0 = 0, this implies that αj = 0 for all j,
so the fi are linearly independent.

The proof of the theorem will be by induction on n− r. We can start the induction with the case
n− r = 0, when r = n, and there is nothing to prove. So assume that n− r > 0; i.e. that r < n.
By a result from MA106, we can extend any linearly independent set of vectors to a basis of V,
so there is a basis f1, . . . , fr, gr+1, . . . , gn of V containing the fi. The trick is to define

f′r+1 = gr+1 −
r

∑
i=1

(fi · gr+1)fi.

If we take the scalar product of this equation with fj for some 1 ≤ j ≤ r, then we get

fj · f′r+1 = fj · gr+1 −
r

∑
i=1

(fi · gr+1)(fj · fi)

and then, by (∗), fj · fi is non-zero only when j = i, so the sum on the right hand side simplifies
to fj · gr+1, and the whole equation simplifies to

fj · f′r+1 = fj · gr+1 − fj · gr+1 = 0.

The vector f′r+1 is non-zero by linear independence of the basis, and if we define fr+1 =
f′r+1/|f′r+1|, then we still have fj · fr+1 = 0 for 1 ≤ j ≤ r, and we also have fr+1.fr+1 = 1.
Hence f1, . . . , fr+1 satisfy the equations (∗), and the result follows by invoking our inductive
hypothesis.

Note that this proof is constructive. In fact it shows us that given any basis of a euclidean space
we can ‘correct it’ to an orthonormal basis, as in the following example.

Example. Let V = R3 with the standard dot product. It is straightforward to check that 1
−1

1

 ,

1
0
1

 ,

1
1
2

 is a basis for V but it is not orthonormal. Let’s use the Gram-Schmidt

process to fix that by taking r = 0 and g1 =

 1
−1

1

, g2 =

1
0
1

 and g3 =

1
1
2

.
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Then f ′1 := g1 and so f1 = f ′1/| f ′1| = 1√
3

 1
−1

1

,

f ′2 := g2 − ( f1 · g2) f1 = g2 − 2√
3

f1 = 1
3

1
2
1

 and so f2 = 1√
6

1
2
1

,

f ′3 := g3 − ( f1 · g3) f1 − ( f2 · g3) f2 = g3 − 2√
3

f1 − 5√
6

f2 = 1
2

−1
0
1

 and so f3 = 1√
2

−1
0
1

.

thus we have now got an orthonormal basis f1, f2, f3 (always good to check this at the end!).

4.6 Orthogonal transformations

If we’re working with a euclidean space V, we know that there is a sensible definition of length
of a vector and the angle between vectors is; so we might want to consider transformations
from V to itself that preserve lengths and angles – they play nicely with the geometry of the
space.

Definition 4.6.1. A linear map T:V → V is said to be orthogonal if it preserves the scalar product
on V. That is, if T(v) · T(w) = v ·w for all v, w ∈ V.

Since length and angle can be defined in terms of the scalar product, an orthogonal linear
map preserves distance and angle, so geometrically it is a rigid map. In R2, for example, an
orthogonal map is either a rotation about the origin, or a reflection about a line through the
origin.

If A is the matrix of T (with respect to some orthonormal basis), then T(v) = Av and so

T(v) · T(w) = vT ATAw.

Hence T is orthogonal (the right hand side equals v ·w) if and only if ATA = In, or equivalently
if AT = A−1.

Definition 4.6.2. An n× n matrix is called orthogonal if ATA = In.

So we have proved:

Proposition 4.6.3. A linear map T : V → V is orthogonal if and only if its matrix A (with respect to
an orthonormal basis of V) is orthogonal.

Incidentally, the fact that ATA = In tells us that A (and hence T) is invertible, so det(A) is
non-zero. In fact we can do a little better than that:

Proposition 4.6.4. An orthogonal matrix has determinant ±1.

55



4 Bilinear Maps and Quadratic Forms

Proof. We have ATA = In, so det(AT A) = det(In) = 1.

On the other hand, det(ATA) = det(AT)det(A) = (det A)2. So (det A)2 = 1, implying that
det A = ±1.

Example. For any θ ∈ R, let A =

(
cos θ − sin θ
sin θ cos θ

)
. (This represents a anticlockwise rotation

through an angle θ.) Then it is easily checked that ATA = AAT = I2.

One can check that every orthogonal 2× 2 matrix with determinant +1 is a rotation by some
angle θ, and similarly that any orthogonal 2× 2 matrix of det −1 is a reflection in some line
through the origin. In higher dimensions the taxonomy of orthogonal matrices is a bit more
complicated – we’ll revisit this in a later section of the course.

Notice that the columns of A are mutually orthogonal vectors of length 1, and the same applies
to the rows of A. Let c1, c2, . . . , cn be the columns of the matrix A. As we observed in §1, ci is
equal to the column vector representing T(ei). In other words, if T(ei) = fi, say, then fi = ci.

Since the (i, j)-th entry of AT A is cT
i cj = fi · fj, we see that T and A are orthogonal if and only if

fi · fi = 1 and fi · fj = 0 (i 6= j), 1 ≤ i, j ≤ n. (∗)

By Proposition 4.6.4, an orthogonal linear map is invertible, so T(ei) (1 ≤ i ≤ n) forms a basis
of V, and we have:

Proposition 4.6.5. A linear map T is orthogonal if and only if T(e1), . . . , T(en) is an orthonormal
basis of V.

Here’s a pretty application of the Gram-Schmidt process and orthogonal matrices. Notice that
our proof of Gram-Schmidt actually proved a little more: we showed that if f1, . . . , fr is an
orthonormal set, and gr+1, . . . , gn is any way of completing the f’s to a basis of V, then we can
find fr+1, . . . , fn such that

• f1, . . . , fn is an orthonormal basis,

• for each r + 1 ≤ i ≤ n, fi is in the linear span of f1, . . . , fr, gr+1, . . . , gi.

That is, we’ve arranged that the basis change matrix from f1, . . . , fr, gr+1, . . . , gn to f1, . . . , fn
looks like (

Ir A
0 B

)
with B upper-triangular. This is most useful when r = 0, when it says that any basis may be
modified by an upper-triangular matrix to make it orthonormal.

This slight modification of Gram-Schmidt has a very nice interpretation in terms of matrices:

Proposition 4.6.6 (QR decomposition). Let A be any n× n real matrix. Then we can write A = QR
where Q is orthogonal and R is upper-triangular.
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Proof. We’ll only include a proof for the case when A is invertible.

Let g1, . . . , gn be the columns of A, regarded as vectors in Rn. Then since A is invertible,
g1, . . . , gn is a basis of Rn. We apply the Gram-Schmidt process to construct an orthonormal
basis f1, . . . , fn such that fi is in the linear span of g1, . . . , gi for each i.

Let Q be the matrix whose columns are f1, . . . , fn. Then Q is an orthogonal matrix, since its
columns are orthonormal vectors; and there are real numbers rij such that

g1 = r11f1

g2 = r12f1 + r22f2

g3 = r13f1 + r23f2 + r33f3

...

In other words we have
A = QR

where R is the upper-triangular matrix with entries rij.

To deal with the case when A isn’t invertible (so the columns of A no longer form a basis)
we can do the following. Show that any matrix A can be written as A = BR′ where B is
invertible and R′ is upper triangular; then writing B = QR we have A = QRR′, and RR′ is also
upper-triangular.

Example. Consider the matrix

A =

−1 0 −2
2 0 −1
0 −2 −2

 .

We have det(A) = 10, so A is non-singular. Let g1, g2, g3 be the columns of A.

Then |g1| =
√

5, so

f1 =
g1√

5
=

−1/
√

5
2/
√

5
0

 .

For the next step, we take f′2 = g2 − (f1 · g2)f1 = g2, since f1 · g2 = 0. So

f2 =
g2

|g2|
=

 0
0
−1

 .

For the final step, we take the vector

f′3 = g3 − (f1 · g3)f1 − (f2 · g3)f2.

We have

f1 · g3 =

−1/
√

5
2/
√

5
0

 ·
−2
−1
−2

 = 0, f2 · g3 =

 0
0
−1

 ·
−2
−1
−2

 = 2.
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So f′3 = g3 − 2f2 =

−2
−1

0

. We have |f′3| =
√

5 again, so

f3 =
f′3√

5
=

−2/
√

5
−1/
√

5
0

 .

Thus Q is the matrix whose columns are f1, f2, f3, that is

Q =

−1/
√

5 0 −2/
√

5
2/
√

5 0 −1/
√

5
0 −1 0

 .

and we have
g1 =

√
5f1, g2 = 2f2, g3 = 2f2 +

√
5f3

so A = QR where

R =


√

5 0 0
0 2 2
0 0

√
5

 .

The QR decomposition theorem is a very important technique in numerical calculations with
matrices. For instance, QR decomposition gives a quick way of inverting matrices. If A = QR,
then A−1 = R−1Q−1. Inverting orthogonal matrices is trivial, as the inverse is just the transpose;
inverting upper-triangular matrices is also pretty easy, so we can compute the inverse of A this
way, without having to compute the determinant.

4.7 Nice orthonormal bases

Suppose we have a euclidean space V, and a linear operator T : V → V (in case it is not clear
linear operator just means a linear map from V to V - it is an operator on V), or a quadratic
form q on V (not necessarily the same as the one giving V its euclidean structure). Can we
always find an orthonormal basis of V making the matrix of q look reasonably nice? Notice that
we’re juggling two quadratic forms here – we’re trying to make the matrix of q look nice while
simultaneously keeping the matrix of the original quadratic form as the identity.

Oddly enough, this is also a question about linear operators. Given any bilinear form τ on V
(not necessarily symmetric), there’s a uniquely determined linear operator T on V such that

τ(v, w) = v · T(w).

Note that T is just the linear operator corresponding to the matrix A of τ, with i, jth entry
τ(ei, ej) for the standard basis e1, . . . , en of V. Indeed, then τ(v, w) = vT Aw = vṪ(w) (this will
be true if we used any orthonormal basis of V but not in general).
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Conversely, any linear operator T determines a bilinear form τ by the same formula. Indeed,
the bilinearity follows from the bilinearity of · and the linearity of T (check this!). So once we’ve
fixed a “starting” bilinear form (the positive definite symmetric bilinear form), we can get any
other bilinear form τ on V × V from this via a linear operator, and this gives us a bijection
between bilinear forms and linear operators. Moreover, the matrix of T, in an orthonormal
basis of V, is just the matrix of τ. When we change basis by an orthogonal matrix (to get a new
orthonormal basis), the matrix of T changes by A 7→ P−1AP, and the matrix of τ changes by
A 7→ PT AP, but this is OK since PT = P−1 for orthogonal matrices!

In particular, if T is any linear operator, then (v, w) 7→ (Tv) ·w is certainly a bilinear form; so
there must be some linear operator S such that

(Tv) ·w = v · (Sw) (∗)

for all v and w.

Definition 4.7.1. If T : V → V is a linear operator on a euclidean space V, then the unique
linear map S such that (∗) holds is called the adjoint of T. We write this as T∗.

If we have chosen an orthonormal basis, then the matrix of T∗ is just the transpose of the matrix
of T. It follows from this that a linear operator is orthogonal if and only if T∗ = T−1; one can
also prove this directly from the definition.

We say T is selfadjoint if T∗ = T, or equivalently if the bilinear form τ(v, w) = v · (Tw) is
symmetric. Notice that ‘selfadjointness’, like ‘orthogonalness’, is something that only makes
sense for linear operators on euclidean spaces; it doesn’t make sense to ask if a linear operator
on a general vector space is selfadjoint. It should be clear that T is selfadjoint if and only if its
matrix in an orthonormal basis of V is a symmetric matrix.

So if V is a euclidean space of dimension n, the following problems are all actually the same:

• given a quadratic form q on V, find an orthonormal basis of V making the matrix of q as
nice as possible;

• given a selfadjoint linear operator T on V, find an orthonormal basis of V making the
matrix of T as nice as possible;

• given an n× n symmetric real matrix A, find an orthogonal matrix P such that PT AP is as
nice as possible.

First, we’ll warm up by proving a proposition which we’ll need in proving the main result
solving these equivalent problems.

Proposition 4.7.2. Let A be an n× n real symmetric matrix. Then A has an eigenvalue in R, and all
complex eigenvalues of A lie in R.

Proof. (To simplify the notation, we will write just v for a column vector v in this proof.)

The characteristic equation det(A− xIn) = 0 is a polynomial equation of degree n in x, and
since C is an algebraically closed field, it certainly has a root λ ∈ C, which is an eigenvalue for
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A if we regard A as a matrix over C. We shall prove that any such λ lies in R, which will prove
the proposition.

For a column vector v or matrix B over C, we denote by v or B the result of replacing all entries
of v or B by their complex conjugates. Since the entries of A lie in R, we have A = A.

Let v be a complex eigenvector associated with λ. Then

Av = λv (1)

so,taking complex conjugates and using A = A, we get

Av = λv. (2)

Transposing (1) and using AT = A gives

vT A = λvT, (3)

so by (2) and (3) we have
λvTv = vT Av = λvTv.

But if v = (α1, α2, . . . , αn)T, then vTv = α1α1 + · · ·+ αnαn, which is a non-zero real number
(eigenvectors are non-zero by definition). Thus λ = λ, so λ ∈ R.

Now let’s prove the main theorem of this section.

Theorem 4.7.3. Let V be a euclidean space of dimension n. Then:

• Given any quadratic form q on V, there is an orthonormal basis f1, . . . , fn of V and constants
α1, . . . , αn, uniquely determined up to reordering, such that

q(x1f1 + · · ·+ xnfn) =
n

∑
i=1

αi(xi)
2

for all x1, . . . , xn ∈ R.

• Given any linear operator T : V → V which is selfadjoint, there is an orthonormal basis f1, . . . , fn
of V consisting of eigenvectors of T.

• Given any n× n real symmetric matrix A, there is an orthogonal matrix P such that PT AP =
P−1 AP is a diagonal matrix.

Proof. We’ve already seen that these three statements are equivalent to each other, so we can
prove whichever one of them we like. Notice that in the second and third forms of the statement,
it’s clear that the diagonal matrix we obtain is similar to the original one; that tells us that in the
first statement the constants α1, . . . , αn are uniquely determined (possibly up to re-ordering).

We’ll prove the second statement using induction on n = dim V. If n = 0 there is nothing to
prove, so let’s assume the proposition holds for n− 1.
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Let T be our linear operator. By Proposition 4.7.2, T has an eigenvalue in R. Let v be a
corresponding eigenvector in V. Then f1 = v/|v| is also an eigenvector, and |f1| = 1. Let α1 be
the corresponding eigenvalue.

We consider the space W = {w ∈ V : w · f1 = 0}. Since W is the kernel of a surjective linear
map

V −→ R, v 7→ v · f1 ,

it is a subspace of V of dimension n− 1. We claim that T maps W into itself. So suppose w ∈W;
we want to show that T(w) ∈W also.

We have
T(w) · f1 = w · T(f1)

since T is selfadjoint. But we know that T(f1) = α1f1, so it follows that

T(w) · f1 = α1(w · f1) = 0,

since w ∈W so w · f1 = 0 since α1 6= 0.

So T maps W into itself. Moreover, W is a euclidean space of dimension n − 1, so we may
apply the induction hypothesis to the restriction of T to W. This gives us an orthonormal basis
f2, . . . , fn of W consisting of eigenvectors of T. By definition of W, f1 is orthogonal to f2, . . . , fn
and it follows that f1, . . . , fn is an orthonormal basis of V, consisting of eigenvectors of T.

Although it is not used in the proof of the theorem above, the following proposition is useful
when calculating examples. It helps us to write down more vectors in the final orthonormal
basis immediately, without having to use Theorem 4.5.3 repeatedly.

Proposition 4.7.4. Let A be a real symmetric matrix, and let λ1, λ2 be two distinct eigenvalues of A,
with corresponding eigenvectors v1, v2. Then v1 · v2 = 0.

Proof. (As in Proposition 4.7.2, we will write v rather than v for a column vector in this proof.
So v1 · v2 is the same as vT

1 v2.) We have

Av1 = λ1v1, (1)
Av2 = λ2v2. (2)

The trick is now to look at the expression vT
1 Av2. On the one hand, by (2) we have

vT
1 Av2 = v1 · (Av2) = vT

1 (λ2v2) = λ2(v1 · v2). (3)

On the other hand, AT = A, so vT
1 A = vT

1 AT = (Av1)
T, so using (1) we have

vT
1 Av2 = (Av1)

Tv2 = (λ1vT
1 )v2 = λ1(v1 · v2). (4)

Comparing (3) and (4), we have (λ2 − λ1)(v1 · v2) = 0. Since λ2 − λ1 6= 0 by assumption, we
have vT

1 v2 = 0.
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Example 16. Let n = 2 and let A be the symmetric matrix A =

(
1 3
3 1

)
. Then

det(A− xI2) = (1− x)2 − 9 = x2 − 2x− 8 = (x− 4)(x + 2),

so the eigenvalues of A are 4 and−2. Solving Av = λv for λ = 4 and−2, we find corresponding

eigenvectors
(

1
1

)
and

(
1
−1

)
. Proposition 4.7.4 tells us that these vectors are orthogonal to each

other (which we can of course check directly!), so if we divide them by their lengths to give

vectors of length 1, giving

(
1√
2

1√
2

)
and

(
1√
2
−1√

2

)
then we get an orthonormal basis consisting of

eigenvectors of A, which is what we want. The corresponding basis change matrix P has these

vectors as columns, so P =

(
1√
2

1√
2

1√
2

−1√
2

)
, and we can check that PTP = I2 (i.e. P is orthogonal)

and that PTAP =

(
4 0
0 −2

)
.

Example 17. Let’s do an example of the “quadratic form” version of the above theorem. Let
n = 3 and

q(v) = 3x2 + 6y2 + 3z2 − 4xy− 4yz + 2xz,

so A =

 3 −2 1
−2 6 −2

1 −2 3

 .

Then, expanding by the first row,

det(A− xI3) = (3− x)(6− x)(3− x)− 4(3− x)− 4(3− x) + 4 + 4− (6− x)

= −x3 + 12x2 − 36x + 32 = (2− x)(x− 8)(x− 2),

so the eigenvalues are 2 (repeated) and 8. For the eigenvalue 8, if we solve Av = 8v then

we find a solution v =

 1
−2

1

. Since 2 is a repeated eigenvalue, we need two corresponding

eigenvectors, which must be orthogonal to each other. The equations Av = 2v all reduce to

a− 2b + c = 0, and so any vector

a
b
c

 satisfying this equation is an eigenvector for λ = 2. By

Proposition 4.7.4 these eigenvectors will all be orthogonal to the eigenvector for λ = 8, but we
will have to choose them orthogonal to each other. We can choose the first one arbitrarily, so

let’s choose

 1
0
−1

. We now need another solution that is orthogonal to this. In other words,

we want a, b and c not all zero satisfying a− 2b + c = 0 and a− c = 0, and a = b = c = 1
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is a solution. So we now have a basis

 1
−2

1

,

 1
0
−1

,

1
1
1

 of three mutually orthogonal

eigenvectors. To get an orthonormal basis, we just need to divide by their lengths, which are,
respectively,

√
6,
√

2, and
√

3, and then the basis change matrix P has these vectors as columns,
so

P =

 1/
√

6 1/
√

2 1/
√

3
−2/
√

6 0 1/
√

3
1/
√

6 −1/
√

2 1/
√

3

 .

It can then be checked that PTP = I3 and that PTAP is the diagonal matrix with entries 8, 2, 2.
So if f1, f2, f3 is this basis, we have

q(xf1 + yf2 + zf3) = 8x2 + 2y2 + 2z2.

4.8 Applications of quadratic forms to geometry

4.8.1 Reduction of the general second degree equation

The general equation of a second degree polynomial in n variables x1, . . . , xn is

n

∑
i=1

αix2
i +

n

∑
i=1

i−1

∑
j=1

αijxixj +
n

∑
i=1

βixi + γ = 0. (†)

For fixed values of the α’s, β’s and γ, this defines a quadric curve or surface in n-dimensional
euclidean space. To study the possible shapes of the curves and surfaces thus defined, we first
simplify this equation by applying coordinate changes resulting from isometries (rigid motions)
of Rn; that is, transformations that preserve distance and angle.

By Theorem 4.7.3, we can apply an orthogonal basis change (that is, an isometry of Rn that fixes
the origin) which has the effect of eliminating the terms αijxixj in the above sum. To carry out
this step we consider the

n

∑
i=1

αix2
i +

n

∑
i=1

i−1

∑
j=1

αijxixj

term and complete the square (we are not very interested in tracking the basis in this section).
When making the change of coordinates we do then have to consider its impact on the terms in
∑n

i=1 βixi.

For example, suppose we have x2 + xy + y2 + x = 0. Then completing the square on the
x2 + xy + y2 part leads us to write the equation as (x + 1

2 y)2 + 3
4 y2 + x = 0. We then change

coordinates to x1 = x + 1
2 y and y1 = y, and the equation becomes x2

1 +
3
4 y2

1 + x1 − 1
2 y1 = 0.

Now, whenever αi 6= 0, we can replace xi by xi − βi/(2αi), and thereby eliminate the term βixi
from the equation. This transformation is just a translation, which is also an isometry.
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For example, suppose we have x2 − 3x = 0. Then we are completing the square again, but this
time in one variable. So x2 − 3x = 0 is just (x− 3

2 )
2 − 9

4 = 0 and we use x1 = x− 3
2 to write it

as x2
1 − 9

4 .

If αi = 0, then we cannot eliminate the term βixi. Let us permute the coordinates such that
αi 6= 0 for 1 ≤ i ≤ r, and βi 6= 0 for r + 1 ≤ i ≤ r + s.

If s > 1, we want to leave the xi alone for 1 ≤ i ≤ r but replace ∑s
i=1 βr+ixr+i by βxr+1. To

see that we can do this via an orthogonal transformation we use Theorem 4.5.3. Suppose our
orthonormal basis was e1, . . . , en. Then we can extend

e1, . . . , er,
1√

∑s
i=1 β2

r+i

s

∑
i=1

βr+ier+i

to an orthonormal basis of our euclidean space. Note that the r + 1th vector is chosen so that

in this basis our equation will just have the term (
√

∑s
i=1 β2

r+i)x′r+1. So we have reduced our
equation to at most one non-zero βi; either there are no linear terms at all, or there is just βr+1.

Given that (
√

∑s
i=1 β2

r+i) is positive we might think that our linear term will have a positive
coefficient. In fact, by dividing through by a constant we can choose it to be −1, which we do
for convenience.

Finally, if there is a linear term, so βr+1 6= 0 (and in fact can be thought to be −1 by the above
comment), then we can perform the translation that replaces xr+1 by xr+1− γ/βr+1, and thereby
eliminate the constant γ. When there is no linear term then we divide the equation through by
a constant, to assume that γ is 0 or −1 and we put γ on the right hand side for convenience.

We have proved the following theorem:

Theorem 4.8.1. By rigid motions of euclidean space, we can transform the set defined by the general
second degree equation (†) into the set defined by an equation having one of the following three forms:

r

∑
i=1

αix2
i = 0,

r

∑
i=1

αix2
i = 1,

r

∑
i=1

αix2
i − xr+1 = 0.

Here 0 ≤ r ≤ n and α1, . . . , αr are non-zero constants, and in the third case r < n.

We shall assume that r 6= 0, because otherwise we have a linear equation. The sets defined by
the first two types of equation are called central quadrics because they have central symmetry;
i.e. if a vector v satisfies the equation, then so does −v.

We shall now consider the types of curves and surfaces that can arise in the familiar cases n = 2
and n = 3. These different types correspond to whether the αi are positive, negative or zero,
and whether γ = 0 or 1.
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We shall use x, y, z instead of x1, x2, x3, and α, β, γ instead of α1, α2, α3. We shall assume also
that α, β, γ are all strictly positive, and write −α, etc., for the negative case. When the coefficient
of the right hand side is 0, we will divide through by −1 at will. For example, Case (i) in
the next section contains both αx2 = 0 and −αx2 = 0, which of course need not be counted
twice. Moreover, if swapping the names of x and y (whilst swapping the arbitrary positive real
numbers α and β) gives the same equation, we will only consider it once. For example, we do
this for the list in the next section by only listing Case (vii) once (−αx2 + βy2 = 1 is also in this
case).

4.8.2 The case n = 2

When n = 2 we have the following possibilities.

(i) αx2 = 0. This just defines the line x = 0 (the y-axis).

(ii) αx2 = 1. This defines the two parallel lines x = ±1/
√

α.

(iii) −αx2 = 1. This is the empty set!

(iv) αx2 + βy2 = 0. The single point (0, 0).

(v) αx2 − βy2 = 0. This defines two straight lines y = ±
√

α/β x, which intersect at (0, 0).

(vi) αx2 + βy2 = 1. An ellipse.

(vii) αx2 − βy2 = 1. A hyperbola.

(viii) −αx2 − βy2 = 1. The empty set again.

(ix) αx2 − y = 0. A parabola.

4.8.3 The case n = 3

When n = 3, we still get the nine possibilities (i) – (ix) that we had in the case n = 2, but now
they must be regarded as equations in the three variables x, y, z that happen not to involve z.

So, in Case (i), we now get the plane x = 0, in Case (ii) we get two parallel planes x = ±1/
√

α, in
Case (iv) we get the line x = y = 0 (the z-axis), in Case (v) two intersecting planes y = ±

√
α/βx,

and in Cases (vi), (vii) and (ix), we get, respectively, elliptical, hyperbolic and parabolic cylinders.

The remaining cases involve all of x, y and z. We omit −αx2 − βy2 − γz2 = 1, which is empty.

(x) αx2 + βy2 + γz2 = 0. The single point (0, 0, 0).

(xi) αx2 + βy2 − γz2 = 0. See Fig. 1.
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Figure 1: 1
2 x2 + y2 − z2 = 0

This is an elliptical cone. The cross sections parallel to the xy-plane are ellipses of the form
αx2 + βy2 = c, whereas the cross sections parallel to the other coordinate planes are generally
hyperbolas. Notice also that if a particular point (a, b, c) is on the surface, then so is t(a, b, c) for
any t ∈ R. In other words, the surface contains the straight line through the origin and any of
its points. Such lines are called generators. When each point of a 3-dimensional surface lies on
one or more generators, it is possible to make a model of the surface with straight lengths of
wire or string.

(xii) αx2 + βy2 + γz2 = 1. An ellipsoid. See Fig. 2.
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Figure 2: 2x2 + y2 + 1
2 z2 = 1

This is a “squashed sphere”. It is bounded, and hence clearly has no generators. Notice that if α,
β, and γ are distinct, it has only the finite group of symmetries given by reflections in x, y and z,
but if some two of the coefficients coincide, it picks up an infinite group of rotation symmetries.

(xiii) αx2 + βy2 − γz2 = 1. A hyperboloid. See Fig. 3.
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Figure 3: 3x2 + 8y2 − 8z2 = 1

There are two types of 3-dimensional hyperboloids. This one is connected, and is known as a
hyperboloid of one sheet. Any cross-section in the xy direction will be an ellipse, and these get
larger as z grows (notice the hole in the middle in the picture). Although it is not immediately
obvious, each point of this surface lies on exactly two generators; that is, lines that lie entirely
on the surface. For each λ ∈ R, the line defined by the pair of equations

√
α x−√γ z = λ(1−

√
β y); λ(

√
α x +

√
γ z) = 1 +

√
β y.

lies entirely on the surface; to see this, just multiply the two equations together. The same
applies to the lines defined by the pairs of equations√

β y−√γ z = µ(1−
√

α x); µ(
√

β y +
√

γ z) = 1 +
√

α x.
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It can be shown that each point on the surface lies on exactly one of the lines in each of these
two families.

There is a photo at http://home.cc.umanitoba.ca/~gunderso/model_photos/misc/hyperboloid_
of_one_sheet.jpg depicting a rather nice wooden model of a hyperboloid of one sheet, which
gives a good idea how these lines sit inside the surface.

(xiv) αx2 − βy2 − γz2 = 1. Another kind of hyperboloid. See Fig. 4.

Figure 4: 8x2 − 12y2 − 20z2 = 1

This one has two connected components and is called a hyperboloid of two sheets. It does not have
generators.
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(xv) αx2 + βy2 − z = 0. An elliptical paraboloid. See Fig. 5.

Figure 5: 2x2 + 3y2 − z = 0

Cross-sections of this surface parallel to the xy plane are ellipses, while cross-sections in the yz
and xz directions are parabolas. It can be regarded as the limit of a family of hyperboloids of
two sheets, where one “cap” remains at the origin and the other recedes to infinity.

(xvi) αx2 − βy2 − z = 0. A hyperbolic paraboloid (a rather elegant saddle shape). See Fig. 6.
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Figure 6: x2 − 4y2 − z = 0

As in the case of the hyperboloid of one sheet, there are two generators passing through each
point of this surface, one from each of the following two families of lines:

λ(
√

α x−
√

β) y = z;
√

α x +
√

β y = λ.

µ(
√

α x +
√

β) y = z;
√

α x−
√

β y = µ.

Just as the elliptical paraboloid was a limiting case of a hyperboloid of two sheets, so the
hyperbolic paraboloid is a limiting case of a hyperboloid of one sheet: you can imagine gradually
deforming the hyperboloid of one sheet so the elliptical hole in the middle becomes bigger and
bigger, and the result is the hyperbolic paraboloid.
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4.9 Singular value decomposition

In this section we want to study what linear maps T : V → W between euclidean spaces look
like? From MA106 Linear Algebra we know that we can choose bases in V and W such that

the matrix of T in Smith normal form is
(

In 0
0 0

)
where n is the rank of T. This answer is

unsatisfactory because it does not take the euclidean geometry of V and W into account. In
other words, we want to choose orthonormal bases, not just any bases. This leads us to the
singular value decomposition, SVD for short.

Notation: We will see various diagonal matrices in the following so we will use the shorthand
diag(d1, . . . , dn) for an n× n diagonal matrix with diagonal entries d1, . . . , dn.

Theorem 4.9.1 (SVD for linear maps). Suppose T : V → W is a linear map of rank n between
euclidean spaces. Then there exist unique positive numbers γ1 ≥ γ2 ≥ . . . ≥ γn > 0, called the
singular values of T, and orthonormal bases of V and W such that the matrix of T with respect to these
bases is (

D 0
0 0

)
where D = diag(γ1, . . . , γn).

Proof. We will consider a new bilinear form on V defined as follows.

u ? v := T(u) · T(v) .

Note that v ? v = T(v) · T(v) ≥ 0; we call such a bilinear form positive semidefinite (note that it
need not be positive definite because T can have a non-zero kernel). By Theorem 4.7.3, there
exist unique constants α1 ≥ . . . ≥ αm (eigenvalues of the matrix of the ? bilinear form) and an
orthonormal basis e1, . . . , em of V such that the bilinear form ? is given by diag(α1, . . . , αm) in
this basis. Since ? is positive semidefinite we see that all αi are non-negative. Suppose αk > 0 is
the last positive eigenvalue, that is, αk+1 = · · · = αm = 0.

Since T(ei) · T(ej) = ei ? ej = δijαi, we deduce that T(ek+1) = · · · = T(em) = 0 (the bilinear
form · on W is positive definite) and T(e1), . . . , T(ek) form an orthogonal set of vectors in W. It
follows that k is the rank of T since a set of orthogonal vectors is linearly independent (see the
proof of Theorem 4.5.3). Thus, k = n. We define γi :=

√
αi for all i ≤ k.

We now use these image vectors T(ei) to build an orthonormal basis of W. Since T(ei) · T(ei) =

ei ? ei = αi, we know that |T(ei)| =
√

αi = γi. Let fi := T(ei)
γi

for all i ≤ n. We can then extend
this orthonormal set of vectors to an orthonormal basis of W by the Gram-Schmidt process
(Theorem 4.5.3). Since T(ei) = γifi for i ≤ n and T(ej) = 0 for j > n, the matrix of T with
respect to these bases has the required form.

It remains to prove the uniqueness of the singular values. Suppose we have orthonormal bases

e′1, . . . , e′m of V and f′1, . . . , f′s of W, in which T is represented by a matrix
(

B 0
0 0

)
where B =

diag(β1, . . . , βt) with β1 ≥ . . . ≥ βt > 0. Put βi = 0 for i > t. Then e′i ? e′j = βif′i · β jf′j = δijβ
2
i .

Thus, diag(β2
1, . . . , β2

m) is the matrix of the bilinear form ? in the basis e′1, . . . , e′m. Uniqueness in
Theorem 4.7.3 implies the uniqueness of the singular values.
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Before we proceed with some examples, all on the standard euclidean spaces Rn, let us restate
the SVD for matrices:

Corollary 4.9.2 (SVD for matrices). Given any real k × m matrix A, there exist unique singular
values γ1 ≥ γ2 ≥ . . . ≥ γn > 0 and (non-unique) orthogonal matrices P and Q such that(

D 0
0 0

)
= PT AQ where D = diag(γ1, . . . , γn).

Equivalently, we say the SVD of A is

A = P
(

D 0
0 0

)
QT where D = diag(γ1, . . . , γn).

Example. Consider a linear map R2 → R2, given by the symmetric matrix A =

(
1 3
3 1

)
, in

the example from Section 4.7. There we found the orthogonal matrix P =

(
1√
2

1√
2

1√
2

−1√
2

)
with

PT AP =

(
4 0
0 −2

)
. This is not the SVD of A because the diagonal matrix contains a negative

entry. To get to the SVD we just need to pick different bases for the domain and the range: the
columns c1, c2 can still be a basis of the domain, while the basis of the range could become c1,
−c2. This is the SVD:

P =

(
1√
2

−1√
2

1√
2

1√
2

)
, Q =

(
1√
2

1√
2

1√
2

−1√
2

)
, PT AQ =

(
4 0
0 2

)
.

The same method works for any symmetric matrix: the SVD is just orthogonal diagonalisation
with additional care needed for signs. If the matrix is not symmetric, we need to follow the
proof of Theorem 4.9.1 during the calculation.

Example. Consider a linear map R3 → R2, given by A =

(
4 11 14
8 7 −2

)
. Since x ? y =

Ax · Ay = (Ax)T Ay = xT(AT A)y, the matrix of the bilinear form ? in the standard basis is

AT A =

 4 8
11 7
14 −2

(4 11 14
8 7 −2

)
=

 80 100 40
100 170 140
40 140 200

 .

The eigenvalues of this matrix are 360, 90 and 0. Hence the singular values of A are

γ1 =
√

360 = 6
√

10 ≥ γ2 =
√

90 = 3
√

10 .

At this stage we are assured of the existence of orthogonal matrices P and Q such that

PT AQ =

(
6
√

10 0 0
0 3
√

10 0

)
.
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To find such orthogonal matrices we first need to find an orthonormal basis of eigenvectors of
AT A. Since the eigenvalues are distinct on this occasion we only need to find an eigenvector for
each eigenvalue and normalise it so it has length 1. This leads to:

e1 =

1/3
2/3
2/3

 , e2 =

−2/3
−1/3

2/3

 , e3 =

 2/3
−2/3

1/3

 .

These make up Q. Then we need to find the images of these vectors under A divided by the
corresponding singular value (so only the eigenvectors for the non-zero eigenvalues of AT A):

f1 =
1

6
√

10
Ae1 =

(
3/
√

10
1/
√

10

)
, f2 =

1
3
√

10
Ae2 =

(
1/
√

10
−3/
√

10

)
.

The proof says we need to extend this to a basis of W, which is easy here because we already
have two vectors and so we don’t need anymore for a basis of R2. Hence, the orthogonal
matrices are

P =

(
3/
√

10 1/
√

10
1/
√

10 −3/
√

10

)
, Q =

1/3 −2/3 2/3
2/3 −1/3 −2/3
2/3 2/3 1/3

 .

4.10 The complex story

The results in Subsection 4.7 applied only to vector spaces over the real numbers R. There are
corresponding results for spaces over the complex numbers C, which we shall summarize here.
We only include one proof, although the others are similar and analogous to those for spaces
over R.

4.10.1 Sesquilinear forms

The key thing that made everything work over R was the fact that if x1, . . . , xn are real numbers,
and x2

1 + · · ·+ x2
n = 0, then all the xi are zero. This doesn’t work over C: take x1 = 1 and x2 = i.

But we do have something similar if we bring complex conjugation into play. As usual, for z ∈ C,
we let z denote the complex conjugate of z. Then if z1z1 + · · ·+ znzn = 0, each zi must be zero.
So we need to “put bars on half of our formulae”. Notice that there was a hint of this in the
proof of Proposition 4.7.2.

We’ll do this as follows.

Definition 4.10.1. A sesquilinear form on a complex vector space V is a function τ : V ×V → C

such that
τ(v, a1w1 + a2w2) = a1τ(v, w1) + a2τ(v, w2)

(as before), but
τ(a1v1 + a2v2, w) = a1τ(v1, w) + a2τ(v2, w),

for all vectors v1, v2, v, w1, w2, w and all a1, a2 ∈ C.
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We say such a form is hermitian symmetric if

τ(w, v) = τ(v, w).

The word “sesquilinear” literally means “one-and-a-half-times-linear” from its Latin meaning
– it’s linear in the second argument, but only halfway there in the first argument! We’ll often
abbreviate “hermitian-symmetric sesquilinear form” to just “hermitian form”.

We can represent these by matrices in a similar way to bilinear forms. If τ is a sesquilinear form,
and e1, . . . , en is a basis of V, we define the matrix of τ to be the matrix A whose i, j entry is
τ(ei, ej). Then we have

τ(v, w) = (vT)Aw

where v and w are the coordinates of v and w as usual. We’ll shorten this to v∗Aw, where the
∗ denotes “conjugate transpose”. The condition to be hermitian symmetric translates to the
relation aji = aij, so τ is hermitian if and only if A satisfies A∗ = A.

We have a version here of Sylvester’s two theorems (Proposition 4.4.3 and Theorem 4.4.4):

Theorem 4.10.2. If τ is a hermitian form on a complex vector space V, there is a basis of V in which the
matrix of τ is given by  It

−Iu
0


for some uniquely determined integers t and u.

As in the real case, we call the pair (t, u) the signature of τ, and we say τ is positive definite if its
signature is (n, 0) (if V is an n-dimensional space). In this case, the theorem tells us that there is
a basis of V in which the matrix of τ is the identity, and in such a basis we have

τ(v, v) =
n

∑
i=1
|vi|2

where v1, . . . , vn are the coordinates of v. Hence τ(v, v) > 0 for all non-zero v ∈ V.

Just as we defined a euclidean space to be a real vector space with a choice of positive definite
bilinear form, we have a similar definition here:

Definition 4.10.3. A Hilbert space is a finite-dimensional complex vector space endowed with a
choice of positive-definite hermitian-symmetric sesquilinear form.

These are the complex analogues of euclidean spaces. If V is a Hilbert space, we write v ·w for
the sesquilinear form on V, and we refer to it as an inner product. For any Hilbert space, we can
always find a basis e1, . . . , en of V such that ei · ej = δij (an orthonormal basis). Then we can
write the inner product matrix-wise as

v ·w = v∗w,
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where v and w are the coordinates of v and w and v∗ = vT as before.

The canonical example of a Hilbert space is Cn, with the standard inner product given by

v ·w =
n

∑
i=1

viwi,

for which the standard basis is obviously orthonormal.

Remark. Technically, we should say “finite-dimensional Hilbert space”. There are lots of interesting
infinite-dimensional Hilbert spaces, but we won’t say anything about them in this course. (Curiously,
one never seems to come across infinite-dimensional euclidean spaces.)

4.10.2 Operators on Hilbert spaces

In our study of linear operators on euclidean spaces, the idea of the adjoint of an operator was
important. There’s an analogue of it here:

Definition 4.10.4. Let T : V → V be a linear operator on a Hilbert space V. Then there is a
unique linear operator T∗ : V → V (the hermitian adjoint of T) such that

T(v) ·w = v · T∗(w).

It’s clear that if A is the matrix of T in an orthonormal basis, then the matrix of T∗ is A∗.

Definition 4.10.5. We say that T is

• selfadjoint if T∗ = T,

• unitary if T∗ = T−1,

• normal if T∗T = TT∗.

Exercise. If T is unitary, then T(u) · T(v) = u · v for all u, v in V.

Using this exercise we can also replicate Proposition 4.6.5 in the complex world. This shows
that ‘unitary’ is the complex analgoue of ‘orthogonal’. The proof is entirely similar to that of
Proposition 4.6.5 (which comes before the statement).

Proposition 4.10.6. Let e1, . . . , en be an orthonormal basis of a Hilbert space V. A linear map T is
unitary if and only if T(e1), . . . , T(en) is an orthonormal basis of V.

If A is the matrix of T in an orthonormal basis, then it’s clear that T is selfadjoint if and only
if A∗ = A (a hermitian-symmetric matrix), unitary if and only if A∗ = A−1 (a unitary matrix),
and normal if and only if A∗A = AA∗ (a normal matrix). In other words, these properties are
preserved under unitary base changes:

Lemma 4.10.7. If A ∈ Cn,n is normal (selfadjoint, unitary) and P ∈ Cn,n is unitary, then P∗AP is
normal (selfadjoint, unitary).
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Proof. Let B = P∗AP. Using the property (MN)∗ = N∗M∗, we compute that in the first
(normal) case,

BB∗ = (P∗AP)(P∗AP)∗ = P∗APP∗A∗P = P∗AA∗P = P∗A∗AP = (P∗A∗P)(P∗AP) = B∗B.

In the second (selfadjoint) case, B∗ = P∗A∗P = P∗AP = B. In the third (unitary) case,
BB∗ = P∗APP∗A∗P = P∗AA∗P = P∗P = I.

Notice that if A is unitary and the entries of A are real, then A must be orthogonal, but the
definition also includes things like (

i 0
0 i

)
.

Similarly, a matrix with real entries is hermitian-symmetric if and only if it’s symmetric, but(
2 i
−i 3

)
is a hermitian-symmetric matrix that’s not symmetric.

Both selfadjoint and unitary operators are normal. The generalisation of Theorem 4.7.3 applies
to all three types of operators.

Theorem 4.10.8. The following statements hold for a linear operator T : V → V on a Hilbert space.

(i) T is normal if and only if there exists an orthonormal basis of V consisting of eigenvectors of T.

(ii) T is selfadjoint if and only if there exists an orthonormal basis of V consisting of eigenvectors of T
with real eigenvalues.

(iii) T is unitary if and only if there exists an orthonormal basis of V consisting of eigenvectors of T
with eigenvalues of absolute value 1.

Example. Let A =

(
6 2 + 2i

2− 2i 4

)
. Then

cA(x) = (6− x)(4− x)− (2 + 2i)(2− 2i) = x2 − 10x + 16 = (x− 2)(x− 8),

so the eigenvalues are 2 and 8. Corresponding eigenvectors are v1 = (1 + i,−2)T and v2 =
(1 + i, 1)T. We find that |v1|2 = v∗1v1 = 6 and |v2|2 = 3, so we divide by their lengths to get an
orthonormal basis v1/|v1|, v2/|v2| of C2. Then the matrix

P =

(
1+i√

6
1+i√

3
−2√

6
1√
3

)

having this basis as columns is selfadjoint and satisfies P∗AP =

(
2 0
0 8

)
.
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5 Finitely Generated Abelian Groups

In the first four sections of the course, we’ve always been thinking about vector spaces over
fields. The idea of this section is to show that some of the same ideas work with the field K
replaced by the integers Z, even though Z isn’t a field; and that this is strongly related to the
group theory which most of you will have seen in MA136 Introduction to Abstract Algebra last
year. Do not worry if you did not take that module, we will cover all of the group theory we
need in the following sections.

5.1 Definitions

Definition 5.1.1. An abelian group is a set G together with a binary operation, which we write
as addition, and which satisfies the following properties:

(i) (Closure) for all g, h ∈ G, g + h ∈ G;

(ii) (Associativity) for all g, h, k ∈ G, (g + h) + k = g + (h + k);

(iii) there exists an element 0G ∈ G such that:

(a) (Identity) for all g ∈ G, g + 0G = g; and

(b) (Inverse) for all g ∈ G there exists −g ∈ G such that g + (−g) = 0G;

(iv) (Commutativity) for all g, h ∈ G, g + h = h + g.

Usually we just write 0 rather than 0G. We only write 0G if we need to distinguish between the
zero elements of different groups.

The commutativity axiom (iv) is not part of the definition of a general group, and for general
(non-abelian) groups, it is more usual to use multiplicative rather than additive notation. All
groups in this course should be assumed to be abelian, although many of the definitions in this
section apply equally well to general groups.

Examples. 1. The integers Z.

2. Fix a positive integer n > 0 and let

Zn = {0, 1, 2, . . . , n− 1} = { x ∈ Z | 0 ≤ x < n }.

where addition is computed modulo n. So, for example, when n = 9, we have 2 + 5 = 7,
3 + 8 = 2, 6 + 7 = 4, etc. Note that the inverse −x of x ∈ Zn is equal to n− x in this
example.

3. Examples from linear algebra. Let K be a field.
(i) The elements of K form an abelian group under addition.
(ii) The non-zero elements of K form an abelian group K× under multiplication.
(iii) The vectors in any vector space form an abelian group under addition.

Proposition 5.1.2 (The cancellation law). Let G be any group, and let g, h, k ∈ G. Then g + h =
g + k⇒ h = k.
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Proof. Add −g to both sides of the equation and use the Associativity and Identity axioms.

For any group G, g ∈ G, and integer n > 0, we define ng to be g+ g+ · · ·+ g, with n occurrences
of g in the sum. So, for example, 1g = g, 2g = g + g, 3g = g + g + g, etc. We extend this
notation to all n ∈ Z by defining 0g = 0 and (−n)g = −(ng) for −n < 0. Overall, this defines
a scalar action Z× G → G which allows as to think of abelian groups as “vector spaces over
Z” (or using precise terminology Z-modules - algebraic modules will play a significant role in
Rings and Modules in year 3).

Definition 5.1.3. A group G is called cyclic if there exists an element x ∈ G such that every
element of G is of the form mx for some m ∈ Z.

The element x in the definition is called a generator of G. Note that Z and Zn are cyclic with
generator x = 1.

Definition 5.1.4. A bijection φ : G → H between two (abelian) groups is called an isomorphism
if φ(g + h) = φ(g) + φ(h) for all g, h ∈ G, and the groups G and H are called isomorphic is there
is an isomorphism between them.

The notation G ∼= H means that G is isomorphic to H; isomorphic groups are often thought of
as being essentially the same group, but with elements having different names.

Note (exercise) that any isomorphism must satisfy φ(0G) = 0H and φ(−g) = −φ(g) for all
g ∈ G.

Proposition 5.1.5. Any cyclic group G is isomorphic either to Z or to Zn for some n > 0.

Proof. Let G be cyclic with generator x. So G = {mx | m ∈ Z }. Suppose first that the elements
mx for m ∈ Z are all distinct. Then the map φ : Z → G defined by φ(m) = mx is a bijection,
and it is straightforward to check that it is an isomorphism.

Otherwise, we have lx = mx for some l < m, and so (m− l)x = 0 with m− l > 0. Let n be
the least integer with n > 0 and nx = 0. Then the elements 0x = 0, 1x, 2x, . . . , (n− 1)x of G
are all distinct, because otherwise we could find a smaller n. Furthermore, for any mx ∈ G,
we can write m = rn + s for some r, s ∈ Z with 0 ≤ s < n. Then mx = (rn + s)x = sx, so
G = { 0, 1x, 2x, . . . , (n− 1)x }, and the map φ : Zn → G defined by φ(m) = mx for 0 ≤ m < n
is a bijection, and we check that it is an isomorphism.

Definition 5.1.6. For an element g ∈ G, the least integer n > 0 with ng = 0, if it exists, is called
the order of g and we denote the order of g by |g|. If there is no such n, then g has infinite order
and we write |g| = ∞.

Exercise. If φ : G → H is an isomorphism then |g| = |φ(g)| for all g ∈ G.

Definition 5.1.7. A group G is generated or spanned by a subset X of G if every g ∈ G can be
written as a finite sum ∑k

i=1 mixi, with mi ∈ Z and xi ∈ X. It is finitely generated if it has a finite
generating set X = {x1, . . . , xn}.

So a group is cyclic if and only if it has a generating set X with |X| = 1.
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In general, if G is generated by X, then we write G = 〈X〉 or G = 〈x1, . . . , xn〉 when X =
{x1, . . . , xn} is finite.

Definition 5.1.8. The direct sum of groups G1, . . . , Gn is defined to be the set
{ (g1, g2, . . . , gn) | gi ∈ Gi } with component-wise addition

(g1, g2, . . . , gn) + (h1, h2, . . . , hn) = (g1 + h1, g2 + h2, . . . , gn + hn).

This is a group with identity element (0, 0, . . . , 0) and −(g1, g2, . . . , gn) = (−g1,−g2, . . . ,−gn).

In general (non-abelian) group theory this is more often known as the direct product of groups.

The main result of this section, known as the fundamental theorem of finitely generated abelian
groups, is that every finitely generated abelian group is isomorphic to a direct sum of cyclic
groups. (This is not true in general for abelian groups, such as the additive group Q of rational
numbers, which are not finitely generated.)

5.2 Subgroups, cosets and quotient groups

Definition 5.2.1. A subset H of a group G is called a subgroup of G if it forms a group under the
same operation as that of G.

Lemma 5.2.2. If H is a subgroup of G, then the identity element 0H of H is equal to the identity element
0G of G.

Proof. Using the identity axioms for H and G, 0H + 0H = 0H = 0H + 0G. Now by the cancellation
law, 0H = 0G.

The definition of a subgroup is semantic in its nature. While it precisely pinpoints what a
subgroup is, it is quite cumbersome to use. The following proposition gives a usable criterion.

Proposition 5.2.3. Let H be a subset of a group G. The following statements are equivalent.

(i) H is a subgroup of G.

(ii) (a) H is nonempty; and

(b) h1, h2 ∈ H ⇒ h1 + h2 ∈ H; and

(c) h ∈ H ⇒ −h ∈ H.

(iii) (a) H is nonempty; and

(b) h1, h2 ∈ H ⇒ h1 − h2 ∈ H.

Proof. If H is a subgroup of G then it is nonempty as it contains 0. Moreover, h1 − h2 =
h1 + (−h2) ∈ H if h1 and h2 are in H. Thus, (i) implies (iii).

To show that (iii) implies (ii) we pick x ∈ H. Then 0 = x− x ∈ H. Now −h = 0− h ∈ H for
any h ∈ H. Finally, h1 + h2 = h1 − (−h2) ∈ H for all h1, h2 ∈ H.
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To show that (ii) implies (i) we need to verify the four group axioms in H. Two of these,
‘Closure’, and ‘Inverse’, are the conditions (b) and (c). The other two axioms are ‘Associativity’
and ‘Identity’. Associativity holds because it holds in G, and H is a subset of G. Since we are
assuming that H is nonempty, there exists h ∈ H, and then−h ∈ H by (c), and h+(−h) = 0 ∈ H
by (b), and so ‘Identity’ holds, and H is a subgroup.

Examples. 1. There are two standard subgroups of any group G: the whole group G itself,
and the trivial subgroup {0} consisting of the identity alone. Subgroups other than G are
called proper subgroups, and subgroups other than {0} are called non-trivial subgroups.

2. If g is any element of any group G, then the set of all integer multiples {mg | m ∈ Z }
forms a subgroup of G called the cyclic subgroup generated by g.

Let us look at a few specific examples. If G = Z, then 5Z, which consists of all multiples of 5, is
the cyclic subgroup generated by 5. Of course, we can replace 5 by any integer here, but note
that the cyclic groups generated by 5 and −5 are the same.

If G = 〈g〉 is a finite cyclic group of order n and m is a positive integer dividing n, then the cyclic
subgroup generated by mg has order n/m and consists of the elements kmg for 0 ≤ k < n/m.

Exercise. What is the order of the cyclic subgroup generated by mg for general m (where we
drop the assumption that m|n)?

Exercise. Show that the group of non-zero complex numbers C× under the operation of
multiplication has finite cyclic subgroups of all possible orders.

Definition 5.2.4. Let g ∈ G. Then the coset H + g is the subset { h + g | h ∈ H } of G.

(Note: Since our groups are abelian, we have H + g = g + H, but in general group theory the
right and left cosets H + g and g + H can be different.)

Examples. 1. G = Z, H = 5Z. There are just 5 distinct cosets H = H + 0 = { 5n | n ∈ Z },
H + 1 = { 5n + 1 | n ∈ Z }, H + 2, H + 3, H + 4. Note that H + i = H + j whenever i ≡ j
(mod 5).

2. G = Z6, H = {0, 3}. There are 3 distinct cosets, H = H + 3 = {0, 3}, H + 1 = H + 4 =
{1, 4}, and H + 2 = H + 5 = {2, 5},

3. G = C×, the group of non-zero complex numbers under multiplication and the subgroup
S1 = {z, |z| = 1}, which is the unit circle. The cosets are circles. There are uncountably
many distinct cosets, one for each positive real number (radius of a circle).

Proposition 5.2.5. The following are equivalent for g, k ∈ G:

(i) k ∈ H + g.

(ii) H + g = H + k.

(iii) k− g ∈ H.

Proof. Clearly H + g = H + k⇒ k ∈ H + g, so (ii)⇒ (i).
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If k ∈ H + g, then k = h + g for some fixed h ∈ H, so g = k− h. Let f ∈ H + g. Then, for some
h1 ∈ H, we have f = h1 + g = h1 + k− h ∈ H + k, so H + g ⊆ H + k. Similarly, if f ∈ H + k,
then for some h1 ∈ H, we have f = h1 + k = h1 + h + g ∈ H + g, so H + k ⊆ H + g. Thus
H + g = H + k, and we have proved that (i)⇒ (ii).

If k ∈ H + g, then, as above, k = h + g, so k− g = h ∈ H and (i)⇒ (iii).

Finally, if k − g ∈ H, then putting h = k − g, we have h + g = k, so k ∈ H + g, proving
(iii)⇒ (i).

Corollary 5.2.6. Two cosets H + g1 and H + g2 of H in G are either equal or disjoint.

Proof. If H + g1 and H + g2 are not disjoint, then there exists an element k ∈ (H + g1)∩ (H + g2),
but then H + g1 = H + k = H + g2 by Proposition 5.2.5.

Corollary 5.2.7. The cosets of H in G partition G.

Proposition 5.2.8. If H is finite, then all cosets have exactly |H| elements.

Proof. Since h1 + g = h2 + g ⇒ h1 = h2 by the cancellation law, it follows that the map
φ : H → H + g defined by φ(h) = h + g is a bijection, and the result follows.

Corollary 5.2.7 and Proposition 5.2.8 together imply:

Theorem 5.2.9 (Lagrange’s Theorem). Let G be a finite (abelian) group and H a subgroup of G. Then
the order of H divides the order of G.

Definition 5.2.10. The number of distinct right cosets of H in G is called the index of H in G
and is written as |G : H|.

If G is finite, then we clearly have |G : H| = |G|/|H|. But, from the example G = Z, H = 5Z

above, we see that |G : H| can be finite even when G and H are infinite.

Proposition 5.2.11. Let G be a finite (abelian) group. Then for any g ∈ G, the order |g| of g divides the
order |G| of G.

Proof. Let |g| = n. We saw in Example 2 above that the integer multiples {mg | m ∈ Z } of g
form a subgroup H of G. By minimality of n, the distinct elements of H are {0, g, 2g, . . . , (n−1)g},
so |H| = n and the result follows from Lagrange’s Theorem.

As an application, we can now immediately classify all finite (abelian) groups whose order is
prime.

Proposition 5.2.12. Let G be a (abelian) group having prime order p. Then G is cyclic; that is, G ∼= Zp.

Proof. Let g ∈ G with 0 6= g. Then |g| > 1, but |g| divides p by Proposition 5.2.11, so |g| = p.
But then G must consist entirely of the integer multiples mg (0 ≤ m < p) of g, so G is cyclic.
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Definition 5.2.13. If A and B are subsets of a group G, then we define their sum A + B =
{ a + b | a ∈ A, b ∈ B }.

Lemma 5.2.14. If H is a subgroup of the abelian group G and H + g, H + k are cosets of H in G, then
(H + g) + (H + k) = H + (g + k).

Proof. Since G is abelian, this follows directly from commutativity and associativity.

Theorem 5.2.15. Let H be a subgroup of an abelian group G. Then the set G/H of cosets H + g of H
in G forms a group under addition of subsets.

Proof. We have just seen that (H + g) + (H + k) = H + (g + k), so we have closure, and asso-
ciativity follows easily from associativity of G. Since (H + 0) + (H + g) = H + g for all g ∈ G,
H = H + 0 is an identity element, and since (H − g) + (H + g) = H − g + g = H, H − g is an
inverse to H + g for all cosets H + g. Thus the four group axioms are satisfied and G/H is a
group.

Definition 5.2.16. The group G/H is called the quotient group (or the factor group) of G by H.

Notice that if G is finite, then |G/H| = |G : H| = |G|/|H|. So, although the quotient group
seems a rather complicated object at first sight, it is actually a smaller group than G.

Examples. 1. Let G = Z and H = mZ for some m > 0. Then there are exactly m distinct
cosets, H, H + 1, . . . , H + (m − 1). If we add together k copies of H + 1, then we get
H + k. So G/H is cyclic of order m and with generator H + 1. So by Proposition 5.1.5,
Z/mZ ∼= Zm.

2. G = R and H = Z. The quotient group G/H is isomorphic to the circle subgroup S1

of the multiplicative group C×. One writes an explicit isomorphism φ : G/H → S1 by
φ(x + Z) = e2πxi.

5.3 Homomorphisms and the first isomorphism theorem

Definition 5.3.1. Let G and H be groups. A homomorphism φ from G to H is a map φ : G → H
such that φ(g1 + g2) = φ(g1) + φ(g2) for all g1, g2 ∈ G.

Homomorphisms correspond to linear transformations between vector spaces.

Note that an isomorphism is just a bijective homomorphism. There are two other types of
‘morphism’ that are worth mentioning at this stage.

A homomorphism φ is injective if it is an injection; that is, if φ(g1) = φ(g2) ⇒ g1 = g2. A
homomorphism φ is surjective if it is a surjection; that is, if im(φ) = H. Sometimes, a surjective
homomorphism is called epimorphism while an injective homomorphism is called monomorphism
but we will not use this terminology in these lectures.

Lemma 5.3.2. Let φ : G → H be a homomorphism. Then φ(0G) = 0H and φ(−g) = −φ(g) for all
g ∈ G.
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Proof. Exercise. (Similar to results for linear transformations.)

Example. Let G be any group, and let n ∈ Z. Then φ : G → G defined by φ(g) = ng for all
g ∈ G is a homomorphism.

Kernels and images are defined as for linear transformations of vector spaces.

Definition 5.3.3. Let φ : G → H be a homomorphism. Then the kernel ker(φ) of φ is defined to
be the set of elements of G that map onto 0H; that is,

ker(φ) = { g | g ∈ G, φ(g) = 0H }.

Note that by Lemma 5.3.2 above, ker(φ) always contains 0G.

Proposition 5.3.4. Let φ : G → H be a homomorphism. Then φ is injective if and only if ker(φ) =
{0G}.

Proof. Since 0G ∈ ker(φ), if φ is injective then we must have ker(φ) = {0G}. Conversely,
suppose that ker(φ) = {0G}, and let g1, g2 ∈ G with φ(g1) = φ(g2). Then 0H = φ(g1)−φ(g2) =
φ(g1 − g2) (by Lemma 5.3.2), so g1 − g2 ∈ ker(φ) and hence g1 − g2 = 0G and g1 = g2. So φ is
injective.

Theorem 5.3.5. Let φ : G → H be a homomorphism. Then ker(φ) is a subgroup of G and im(φ) is a
subgroup of H. Furthermore, if K is a subgroup of a group G then the map φ : G → G/K defined by
φ(g) = K + g is a surjective homomorphism with kernel K.

Proof. The first statement is straightforward using Proposition 5.2.3. For the second, it is clear
that φ is surjective, and φ(g) = 0G/K ⇔ K + g = K + 0G ⇔ g ∈ K, so ker(φ) = K.

The following lemma explains a connection between quotients and homomorphisms. It clarifies
the trickiest point in the proof of the forthcoming First Isomorphism Theorem.

Lemma 5.3.6. Let φ : G → H be a group homomorphism with kernel K and let A be a subgroup of G.
The induced map φ : G/A→ H via φ(A + g) = φ(g) for all g ∈ G is a group homomorphism if and
only if A ≤ K.

Proof. We need to show that φ(A + g) = φ(g) does actually define a map φ : G/A→ H. This
is not immediately obvious because cosets have different representatives, i.e. we can have
A + g = A + h with g 6= h. So for φ to make sense we need to ensure φ(g) = φ(h) whenever
A + g = A + h. This is called checking that φ is well-defined. Now we know what to check, it
is not too difficult. Suppose that A + g = A + h. Then g = a + h for some a ∈ A. Hence, φ
is well-defined if and only if φ(g) = φ(a) + φ(h) = φ(h) for all g, h ∈ G, a ∈ A if and only if
φ(a) = 0 for all a ∈ A if and only if A ≤ K.

Now we know that φ is well-defined, we can show it is a homomorphisms since φ is:

φ(A + h) + φ(A + g) = φ(h) + φ(g) = φ(h + g) = φ(A + h + g) = φ((A + h) + (A + g)).
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Theorem 5.3.7 (The First Isomorphism Theorem). Let φ : G → H be a homomorphism with kernel
K. Then G/K ∼= im(φ). More precisely, there is an isomorphism φ : G/K → im(φ) defined by
φ(K + g) = φ(g) for all g ∈ G.

Proof. The map φ is a well-defined homomorphism by Lemma 5.3.6. Clearly, im(φ) = im(φ).
Finally,

φ(K + g) = 0H ⇐⇒ φ(g) = 0H ⇐⇒ g ∈ K ⇐⇒ K + g = K + 0G = 0G/K.

By Proposition 5.3.4, φ is injective. Thus φ : G/K → im(φ) is an isomorphism.

5.4 Free abelian groups

Definition 5.4.1. The direct sum Zn of n copies of Z is known as a (finitely generated) free
abelian group of rank n.

More generally, a finitely generated abelian group is called free abelian if it is isomorphic to Zn

for some n ≥ 0.

(The free abelian group Z0 of rank 0 is defined to be the trivial group {0} containing the single
element 0.)

The groups Zn have many properties in common with vector spaces such as Rn, but we must
expect some differences, because Z is not a field.

Given we wish to exploit this connection we choose to write elements of Zn as columns, rather

than rows. So
(

1
0

)
∈ Z2 etc.

We then define the standard basis of Zn exactly as for Rn; that is, x1, x2, . . . , xn, where xi has a 1
in its i-th component and 0 in the other components. This has the same properties as a basis of
a vector space; i.e. it is linearly independent and spans Zn.

Definition 5.4.2. Elements x1, . . . , xn of an abelian group G are called linearly independent if
α1x1 + · · ·+ αnxn = 0G for α1, . . . , αn ∈ Z implies that α1 = α2 = · · · = αn = 0Z.

Definition 5.4.3. Elements x1, . . . , xn form a free basis of the abelian group G if and only if they
are linearly independent and generate (span) G.

Example. It’s clear that the standard basis x1 = (1, 0, . . . , 0)T, x2 = (0, 1, . . . , 0)T, . . . , xn =

(0, 0, . . . , 1)T is indeed a free basis of Zn but there are others; for instance,
{(

1
0

)
,
(

1
1

)}
is a

free basis of Z2.

It’s important to notice, though, that a subset of Zn which is a basis of Qn need not be a free basis

of Zn. For instance,
{(

2
0

)
,
(

0
2

)}
is not a free basis of Z2, since we can’t write all elements of

Z2 as linear combinations of these vectors with integer coefficients – we’ll need to divide by 2 at
some point. This also shows that a set of n linearly independent elements of Zn needn’t be a
free basis.
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Now consider elements g1, . . . , gn of an abelian group G. It is possible to extend the as-
signment φ(xi) = gi to a group homomorphism φ : Zn → G. As a function we define
φ((a1, a2, . . . , an)T) = ∑n

i=1 aigi. We leave the proof of the following result as an exercise.

Proposition 5.4.4. (i) The function φ is a group homomorphism.

(ii) The set of elements {gi} are linearly independent if and only if φ is injective.

(iii) The set of elements {gi} span G if and only if φ is surjective.

(iv) The set of elements {gi} form a free basis of G if and only if φ is an isomorphism.

Note that this proposition makes perfect sense for vector spaces. Also note that the last
statement implies that g1, . . . , gn is a free basis of G if and only if every element g ∈ G has a
unique expression g = α1g1 + · · ·+ αngn with αi ∈ Z, very much like for vector spaces.

Before Proposition 5.4.4 we were trying to extend the assignment φ(xi) = gi to a group homo-
morphism φ : Zn → G. Note that the extension we wrote is unique. This is the key to the next
corollary. The details of the proof are left to the reader.

Corollary 5.4.5 (Universal property of the free abelian group). Let G be a free abelian group with a
free basis g1, . . . , gn. Let H be an abelian group and a1, . . . an ∈ H. Then there exists a unique group
homomorphism φ : G → H such that φ(gi) = ai for all i.

As for finite dimensional vector spaces, it turns out that any two free bases of a free abelian
group have the same size, but this has to be proved. It will follow directly from the next
theorem.

Let x1, x2, . . . , xn be the standard free basis of Zn, and let y1, . . . ym be another free basis. As in
Linear Algebra, we can define the associated change of basis matrix P (with original basis {xi}
and new basis {yi}) , where the columns of P are yi; that is, they express yi in terms of xi. For

example, if n = m = 2, y1 =

(
2
7

)
, y2 =

(
1
4

)
, then P =

(
2 1
7 4

)
. In general, P = (ρij) is an

n×m matrix with yj = ∑n
i=1 ρijxi for 1 ≤ j ≤ m.

Theorem 5.4.6. Let y1, . . . , ym ∈ Zn with yj = ∑n
i=1 ρijxi for 1 ≤ j ≤ m. Then the following are

equivalent:

(i) y1, . . . , ym is a free basis of Zn;

(ii) n = m and P is an invertible matrix such that P−1 has entries in Z;

(iii) n = m and det(P) = ±1.

(A matrix P ∈ Zn,n with det(P) = ±1 is called unimodular.)

Proof. (i)⇒ (ii). If y1, . . . , ym is a free basis of Zn then it spans Zn, so there is an m× n matrix
T = (τij) with xk = ∑m

j=1 τjkyj for 1 ≤ k ≤ n. Hence

xk =
m

∑
j=1

τjkyj =
m

∑
j=1

τjk

n

∑
i=1

ρijxi =
n

∑
i=1

(
m

∑
j=1

ρijτjk

)
xi,
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and, since x1, . . . , xn is a free basis, this implies that ∑m
j=1 ρijτjk = 1 when i = k and 0 when

i 6= k. In other words PT = In, and similarly TP = Im, so P and T are inverse matrices. But we
can think of P and T as inverse matrices over the field Q, so it follows from First Year Linear
Algebra that m = n, and T = P−1 has entries in Z.

(ii)⇒ (i). If T = P−1 has entries in Z then, again thinking of them as matrices over the field Q,
rank(P) = n, so the columns of P are linearly independent over Q and hence also over Z. Since
the columns of P are just the column vectors representing y1, . . . ym, this tells us that y1, . . . ym
are linearly independent.

Using PT = In, for 1 ≤ k ≤ n we have

m

∑
j=1

τjkyj =
m

∑
j=1

τjk

n

∑
i=1

ρijxi =
n

∑
i=1

(
m

∑
j=1

ρijτjk)xi = xk,

because ∑m
j=1 ρijτjk is equal to 1 when i = k and 0 when i 6= k. Since x1, . . . xn spans Zn, and we

can express each xk as a linear combination of y1, . . . ym, it follows that y1, . . . ym span Zn and
hence form a free basis of Zn.

(ii)⇒ (iii). If T = P−1 has entries in Z, then det(PT) = det(P)det(T) = det(In) = 1, and since
det(P), det(T) ∈ Z, this implies det(P) = ±1.

(iii)⇒ (ii). From First year Linear Algebra, P−1 = 1
det(P) adj(P), so det(P) = ±1 implies that

P−1 has entries in Z.

Example. If n = 2 and y1 =

(
2
7

)
, y2 =

(
1
4

)
, then det(P) = 8− 7 = 1, so y1, y2 is a free basis

of Z2.

But, if y1 =

(
1
0

)
, y2 =

(
0
2

)
, then det(P) = 2, so y1, y2 is not a free basis of Z2.

Recall that in Linear Algebra over a field, any set of n linearly independent vectors in a vector
space V of dimension n form a basis of V. This example shows that this result is not true in Zn,
because y1 and y2 are linearly independent but do not span Z2.

But as in Linear Algebra, for v ∈ Zn, if x and y are the column vectors representing v using free
bases x1, . . . xn and y1, . . . yn , respectively, then we have x = Py, so y = P−1x.

5.5 Unimodular elementary row and column operations and the unimodular Smith
normal form for integer matrices

We interrupt our discussion of finitely generated abelian groups at this stage to investigate how
the row and column reduction process of Linear Algebra can be adapted to matrices over Z.
Recall from MA106 that we can use elementary row and column operations to reduce an m× n
matrix of rank r over a field K to a matrix B = (βij) with βii = 1 for 1 ≤ i ≤ r and βij = 0
otherwise. We called this the Smith normal form of the matrix. We can do something similar over
Z, but the non-zero elements βii will not necessarily all be equal to 1.
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The reason that we disallowed λ = 0 for the row and column operations (R3) and (C3) (multiply
a row or column by a scalar λ) was that we wanted all of our elementary operations to be
reversible. When performed over Z, (R1), (C1), (R2) and (C2) are reversible, but (R3) and (C3)
are reversible only when λ = ±1. So, if A is an m× n matrix over Z, then we define the three
types of unimodular elementary row and column operations as follows:

(UR1): Replace some row ri of A by ri + trj, where j 6= i and t ∈ Z;

(UR2): Interchange two rows ri and rj of A;

(UR3): Replace some row ri of A by −ri.

(UC1): Replace some column ci of A by ci + tcj, where j 6= i and t ∈ Z;

(UC2): Interchange two columns ci and cj of A;

(UC3): Replace some column ci of A by −ci.

Recall from MA106 that performing elementary row or column operations on a matrix A
corresponds to multiplying A on the left or right, respectively, by an elementary matrix. These
elementary matrices all have determinant ±1 (1 for (UR1) and −1 for (UR2) and (UR3)), so are
unimodular matrices over Z.

By checking what left and right multiplying by these elementary matrices do we can check that
the unimodular row and column operations correspond to the following change of bases, where
e1, . . . , en is a basis for Zn (the domain of the linear map which A represents) and f1, . . . , fm
is a basis for Zm (the target of the linear map). Notice that column operations correspond to
changing the basis of the domain, whereas row operations correspond to changing the basis of
the target.

(UC1): ei → ei + tej; (UC2): ei ↔ ej; (UC3): ei → −ei.

(UR1): fj → fj − tfi; (UR2): fi ↔ fj; (UR3): fi → −fi.

Theorem 5.5.1. Let A be an m× n matrix over Z with rank r. Then, by using a sequence of unimodular
elementary row and column operations, we can reduce A to a matrix B = (βij) with βii = di for
1 ≤ i ≤ r and βij = 0 otherwise, and where the integers di satisfy di > 0 for 1 ≤ i ≤ r, and di|di+1 for
1 ≤ i < r. Subject to these conditions, the di are uniquely determined by the matrix A.

Proof. We shall not prove the uniqueness part here. The fact that the number of non-zero βii is
the rank of A follows from the fact that unimodular row and column operations do not change
the rank. We use induction on m + n. The base case is m = n = 1, where there is nothing to
prove. Also if A is the zero matrix then there is nothing to prove, so assume not.

Let d be the smallest entry with d > 0 in any matrix C = (γij) that we can obtain from A by
using unimodular elementary row and column operations. By using (UR2) and (UC2), we can
move d to position (1, 1) and hence assume that γ11 = d. If d does not divide γ1j for some j > 0,
then we can write γ1j = qd + r with q, r ∈ Z and 0 < r < d, and then replacing the j-th column
cj of C by cj − qc1 results in the entry r in position (1, j), contrary to the choice of d. Hence d|γ1j
for 2 ≤ j ≤ n and similarly d|γi1 for 2 ≤ i ≤ m.
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Now, if γ1j = qd, then replacing cj of C by cj − qc1 results in entry 0 position (1, j). So we can
assume that γ1j = 0 for 2 ≤ j ≤ n and γi1 = 0 for 2 ≤ i ≤ m. If m = 1 or n = 1, then we are
done. Otherwise, we have C = (d)⊕ C′ for some (m− 1)× (n− 1) matrix C′. By inductive
hypothesis, the result of the theorem applies to C′, so by applying unimodular row and column
operations to C which do not involve the first row or column, we can reduce C to D = (δij),
which satisfies δ11 = d, δii = di > 0 for 2 ≤ i ≤ r, and δij = 0 otherwise, where di|di+1 for
2 ≤ i < r. To complete the proof, we still have to show that d|d2. If not, then adding row
2 to row 1 results in d2 in position (1,2) not divisible by d, and we obtain a contradiction as
before.

Definition 5.5.2. Let A be an m × n matrix over Z with rank r. The uniquely determined
diagonal matrix in Theorem 5.5.1, where the di satisfy di > 0 for 1 ≤ i ≤ r, and di|di+1 for
1 ≤ i < r) is called the unimodular Smith normal form of A or just SNF for short.

So how do we find the unimodular Smith normal form of a matrix then? The general strategy is
to reduce the size of entries in the first row and column, until the (1,1)-entry divides all other
entries in the first row and column. Then we can clear all of these other entries with repeated
use of (UR1) and (UC1). Let us elaborate on this strategy. First we state a useful result in finding
the SNF.

Lemma 5.5.3. Let A ∈ Zm,n with unimodular Smith normal form S having non-zero diagonal entries
d1, . . . , dr. Then the greatest common divisor of all of the entires of A is equal to d1. (Our convention
is that gcd(r, 0) = r for all integers r ≥ 1 and recall that the greatest common divisor is always
non-negative).

Proof. By our convention, the greatest common divisor of all of the entires of S is equal to d1
(since d1 divides d2, . . . , dr by definition of the SNF). So it suffices to prove that applying any of
the six unimodular elementary row and column operations to a matrix B ∈ Zm,n preserves the
greatest common divisor of all the entries. We’ll show this for the row operations, the column
operations are very similar. Firstly, applying (UR2) to B does not change the set of entries in
B, it only permutes them, so clearly the greatest common divisor of the entries is preserved.
Similarly for (UR3), multiplying a row by ±1 only changes the signs of some of the entries
which also does not affect the GCD of all the entries of B. Finally, we consider (UR1). This takes
a row ri of B and replaces it with ri + trj for some i 6= j and t ∈ Z. It suffices for us to check
that the GCD of the entries in rows ri and rj is the same as the GCD of the entries in ri + trj
and rj. And to show this is true it suffices to realise that gcd(bik, bjk) = gcd(bik + tbjk, bjk) for all
1 ≤ k ≤ n. Indeed, it is clear that gcd(bik, bjk) | gcd(bik + tbjk, bjk) and if g | bjk and g | bik + tbjk
then g | bik + tbjk − tbjk = bik and so gcd(bik + tbjk, bjk) | gcd(bik, bjk), as required.

One can generalise this to the greatest common divisor of k× k minors. You may want to think
about what they tell you about the SNF. This is one way to prove uniqueness of the SNF (see
Example Sheet 9). Now we present a strategy for finding the SNF of an integer matrix.

Strategy for finding the SNF of A ∈ Zm,n

Step 1: Find d1, using Lemma 5.5.3.
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Step 2: If d1 occurs as an entry in A move it to the (1, 1) entry using (UC2) and (UR2). If −d1
occurs then use (UR3) or (UC3) and then move it into the (1, 1) entry. This is the easier scenario.

If d1 does not occur then we need to do some (or lots) of division with remainder. Let x be the
smallest entry (with respect to absolute value) occurring in A, say in position (i, j).

Now, we again have a dichotomy into an easier case and a harder case. Does x divide everything
else in the ith row and jth column? If not, let y be an entry that x does not divide, in position
(k, l) with k = i or l = j. Then y = sx + r with r < x and using (UC1) or (UR1) we can obtain
r = y− sx as an entry of A (add −sx of row i to row k or −sx of column j to column l). At
this point we have reduced the smallest entry in Ã (the matrix obtained from A by doing the
unimodular row or column operation required) and so we can start Step 2 again.

Now it remains to deal with the case where x divides everything else in row i and column j. We
start by clearing all of these entries to 0. This is straightforward using (UC1) and (UR1), and is
possible since x divides each entry:

rd → rd −
ad,j

x
ri, d 6= i

and
cd → cd −

ai,d

x
cj, d 6= j

do the job. We know there still exists an element in Ã which is not divisible by x, again let y be
such an entry, in position (k, l). Then looking at the intersection of row i and k with column j
and l we find a 2× 2-matrix which looks as follows (assuming i < k and j < l, otherwise the
picture is similar but x and y are in different positions, still opposite each other diagonally):(

x 0
0 y

)
.

We want r = y− sx with r < x to appear in Ã. We can do this in two moves. First use (UR1) to
add −s times row i to row k. We then use (UC1) to add column j to column l. This will result in
r appearing where y was before: (

x −sx
−sx r = y− sx

)
.

(There are other ways to do this, feel free to experiment!) Again, we have reduced the smallest
entry in Ã and so we can start Step 2 again.

Step 3: With d1 in the (1, 1) entry, we can use it to clear everything else in the first row and
column since d1 divides all entries in the matrix (just as we did in Step 2).

Step 4: The matrix Ã now has entry d1 in the (1, 1) entry and 0s elsewhere in row and column 1.
We now go back to Step 1, working on the m− 1× n− 1 matrix in the bottom right hand corner
of Ã. We can repeat Steps 1 to 3 without changing the entries in row 1 and column 1. Therefore,
repeating this process will terminate and will yield the SNF of A.

Example 18. A =

(
42 21
−35 −14

)
.
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We calculate that d1 = gcd(42, 21,−35,−14) = 7. It does not appear in A so we need to use
unimodular row and column operations to make that happen. It is often easy in practice to see
how to do this and the general strategy should be seen as a guide rather than an algorithm you
must follow. On this occasion we notice that dividing −35 by −14 we get remainder −7 = −d1.
We can then negate row 2 and we see 7 occurring in the matrix. Everything is straightforward
from that point onwards.

Matrix Operation Matrix Operation(
42 21
−35 −14

)
c1 → c1 − 2c2

(
0 21
−7 −14

)
r2 → −r2
r1 ↔ r2(

7 14
0 21

)
c2 → c2 − 2c1

(
7 0
0 21

)

Example 19. A =


−18 −18 −18 90

54 12 45 48
9 −6 6 63

18 6 15 12

 .

This time we want to notice what the greatest common divisor of the entries is without doing
too many calculations. Firstly, we spot 9 and 6, so d1 must be 1 or 3. Looking at all the other
entries we see they are all divisible by 3. So d1 = 3. Again, this does not appear in A so we need
to use unimodular row and column operations to make that happen. We spot 9 and 6 in row 3,
so we can get 3 to appear just by adding the negative of column 3 to column 1 (plenty of other
choices here!). We carry on in this way to obtain the SNF.

Matrix Operation Matrix Operation
−18 −18 −18 90

54 12 45 48
9 −6 6 63

18 6 15 12

 c1 → c1 − c3


0 −18 −18 90
9 12 45 48
3 −6 6 63
3 6 15 12

 r1 ↔ r4


3 6 15 12
9 12 45 48
3 −6 6 63
0 −18 −18 90

 r2 → r2 − 3r1
r3 → r3 − r1


3 6 15 12
0 −6 0 12
0 −12 −9 51
0 −18 −18 90

 c2 → c2 − 2c1
c3 → c3 − 5c1
c4 → c4 − 4c1

3 0 0 0
0 −6 0 12
0 −12 −9 51
0 −18 −18 90

 c2 → −c2
c2 → c2 + c3


3 0 0 0
0 6 0 12
0 3 −9 51
0 0 −18 90

 r2 ↔ r3


3 0 0 0
0 3 −9 51
0 6 0 12
0 0 −18 90

 r3 → r3 − 2r2


3 0 0 0
0 3 −9 51
0 0 18 −90
0 0 −18 90

 c3 → c3 + 3c2
c4 → c4 − 17c2
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3 0 0 0
0 3 0 0
0 0 18 −90
0 0 −18 90

 c4 → c4 + 5c3
r4 → r4 + r3


3 0 0 0
0 3 0 0
0 0 18 0
0 0 0 0


Note: There is also a generalisation to integer matrices of the the row reduced normal form from
Linear Algebra, where only row operations are allowed. This is known as the Hermite Normal
Form and is more complicated.

5.6 Subgroups of free abelian groups

Proposition 5.6.1. Any subgroup of a finitely generated abelian group is finitely generated.

Proof. Let K < G with G an abelian group generated by x1, . . . , xn. We shall prove by induction
on n that K can be generated by at most n elements. If n = 1 then G is cyclic. Write G =
{sx|s ∈ Z}. Let m be the smallest positive number such that mx ∈ K. If such a number does
not exist then K = {0}. Otherwise, K ⊇ {smx|s ∈ Z}. The opposite inclusion follows using
division with a remainder: write t = qm + r with 0 ≤ r < m. Then tx ∈ K if and only if
rx = (t−mq)x ∈ K if and only if r = 0 due to minimality of m. In both cases K is cyclic.

Suppose n > 1, and let H be the subgroup of G generated by x1, . . . , xn−1. By induction, K ∩ H
is generated by y1, . . . , ym−1, say, with m ≤ n. If K ≤ H, then K = K ∩ H and we are done, so
suppose not.

Then there exist elements of the form h + txn ∈ K with h ∈ H and t 6= 0. Since −(h + txn) ∈ K,
we can assume that t > 0. Choose such an element ym = h + txn ∈ K with t minimal subject
to t > 0. We claim that K is generated by y1, . . . , ym, which will complete the proof. Let k ∈ K.
Then k = h′ + uxn with h′ ∈ H and u ∈ Z. If t does not divide u then we can write u = tq + r
with q, r ∈ Z and 0 < r < t, and then k− qym = (h′ − qh) + rxn ∈ K, contrary to the choice of t.
So t|u and hence u = tq and k− qym ∈ K ∩ H. But K ∩ H is generated by y1, . . . , ym−1, so we
are done.

Now let H be a subgroup of the free abelian group Zn, and suppose that H is generated
by v1, . . . , vm. Then H can be represented by an n × m matrix A in which the columns are
v1, . . . , vm.

Example 20. If n = 3 and H is generated by v1 =

 1
3
−1

 and v2 =

2
0
1

, then

A =

 1 2
3 0
−1 1

 .

As we saw above, if we use a different free basis y1, . . . , yn of Zn with basis change matrix P,
then each column vj of A is replaced by P−1vj, and hence A itself is replaced by P−1A.
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So in Example 20, if we use the basis y1 =

 0
−1

0

, y2 =

1
0
1

, y3 =

1
1
0

 of Z3, then

P =

 0 1 1
−1 0 1

0 1 0

 , P−1 =

1 −1 −1
0 0 1
1 0 −1

 , P−1A =

−1 1
−1 1

2 1

 .

For example, the first column

−1
−1

2

 of P−1A represents −y1 − y2 + 2y3 =

 1
3
−1

 = v1.

In particular, if we perform a unimodular elementary row operation on A, then the resulting
matrix represents the same subgroup H of Zn but using a different free basis of Zn.

We can clearly replace a generator vi of H by vi + rvj for r ∈ Z without changing the subgroup
H that is generated. We can also interchange two of the generators or replace one of the
generators vi by−vi without changing H. In other words, performing a unimodular elementary
column operation on A amounts to changing the generating set for H, so again the resulting
matrix still represents the same subgroup H of Zn.

Summing up, we have:

Proposition 5.6.2. Suppose that the subgroup H of Zn is represented by the matrix A ∈ Zn,m. Then if
the matrix B ∈ Zn,m is obtained by performing a sequence of unimodular row and column operations on
A, then B represents the same subgroup H of Zn using a (possibly) different free basis of Zn.

In particular, by Theorem 5.5.1, we can transform A to its unimodular Smith normal form B.
So, then if B represents H with the free basis y1, . . . , yn of Zn, then the r non-zero columns of B
correspond to the elements d1y1, d2y2, . . . , dryr of Zn. So we have:

Theorem 5.6.3. Let H be a subgroup of Zn. Then there exists a free basis y1, . . . , yn of Zn such that
H = 〈 d1y1, d2y2, . . . , dryr 〉, where each di > 0 and di|di+1 for 1 ≤ i < r.

In Example 20, it is straightforward to calculate the unimodular Smith normal form of A, which

is

1 0
0 3
0 0

 , so H = 〈y1, 3y2〉.

By keeping track of the unimodular row operations carried out, we can, if we need to, find the
free basis y1, . . . , yn of Zn such that H has this nice form. Using the formulae in Section 5.5,
noting that we start from the standard free basis, we can do this in Example 20.

Matrix Operation New free basis 1 2
3 0
−1 1

 r2 → r2 − 3r1 y1 =

1
3
0

, y2 =

0
1
0

, y3 =

0
0
1
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 1 2
0 −6
−1 1

 r3 → r3 + r1 y1 =

 1
3
−1

, y2 =

0
1
0

, y3 =

0
0
1


1 2

0 −6
0 3

 c2 → c2 − 2c1 y1 =

 1
3
−1

, y2 =

0
1
0

, y3 =

0
0
1


1 0

0 −6
0 3

 r2 ↔ r3 y1 =

 1
3
−1

, y2 =

0
0
1

, y3 =

0
1
0


1 0

0 3
0 −6

 r3 → r3 + 2r2 y1 =

 1
3
−1

, y2 =

 0
−2

1

, y3 =

0
1
0


1 0

0 3
0 0



5.7 General finitely generated abelian groups

Let G be a finitely generated abelian group. If G has n generators, Proposition 5.4.4 gives a
surjective homomorphism φ : Zn → G. From the First isomorphism Theorem (Theorem 5.3.7)
we deduce that G ∼= Zn/K, where K = ker(φ). So we have proved that every finitely generated
abelian group is isomorphic to a quotient group of a free abelian group.

From the definition of φ, we see that

K = { (α1, α2, . . . , αn)
T ∈ Zn | α1x1 + · · ·+ αnxn = 0G }.

By Theorem 5.6.1, this subgroup K is generated by finitely many elements v1, . . . , vm of Zn. The
notation

〈 x1, . . . , xn | v1, . . . , vm 〉
is often used to denote the quotient group Zn/K, so we have

G ∼= 〈 x1, . . . , xn | v1, . . . , vm 〉.

Now we can apply Theorem 5.6.3 to this subgroup K, and deduce that there is a free basis
y1, . . . , yn of Zn such that K = 〈 d1y1, . . . , dryr 〉 for some r ≤ n, where each di > 0 and di|di+1
for 1 ≤ i < r.

So we also have
G ∼= 〈 y1, . . . , yn | d1y1, . . . , dryr 〉,

and G has generators y1, . . . , yn with diyi = 0 for 1 ≤ i ≤ r.
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Proposition 5.7.1. The group
〈 y1, . . . , yn | d1y1, . . . , dryr 〉

is isomorphic to the direct sum of cyclic groups

Zd1 ⊕Zd2 ⊕ . . .⊕Zdr ⊕Zn−r.

Proof. This is another application of the First Isomorphism Theorem. Let H = Zd1 ⊕Zd2 ⊕
Zdr ⊕Zn−r, so H is generated by y1, . . . , yn, with y1 = (1, 0, . . . , 0), . . . , yn = (0, 0, . . . , 1). Let us
consider Zn such that y1, . . . , yn is its standard free basis. Then, by Proposition 5.4.4, there is a
surjective homomorphism φ from Zn to H for which

φ(α1y1 + · · ·+ αnyn) = α1y1 + · · ·+ αnyn

for all α1, . . . , αn ∈ Z. Then, by Theorem 5.3.7, we have H ∼= Zn/K, with

K = { (α1, α2, . . . , αn)
T ∈ Zn | α1y1 + · · ·+ αnyn = 0H }.

Now α1y1 + · · ·+ αnyn is the element (α1, α2, . . . , αn) of H, which is the zero element if and only
if αi is the zero element of Zdi for 1 ≤ i ≤ r and αi = 0 for r + 1 ≤ i ≤ n.

But αi is the zero element of Zdi if and only if di|αi, so we have

K = { (α1, α2, . . . , αr, 0, . . . , 0)T ∈ Zn | di|αi for 1 ≤ i ≤ r }

which is generated by the elements d1y1, . . . , dryr. So

H ∼= Zn/K = 〈 y1, . . . , yn | d1y1, . . . , dryr 〉.

Putting all of these results together, we get the main theorem:

Theorem 5.7.2 (The fundamental theorem of finitely generated abelian groups). If G is a finitely
generated abelian group, then G is isomorphic to a direct sum of cyclic groups. More precisely, if G is
generated by n elements then, for some r with 0 ≤ r ≤ n, there are integers d1, . . . , dr with di > 0 and
di|di+1 such that

G ∼= Zd1 ⊕Zd2 ⊕ . . .⊕Zdr ⊕Zn−r.

So G is isomorphic to a direct sum of r finite cyclic groups of orders d1, . . . , dr, and n− r infinite cyclic
groups.

There may be some factors Z1, the trivial group of order 1. These can be omitted from the direct
sum (except in the case when G ∼= Z1 is trivial). It can be deduced from the uniqueness part of
Theorem 5.5.1, which we did not prove, that the numbers in the sequence d1, d2, . . . , dr that are
greater than 1 are uniquely determined by G.

Note that, n− r may be 0, which is the case if and only if G is finite. At the other extreme, if all
di = 1, then G is free abelian.
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The group G corresponding to Example 18 in Section 5.5 is

〈 x1, x2 | 42x1 − 35x2, 21x1 − 14x2 〉

and we have G ∼= Z7 ⊕Z21, a group of order 7× 21 = 147.

The group defined by Example 19 in Section 5.5 is

〈 x1, x2, x3, x4 | −18x1 + 54x2 + 9x3 + 18x4, −18x1 + 12x2 − 6x3 + 6x4,
−18x1 + 45x2 + 6x3 + 15x4, 90x1 + 48x2 + 63x3 + 12x4 〉,

which is isomorphic to Z3 ⊕Z3 ⊕Z18 ⊕Z, and is an infinite group with a (maximal) finite
subgroup of order 3× 3× 18 = 162,

The group defined by Example 20 in Section 5.6 is

〈 x1, x2, x3 | x1 + 3x2 − x3, 2x1 + x3 〉,

and is isomorphic to Z1 ⊕Z3 ⊕Z ∼= Z3 ⊕Z, so it is infinite, with a finite subgroup of order 3.

5.8 Finite abelian groups

In particular, for any finite abelian group G, we have G ∼= Zd1 ⊕Zd2 ⊕ · · · ⊕Zdr , where di|di+1
for 1 ≤ i < r, and |G| = d1d2 · · · dr.

From the uniqueness part of Theorem 5.5.1 (which we did not prove), it follows that, if di|di+1
for 1 ≤ i < r and ei|ei+1 for 1 ≤ i < s. then Zd1 ⊕Zd2 ⊕Zdr

∼= Ze1 ⊕Ze2 ⊕Zes if and only if
r = s and di = ei for 1 ≤ i ≤ r.

So the isomorphism classes of finite abelian groups of order n > 0 are in one-one correspondence
with expressions n = d1d2 · · · dr for which di|di+1 for 1 ≤ i < r. This enables us to classify
isomorphism classes of finite abelian groups.

Examples. 1. n = 4. The decompositions are 4 and 2× 2, so G ∼= Z4 or Z2 ⊕Z2.

2. n = 15. The only decomposition is 15, so G ∼= Z15 is necessarily cyclic.

3. n = 36. Decompositions are 36, 2× 18, 3× 12 and 6× 6, so G ∼= Z36, Z2 ⊕Z18, Z3 ⊕Z12
and Z6 ⊕Z6.

Although we have not proved in general that groups of the same order but with different
decompositions of the type above are not isomorphic, this can always be done in specific
examples by looking at the orders of elements.

You were asked to prove in an exercise that if φ : G → H is an isomorphism then |g| = |φ(g)|
for all g ∈ G. So isomorphic groups have the same number of elements of each order. And the
following lemma gives us the tool we need to count the elements of a given order in direct sums
of groups.
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Lemma 5.8.1. Let G = G1 ⊕ · · · ⊕ Gn be a finite abelian group. The order of g = (g1, g2, . . . , gn) is
the least common multiple of the orders |gi| of the components of g.

Proof. To start with we let l = lcm(|g1|, . . . , |gn|) and note that lg = (lg1, . . . , lgn) = (0, . . . , 0),
since lgi = 0 for all i by definition of l. This shows that |g| divides l. Now suppose that
rg = 0. Then (rg1, . . . , rgn) = (0, . . . , 0) and so considering each component we see that r is
divisible by |g1|, and by |g2|, etc. But that means that r is divisible by lcm(|g1|, . . . , |gn|) and so
lcm(|g1|, . . . , |gn|) divides |g|, and we are done.

So, let’s go back to the four groups of order 36 coming from the decompositions of 36 above,
G1 = Z36, G2 = Z2 ⊕Z18, G3 = Z3 ⊕Z12 and G4 = Z6 ⊕Z6. We see that only G1 contains
elements of order 36 and is the only cyclic group. Hence G1 cannot be isomorphic to G2, G3 or
G4. Of the three groups G2, G3 and G4, only G2 contains elements of order 18, so G2 cannot be
isomorphic to G3 or G4. Finally, G3 has elements of order 12 but G4 does not, so G3 and G4 are
not isomorphic, and we have now shown that no two of the four groups are isomorphic to each
other.

As a slightly harder example, Z2 ⊕Z2 ⊕Z4 is not isomorphic to Z4 ⊕Z4, because the former
has 7 elements of order 2, whereas the latter has only 3.
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