MA251 Algebra 1 - Week 8

Louis Li

April 3, 2023

1 Week 8

Question 1.

Let V be a Euclidean vector space, and let $T: V \to V$ be a map that preserves distances:

 $|T(\mathbf{v}) - T(\mathbf{w})| = |\mathbf{v} - \mathbf{w}|$, $\forall \mathbf{v}, \mathbf{w} \in V$

and fixes $0 = 0_V \in V$: $T(0) = 0$. Here $|\mathbf{u}| = \sqrt{\mathbf{u} \cdot \mathbf{u}}$ as in the notes. Show that T is linear and orthogonal, in the following steps:

- (a) Show that T preserves the norm : $|T(\mathbf{v})| = |\mathbf{v}|$ for all $\mathbf{v} \in V$.
- (b) By expanding $|T(\mathbf{v}) T(\mathbf{w})|^2$ show that T preserves the scalar product:

$$
T(\mathbf{v}) \cdot T(\mathbf{w}) = \mathbf{v} \cdot \mathbf{w}
$$

for all **v**, $\mathbf{w} \in V$.

(c) Finally, considering

$$
(T(\lambda \mathbf{v} + \mu \mathbf{w}) - \lambda T(\mathbf{v}) - \mu T(\mathbf{w})) \cdot (T(\lambda \mathbf{v} + \mu \mathbf{w}) - \lambda T(\mathbf{v}) - \mu T(\mathbf{w}))
$$

prove that T is linear, hence orthogonal.

Proof.

(a) Let $w = 0$, then by definition of T we have

$$
|T(\mathbf{v}) - T(\mathbf{0})| = |\mathbf{v} - \mathbf{0}| = |\mathbf{v}|,
$$

and since $T(0) = 0$, we have

$$
|T(\mathbf{v}) - T(\mathbf{0})| = |T(\mathbf{v})| = |\mathbf{v}|.
$$

(b) Expanding $|T(\mathbf{v}) - T(\mathbf{w})|^2$, we get

$$
|T(\mathbf{v}) - T(\mathbf{w})|^2 = |T(\mathbf{v})|^2 - 2|T(\mathbf{v})| \cdot |T(\mathbf{w})| + |T(\mathbf{w})|^2.
$$

Also we know by definition of T , we have

$$
|\mathbf{v} - \mathbf{w}|^2 = |T(\mathbf{v}) - T(\mathbf{w})|^2.
$$

Expanding LHS and using $T(\mathbf{v}) = |\mathbf{v}|$, we have

$$
2\mathbf{v} \cdot \mathbf{w} = 2T(\mathbf{v}) \cdot T(\mathbf{w}) \implies T(\mathbf{v}) \cdot T(\mathbf{w}) = \mathbf{v} \cdot \mathbf{w}.
$$

 (c) Expand the expression and use (b) , we get

$$
I = (T(\lambda \mathbf{v} + \mu \mathbf{w}) - \lambda T(\mathbf{v}) - \mu T(\mathbf{w})) \cdot (T(\lambda \mathbf{v} + \mu \mathbf{w}) - \lambda T(\mathbf{v}) - \mu T(\mathbf{w}))
$$

= |(\lambda \mathbf{v} + \mu \mathbf{w})|^2 - 2\lambda \mathbf{v} \cdot (\lambda \mathbf{v} + \mu \mathbf{w}) - 2\mu \mathbf{w} \cdot (\lambda \mathbf{v} + \mu \mathbf{w}) + \lambda^2 |\mathbf{v}|^2 + 2\lambda \mu \mathbf{v} \cdot \mathbf{w} + \mu^2 |\mathbf{w}|^2
= 0.

Then $T((\lambda \mathbf{v} + \mu \mathbf{w}) - \lambda T(\mathbf{v}) - \mu T(\mathbf{w})) = 0$, and shows the linearity. Hence, it is orthogonal.

 \Box

Question 2.

For the following symmetric matrices, find an orthonormal basis in which the matrix is diagonal.

$$
A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & 1 \\ 3 & 1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}.
$$

Solution.

(a) For A, the characteristic polynomial is $c_A(x) = (x-2)(x-4)$.

For $\lambda = 2$, we get the eigenvector $\begin{pmatrix} 1 \end{pmatrix}$ −1). For $\lambda = 4$, we get the eigenvector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 1 . We need the length of the vectors to be 1 as well, so the basis is

$$
\left\{\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}, \frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}\right\}.
$$

Check

$$
\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}\cdot\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}=0.
$$

(b) Similarly, we find the characteristic polynomial to be $c_B(x) = (x - 2)(x - 5)(x + 2)$.

For
$$
\lambda = 2
$$
, the eigenvector is $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$. For $\lambda = 5$, eigenvector is $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. For $\lambda = -2$, the eigenvector is $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$.

Similarly, every vector should have length 1, so the basis is

$$
\left\{\frac{1}{\sqrt{6}}\begin{pmatrix}1\\-2\\1\end{pmatrix},\frac{1}{\sqrt{3}}\begin{pmatrix}1\\1\\1\end{pmatrix},\frac{1}{\sqrt{2}}\begin{pmatrix}-1\\0\\1\end{pmatrix}\right\}.
$$

Check

$$
\frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \cdot \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = 0.
$$

(c) The characteristic polynomial is $c_C(x) = x(x-2)^3$.

For
$$
\lambda = 0
$$
, the eigenvector is $\begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}$. For $\lambda = 2$, the eigenvector is $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$.

Similarly, every vector should have length 1, so the basis can be

$$
\left\{\frac{1}{\sqrt{2}}\begin{pmatrix}0\\1\\0\\-1\end{pmatrix},\frac{1}{\sqrt{2}}\begin{pmatrix}0\\1\\0\\1\end{pmatrix}\right\}.
$$

Check

$$
\frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = 0.
$$

Question 3.

Classify the following curves and surfaces (say whether it is an ellipse, a parabola, a two-sheeted hyperboloid etc.):

(a) $x^2 - y^2 + 2xy - 1 = 0$ (2 dimensions); (b) $x^2 - y^2 + 2xy - 1 = 0$ (3 dimensions); (c) $x^2 + 2xy + y^2 + x + 1 = 0$ (2 dimensions); (d) $x^2 + y^2 - 2z^2 - x - y - 4z = 0$ (3 dimensions); (e) $x^2 + y^2 - z^2 + 6x - 4y - 2z + 12 = 0$ (3 dimensions); (f) $x^2 + y^2 - z^2 + 2xy - 2xz - 2yz - y = 0$ (3 dimensions)

Solution.

(a) We rewrite it as

$$
x^{2} - y^{2} + 2xy - 1 = (x + y)^{2} - 2y^{2} - 1 = 0
$$

$$
(x + y)^{2} - 2y^{2} = 1.
$$

It is a hyperbola.

- (b) We rewrite it as the same form in (a) , and it is a hyperbolic cylinder.
- (c) We rewrite it as

$$
x^{2} + 2xy + y^{2} + x + 1 = (x + y)^{2} + x + 1 = 0.
$$

It is a hyperbola.

(d) We rewrite it as

$$
x^{2} + y^{2} - 2z^{2} - x - y - 4z = 0
$$

$$
-(x - \frac{1}{2})^{2} - (y - \frac{1}{2})^{2} + 2(z + 1)^{2} = \frac{3}{2}.
$$

We look in the notes and see we must have a hyperboloid of two sheets.

(e) We rewrite it as

$$
x^{2} + y^{2} - z^{2} + 6x - 4y - 2z + 12 = 0
$$

$$
(x+3)^{2} + (y-2)^{2} - (z+1)^{2} = 0.
$$

It is an elliptical cone.

(f) We rewrite it as

$$
x^{2} + y^{2} - z^{2} + 2xy - 2xz - 2yz - y = 0
$$

$$
(x + y - z)^{2} - 2z^{2} - y = 0.
$$

It is a hyperbolic paraboloid.

 \Box