MA244 Analysis III Support Class - Week 9

Louis Li

March 29, 2023

1 Week 9

Question 1.

Integrate $f(z) = z^2$ over the closed curve C, consisting of two radial lines of unit length and a wedge of a unit circle, as shown in the adjoining figure. The arrow in the figure shows the orientation of C.

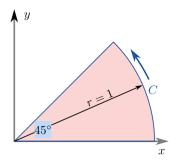


Figure 1: Question 1

Solution.

There are three parts of this curve, the two radial lines and a wedge of a unit circle. We parametrise each part:

(a) The first part is a radial that lies on the x-axis. This parametrisation is z = t, and the integral is

$$I_1 = \int_0^1 z^2 dz = \int_0^1 t^2 dt = \frac{1}{3}.$$

(b) The second part is a wedge of a unit circle with 45 degrees. This parametrisation is $z = e^{it}$, and $\frac{dz}{dt} = ie^{it}$. Therefore, the integral is

$$I_2 = \int_0^{\frac{\pi}{4}} z^2 dz = \int_0^{\frac{\pi}{4}} (e^{it})^2 \cdot i e^{it} dt = \frac{e^{\frac{3\pi}{4}i} - 1}{3}.$$

(c) The third part is again a radial that makes 45 degrees with the x-axis. This parametrisation is $z = (1-t)e^{i\frac{\pi}{4}}$. The reason for this parametrisation is that as $t \in [0,1]$, |z| moves from 1 to 0 (mainly contributed by (1-t)), and since z = x + iy, we can rewrite it as $z = e^{i\theta}$. Here $\theta = \frac{\pi}{4}$, and hence $z = (1-t)e^{i\frac{\pi}{4}}$. We have $\frac{dz}{dt} = -e^{\frac{i\pi}{4}}$ and $z^2 = (1-t)^2 e^{i\frac{\pi}{2}}$. Therefore, the integral is

$$I_3 = \int_0^1 z^2 dz = \int_0^1 -e^{\frac{i\pi}{4}} (1-t)^2 e^{i\frac{\pi}{2}} dt = -\frac{e^{i\frac{3\pi}{4}}}{3}.$$

Therefore,

$$I = I_1 + I_2 + I_3 = 0.$$

Alternatively, we can use Cauchy's Theorem: Let $f : \Omega \to \mathbb{C}$ be an analytic function, with Ω an open, simply connected domain. Let γ be a C^1 closed curve in Ω . Then

$$\int_{\gamma} f(z) \mathrm{d}z = 0.$$

Since $f(z) = z^2$ is analytic and γ here is a closed curve, we obtain the result using Cauchy's theorem. \Box

Question 2.

Let f be a continuous function defined over $\mathbb C$ with the property that

$$\lim_{z \to \infty} z f(z) = k$$

Let D be the curve $z = Re^{it}$, with $0 \le t \le \theta$ oriented counter-clockwise.

(a) Show that

$$\lim_{R \to \infty} \int_D f(z) \mathrm{d}z = i\theta k$$

(b) Use this result to evaluate

$$\lim_{R \to \infty} \int_C \frac{\mathrm{d}z}{\sqrt{z^2 - 1}},$$

where C is a circle of radius R oriented counter-clockwise.

Proof.

(a) The property that

$$\lim_{z\to\infty}zf(z)=k$$

implies that for every $\varepsilon > 0$, there exists a N > 0 such that for every |z| > N,

$$|zf(z) - k| < \frac{\varepsilon}{\theta}.$$

With $z = Re^{it}$, we have $\frac{dz}{dt} = iRe^{it}$.

Therefore, for R > N,

$$\begin{split} \left| \int_{D} f(z) dz - i\theta k \right| &= \left| \int_{D} f(z) dz - k \int_{0}^{\theta} \frac{iRe^{it}}{Re^{it}} dt \right| \\ &= \left| \int_{D} f(z) dz - k \int_{D} \frac{dz}{z} \right| \\ &= \left| \int_{D} \frac{zf(z) - k}{z} dz \right| \\ &\leq \int_{0}^{\theta} \left| \frac{zf(z) - k}{z} \right| |dz| \\ &= \int_{0}^{\theta} |zf(z) - k| \left| \frac{1}{z} \right| |izdt| \\ &= \int_{0}^{\theta} |zf(z) - k| dt \\ &< \int_{0}^{\theta} \frac{\varepsilon}{\theta} dt \\ &= \varepsilon. \end{split}$$

By definition of limits, this means

$$\lim_{R \to \infty} \int_D f(z) \mathrm{d}z = i\theta k.$$

(b) Here $f(z) = \frac{1}{\sqrt{z^2-1}}$. Hence,

$$\lim_{z \to \infty} zf(z) = \lim_{z \to \infty} \frac{z}{\sqrt{z^2 - 1}} = 1.$$

Therefore, by (a), we have

$$\lim_{R \to \infty} \int_C \frac{\mathrm{d}z}{\sqrt{z^2 - 1}} = i2\pi = 2\pi i$$

Question 3.

Assume that $f : \mathbb{C} \to \mathbb{C}$ is analytic. Prove that if |f| is also analytic then f must be a constant.

Proof.

Suppose f = u + iv. If f is analytic then |f| is also analytic and in turn, $|f|^2$ is also analytic, meaning that $g = u^2 + v^2$ is analytic. Using Cauchy-Riemann equations, we have

$$u_x = v_y, \qquad u_y = -v_x.$$

Therefore, in this case $u' = u^2 + v^2$ and v' = 0, and

$$2uu_x + 2vv_x = 0 \qquad -2uv_x + 2vu_x = 0,$$

which means $(u^2 + v^2)_x = 0 = (u^2 + v^2)_y$. Therefore $g = |f^2|$ is a constant and $|f| = \sqrt{g}$ is a constant. If |f| = 0, then f = 0 and we are done. If |f| > 0, let's denote this as ρ . Since f is analytic, we also apply the Cauchy-Riemann equations to the above equation,

$$\begin{cases} uu_x - vu_y &= 0\\ uu_y + vv_y &= 0 \end{cases}$$

By canceling u_y , we get

$$u^{2}u_{x} + v^{2}v_{y} = u^{2}u_{x} + v^{2}u_{x} = (u^{2} + v^{2})u_{x} = 0.$$

By canceling u_x , we get

$$(u^2 + v^2)v_x = 0.$$

Therefore, we get

$$(u^2 + v^2)u_x = (u^2 + v^2)v_x$$

For the non-trivial solution, we get $u_x = v_x = 0$, and $u_x = v_x = v_y = v_x = 0$. Therefore, f is a constant.

Question 4.

Let $f: z \to \sum_{n=0}^{\infty} a_n z^n$, where the series in the RHS has a radius of convergence R > 0. For any $r \in (0, R)$ calculate

$$I = \frac{1}{2\pi i} \int_{\partial B_r(0)} \frac{|f(z)|^2}{z} \mathrm{d}z,$$

the average value of $|f|^2$ over the circle of radius r centered on the origin. The contour of integration is oriented counter-clockwise.

Solution.

Since the integral is about calculating the average value of $|f|^2$ over the circle of radius r centered on the origin. Therefore, let's consider the parametrisation $z = re^{it}$, where $t \in [0, 2\pi]$ and $\frac{dz}{dt} = ire^{it}$.

Therefore,

$$I_k = \frac{1}{2\pi i} \int_0^{2\pi} \frac{\left|\sum_{n=0}^\infty a_n \left(re^{it}\right)^n\right|^2}{re^{it}} \cdot ire^{it} dt$$
$$= \frac{1}{2\pi} \int_0^{2\pi} \left|\sum_{n=0}^\infty a_n r^n e^{int}\right|^2 dt.$$

Here we uses the modulus property where $|w|^2 = w\overline{w}$,

$$\begin{split} I_k &= \frac{1}{2\pi} \int_0^{2\pi} \left| \sum_{n=0}^\infty a_n r^n e^{int} \right|^2 \mathrm{d}t \\ &= \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{n=0}^\infty a_n r^n e^{int} \right) \overline{\left(\sum_{n=0}^\infty a_n r^n e^{int} \right)} \mathrm{d}t \\ &= \frac{1}{2\pi} \int_0^{2\pi} \sum_{n=0}^\infty a_n r^n e^{int} \sum_{m=0}^\infty \overline{a_m} r^m e^{-imt} \mathrm{d}t \\ &= \frac{1}{2\pi} \int_0^{2\pi} \sum_{n=0}^\infty \sum_{m=0}^\infty a_n r^n e^{int} \overline{a_m} r^m e^{-imt} \mathrm{d}t \\ &= \sum_{n=0}^\infty \sum_{m=0}^\infty a_n \overline{a_m} \frac{1}{2\pi} \int_0^{2\pi} r^{n+m} e^{i(n-m)t} \mathrm{d}t \\ &= \sum_{n=0}^\infty \sum_{m=0}^\infty a_n \overline{a_m} \frac{1}{2\pi} r^{n+m} \delta_{n,m} \int_0^{2\pi} 1 \mathrm{d}t \\ &= \sum_{n=0}^\infty \sum_{m=0}^\infty a_n \overline{a_m} r^{n+m} \delta_{n,m}, \end{split}$$

where

$$\delta_{n,m} = \begin{cases} 1 & n = m \\ 0 & n \neq m. \end{cases}$$

The interchanges of summation and integration are justified by the uniform convergence of the series f on $\partial B_r(0)$, and hence

$$I_k = \sum_{n=0}^{\infty} |a_n|^2 r^{2n}.$$