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1 Week 7

Question 1.

Let M be a strictly positive integer. Show that the series

∞∑
n=M

1

(x− n)2
and

∞∑
n=M

1

(x+ n)2

converge uniformly for |x| ≤ M
2 . Conclude that the series

∞∑
n=M

(
1

(x− n)2
+

1

(x+ n)2

)

converges uniformly on
[
−M

2 ,
M
2

]
. Let the limit be fM . Prove that fM is continuous on

[
−M

2 ,
M
2

]
and

differentiable on
(
−M

2 ,
M
2

)
.

Proof.

Note that
∞∑

n=M

1

(n− x)2
≤

∞∑
n=M

1

(n− M
2 )

2
≤

∞∑
n=M

1

n2
< ∞

and similarly for
∞∑

n=M

1

(x+ n)2
. Hence by Weierstrass M-test, both series converge uniformly for |x| ≤

M
2 .

Define hn(x) =
1

(x−n)2
+ 1

(x+n)2
, and it is a sequence of C1 functions on

[
−M

2 ,
M
2

]
. Hence, the limit fM

is continuous as the convergence is uniform. Compute h′n(x), we see it is

h′n(x) = − 2

(x− n)3
− 2

(x+ n)3
.

Note that ∣∣∣∣− 2

(x− n)3
− 2

(x+ n)3

∣∣∣∣ ≤ 4

(n− M
2 )

3

and

∞∑
n=M

4

(n− M
2 )

3
converges, hence byWeierstrass M-test,

∞∑
n=M

h′n(x) converges uniformly on
[
−M

2 ,
M
2

]
.

Then by the continuity and uniformly convergence theorem, fM is C1.

1



Louis Li ID: u2107109

Question 2.

Use the result of part (a) to show that the function

F (x) =

∞∑
n=−∞

1

(x− n)2

is well defined, continuous and differentiable on R\Z. Hint: Use an appropriate (possibly x-dependent)
decomposition of the above series as the sum of two series from part (a). Show that F (x+ 1) = F (x)
for all x ∈ R \ Z.

Proof.

Consider the hint, we separate F (x) into a sum of two series. For k ≥ 0, we have

F (x) =

∞∑
n=−∞

1

(x− n)2
=

2(k+1)∑
p=−2(k+1)

1

(x− p)2
+

∞∑
p=2k+3

1

(x− p)2
+

∞∑
p=2k+3

1

(x+ p)2
.

We know that

2(k+1)∑
p=−2(k+1)

is continuously differentiable on R \ Z, while the last two sums are also

continuously differentiable on
[
−2k+3

2 , 2k+3
2

]
by Question 1. Hence for k ≥ 0, F (x) is continuously

differentiable. Similar arguments follow for k ≤ 0, and therefore, F (x) is well defined, continuous and
differentiable on R \ Z. For any N ∈ Z, x ∈ R \ Z, we have

F (x+ 1) = lim
N1→−∞

N∑
n=N1

1

(x+ 1− n)2
+ lim

N2→∞

N2∑
n=N+1

1

(x+ 1− n)2

= lim
N1→−∞

N−1∑
n=N1−1

1

(x− n)2
+ lim

N2→∞

N2−1∑
n=N

1

(x− n)2

= lim
N1→−∞

N−1∑
n=N1

1

(x− n)2
+ lim

N2→∞

N2∑
n=N

1

(x− n)2

=
N−1∑

n=−∞

1

(x− n)2
+

∞∑
n=N

1

(x− n)2

=

∞∑
n=−∞

1

(x− n)2

= F (x).

Question 3.

(a) Let g : R → R be a continuous functions: g(x) = g(x+1) for all x ∈ R. Prove that g is bounded.

(b) Let f be a bounded function on R such that

f(x) =
1

4

(
f
(x
2

)
+ f

(
x+ 1

2

))
for all x. Prove that f(x) = 0 for all x.
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Proof.

(a) Since g is continuous on R, then it must be continuous on [0, 1]. Hence by the boundedness
theorem, g must be bounded on [0, 1], i.e. there exists a M ≥ 0 such that |g(x)| ≤ M . Since
g(x) = g(x+1) for all x ∈ R, that means the function g(x) has a period of 1. i.e. for every y ∈ R,
it can be represented as I + r, where I ∈ Z and r ∈ [0, 1). Hence,

|g(y)| = |g(I + r)| = |g(r)| ≤ M.

(b) Since f is bounded on R, then there exists a M ≥ 0, such that |f(x)| ≤ M . Note that

|f(x)| = 1

4

(∣∣∣f (x
2

)∣∣∣+ ∣∣∣∣f (x+ 1

2

)∣∣∣∣) ≤ 1

4
(M +M) =

1

2
M,

which is true for every x ∈ R.

Consider f
(
x
2

)
and f

(
x+1
2

)
, we have

f
(x
2

)
=

1

4

(
f
(x
4

)
+ f

(
x+ 2

4

))
and f

(
x+ 1

2

)
=

1

4

(
f

(
x+ 1

4

)
+ f

(
x+ 3

4

))
.

Similarly, we have

f
(x
2

)
≤ 1

2
M and f

(
x+ 1

2

)
≤ 1

2
M.

Substitute back to |f(x)|, we get

|f(x)| = 1

4

(∣∣∣f (x
2

)∣∣∣+ ∣∣∣∣f (x+ 1

2

)∣∣∣∣) ≤ 1

4

(
1

2
M +

1

2
M

)
=

1

4
M.

If we continue n steps, we get

|f(x)| ≤ 1

2n
M.

For every x ∈ R, we see that

lim
n→∞

|f(x)| ≤ lim
n→∞

1

2n
M = 0.

Hence, f(x) ≡ 0.

Question 4.

(a) Show by L’Hopital’s rule that π2 csc2(πx)− 1
x2 → π2

3 as x → 0.

(b) Let F, fM be functions defined in part (b) and (a) respectively. Let g : R → R be defined as
follows:

g(x) = F (x)− π2 csc2(πx) = f1(x)−
(
π2 csc2(πx)− 1

x2

)
, x ∈ R \ Z,

g(x) = f1(0)− π2

3 , x ∈ Z. Prove that g is continuous on R and g(x) = g(x+ 1) for all x ∈ R.

Proof.
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(a) By L’Hopital’s rule,

lim
x→0

(
π2 csc2(πx)− 1

x2

)
= lim

x→0

x2π2 csc2(πx)− 1

x2

= lim
x→0

x2π2 − sin2(πx)

x2 sin2(πx)

= lim
x→0

2π2x− 2π sin(πx) cos(πx)

2πx2 sin(πx) cos(πx) + 2x sin2(πx)

= lim
x→0

π2x− π sin(πx) cos(πx)

πx2 sin(πx) cos(πx) + x sin2(πx)

= lim
x→0

π2x− π
2 sin(2πx)

π
2x

2 sin(2πx) + x sin2(πx)

= lim
x→0

π2 − π2 cos(2πx)

π2x2 cos(2πx) + 2πx sin(2πx) + sin2(πx)

= lim
x→0

2π2 sin(2πx)

−2π2x2 sin(2πx) + 6πx cos(2πx) + 3 sin(2πx)

=
4π3

12π

=
π2

3
.

Note: Have to use L’Hopital’s rule for 4 times.

(b) Since F and π2 csc2(πx) are continuous, then g(x) is continuous on R \ Z. It is also continuous
at x = 0: note that f1 is continuous on

[
−1

2 ,
1
2

]
. Therefore,

lim
x→0

g(x) = f1(0)− lim
x→0

(
π2 csc2(πx)− 1

x2

)
= f1(0)−

π2

3
= g(0).

Since F is periodic with period 1 on R \ Z, and g is continuous at every x = n, where n ∈ N:

lim
x→n

g(x) = lim
x→0

g(x+ n) = lim
x→0

g(x) = g(0) = g(n).

So g is continuous on R. It is periodic on R \ Z and g(n) = g(0). Hence, g(x) = g(x+ 1) for all
x ∈ R.

Question 5.

Bringing everything together: consider function g defined in part (d).

(a) Prove that it is bounded and satisfies the equation of part (c). Thus prove that g ≡ 0 and so

∞∑
n=−∞

1

(x− n)2
= π2 csc2(πx)

for all x ∈ R \ Z.

(b) Show that
∞∑
n=1

n−2 =
π2

6
.
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Proof.

(a) Note that the function g defined in part (d) is periodic and continuous. Therefore by Question 3,
it is bounded. The equation in Question 4 is

f(x) =
1

4

(
f
(x
2

)
+ f

(
x+ 1

2

))
,

and substitute it with F (x) we see that

1

4

(
F
(x
2

)
+ F

(
x+ 1

2

))
=

1

4

( ∞∑
n=M

1

(x2 − n)2
+

∞∑
n=M

1

(x+1
2 − n)2

)

=
1

4

( ∞∑
n=M

4

(x− 2n)2
+

∞∑
n=M

4

(x− 2n+ 1)2

)

=

(∑
n∈2Z

+
∑

n∈2Z+1

)
1

(x− n)2

= F (x).

Note that
1

4

(
csc2

(πx
2

)
+ csc2

(
π(x+ 1)

2

))
=

1

4

(
csc2

(πx
2

)
+

1

cos2
(
πx
2

))
=

1

4 sin2
(
πx
2

)
cos2

(
πx
2

)
=

1

sin2
(
πx
2

)
= csc2

(πx
2

)
.

Therefore, we see that both csc2(πx) and F (x) satisfy the equation in Question 3. By linearity,
g(x) = F (x)− π2 csc2(πx) also satisfies the equation on R \ Z. Follow the same step in Question
3, since g is bounded on R and by taking the limit of x → n to prove the equation in Question 3
is satisfied by g for any x ∈ R, we conclude g(x) ≡ 0 by Question 3. Hence it means

F (x) = π2 csc2(πx)
∞∑

n=−∞

1

(x− n)2
= π2 csc2(πx)

for all x ∈ R \ Z.

(b) We can write part (a) into

−1∑
n=−∞

1

(x− n)2
+

1

x2
+

∞∑
n=1

1

(x− n)2
= π2 csc2(πx)

2
∞∑
n=1

1

(x− n)2
= π2 csc2(πx)− 1

x2
.
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Hence taking the limit we have

lim
x→0

2
∞∑
n=1

1

(x− n)2
= lim

x→0

(
π2 csc2(πx)− 1

x2

)

2

∞∑
n=1

n−2 =
π2

3

∞∑
n=1

n−2 =
π2

6
.
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