MA244 Analysis III Support Class - Week 6

Louis Li

March 26, 2023

1 Week 6

Question 1.

Consider the sequence of functions

$$
g_n(x) = \frac{x^n}{n}, x \in [0,1], n \in \mathbb{N}.
$$

- (a) Does $g_n(x)$ converge pointwise for $x \in [0,1]$? Does it converge uniformly? Determine the limit, $g(x)$, if it exists, and differentiate it to find $g'(x)$.
- (b) Does (g'_n) converge pointwise and/or uniformly on [0, 1]? If $\lim_{n\to\infty} g'_n = h$, then is h equal to g' ?

Solution.

(a) $g_n(x)$ converge pointwise for $x \in [0,1]$. We see that for $x \in [0,1]$,

$$
0\leq \frac{x^n}{n}\leq \frac{1}{n},
$$

and

$$
\lim_{n \to \infty} 0 \le \lim_{n \to \infty} \frac{x^n}{n} \le \lim_{n \to \infty} \frac{1}{n}.
$$

By Squeeze theorem, we have

$$
\lim_{n \to \infty} \frac{x^n}{n} = 0,
$$

for $x \in [0, 1]$.

It converges uniformly to $g(x) = 0$ also. Choose $n > N > \frac{1}{\varepsilon}$, we have

$$
|g_n(x) - g(x)| = \left|\frac{x^n}{n}\right| \le \left|\frac{1}{n}\right| < \varepsilon.
$$

Therefore, $g'(x) = 0$.

(b) First of all we get $(g'_n) = x^{n-1}$. It still converges pointwise to $h : [0,1] \to \mathbb{R}$ as

$$
\lim_{n \to \infty} x^{n-1} = 0, \text{ where } 0 \le x < 1,
$$

and $h(1) = 1$. Therefore h is discontinuous at $x = 1$ and

$$
\lim_{x \to 1-} h(x) = 0 \neq 1 = h(1).
$$

Therefore, $g'_n \to h$ but $g'_n \not\equiv h$ and $g' \neq h$.

Question 2.

(a) Show that

$$
g(x) = \sum_{n=1}^{\infty} \frac{\cos(2^n x)}{2^n}
$$

is continuous on R.

(b) Prove that

$$
h(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}
$$

is continuous on $[-1, 1]$.

Solution.

(a) Note that

and that

$$
f_{\rm{max}}
$$

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$

 $cos(2ⁿx)$ 2^n

$$
\sum_{n=1}^{\infty} \frac{1}{2^n} < \infty,
$$

 $\frac{1}{2^n}, \quad x \in \mathbb{R},$

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\leq \frac{1}{\infty}$

therefore it converges and by Weierstrass M-test, $g(x)$ converges uniformly. Since uniform convergence implies continuity in this case as each term in the sum is continuous, then $g(x)$ is continuous on R.

(b) Similarly, note that

$$
\left|\frac{x^n}{n^2}\right| \le \frac{1}{n^2}, \quad x \in [-1, 1],
$$

and that

$$
\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty,
$$

therefore it converges and by Weierstrass M-test, $h(x)$ converges uniformly on $x \in [-1, 1]$. Since uniform convergence implies continuity in this case as each term in the sum is continuous, then $h(x)$ is continuous on $[-1, 1]$.

Question 3.

Let

$$
h(x) = \sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}.
$$

- (a) Show that h is a continuous function on \mathbb{R} .
- (b) Is h differentiable? If so, is the derivative function h' continuous?

Proof.

 \Box

 \Box

(a) Note that

$$
\left|\frac{1}{x^2 + n^2}\right| \le \frac{1}{n^2}, \quad x \in \mathbb{R},
$$

$$
\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty.
$$

and

 $n=1$ $rac{1}{n^2} < \infty$,

therefore it converges and by Weierstrass M-test, $h(x)$ converges uniformly. Since uniform convergence implies continuity in this case as each term in the sum is continuous, then h is a continuous function on R.

(b) Define $h_k(x) = \sum$ k $n=1$ 1 $\frac{1}{x^2 + n^2}$, $k \ge 1$. This is a sequence of C^1 functions on R. Hence h is

differentiable. To prove that the limit is C^1 , we show that the sequence (h'_k) converges uniformly and we will prove that it is uniformly Cauchy:

$$
h'_{k}(x) = \sum_{n=1}^{k} \frac{-2x}{(x^{2} + n^{2})^{2}}.
$$

By Cauchy-Schwarz equality, $2|x|n \leq x^2 + n^2$, where $n \geq 1$, we have

$$
|h'_k(x)| \leq \sum_{n=1}^k \frac{2|x|}{(x^2 + n^2)^2} \leq 2 \sum_{n=1}^k \frac{x^2 + n^2}{(x^2 + n^2)^2} \leq 2 \sum_{n=1}^k \frac{1}{n^2}.
$$

Therefore if $k < l$, we have

$$
|h'_l(x) - h'_k(x)| \le 2 \sum_{n=k+1}^l \frac{1}{n^2}.
$$

Given $\varepsilon > 0$, choosing N such that $\sum_{n=1}^{\infty}$ $n=N$ 1 $\frac{1}{n^2} < \varepsilon$, and $|h'_l(x) - h'_k(x)| < \varepsilon$.

Hence, (h'_k) is uniformly Cauchy and in turn it is uniformly convergent and hence h' is C^1 .

 \Box

Question 4.

Let (f_n) be a sequence of continuously differentiable functions defined on the closed interval $[a, b]$ and assume that (f'_n) converges uniformly on $[a, b]$. Show that if there exists a point $x_0 \in [a, b]$ where $f_n(x_0)$ is convergent, then (f_n) converges uniformly on $[a, b]$.

Solution.

We will show its uniform convergence by showing (f_n) is uniformly Cauchy. We have

$$
f_n(x) - f_m(x) = f_n(x) - f_m(x) - (f_n(x_0) - f_m(x_0)) + (f_n(x_0) - f_m(x_0))
$$

 \Box

and hence

$$
|f_n(x) - f_m(x)| \le |f_n(x) - f_m(x) - (f_n(x_0) - f_m(x_0))| + |f_n(x_0) - f_m(x_0)|.
$$

By Mean Value Theorem on $f_n(x) - f_m(x)$, we have

$$
f'_n(\tau_{n,m}) - f'_m(\tau_{n,m}) = \frac{f_n(x) - f_m(x) - (f_n(x_0) - f_m(x_0))}{x - x_0}
$$

for some $\tau_{n,m} \in [a, b]$ that depends on x and x_0 . Therefore,

$$
|f_n(x) - f_m(x)| \le |x - x_0| \|f'_n - f'_m\|_{\infty} + |f_n(x_0) - f_m(x_0)| \le |b - a| \|f'_n - f'_m\|_{\infty} + |f_n(x_0) - f_m(x_0)|.
$$

As (f'_n) converges uniformly on [a, b], therefore given $\varepsilon > 0$, there exists N such that

$$
\left\|f_n'-f_m'\right\|_\infty < \frac{\varepsilon}{2\left|b-a\right|}
$$

and

$$
|f_n(x_0)-f_m(x_0)|<\frac{\varepsilon}{2}.
$$

Therefore,

$$
|f_n(x) - f_m(x)| \le |b - a| \frac{\varepsilon}{2|b - a|} + \frac{\varepsilon}{2} = \varepsilon,
$$

and (f_n) converges uniformly on $[a, b]$.