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Question 1.

Compute the derivative of the functions

f(x) =

∫ x2

0
sin(s3)ds g(x) =

∫ 2+x6

x3

e−s2ds

Solution.

Let u(s) =
∫
sin(s3)ds. Then u′(s) = sin(s3) and f(x) = u(x2)− u(0).

Therefore,
f ′(x) = 2xu′(x2)− u′(0)

= 2x sin(x6).

Similarly, let v(s) =
∫
e−s2ds. Then v′(s) = e−s2 and g(x) = v(2 + x6)− v(x3).

Therefore,
g′(x) = 6x5v′(2 + x6)− 3x2v′(x3)

= 6x5e−(2+x6)2 − 3x2e−x6
.

Question 2.

Consider the integrability of f(x) = 1
x on [−1, 1]\{0}. Show that for any s ∈ R there exist non-negative

functions a(ε), b(ε) that tend to 0 as ε tends to zero and for which

lim
ε→0+

[∫ −a(ε)

−1

dx

x
+

∫ 1

b(ε)

dx

x

]
= s.

This result proves that the improper integral
∫ 1
−1 x

−1dx does not exist. Define the integral in the sense
of the principal value: for f : [−1, 1] \ {0},

P.V.

∫ 1

−1
f(x)dx = lim

ε→0+

[∫ −ε

−1
f(x)dx+

∫ 1

ε
f(x)dx

]
.

Does P.V.
∫ 1
−1 x

−1dx exist? If it does, what is its value?
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Proof.

Choose a(ε) = a0ε and b(ε) = b0ε, where a0, b0 > 0.

Then, the limit equation becomes

lim
ε→0+

[∫ −a0ε

−1

1

x
dx+

∫ 1

b0ε

dx

x

]
= lim

ε→0+
[ln(−a0ε)− ln(−1) + ln(1)− ln(b0ε)]

= lim
ε→0+

[
ln

(
−a0ε

−1

)
− ln(b0ε)

]
= lim

ε→0+

(
ln

(
a0ε

b0ε

))
= ln

(
a0
b0

)
= s.

Based on the definition of principal value, we see that if we let a0 = b0 = 1, then P.V.
∫ 1
−1 x

−1dx exists,

and it equals to ln
(
1
1

)
= 0.

Question 3.

Let f, g : [a,∞) → [0,∞) be continuous functions such that

lim
x→∞

f(x)

g(x)
= L,

with 0 < L < ∞. Prove that ∫ ∞

a
f(x)dx

∫ ∞

a
g(x)dx

both converge or both diverge.

Notice that the result is false if we allow f, g : [a, b] → R, rather than considering non-negative functions
only. A counterexample is given by

f(x) =
sin(x)

x
g(x) =

sin(x)

x
+

sin2(x)

x lnx

where L = 1, whereas f is integrable but g is not.

Use this result or a direct comparison to decide whether the following functions are integrable on [1,∞):

(a)
x

x2 + e−x2 , (b)
1

x2 + tanh(x)
, (c)

1

1 + log(x)
.

Proof.

As the functions are continuous, they are both integrable on any bounded domain [a, y].

Consider the integrals over the interval [y, z] where z will be sent to infinity. Hence limx→∞
f(x)
g(x) = L

means that for any ε > 0 sufficiently small, there exists y > a such that

0 < L− ε ≤ f(x)

g(x)
≤ L+ ε,∀x ≥ y.
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By monotonicity of the integral,

(L− ε)

∫ z

y
g(x) ≤

∫ z

y
f(x) ≤ (L+ ε)

∫ z

y
g(x).

Similarly,

(L+ ε)−1

∫ z

y
f(x) ≤

∫ z

y
g(x) ≤ (L− ε)−1

∫ z

y
f(x).

The above two inequalities imply

lim
z→∞

∫ z

y
g ≤ ∞ ⇔ lim

z→∞

∫ z

y
f ≤ ∞,

and we conclude that they either both converge or both diverge.

Next, the most important thing for us is to find a continuous g : [1,∞) → [0,∞). Consider for n ̸= 1,∫ ∞

1

1

xn
dx = lim

b→∞

[
x−n+1

−n+ 1

]b
1

,

which is finite. However if n = 1, then
∫∞
1

1
xdx diverges. Therefore,

(a) Check

lim
x→∞

x

x2+e−x2

1
x

= lim
x→∞

x2

x2 + e−x2 = 1,

since
∫∞
1

1
xdx diverges, so does x

x2+e−x2
.

(b) Check

lim
x→∞

1
x2+tanh(x)

1
x2

= lim
x→∞

x2

x2 + tanh(x)
= 1,

and
∫∞
1

1
x2dx converges, hence 1

x2+tanh(x)
is integrable.

(c) Using the inequality
log(x) ≤ x− 1

for x ≥ 1, ∫ ∞

1

1

1 + log(x)
dx ≥

∫ ∞

1

1

x
dx = ∞,

so
∫∞
1

1
1+log(x) diverges.

Question 4.

Show that ∫ ∞

0
tne−tdt = n!

by considering the function In(x) =
∫ x
0 tne−tdt and showing that

In(x) = −xne−x + nIn−1(x).
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Proof.

Integrating by parts, let u = tn, dv = e−tdt, then v = −e−t.

Then we have

I = [uv]∞0 −
∫ ∞

0
vdu

=
[
−tne−t

]∞
0

−
∫ ∞

0
−e−tntn−1dt

= n

∫ ∞

0
e−ttn−1dt.

If we continue to use integrating by parts, we get

I = n!.

Follow the same process as above:

Let u = tn, dv = e−tdt =⇒ v = −e−t.

Then

In(x) =

∫ x

0
tne−tdt

= [u, v]x0 −
∫ x

0
vdu

=
(
−tne−t

)x
0
−
∫ x

0
−e−tntn−1dt

= −xne−x + nIn−1(x).

March 24, 2023 4


	Week 4

