MA244 Analysis III Support Class - Week 4

Louis Li

March 24, 2023

1 Week 4

Question 1.

Compute the derivative of the functions

$$
f(x) = \int_0^{x^2} \sin(s^3) \, ds \qquad g(x) = \int_{x^3}^{2+x^6} e^{-s^2} \, ds
$$

Solution.

Let $u(s) = \int \sin(s^3)ds$. Then $u'(s) = \sin(s^3)$ and $f(x) = u(x^2) - u(0)$. Therefore,

$$
f'(x) = 2xu'(x^2) - u'(0)
$$

= $2x \sin(x^6)$.

Similarly, let $v(s) = \int e^{-s^2} ds$. Then $v'(s) = e^{-s^2}$ and $g(x) = v(2 + x^6) - v(x^3)$. Therefore, $\overline{}$

$$
g'(x) = 6x5v'(2 + x6) - 3x2v'(x3)
$$

= 6x⁵e^{-(2+x⁶)²} - 3x²e^{-x⁶}.

Consider the integrability of $f(x) = \frac{1}{x}$ on $[-1, 1] \setminus \{0\}$. Show that for any $s \in \mathbb{R}$ there exist non-negative functions $a(\varepsilon)$, $b(\varepsilon)$ that tend to 0 as ε tends to zero and for which

$$
\lim_{\varepsilon \to 0+} \left[\int_{-1}^{-a(\varepsilon)} \frac{\mathrm{d}x}{x} + \int_{b(\varepsilon)}^{1} \frac{\mathrm{d}x}{x} \right] = s.
$$

This result proves that the improper integral $\int_{-1}^{1} x^{-1} dx$ does not exist. Define the integral in the sense of the principal value: for $f : [-1,1] \setminus \{0\},\$

$$
P.V. \int_{-1}^{1} f(x) dx = \lim_{\varepsilon \to 0+} \left[\int_{-1}^{-\varepsilon} f(x) dx + \int_{\varepsilon}^{1} f(x) dx \right].
$$

Does $P.V. \int_{-1}^{1} x^{-1} dx$ exist? If it does, what is its value?

Proof.

Choose $a(\varepsilon) = a_0 \varepsilon$ and $b(\varepsilon) = b_0 \varepsilon$, where $a_0, b_0 > 0$.

Then, the limit equation becomes

$$
\lim_{\varepsilon \to 0+} \left[\int_{-1}^{-a_0 \varepsilon} \frac{1}{x} dx + \int_{b_0 \varepsilon}^1 \frac{dx}{x} \right] = \lim_{\varepsilon \to 0+} \left[\ln(-a_0 \varepsilon) - \ln(-1) + \ln(1) - \ln(b_0 \varepsilon) \right]
$$

$$
= \lim_{\varepsilon \to 0+} \left[\ln \left(\frac{-a_0 \varepsilon}{-1} \right) - \ln(b_0 \varepsilon) \right]
$$

$$
= \lim_{\varepsilon \to 0+} \left(\ln \left(\frac{a_0 \varepsilon}{b_0 \varepsilon} \right) \right)
$$

$$
= \ln \left(\frac{a_0}{b_0} \right) = s.
$$

Based on the definition of principal value, we see that if we let $a_0 = b_0 = 1$, then P.V. $\int_{-1}^{1} x^{-1} dx$ exists, and it equals to $\ln\left(\frac{1}{1}\right)$ $(\frac{1}{1}) = 0.$

Question 3.

Let $f, g : [a, \infty) \to [0, \infty)$ be continuous functions such that

$$
\lim_{x \to \infty} \frac{f(x)}{g(x)} = L,
$$

with $0 < L < \infty$. Prove that

$$
\int_{a}^{\infty} f(x) \mathrm{d}x \qquad \int_{a}^{\infty} g(x) \mathrm{d}x
$$

both converge or both diverge.

Notice that the result is false if we allow $f, g : [a, b] \to \mathbb{R}$, rather than considering non-negative functions only. A counterexample is given by

$$
f(x) = \frac{\sin(x)}{x} \qquad g(x) = \frac{\sin(x)}{x} + \frac{\sin^2(x)}{x \ln x}
$$

where $L = 1$, whereas f is integrable but g is not.

Use this result or a direct comparison to decide whether the following functions are integrable on $[1,\infty)$:

$$
(a) \frac{x}{x^2 + e^{-x^2}}, \quad (b) \frac{1}{x^2 + \tanh(x)}, \quad (c) \frac{1}{1 + \log(x)}.
$$

Proof.

As the functions are continuous, they are both integrable on any bounded domain $[a, y]$.

Consider the integrals over the interval $[y, z]$ where z will be sent to infinity. Hence $\lim_{x\to\infty} \frac{f(x)}{g(x)} = L$ means that for any $\varepsilon > 0$ sufficiently small, there exists $y > a$ such that

$$
0 < L - \varepsilon \le \frac{f(x)}{g(x)} \le L + \varepsilon, \forall x \ge y.
$$

By monotonicity of the integral,

$$
(L-\varepsilon)\int_y^z g(x) \le \int_y^z f(x) \le (L+\varepsilon)\int_y^z g(x).
$$

Similarly,

$$
(L+\varepsilon)^{-1}\int_y^z f(x) \le \int_y^z g(x) \le (L-\varepsilon)^{-1}\int_y^z f(x).
$$

The above two inequalities imply

$$
\lim_{z \to \infty} \int_y^z g \le \infty \Leftrightarrow \lim_{z \to \infty} \int_y^z f \le \infty,
$$

and we conclude that they either both converge or both diverge.

Next, the most important thing for us is to find a continuous $g : [1, \infty) \to [0, \infty)$. Consider for $n \neq 1$,

$$
\int_1^{\infty} \frac{1}{x^n} dx = \lim_{b \to \infty} \left[\frac{x^{-n+1}}{-n+1} \right]_1^b,
$$

which is finite. However if $n = 1$, then \int_1^∞ 1 $\frac{1}{x}dx$ diverges. Therefore,

(a) Check

$$
\lim_{x \to \infty} \frac{\frac{x}{x^2 + e^{-x^2}}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{x^2}{x^2 + e^{-x^2}} = 1,
$$

since \int_1^∞ 1 $\frac{1}{x}dx$ diverges, so does $\frac{x}{x^2+e^{-x^2}}$.

(b) Check

$$
\lim_{x \to \infty} \frac{\frac{1}{x^2 + \tanh(x)}}{\frac{1}{x^2}} = \lim_{x \to \infty} \frac{x^2}{x^2 + \tanh(x)} = 1,
$$

and \int_1^∞ $\frac{1}{x^2}dx$ converges, hence $\frac{1}{x^2+\tanh(x)}$ is integrable.

(c) Using the inequality

$$
\log(x) \le x - 1
$$

for
$$
x \ge 1
$$
,
\n
$$
\int_1^\infty \frac{1}{1 + \log(x)} dx \ge \int_1^\infty \frac{1}{x} dx = \infty,
$$
\nso $\int_1^\infty \frac{1}{1 + \log(x)} dx$ is given by $\int_1^\infty \frac{1}{1 + \log(x)} dx = \frac{1}{\log(x)}$.

Question 4.

Show that

$$
\int_0^\infty t^n e^{-t} \mathrm{d}t = n!
$$

by considering the function $I_n(x) = \int_0^x t^n e^{-t} dt$ and showing that

$$
I_n(x) = -x^n e^{-x} + nI_{n-1}(x).
$$

 \Box

Proof.

Integrating by parts, let $u = t^n$, $dv = e^{-t}dt$, then $v = -e^{-t}$. Then we have \sim

$$
I = [uv]_0^{\infty} - \int_0^{\infty} v \, du
$$

= $[-t^n e^{-t}]_0^{\infty} - \int_0^{\infty} -e^{-t}nt^{n-1}dt$
= $n \int_0^{\infty} e^{-t}t^{n-1}dt$.

If we continue to use integrating by parts, we get

 $I = n!$.

Follow the same process as above:

Let $u = t^n$, $dv = e^{-t}dt \implies v = -e^{-t}$. Then

$$
I_n(x) = \int_0^x t^n e^{-t} dt
$$

= $[u, v]_0^x - \int_0^x v du$
= $(-t^n e^{-t})_0^x - \int_0^x -e^{-t}nt^{n-1} dt$
= $-x^n e^{-x} + nI_{n-1}(x)$.

