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1 Week 3

Question 1.

Let f, g : Ω ⊂ R → R be uniformly continuous and bounded. Prove that the product fg : x ∈ Ω →
f(x)g(x) is also uniformly continuous and bounded.

Proof.

First of all we prove the boundedness. Since f is bounded, then there exists a M1 > 0, such that

|f | ≤ M1.

Similarly, there exists M2 > 0 such that
|g| ≤ M2.

Hence,
|fg| ≤ M1M2 ≤ M,

where M = M1M2 > 0.

Next, we prove uniform continuity.

Since f is uniformly continuous, then for every ε > 0, there exists δ = δ(ε) > 0 such that

x, y ∈ Ω and |x− y| < δ =⇒ |f(x)− f(y)| < ε

2M1
.

Similarly,

x, y ∈ Ω and |x− y| < δ =⇒ |g(x)− g(y)| < ε

2M2
.

Thus, we have

|f(x)g(x)− f(y)g(y)| = |f(x)g(x)− f(x)g(y) + f(x)g(y)− f(y)g(y)|
= |f(x)(g(x)− g(y)) + g(y)(f(x)− f(y))|
≤ |f(x)(g(x)− g(y))|+ |g(y)(f(x)− f(y))|
= |f(x)| |g(x)− g(y)|+ |g(y)| |f(x)− f(y)|

≤ M1
ε

2M1
+M2

ε

2M2

= ε.

Therefore, fg : x ∈ Ω → f(x)g(x) is also uniformly continuous and bounded.
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Question 2.

(a) Let f : [a, b] → R and g : [a, b] → R are continuous (and therefore integrable) functions. Show

that if
∫ b
a f =

∫ b
a g, then there exists c ∈ [a, b] such that f(c) = g(c).

(b) Let u, v : [a, b] → R be two continuous functions. Assume that v ≥ 0 on [a, b]. Show that there
exists y ∈ [a, b] such that ∫ b

a
u(x)v(x)dx = u(y)

∫ b

a
v(x)dx.

Proof.

(a) Since f and g are continuous and integrable, then we have

inf f ≤ 1

b− a

∫ b

a
f ≤ sup f,

i.e.

min f ≤ 1

b− a

∫ b

a
f ≤ max f.

By Intermediate Value Theorem, if u is a number between f(a) and f(b), that is

min(f(a), f(b)) < u < max(f(a), f(b)),

then there exists a c ∈ (a, b), such that f(c) = u. In our context, there exists c ∈ [a.b], such that

f(c) =
1

b− a

∫ b

a
f.

Similarly,

g(c) =
1

b− a

∫ b

a
g.

Since
∫ b
a f =

∫ b
a g, then f(c) = g(c).

(b) Since u is continuous on a closed bounded set, then we have

minu ≤ u(x) ≤ maxu,

and hence
v(x)minu ≤ u(x)v(x) ≤ v(x)maxu,

which implies ∫ b

a
mv(x) ≤

∫ b

a
u(x)v(x) ≤

∫ b

a
Mv(x),

where m = minu and M = maxu.

If v = 0, this is trivial and nothing to prove. Otherwise if v > 0, then
∫ b
a v(x)dx > 0. Hence,

m ≤
∫ b
a u(x)v(x)∫ b
a v(x)dx

≤ M.
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Since u is continuous, it attains all values between m and M , and therefore, it exists a y ∈ [a, b]
such that

u(y) =

∫ b
a u(x)v(x)∫ b
a v(x)dx

,

and hence ∫ b

a
u(x)v(x)dx = u(y)

∫ b

a
v(x)dx.

Question 3.

Let f, g : [a, b] → R be two functions that satisfy

|f(x)− f(y)| ≤ |g(x)− g(y)| ∀x, y ∈ [a, b] .

Prove that
sup
[a,b]

f − inf
[a,b]

f ≤ sup
[a,b]

g − inf
[a,b]

g.

Use this result to complete the proof of Theorem 2.22 in the notes, more precisely, show that f : [a, b] →
R is integrable then so is |f |.

Proof.

First note that

f(x)− f(y) ≤ |g(x)− g(y)| ≤ max {g(x), g(y)} −min {g(x), g(y)} ≤ sup
[a,b]

g − inf
[a,b]

g.

Then this means
sup
[a,b]

(f(x)− f(y)) ≤ f(x)− f(y) ≤ sup
[a,b]

g − inf
[a,b]

g.

We know that
sup
[a,b]

(f(x)− f(y)) = sup
[a,b]

f(x)− inf
[a,b]

f(y),

and hence
sup
[a,b]

f − inf
[a,b]

f ≤ sup
[a,b]

g − inf
[a,b]

g.

Note that the reverse triangle inequality states that

||f(x)| − |f(y)|| ≤ |f(x)− f(y)| .

By the previous part, we have
sup
[a,b]

|f | − inf
[a,b]

|f | ≤ sup
[a,b]

f − inf
[a,b]

f.

Hence,

U(|f | , P )− L(|f | , P ) =

n∑
k=1

(sup |f | − inf |f |) |Ik|

≤
n∑

k=1

(sup f − inf f) |Ik|

= U(f, P )− L(f, P ) < ε.
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Now we conclude that if f : [a, b] → R is integrable, then so is |f |.
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