
Open Domain Abstractive
Question Answering System

using Transformers for
Tamil Language

Team

• Supervisor
• Dr. Betina Antony J

• Members
• Abdul Azeez B 185001004

• Aswin M 185001027

• Balaji S 185001032

Problem Statement

• Today the world is full of articles on large variety of topics. Search
becoming inevitable in everyone’s life. Most of the systems are
keyword based which will most of the times not provide what we
want especially for languages like Tamil which has less internet
resources.

• So We aim to build a question-answering system that can understand
the context and answer the questions in a meaning full way.

Motivation(Problem with keyword search
system)
• In keyword based search system when a person knows what they are

looking for and they know the keywords and terminology of the
information they need, a keyword-based search is ideal.

• When the keywords and terminology of the answer are unknown,
keyword search is inadequate.

• People searching for unknown answers in large repositories of
documents is inefficient.

• So it will be helpful if there is a system that understands the context
and respond user i.e answer lies with semantic search

Proposed system
Abstractive Open-domain Question Answering
System (AODQA)
• Context : இந்தியாவில் ஒரிசா (இன்றைய ஒடிசா) மாநிலத்தில் கட்டாக் எனும்
இடத்தில், 1897 ஆம் ஆண்டு சனவரி 23 ஆம் நாள், வங்காள, இந்துக்
குடும்பத்தில், சுபாஷ் சந்திரபபாஸ் பிைந்தார்.

• Question : பநதாஜி பிைந்த ஊர் எது?

• Answer : பநதாஜிஒரிசாமாநிலத்தில் கட்டாக் எனும் இடத்தில்பிைந்தார்.

• AODQA is a task to generate an exact answer to a question

• Here we use transformer models(which understands the context well)
to answer the questions

• Model will produce answers to factoid questions in natural language.

Abstractive QA Model Architecture

Abstractive QA Model Methodology

• Create embedding for context using transformers

• Store embeddings in database

• Information retrieval
• Retrieve some k embeddings with similar context to question

• Identify the text of embeddings

• Answer generation
• With the context and question using seq2seq model generate some answers

Dataset

• Structure(TQA)
• Context

• Question

• Answers

• Id

• 300 TQA collected from chaii dataset

• 1000 TQA from XQA dataset

• We preparing dataset on our own also..

Components of QA system

• Dense vector generator

• Indexed data (vector database)

• Retriever

• Answer generator

Dense vector generator model

• We use a transformer model called tamillion which is based on
ELECTRA

• Tokenization
• Tokenization methodology used is subword tokenization

• subword tokenization principle
• Frequently used words should not be split into smaller subwords, but rare

words should be decomposed into meaningful subwords

• Raw text will be given to tamillion model

• Model’s tokenizer will tokenize the raw text and return input IDS

• Model will convert the IDS into dense vector

Tokenizer Model Store embedding

Raw text Input IDs Logits Store logits

இனி ஒரு விதி
சசய்பவாம்

[3, 7872,
1911, 5242,

26596, 5066,
4]

[-8.7158e-04,
-1.5213e-04,

...,
 -1.5470e-03]

store

Size([1, 7, 1024])

Indexed data (vector database)

• Contexts are embedded as dense vectors

• Database schema
• Conext_id, context_vector

• We use Milvus vector database

id

[-8.7158e-04,
-1.5213e-04,

...,
 -1.5470e-03]

1
[-8.7158e-04,-1.5213e-04,

...,-1.5470e-03]

2
[-9.7158e-054,-5.5213e-04,

...,-1.5470e-03]

Retriever IR

• Dense vectors have the advantage of enabling search via semantics.

• Question is also embedded as a dense vector and using some
similarity measures some top k contexts were retrieved form
database
• max_ki=0ndense_vector_contexti * dense_vector_question

•

Methodology for IR

• Neural IR

• X – question

• Z – context

• Feeding them into the language model and hx and hz is obtained

• Using similarity measures like dot product most similar document is
retrieved

Answer generation(Abstractive QA)

• Abstractive QA model uses the question and context to generate an
answer using a generative sequence-to-sequence (seq2seq) model

• Seq2seq models are BART, T5, GPT-2

• We will fine tune T5 seq2seq model for tamil question answering

How it is done

• Large transformer models store ‘representations’ of
knowledge in their parameters.

•By passing relevant contexts and questions into the
model, the model will use the context alongside its
‘stored knowledge’ to answer more abstract
questions.

•We only focus on a single-turn QA

Over all flow

• A simple transformer model that trained with large volume of text
data masked language modeling.

• Given the context it is vectorized using the model and saved in the
database

• Given the question it is also vectorized and using cosine similarity
context some top k similar context are retrieved form database

• Another generative transformer that trained to answer the question
will take the input question and most similar context and figure out
an answer to user question

Evaluation

• The true answer is objective, so it is simple to evaluate model
performance.s

• Test data’s answers are dense vectorized (ans1)

• Model’s answers are also dense vectorized (ans2)

• Find similarity score for ans1 and ans2

• This similarity score is evaluated as model’s performance

• Dot product of the ans1 and ans2 is similarity score

Thank You

context
Tamil-

Roberta
Wechsel

Dense vector

Question
Tamil-

Roberta
Wechsel

Dense vector

Dense vector

Dense vector

Context vectors

XLM-
Roberta
squad

Extractive
Answer

Context

context

context

Retriever

Encoder

Retriever

Database

Extractive Answer

Question context

Question,
context

	Slide 1: Open Domain Abstractive Question Answering System using Transformers for Tamil Language
	Slide 2: Team
	Slide 3: Problem Statement
	Slide 4: Motivation(Problem with keyword search system)
	Slide 5: Proposed system Abstractive Open-domain Question Answering System (AODQA)
	Slide 6: Abstractive QA Model Architecture
	Slide 7: Abstractive QA Model Methodology
	Slide 8: Dataset
	Slide 9: Components of QA system
	Slide 10: Dense vector generator model
	Slide 11
	Slide 12: Indexed data (vector database)
	Slide 13: Retriever IR
	Slide 14: Methodology for IR
	Slide 15: Answer generation(Abstractive QA)
	Slide 16: How it is done
	Slide 17: Over all flow
	Slide 18: Evaluation
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

