
CMPT 300: Operating Systems
School of Computing Science

Fall 2015, Section D1

Assignment #2: Process Management
Due Date: Thursday, October 15, 2015

Assignments in this Course:

All four assignments in CMPT 300 this term will be related to each other. Although it may not be

obvious now, you will be using the knowledge (and some code) from this assignment in your future
assignments. Therefore, please take the time to understand the concepts and to write clean, readable
code.

If you were unable to complete assignment #1 and would like a solution to build upon for this
assignment, you may purchase an assignment for a penalty of -20% (i.e., 20/100) off your mark for this

assignment. You cannot arbitrarily adopt another student's (or anyone else's) code; that is considered
plagiarism. This purchased assignment is not guaranteed to be bug free, but we will provide a solution
of reasonable quality. Please contact your instructor if you would like to do this. Of course, read this

assignment description first.

Overview:

In this assignment, you will be extending and improving the lyrebird program from Assignment #1.

The format of the input is changing in order to make lyrebird more flexible and some of the

simplifications made in the previous assignment will no longer be allowed. You will also have to make

changes to the internal structure of lyrebird.

Specifically, project lyrebird needs to be sped up. The number of encrypted tweets that your group are
finding is more than your current version of lyrebird can keep up with. However, you know that

most computers these days come with multiple CPU cores. You decide to speed up the decryption

process by taking advantage of all cores on the system, and plan to spread the decryption task across
multiple processes. You will use fork() to create these multiple processes.

Cleaning Up Your Processes

When using fork() (and related functions) for the first time, it is easy have bugs that

leave processes on the system, even when you logout of the workstation. It

is your responsibility to clean up (i.e., kill) extraneous processes from your

workstation before you logout. Learn how to use the ps and kill (and related)

commands.

Marks will be deducted if you leave processes on a workstation after you logout.

Standard Comment About Design Decisions

Although many details about this assignment are given in this description, there are
many other design decisions that are left for you to make. In those cases, you should

make reasonable design decisions (e.g., that do not contradict what we have said and
do not significantly change the purpose of the assignment), document them in your
source code, and discuss them in your report or README file. Of course, you may
ask questions about this assignment (for example, on the mailing list) and we may
choose to provide more information or provide some clarification. However, the

basic requirements of this assignment will not change.

Input/Output and Behavior Specification:

Your version of lyrebird for assignment #2 will be setup much like a parent-child relationship. The

user will pass a list of encrypted files to the parent process and the parent process will create child
processes to do the decryption. One child process will be created to decrypt each encrypted file.

Like assignment #1, your program should have the name lyrebird. Unlike assignment #1,

lyrebird should take exactly one command-line argument. That one command-line argument is the

name of a configuration file containing (a) a list of files to decrypt and (b) a list of locations in which to
save the decrypted output. An example of how the program is started from the command line is:

$./lyrebird config_file.txt

The contents of the configuration file are pairs of file locations (i.e. file names with, optionally, its full

path specified), with two file locations per line. The first file location in each line should correspond to
a file containing encrypted tweets. The second file location should correspond to the file where the

decrypted tweets will be saved. For example, the contents of config_file.txt may look like:

./encrypted_tweets.txt ./decrypted_tweets.txt
/home/userid/more_tweets.txt /home/userid/output.txt

where ./encrypted_tweets.txt and /home/userid/more_tweets.txt are files

containing the encrypted tweets, while ./decrypted_tweets.txt and

/home/userid/output.txt are the files where the corresponding decrypted tweets will be

saved. You can safely assume that each string in the configuration file (i.e. every file location) is a
maximum of 1024 characters long. There is no limit on the number of lines (i.e. encrypted files) in the
configuration file. Note that the files containing the encrypted tweets will have the same format as in
assignment #1.

When lyrebird first starts running, it should read the configuration file. For each encrypted file

listed in the configuration file, lyrebird should use the fork() system call to create a child

process to decrypt that file. When a child process is created, the parent process should output the
following message:

[Sat Sep 19 20:43:14 2015] Child process ID #5137 created to decrypt
./encrypted_tweets.txt.

Note that the first item in each line is the current time in date command format (for information

regarding this format, check the ctime() function).

Once each child process has been created, the parent process should wait until all its child processes
have terminated before exiting. Once a child process exits, the parent must check the exit status of that
child process. If the child process exited as a result of an error, the parent should output the following
message:

[Sat Sep 19 20:43:14 2015] Child process ID #5138 did not terminate
successfully.

The child processes should behave in a similar way as assignment #1 with the exception that the parent
process should provide the encrypted and output file locations; the user should not interact directly with
the child processes at all. When the child process successfully completes the decryption of its file, the

child process should output the following message:

[Sat Sep 19 20:43:14 2015] Decryption of ./encrypted_tweets.txt complete.
Process ID #5137 Exiting.

If the child or the parent process encounters an error, the process should display an error message
containing its process ID, then exit with a non-zero exit status. Any error message that is outputted

should follow the same format as the messages described above: the error message should start with the
date & time, followed by the message, and the process ID should appear somewhere in the message.

Required Design:

Your program must use fork() to create child processes. If your program does not use fork(), you

will receive a mark of zero for correctness. You may also require functions like getpid() and

waitpid().

As appropriate, you must use C memory allocation (e.g., malloc(), free()) and C file I/O

functions (e.g., fopen(), fscanf(), fclose()). Because of the use of MEMWATCH (see

below), you cannot use C++ streams, the Standard Template Library (STL), or the C++ stdlib (e.g.,

cannot use type/class string). Also, your TA may not have any expertise in C++ and therefore we

cannot guarantee support for languages other than C.

You must write a Makefile for your program. When someone types make, your Makefile should build

the executable program lyrebird. When someone types make clean, your Makefile should

remove the executable lyrebird (if any), all .o files (if any), memwatch.log, and all core files

(if any).

It is IMPERATIVE that your program properly deallocates ALL dynamic memory in a correct fashion

(i.e., using free()) before your program terminates, or else your assignment will LOSE marks. To

check that your program properly allocates and deallocates ALL dynamic memory it uses, you must use

the MEMWATCH package, as described in assignment #1. If your assignment is not properly compiled

with MEMWATCH enabled, or if MEMWATCH reports that your memory allocation/deallocation was

incorrect, then you will lose marks.

When developing and testing your program, make sure you clean up all of your processes (including
lyrebird) before you logout of a workstation. Marks will be deducted for processes left on

workstations.

What to Hand In:

You will submit your assignment through http://courses.cs.sfu.ca. Your submission should be a zip

archive file with the name submit.zip. The zip file should contain the following:

1. A README file (ASCII text is fine) for your assignment with: (1) your name, (2) student
number, (3) SFU user name, (4) lecture section, (5) instructor's name, and (6) TA's name clearly

labeled. All these items of information should also be part of each file that you submit (e.g., as a

comment in your code files). The README file must also include a short description of your
program, as well as a description of the relevant commands to build (e.g. make all) and how

to execute your programs including command line parameters. As per the academic honesty
guidelines, you should list your sources and the people you have consulted within this

README file.
2. A report in HTML file format, in a file called report.html, describing the design,

implementation, and testing of your assignment. The report should contain no more than 750

words. You do not need to repeat any information contained in this assignment description. I
recommend you spend 25% of your report on an overview of your assignment, 50% on your

design and implementation, and 25% on how you tested your program, and some concluding
remarks. Note the emphasis on testing your program.

3. Your source code file(s) for lyrebird, including all header files. Do NOT submit any

MEMWATCH files, as the TA will use his own fresh copy of that code, but the use of
MEMWATCH should be enabled in your code and Makefile.

4. Your Makefile.

NOTE: Do not submit files or test data not described above. Only submit what is requested and what
is required to compile your program (except, of course, the MEMWATCH files). When you submit
your assignment, please make sure that we can unzip, make, and run your assignment without having to
switch directories.

Marking:

This assignment is worth 10% of your final mark in this course. This is an individual assignment. Do
not work in groups. Review the course outline on this matter.

The assignment itself will be marked as follows: 20% for your report (clarity, technical accuracy,
completeness, thoroughness of the testing, etc.), 50% for the correctness of the program when we test it
using the CSIL Linux machines, using gcc, and 30% for the quality of the implementation (design,

modularity, good software engineering, coding style, useful and appropriate comments, etc.).

Note that the correctness mark will be computed solely on how your program runs and not on what the

http://courses.cs.sfu.ca/

code looks like (with the exception of the use of fork()). If your source code, as submitted, does not

compile and run (using the submitted Makefile) on the CSIL Linux workstations using gcc, you will

receive a mark of zero for correctness. Review the Course Outline on this matter.

When it comes to your quality of implementation mark, all that you have learned about good
programming style and comments in your code will apply. Having correct code is important, but good

style, design, and documentation are also important. We cannot provide an exhaustive list of what we
will look for, but an incomplete list includes: a comment for each source code file, a comment for each
procedure/function, a comment for each significant (global or local) variable, good choice of
names/identifiers, proper modularity (e.g., do NOT put all/most of the code in main()), checking

function return values for errors, etc.

NOTE: There are a number of programs that you can download off the Internet that
provide similar functionality to what you are asked to implement for this

assignment. We are familiar with them. Therefore, do not download these programs;
write your own solution to this problem. Modifying someone else's program

(including programs that you can download) is against the requirements of this
assignment and is an Academic Offense. If you have any doubts about whether your

actions are permissible or not, you should ask the instructor before proceeding.

Hints:

• You may also want to learn about the following Unix programs: ps, grep, kill.

• Before you submit, make sure your submit.zip file works from within a fresh directory.

That way, you make sure that submit.zip contains all the needed files for testing (with the

exception of MEMWATCH, of course).
• Remember, make sure that your program does not produce any debugging or extraneous output

during normal execution. Only the requested output should be generated. Marks will be

deducted for incorrect and other unrequested output. That said, it is acceptable to have output to
report an actual error.

• Remember to list whatever sources you use in your README file.

• Note that the CSIL lab will be without power October 10th and 11th as the university replaces a

high voltage transformer for the Advanced Sciences Building. Keep this in mind as you

schedule your time for this assignment.

Further hints may be given later on the course mailing list, if warranted. Be sure to read the emails on
the mailing list on a regular basis.

