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Abstract

Due to the simpleness and high efficiency, single-stage object detectors
have been widely applied in many computer vision applications . How-
ever, the low correlation between the classification score and localization
accuracy of the predicted detections has severely hurt the localization ac-
curacy of models. In this paper, IoU-aware single-stage object detector is
proposed to solve this problem. Specifically, IoU-aware single-stage object
detector predicts the IoU between the regressed box and the ground truth
box. Then the classification score and predicted IoU are multiplied to com-
pute the detection confidence, which is highly correlated with the localization
accuracy. The detection confidence is then used as the input of NMS and
COCO AP computation, which will substantially improve the localization
accuracy of models. Sufficient experiments on COCO and PASCAL VOC
dataset demonstrate the effectiveness of IoU-aware single-stage object detec-
tor on improving the localization accuracy. Without whistles and bells, the
proposed method can substantially improve AP by 1.0% ∼ 1.6% on COCO
test-dev and 1.1% ∼ 2.2% on PASCAL VOC2007 test compared with the
baseline. The improvement for AP at higher IoU threshold(0.7 ∼ 0.9) is
1.7% ∼ 2.3% on COCO test-dev and 1.0% ∼ 4.2% PASCAL VOC2007 test.
The source code will be made publicly available.
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1. Introduction

As the development of deep convolutional neural networks, a large amount
of object detection models have been proposed in recent years. Most of these
models can be classified into single-stage object detectors [1, 2, 3, 4, 5, 6]
and multi-stage object detectors [7, 8, 9, 10, 11, 12, 13]. For the multi-
stage object detectors, multi-stage classification and localization are applied
sequentially, which make these models more powerful on classification and
localization tasks. Compared with single-stage object detectors, the multi-
stage object detectors have achieved better average precision(AP), but the
efficiency is hurt by the multi-stage classification and localization subnet-
works. On the contrary, the single-stage detectors rely on a fully convolu-
tional networks(FCN) for classification and localization, which is more simple
and efficient. However, the AP of single-stage detectors generally lag behind
that of the multi-stage detectors.

In this work, we aim to improve the AP of single-stage detectors while
keeping their efficiency. We demonstrate that the low correlation between
the classification score and localization accuracy of single-stage detectors
have severely hurt the localization accuracy of the models. The low correla-
tion is mostly caused by that the classification and localization subnetworks
are trained with independent objective functions without knowing each other
explicitly. After the models are converged, the classification subnetwork will
predict classification score for each regressed anchor without knowing the lo-
calization accuracy, represented by IoU between the regressed anchor and the
ground truth box. Thus, there will be many detections having the mismatch
problem between the classification scores and their localization accuracy, such
as detections with high classification scores but low IoU, detections with low
classification scores but high IoU. These detections will hurt the localization
accuracy of models in two ways during inference. Firstly, during standard
non-maximum suppression(NMS), all the detections are ranked based on
their classification scores and the detection with higher classification score
will suppress other detections that have an overlap with it higher than a
threshold. Consequently, the detections with low classification scores but
high IoU will be suppressed by the detections with high classification scores
but low IoU. Secondly, during computing average precision(AP), all the de-
tections are also ranked based on their classification scores. To compute
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the average precision, the precisions and recalls are computed based on these
ranked detections and if the detections with high classification scores but low
IoU rank before the detections with low classification scores but high IoU,
the precision at high IoU threshold will be reduced, which results in lower
AP at high IoU threshold. Both of these problems will hurt the localization
accuracy of models.

To solve the above problem, we propose IoU-aware single-stage object
detector based on RetinaNet [3]. A IoU prediction head parallel with the re-
gression head is attached to the last layer of the regression branch to predict
the IoU of each regressed anchor. During training, the IoU prediction head
is trained jointly with the classification head and localization head. During
inference, the detection confidence is computed by multiplying the classifi-
cation score and predicted IoU for each detected box and then used to rank
all the detections in the subsequent NMS and AP computation. Because the
detection confidence is highly correlated with the localization accuracy, the
problem mentioned above can be relieved and thus the localization accuracy
of models can be substantially improved as the experiments show.

The rest of this paper is organized as follows. Section 2 introduces the
related research work. Section 3 introduces the IoU-aware single-stage ob-
ject detector in details. Section 4 presents extensive experiments on COCO
and PASCAL VOC dataset to demonstrate the effectiveness of our method.
Section 5 gives the conclusions.

2. Related Work

Correlation between classification score and localization accu-
racy. The low correlation between the classification score and localization
accuracy hurts the models’ localization accuracy severely and many methods
have been proposed to solve this problem. Fitness NMS [14] improves DeNet
[15] by dividing the localization accuracy into 5 levels and transforming the
localization accuracy prediction task to the classification task. During infer-
ence, the fitness for each detected box is computed as the weighted sum of
the predicted fitness probabilities and then multiplied with the classification
score as the final detection score which is more correlated with the local-
ization accuracy. Then this score is used as the input of NMS, denoted as
Fitness NMS, to improve the localization accuracy of DeNet. IoU-Net [16]
improves Faster R-CNN [7] by designing a IoU prediction head parallel with
the R-CNN to predict the regressed IoU for each RoI. During inference, all
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the detected boxes are ranked based on the predicted IoU and then IoU-
guided NMS is applied to improve the localization accuracy. Similarly, MS
R-CNN [17] improves Mask R-CNN [9] by attaching a MaskIoU head paral-
lel with the Mask head to predict the IoU between the predicted mask and
the corresponding ground truth mask. During inference, the predicted IoU
is multiplied with the classification score as the final mask confidence and
then used to rank the predicted mask when computing AP. All the above
methods design additional subnetworks to predict the localization accuracy
and are applied to multi-stage detectors. There also exists other research
solving the problem by designing better loss functions without changing the
models’ architecture. PISA [18] assigns different weights to the positive ex-
amples in the classification loss based on their importance which is obtained
by IoU Hierarchical Local Rank (IoU-HLR). In addition, the classification
probabilities are used to reweight the contribution of each positive example
to the regression loss, denoted as classification-aware regression loss. Both
the improvement to the classification and regression loss can enhance the
correlation between the classification score and localization accuracy. Simi-
larly, IoU-balanced classification loss [19] uses the regressed IoU to reweight
the classification loss for each positive example directly and aims to make
the examples with higher IoU learn higher classification score, which thus
enhances the correlation between classification score and localization accu-
racy. IoU-aware single-stage object detector aims to improve the single-stage
detectors by designing a IoU prediction head to predict the IoU for each
regressed anchor.

Accurate object localization. Accurate object localization is extremely
challenging in complex scene such as COCO dataset and a large number of
methods have been proposed to improve the localization accuracy of ob-
ject detection models in recent years. Multi-region detector [20] finds that a
single-stage regression is limited for accurate localization and thus a iterative
bounding box regression procedure is proposed to refine the coordinates of de-
tected boxes, followed by NMS and box voting. Cascade R-CNN [8] proposes
a multi-stage object detection architecture which trains a sequence of R-CNN
with increasing IoU thresholds. Thus the trained sequential R-CNN will be
sequentially more powerful for accurate localization during inference. Re-
fineDet [4] improves the localization accuracy of the single-stage detector by
using two-step bounding regression. The anchor refinement module(ARM)
firstly refines the human-designed anchors to improve the localization accu-
racy of human-designed anchors, then the object detection module(ODM)
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uses these more accurate anchors for the second step bounding box regres-
sion, thus improving the localization accuracy of the final detections. Libra
R-CNN [21] designs balanced L1 loss to promote the regression gradients
from inliers(accurate samples) during training. Thus, the trained regres-
sion branch will be more powerful for accurate localization. Similarly, IoU-
balanced localization loss [19] reweights the localization loss for each positive
example based on their regressed IoU. This reweighting procedure can down-
weight the gradients from outliers and up-weight the gradients from inliers,
thus improving the localization accuracy of models. Differently, IoU-aware
single-stage object detector improves the localization accuracy by suppressing
the detections of low localization accuracy based on the computed detection
confidence during NMS and AP computation.

Anchor-free single-stage object detectors. To overcome the draw-
backs of anchor-based detectors, anchor-free single-stage object detectors
have become more and more popular recently. FCOS [22] solves object detec-
tion in a per-pixel prediction fashion based on a fully convolutional neutral
networks. FCOS consists of three prediction head: classification head used
for classification, regression head used for localization, centerness head used
for predicting the centerness of each detected box. During inference, the
predicted centerness of each detected box is multiplied with the correspond-
ing classification score as the final score, which is used in the subsequent
NMS and AP computation to suppress the poorly localized detections. Po-
larMask [23] modifies FCOS to realize the instance segmentation. Similarly,
centerness head is also used to suppress the segmentations of low localiza-
tion accuracy and improve the localization accuracy of models. IoU-aware
single-stage object detector designs a IoU prediction head parallel with the
regression head to predict the IoU of each detection and the predicted IoU
can be used to suppress the poorly localized detections. Differently, IoU-
aware single-stage object detector is a anchor-based detector and the IoU of
each detected box is predicted.

3. Method

In this section, we will introduce the model architecture of IoU-aware
single-stage object detector and different designing choices in details.
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Figure 1: The model architecture of IoU-aware single-stage object detector. The same
backbone and feature pyramid network(FPN) are adopted as RetinaNet. A IoU prediction
head is designed parallel with the regression head at the last layer of regression branch to
predict the IoU between the regressed anchors and ground truth boxes. The classification
head, regression head and IoU prediction head all consist of only a single 3*3 convolution
layer.

3.1. IoU-aware single-stage object detector

Model architecture. IoU-aware single-stage object detector is mostly
based on RetinaNet [3] and the same backbone and feature pyramid net-
work(FPN) are adopted as Fig.1 shows. Different from the RetinaNet, we
design a IoU prediction head parallel with the regression head in the last
layer of regression branch to predict the IoU between each regressed anchor
and the ground truth box while the classification branch is kept the same.
To keep the model’s efficiency, the IoU prediction head consists of only a
single 3*3 convolution layer, followed by a sigmoid activation layer, ensuring
the predicted IoU is in the range of [0, 1]. There are also many other choices
about the design of IoU prediction head, such as designing an independent
IoU prediction branch as the same as the classification branch and regression
branch, but this kind of design will severely hurt the model’s efficiency. Our
design brings little computation burden to the whole model and can still
substantially improve the model’s AP.

Training. As the same to RetinaNet, focal loss is adopted for the classifi-
cation loss and the smooth L1 loss is adopted for the regression loss as Equ.1,2
show. Because the predicted IoU is in the range of [0,1], binary cross-entropy
loss is adopted for the IoU prediction loss as Equ.3 shows. During training,
the IoU prediction head is trained jointly with the classification head and
regression head. Other kinds of loss functions can also be considered, such
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as L2 loss and L1 loss. These different loss functions will be compared in the
following experiments.

Lcls =
1

NPos

(
N∑

i∈Pos

FL(pi, p̂i) +
M∑

i∈Neg

FL(pi, p̂i)) (1)

Lloc =
1

NPos

N∑
i∈Pos

∑
m∈cx,cy,w,h

smoothL1(l
m
i − ĝmi ) (2)

LIoU =
1

NPos

N∑
i∈Pos

CE(IoU i, ˆIoU i) (3)

Ltotal = Lcls + Lloc + LIoU (4)

Inference. At inference, the classification score and the predicted IoU
for each detected box is computed based on Equ.5 as the final detection
confidence. The parameter α is designed to control the contribution of the
classification score and predicted IoU to the final detection confidence. This
detection confidence can simultaneously represent the classification confi-
dence and localization accuracy. Thus the detection confidence is more cor-
related with the localization accuracy compared with the classification score.
Then the detection confidence is used to rank all the detections in the sub-
sequent NMS and AP computation. The poorly localized detections will be
suppressed in this procedure.

Sdet = pαi IoU
(1−α)
i (5)

4. Experiments

4.1. Experimental Settings

Dataset and Evaluation Metrics. Most of the experiments are eval-
uated on the challenging MS COCO [24] dataset. It consists of 118k images
for training (train-2017 ), 5k images for validation (val-2017 ) and 20k images
with no disclosed labels for test (test-dev). There exist totally over 500k an-
notated object instances from 80 categories in the dataset. To demonstrate
the generalization ability of our method, we also conduct experiments on the
PASCAL VOC [25] dataset in the ablation studies. VOC2007 consists of
5011 images for training (VOC2007 trainval) and 4952 for test (VOC2007
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test). And VOC2012 consists of 17125 images for training (VOC2012 train-
val) and 5138 for test (VOC2012 test). For all the experiments, the standard
COCO-style Average Precision (AP) metrics are adopted which consists of
AP (averaged AP at IoUs from 0.5 to 0.95 with an interval of 0.05), AP50

(AP at IoU threshold 0.5), AP75 (AP at IoU threshold 0.75), APS (AP for
objects of small scales), APM (AP for objects of medium scales) and APL

(AP for objects of large scales).
Implementation Details. All the object detection models are imple-

mented based on PyTorch and MMDetection [26]. As only 2 GPUs are avail-
able, linear scaling rule [27] is adopted to adjust the learning rate during
training. For the main results, all the models are evaluated on COCO test-
dev. The converged models provided by MMDetection are evaluated as the
baselines. With the default setting in the MMDetection, IoU-aware single-
stage object detectors are all trained for total 12 epochs with the image scale
of [800, 1333]. Some papers report the main results obtained by training the
models for total 1.5 longer time and with scale jitter. These tricks are not
adopted in our experiments. In the ablation studies, IoU-aware single-stage
object detector with ResNet50 as backbone is trained on COCO train-2017
and evaluated on COCO val-2017 using the image scale of [600, 1000]. For
the experiments on PASCAL VOC, the models with different backbones are
trained on the VOC2007 trainval and VOC2012 trainval and evaluated on
VOC2007 test with the image scale of [600, 1000]. If not specified, all the
other settings are kept the same as the default settings in the MMDdetection.

4.2. Main Results

In the main results shown by Table 1, the performance of IoU-aware
single-stage object detectors with different backbones are compared with
the state-of-the-art object detection models on the COCO test-dev. For
fair comparison, the trained models provided by MMDetectioin [26] with
different backbones are evaluated as the baselines. As Table 1 shows, IoU-
aware RetinaNets with different backbones can substantially improve AP by
1.0% ∼ 1.6% compared with the baselines. The performance for AP50 is
increased or decreased marginally, but the performance at AP75 is largely
improved by 1.7% ∼ 2.3%, which demonstrates the effectiveness of IoU-aware
RetinaNet on improving the models’ localization accuracy. In addition, the
performance of IoU-aware RetinaNets have surpassed the two-stage detector
Faster R-CNN with the same backbone by 0.3% ∼ 0.7% AP and the im-
provement mostly comes from the high localization accuracy of IoU-aware
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Model Backbone Schedule AP AP50 AP75 APS APM APL

YOLOv2 [28] DarkNet-19 - 21.6 44.0 19.2 5.0 22.4 35.5
YOLOv3 [29] DarkNet-53 - 33.0 57.9 34.4 18.3 35.4 41.9
SSD300 [1] VGG16 - 23.2 41.2 23.4 5.3 23.2 39.6
SSD512 [1] VGG16 - 26.8 46.5 27.8 9.0 28.9 41.9
Faster R-CNN [7] ResNet-101-FPN - 36.2 59.1 39.0 18.2 39.0 48.2
Deformable R-FCN [30] Inception-ResNet-v2 - 37.5 58.0 40.8 19.4 40.1 52.5
Mask R-CNN [9] ResNet-101-FPN - 38.2 60.3 41.7 20.1 41.1 50.2
Faster R-CNN* ResNet-50-FPN 1x 36.2 58.5 38.9 21.0 38.9 45.3
Faster R-CNN* ResNet-101-FPN 1x 38.8 60.9 42.1 22.6 42.4 48.5
Faster R-CNN* ResNeXt-32x8d-101-FPN 1x 40.3 62.7 44.0 24.4 43.7 49.8
RetinaNet* ResNet-50-FPN 1x 35.9 55.8 38.4 19.9 38.8 45.0
RetinaNet* ResNet-101-FPN 1x 38.1 58.5 40.8 21.2 41.5 48.2
RetinaNet* ResNeXt-32x8d-101-FPN 1x 39.0 59.7 41.9 22.3 42.5 48.9
IoU-aware RetinaNet ResNet-50-FPN 1x 36.9 56.1 40.1 20.9 40.0 46.0
IoU-aware RetinaNet ResNet-101-FPN 1x 39.2 58.2 42.9 22.1 42.7 50.0
IoU-aware RetinaNet ResNeXt-32x8d-101-FPN 1x 40.6 60.1 44.2 23.4 43.9 51.8

Table 1: Comparison with the state-of-the-art methods on COCO test-dev. The symbol
”*” means the reimplementation results in MMDetection [26]. The training schedule is
the same as Detectron [31]. ”1x” means the model is trained for 12 epochs. Different
from other research, the longer training schedule and scale jitters are not adopted in our
experiments.

RetinaNet.

IoU prediction loss AP AP50 AP75 APS APM APL

baseline 34.3 54.5 36.4 17.2 38.2 47.1
L2 loss 35.1 53.8 37.9 18.6 39.2 47.6
BCE loss 35.4 54.1 38.2 18.9 39.3 48.3

Table 2: The effectiveness of training IoU-aware RetinaNet-ResNet50 with different IoU
prediction losses on COCO val-2017.

4.3. Ablation Studies

IoU Prediction Loss. Different IoU prediction losses are used to train
IoU-aware RetinaNet. To investigate the effect of IoU prediction loss only,
the detection confidence is computed by multiplying the classification score
and predicted IoU directly without using the parameter α. As shown in Table
2, training the model with binary cross-entropy loss can produce better per-
formance than training the model with L2 loss. This may be caused by that
the predicted IoU is more accurate when training the IoU prediction head
with binary cross-entropy loss. Thus binary cross-entropy loss is adopted in
all the subsequent experiments.
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α AP AP50 AP75 APS APM APL

baseline 34.3 54.5 36.4 17.2 38.2 47.1
none 35.4 54.1 38.2 18.9 39.3 48.3
1.0 34.5 54.1 36.7 17.4 38.4 46.8
0.9 34.8 54.3 37.1 17.8 38.6 47.0
0.8 35.0 54.4 37.4 18.3 38.8 47.6
0.7 35.2 54.4 37.7 18.5 39.0 47.9
0.6 35.4 54.3 38.0 18.8 39.2 48.2
0.5 35.5 54.1 38.2 18.9 39.4 48.3
0.4 35.5 53.7 38.4 18.9 39.5 48.4
0.3 35.4 53.0 38.5 18.8 39.5 48.4
0.2 34.8 51.3 38.4 18.5 39.1 48.1
0.1 32.5 46.4 36.2 16.7 37.0 45.9
0 0.4 0.5 0.4 0.2 0.7 0.8

Table 3: The effectiveness of computing the detection confidence without using the param-
eter α and computing the detection confidence with varying the parameter α on COCO
val-2017.

Detection Confidence Computation. At inference, the detection con-
fidence is computed based on Equ. 5 and the parameter α is used to control
the contribution of the classification score and predicted IoU to the final
detection confidence. There are several observations from the experimental
results in Table 3 and Table 4. Firstly, as Table 3 shows, when α equals
to 1.0, only the classification score is used as the detection confidence and
the AP is improved by 0.2%. This demonstrates that multi-task training
with IoU prediction loss is beneficial to the model’s performance. Secondly,
when α equals to 0.5 and 0.4, the best performance of AP 35.5% is obtained,
which is 1.2% better than the baseline. The AP50 is marginally decreased
by 0.4% ∼ 0.8% while the AP70 and AP80 are improved by 2.0% ∼ 2.7% as
Table 4 shows, demonstrating the effectiveness of our method on improving
the model’s localization accuracy. Thirdly, as the parameter α is decreased
to improve the contribution of the predicted IoU to the detection confidence,
the AP50 decreases while the AP70 and AP80 increases as Table 4 shows.
This demonstrates that the predicted IoU is very correlated with the localiza-
tion accuracy and can bias the model to the detections with high localization
accuracy. In addition, the detection confidence can also be computed by mul-
tiplying the classification score and predicted IoU directly without using the
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α AP AP50 AP60 AP70 AP80 AP90

baseline 34.3 54.5 49.2 41.3 29.8 10.9
none 35.4 54.1 50.0 43.3 31.9 12.2
1.0 34.5 54.1 49.5 42.0 30.1 11.0
0.9 34.8 54.3 49.7 42.4 30.4 11.2
0.8 35.0 54.4 49.9 42.6 30.7 11.4
0.7 35.2 54.4 50.1 43.0 31.2 11.7
0.6 35.4 54.3 50.2 43.2 31.5 12.0
0.5 35.5 54.1 50.0 43.3 31.9 12.2
0.4 35.5 53.7 49.8 43.3 32.5 12.5
0.3 35.4 53.0 49.3 43.2 32.8 12.8
0.2 34.8 51.3 48.0 42.5 32.9 13.1
0.1 32.5 46.4 43.7 39.4 31.7 13.3
0 0.4 0.5 0.4 0.4 0.4 0.3

Table 4: The impact of computing the detection confidence without using the parameter α
and computing the detection confidence with varying the parameter α on AP at different
IoU threshold on COCO val-2017.

parameter α. As Table 3 shows, multiplying the classification score and pre-
dicted IoU directly without using the parameter α can improve AP by 1.1%,
which is slightly inferior than computing the detection confidence with the
parameter α. Thus, we choose to compute the detection confidence based on
Equ. 5.

Model Backbone AP AP50 AP60 AP70 AP80 AP90

RetinaNet ResNet-50-FPN 51.4 78.8 74.3 63.6 44.9 15.2
RetinaNet ResNet-101-FPN 55.1 81.1 77.2 67.5 50.4 20.1
IoU-aware RetinaNet ResNet-50-FPN 53.6 79.0 75.1 66.1 48.7 19.4
IoU-aware RetinaNet ResNet-101-FPN 56.2 80.5 76.8 68.5 52.4 22.8

Table 5: Experimental results on PASCAL VOC. All the models are trained on VOC2007
trainval and VOC2012 trainval and evaluated on VOC2007 test with the image scale of
[600, 1000]. All the other settings are adopted the same as the default settings provided
in the MMDetection.

Ablation Studies on PASCAL VOC. As Table 5 shows, IoU-aware
RetinaNet can improve AP by 1.1% ∼ 2.2% compared with the baselines.
In addition, the improvement for AP at higher IoU threshold(0.7,0.8,0.9)
is 1.0% ∼ 4.2%, demonstrating that our method can substantially improve
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the model’s localization accuracy. The observations in the experiments of
PASCAL VOC dataset is the same as that in the experiments of COCO
dataset, which demonstrates our method has generalization ability to other
datasets and can be applied to different applization scenes.

5. Conclusions

In this work, we demonstrate that the low correlation between the classifi-
cation score and localization accuracy of the single-stage object detector can
severely hurt the localization accuracy of models. Thus, IoU-aware single-
stage object detector is designed by adding a IoU prediction head at the
last layer of the regression branch to predict the IoU between each regressed
anchor and the ground truth box. In this way, the model will be aware of
the localization accuracy of each detection. At inference, the detection confi-
dence is computed by multiplying the classification score and predicted IoU
and then used to rank all the detections in the subsequent NMS and AP
computation. Extensive experiments on MS COCO dataset and PASCAL
VOC dataset have shown that IoU-aware single-stage object detector can
substantially improve the model’s performance, especially the localization
accuracy.
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