
Advanced Technologies: Open
World Streaming
Alexander Hillman
19021645

University of the West of England

January 9, 2023

T his report will cover the process of creating a
system within Unity that can handle the world

streaming of an open world computer game. The
system combines mesh generation and the use of
Json files to create an open world game where the
world is split into chunks which are saved and then
loaded and unloaded based off of distance from the
player. Some objects in the world are also saved and
loaded from files, this is handled by the chunk that
the object belongs to. The result is a open world
where only the area around the player is loaded,
thus loading other objects such as non-playable
characters and world objects that inhabit this world.
The system performs well when run and meets the
specification with it being a base for a full fledged
game.

1 Introduction

The aim for this project is to create a system for stream-
ing in an open world game, it should dynamically load
and unload chunks of the world and their meshes as
the player moves around. The system should also allow
non-playable characters to be loaded and unloaded in
the same manner so that they only exist and execute
behaviours when in proximity to the player. The stretch
goal for this task is to then build upon this system to
create a fully fledged open world game.

Figure 1: A map created out of hexagons and the sigh-lines of
players moving around the world

2 Related Work

2.1 Sunset Overdrive

One notable piece of work related to this task is Sun-
set Overdrive (Insomniac Games, 2014), a third per-
son action-adventure game that focuses on traversing
a large fictional metropolis called Sunset City. Elan
Ruskin describes how Insomniac Games streamed in
their open world level. They began by dividing the
level into regions of repeating hexagons to improve
performance, this was also used to hide long sight-
lines. Since most streets ended with buildings, players
were less likely to see areas that were either unloaded
or at a lower level of detail since geometry obstructed
the view (figure: 1).
Each gameplay zone can contain enemies, item

spawners, interactables, anchors for dynamic encoun-
ters. These are loaded if the conditions are correct
when the region is loaded so that some objects that are
constantly needed such as intractables are only around

Advanced Technologies: Open World Streaming

Figure 2: Save file for a region of the world, detailing the
actors within it

when the region they are in is needed and encounters
can be placed in under certain circumstances.
Scene objects that get added to zones are represented
as dictionaries of keys and values. These values
can represent object data such as its unique iden-
tification value, its asset path or is position. These
can theoretically be recreated when their zone is
loaded by simply reading each from the data file and
applying those values to its components.(Ruskin, 2015)

Regions are loaded based off of player position. The
region that they player is currently occupying is loaded
along with the chunks that surround it. When the
player moves into a new region the regions that are
now adjacent become loaded and the ones that are no
longer adjacent are unloaded (figure: 2).
Level of detail was used with geometry objects so
that objects that were distance were rendered with
fewer vertices. These low-resolution hexes were always
loaded but could have their level of detail swapped out
when needed to ensure that the player could always see
a skyline without it being to taxing of memory (Ruskin,
2015).

3 Method

3.1 Generating Mesh Data from a
Heightmap

A heightmap is placed into Unity as a Texture2D and
passed into a script to generate the mesh data for the
world’s terrain.
The designer can then set the size of the chunks that
the map will be divided into, this means that a map
can range from having lots of smaller divisions or less

Figure 3: Function to create the vertices and triangle list for
each of the chunk meshes

divisions that are larger. For this, a heightmap with a
resolution of 1024 x 1024 pixels has been used that
is then divided into chunks of size 32 x 32 to produce
1024 individual game object chunks (image required).
The function loops through the number of chunks to
create an empty gameobject for each and positions it.
The script then creates the shape of the chunk, each
vertex is positioned with an x and z value relative to the
current heightmap pixel’s location and a height deter-
mined by the rgb value of the pixel. Lighter coloured
pixels generate vertices with a greater height compared
to pixels with darker rgb values. The mesh generator
colours each chunk based off of its vertex data. A gra-
dient can be set within the inspector and when the
generator assigns vertices it keeps a track of the min-
imum and maximum height vertex. Then a function
loops through each vertex, normalises the height value
between the minimum and maximum values and then
assigns a vertex colour based on its height value evalu-
ated on the gradient. This results in vertices of different
heights being coloured differently. The chunk object
has a save system script attached to it and then calls
functions within the script to apply the mesh and ma-
terial data to the object and to also save this data to
a Json file. The triangle list is then created from the
generated vertices. The mesh is cleared, has its vertices
and triangles set and has its normals and bounds re-
calculated. Finally, each gameobject is parented to an
empty gameobject to act as a container for the entire
map.

Page 2 of 4

Advanced Technologies: Open World Streaming

Figure 4: Chunks loading in a radius around the player

3.2 Loading and Unloading World
Chunks

Since each of the chunk objects has a save script at-
tached to it, it is able to control its own loading and
unloading. This script writes the mesh and material
data of a chunk to a Json file to save it externally,
since this can be done in the editor there is no need
for saving to be executed at run time, thus increasing
performance.
The player has a draw distance variable to handle

the distance at which chunks load and unload which
is set to 100 by default, when the player gets too far
away a chunk, it unloads itself by destroying its mesh-
Filter, renderer and collider components. When the
player gets close enough to an inactive chunk, it loads
itself back in by reading from the saved Json file, cre-
ating a new structure with that data, re-adding the
mesh components and then applying the loaded mesh
and material from the structure to these components
(figure: 4).

3.3 Loading and Unloading World Ob-
jects

The loading and unloading of world objects is handled
by the chunk that each object is located within. The
mesh generator has the ability to run a function from
within the editor that loops through a list of all of the
chunks. It then conducts an overlap sphere check on
each to detect colliders within the vicinity of the chunk,
the function then checks the detected object’s position
to ensure that it is within the correct chunk instead of
being added to an incorrect one. Once these checks
have been completed the function gets the save system
script attached to the chunk and then adds the object
to a list of objects inside of it. Once the objects are all
added to a chunk the objects are then saved, done in the
same way as saving chunks, a new structure is created
to store the objects name, mesh and material data as
well as its scale, position and rotation. The structure

Figure 5: CPU usage, focusing on the chunk save system

is saved to a Json file with a file path generated from
the object’s instance ID and the data path is added to
a list. This means that every item saved should have a
unique save file. One downside to the implementation
carried out is the duplication of data if multiple objects
have the same mesh data because then the same mesh
data will be saved multiple times.
When a chunk is loaded it loops trough each object
in its list of objects. It reads in the data path from a
list, creates a new structure from the related Json file
and instantiates a new game object. The object then
has a mesh filter, renderer and collider added and set
from the file alongside the object’s scale, position and
rotation. When the chunk is unloaded, the object is
destroyed. This results in only the gameobjects that
the player immediately requires being active for those
chunks that are loaded.

3.4 Non-playable characters

NPCs are handled in a similar manner to world objects,
each NPC converts it’s position relative to the chunk
index it is currently in and then enables or disables
its body, colliders and attached canvas according to
whether the chunk is loaded or not. NPCs also come
with behaviours that are active depending on the status
of the world chunks. These behaviours are controlled
by a state machine, some custom scripting and Unity’s
NavMesh system for instance Some are classed as en-
emies, these NPCs can be idle, they can patrol their
designated chunk or they can chase after and flee from
the player.
Some NPCs can also provide quests to the player,

types of quests can include reach quests where the user
has to get to a certain location or object, kill quests re-
quire the player to kill designated enemies and collect
quests require the player to pick up certain objects.

4 Evaluation

The game runs between 40 to 60 frames per second
which fluctuates as the player moves around. As the
chunks around the player are being loaded and un-
loaded, the CPU has to work harder to manage the
memory allocation for the newly created components
as well as conduct garbage collecting on the memory
of the deleted objects. This theory is reinforced by
analysing the CPU and memory usage in which there
are evident spikes. A couple of seconds into the pro-
gram first running the spikes are caused by rendering,

Page 3 of 4

Advanced Technologies: Open World Streaming

Figure 6: CPU usage at peak time

scripts and garbage collection, however later spikes
are primary caused by garbage collection alone (figure:
5).
One solution to these problems would be an opti-

misation of the actual streaming process. This could
be achieved through either the use of co-routines or
Unity’s Job system, either of which would allow for
multiple multi-threaded sections of code to be to run
simultaneously. This may not solve the problem how-
ever due to the large number of chunks being loaded
and unloaded at one time as well as the relatively small
nature of the code which would produce a large num-
ber of threads with a short lifetime, thus reducing its
effectiveness. Another solution may be to add a level of
detail to the world so that objects that are further away
but still being rendered require less processing power,
thus improving frame-rate or performance drops. The
method in which the check is being run for chunks to
load / unload could also be made more efficient since
the current method result in each of the 1024 chunks
checking the players position relative to their own, a
better method would be for the player to determine is
own current chunk and then load only the one around
it, therefore reducing 1024 checks down to one check
for the player and setting only the surrounding chunks
to be active (figure: 6).

5 Conclusion

This project has created the basis of an open world
game. A system has been created that allows for a game
world to be generated from a heightmap and split into
sections which can be saved, loaded and unloaded from
a file. The world includes objects and non-playable
characters that occupy the world and which are only
loaded or execute behaviours based off of distance
from the player.

References

Insomniac Games (2014). Sunset Overdrive.
Ruskin, E. (2015). Streaming in Sunset Overdrive’s Open
World.

6 Appendix

https://youtu.be/ISwfGYr0vNs - Week 1 video

https://youtu.be/ndnbBN2xwd0 - Week 2 video

https://youtu.be/068rqjmGnF4 - Week 3 video

https://youtu.be/9L5yLf7mhtw - Week 4 video

https://youtu.be/UKtQUULYeHU - Week 5 video

Page 4 of 4

